# SPDX-License-Identifier: GPL-2.0-only
%YAML 1.2
---
$id: http://devicetree.org/schemas/soc/qcom/qcom,rpmh-rsc.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Qualcomm RPMH RSC
maintainers:
- Bjorn Andersson <[email protected]>
description: |
Resource Power Manager Hardened (RPMH) is the mechanism for communicating
with the hardened resource accelerators on Qualcomm SoCs. Requests to the
resources can be written to the Trigger Command Set (TCS) registers and
using a (addr, val) pair and triggered. Messages in the TCS are then sent in
sequence over an internal bus.
The hardware block (Direct Resource Voter or DRV) is a part of the h/w entity
(Resource State Coordinator a.k.a RSC) that can handle multiple sleep and
active/wake resource requests. Multiple such DRVs can exist in a SoC and can
be written to from Linux. The structure of each DRV follows the same template
with a few variations that are captured by the properties here.
A TCS may be triggered from Linux or triggered by the F/W after all the CPUs
have powered off to facilitate idle power saving. TCS could be classified as::
ACTIVE - Triggered by Linux
SLEEP - Triggered by F/W
WAKE - Triggered by F/W
CONTROL - Triggered by F/W
See also:: <dt-bindings/soc/qcom,rpmh-rsc.h>
The order in which they are described in the DT, should match the hardware
configuration.
Requests can be made for the state of a resource, when the subsystem is
active or idle. When all subsystems like Modem, GPU, CPU are idle, the
resource state will be an aggregate of the sleep votes from each of those
subsystems. Clients may request a sleep value for their shared resources in
addition to the active mode requests.
Drivers that want to use the RSC to communicate with RPMH must specify their
bindings as child nodes of the RSC controllers they wish to communicate with.
properties:
compatible:
const: qcom,rpmh-rsc
interrupts:
minItems: 1
maxItems: 4
description:
The interrupt that trips when a message complete/response is received for
this DRV from the accelerators.
Number of interrupts must match number of DRV blocks.
label:
description:
Name for the RSC. The name would be used in trace logs.
qcom,drv-id:
$ref: /schemas/types.yaml#/definitions/uint32
description:
The ID of the DRV in the RSC block that will be used by this controller.
qcom,tcs-config:
$ref: /schemas/types.yaml#/definitions/uint32-matrix
minItems: 4
maxItems: 4
items:
items:
- description: |
TCS type::
- ACTIVE_TCS
- SLEEP_TCS
- WAKE_TCS
- CONTROL_TCS
enum: [ 0, 1, 2, 3 ]
- description: Number of TCS
description: |
The tuple defining the configuration of TCS. Must have two cells which
describe each TCS type. The order of the TCS must match the hardware
configuration.
qcom,tcs-offset:
$ref: /schemas/types.yaml#/definitions/uint32
description:
The offset of the TCS blocks.
reg:
minItems: 1
maxItems: 4
reg-names:
minItems: 1
items:
- const: drv-0
- const: drv-1
- const: drv-2
- const: drv-3
power-domains:
maxItems: 1
bcm-voter:
$ref: /schemas/interconnect/qcom,bcm-voter.yaml#
clock-controller:
$ref: /schemas/clock/qcom,rpmhcc.yaml#
power-controller:
$ref: /schemas/power/qcom,rpmpd.yaml#
patternProperties:
'^regulators(-[0-9])?$':
$ref: /schemas/regulator/qcom,rpmh-regulator.yaml#
unevaluatedProperties: false
required:
- compatible
- interrupts
- qcom,drv-id
- qcom,tcs-config
- qcom,tcs-offset
- reg
- reg-names
- power-domains
additionalProperties: false
examples:
- |
// For a TCS whose RSC base address is 0x179C0000 and is at a DRV id of
// 2, the register offsets for DRV2 start at 0D00, the register
// calculations are like this::
// DRV0: 0x179C0000
// DRV2: 0x179C0000 + 0x10000 = 0x179D0000
// DRV2: 0x179C0000 + 0x10000 * 2 = 0x179E0000
// TCS-OFFSET: 0xD00
#include <dt-bindings/interrupt-controller/arm-gic.h>
#include <dt-bindings/soc/qcom,rpmh-rsc.h>
rsc@179c0000 {
compatible = "qcom,rpmh-rsc";
reg = <0x179c0000 0x10000>,
<0x179d0000 0x10000>,
<0x179e0000 0x10000>;
reg-names = "drv-0", "drv-1", "drv-2";
interrupts = <GIC_SPI 3 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 4 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 5 IRQ_TYPE_LEVEL_HIGH>;
label = "apps_rsc";
qcom,tcs-offset = <0xd00>;
qcom,drv-id = <2>;
qcom,tcs-config = <ACTIVE_TCS 2>,
<SLEEP_TCS 3>,
<WAKE_TCS 3>,
<CONTROL_TCS 1>;
power-domains = <&CLUSTER_PD>;
};
- |
// For a TCS whose RSC base address is 0xAF20000 and is at DRV id of 0, the
// register offsets for DRV0 start at 01C00, the register calculations are
// like this::
// DRV0: 0xAF20000
// TCS-OFFSET: 0x1C00
#include <dt-bindings/interrupt-controller/arm-gic.h>
#include <dt-bindings/soc/qcom,rpmh-rsc.h>
rsc@af20000 {
compatible = "qcom,rpmh-rsc";
reg = <0xaf20000 0x10000>;
reg-names = "drv-0";
interrupts = <GIC_SPI 129 IRQ_TYPE_LEVEL_HIGH>;
label = "disp_rsc";
qcom,tcs-offset = <0x1c00>;
qcom,drv-id = <0>;
qcom,tcs-config = <ACTIVE_TCS 0>,
<SLEEP_TCS 1>,
<WAKE_TCS 1>,
<CONTROL_TCS 0>;
power-domains = <&CLUSTER_PD>;
};
- |
#include <dt-bindings/interrupt-controller/arm-gic.h>
#include <dt-bindings/soc/qcom,rpmh-rsc.h>
#include <dt-bindings/power/qcom-rpmpd.h>
rsc@18200000 {
compatible = "qcom,rpmh-rsc";
reg = <0x18200000 0x10000>,
<0x18210000 0x10000>,
<0x18220000 0x10000>;
reg-names = "drv-0", "drv-1", "drv-2";
interrupts = <GIC_SPI 3 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 4 IRQ_TYPE_LEVEL_HIGH>,
<GIC_SPI 5 IRQ_TYPE_LEVEL_HIGH>;
label = "apps_rsc";
qcom,tcs-offset = <0xd00>;
qcom,drv-id = <2>;
qcom,tcs-config = <ACTIVE_TCS 2>,
<SLEEP_TCS 3>,
<WAKE_TCS 3>,
<CONTROL_TCS 0>;
power-domains = <&CLUSTER_PD>;
clock-controller {
compatible = "qcom,sm8350-rpmh-clk";
#clock-cells = <1>;
clock-names = "xo";
clocks = <&xo_board>;
};
power-controller {
compatible = "qcom,sm8350-rpmhpd";
#power-domain-cells = <1>;
operating-points-v2 = <&rpmhpd_opp_table>;
rpmhpd_opp_table: opp-table {
compatible = "operating-points-v2";
rpmhpd_opp_ret: opp1 {
opp-level = <RPMH_REGULATOR_LEVEL_RETENTION>;
};
rpmhpd_opp_min_svs: opp2 {
opp-level = <RPMH_REGULATOR_LEVEL_MIN_SVS>;
};
rpmhpd_opp_low_svs: opp3 {
opp-level = <RPMH_REGULATOR_LEVEL_LOW_SVS>;
};
rpmhpd_opp_svs: opp4 {
opp-level = <RPMH_REGULATOR_LEVEL_SVS>;
};
rpmhpd_opp_svs_l1: opp5 {
opp-level = <RPMH_REGULATOR_LEVEL_SVS_L1>;
};
rpmhpd_opp_nom: opp6 {
opp-level = <RPMH_REGULATOR_LEVEL_NOM>;
};
rpmhpd_opp_nom_l1: opp7 {
opp-level = <RPMH_REGULATOR_LEVEL_NOM_L1>;
};
rpmhpd_opp_nom_l2: opp8 {
opp-level = <RPMH_REGULATOR_LEVEL_NOM_L2>;
};
rpmhpd_opp_turbo: opp9 {
opp-level = <RPMH_REGULATOR_LEVEL_TURBO>;
};
rpmhpd_opp_turbo_l1: opp10 {
opp-level = <RPMH_REGULATOR_LEVEL_TURBO_L1>;
};
};
};
bcm-voter {
compatible = "qcom,bcm-voter";
};
};