/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Read-Copy Update mechanism for mutual exclusion (tree-based version)
* Internal non-public definitions that provide either classic
* or preemptible semantics.
*
* Copyright Red Hat, 2009
* Copyright IBM Corporation, 2009
*
* Author: Ingo Molnar <[email protected]>
* Paul E. McKenney <[email protected]>
*/
#include "../locking/rtmutex_common.h"
static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
{
/*
* In order to read the offloaded state of an rdp in a safe
* and stable way and prevent from its value to be changed
* under us, we must either hold the barrier mutex, the cpu
* hotplug lock (read or write) or the nocb lock. Local
* non-preemptible reads are also safe. NOCB kthreads and
* timers have their own means of synchronization against the
* offloaded state updaters.
*/
RCU_NOCB_LOCKDEP_WARN(
!(lockdep_is_held(&rcu_state.barrier_mutex) ||
(IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
lockdep_is_held(&rdp->nocb_lock) ||
lockdep_is_held(&rcu_state.nocb_mutex) ||
(!(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible()) &&
rdp == this_cpu_ptr(&rcu_data)) ||
rcu_current_is_nocb_kthread(rdp)),
"Unsafe read of RCU_NOCB offloaded state"
);
return rcu_segcblist_is_offloaded(&rdp->cblist);
}
/*
* Check the RCU kernel configuration parameters and print informative
* messages about anything out of the ordinary.
*/
static void __init rcu_bootup_announce_oddness(void)
{
if (IS_ENABLED(CONFIG_RCU_TRACE))
pr_info("\tRCU event tracing is enabled.\n");
if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
(!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
RCU_FANOUT);
if (rcu_fanout_exact)
pr_info("\tHierarchical RCU autobalancing is disabled.\n");
if (IS_ENABLED(CONFIG_PROVE_RCU))
pr_info("\tRCU lockdep checking is enabled.\n");
if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n");
if (RCU_NUM_LVLS >= 4)
pr_info("\tFour(or more)-level hierarchy is enabled.\n");
if (RCU_FANOUT_LEAF != 16)
pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
RCU_FANOUT_LEAF);
if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
rcu_fanout_leaf);
if (nr_cpu_ids != NR_CPUS)
pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
#ifdef CONFIG_RCU_BOOST
pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
kthread_prio, CONFIG_RCU_BOOST_DELAY);
#endif
if (blimit != DEFAULT_RCU_BLIMIT)
pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
if (qhimark != DEFAULT_RCU_QHIMARK)
pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
if (qlowmark != DEFAULT_RCU_QLOMARK)
pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
if (qovld != DEFAULT_RCU_QOVLD)
pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
if (jiffies_till_first_fqs != ULONG_MAX)
pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
if (jiffies_till_next_fqs != ULONG_MAX)
pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
if (jiffies_till_sched_qs != ULONG_MAX)
pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
if (rcu_kick_kthreads)
pr_info("\tKick kthreads if too-long grace period.\n");
if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
pr_info("\tRCU callback double-/use-after-free debug is enabled.\n");
if (gp_preinit_delay)
pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
if (gp_init_delay)
pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
if (gp_cleanup_delay)
pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay);
if (nohz_full_patience_delay < 0) {
pr_info("\tRCU NOCB CPU patience negative (%d), resetting to zero.\n", nohz_full_patience_delay);
nohz_full_patience_delay = 0;
} else if (nohz_full_patience_delay > 5 * MSEC_PER_SEC) {
pr_info("\tRCU NOCB CPU patience too large (%d), resetting to %ld.\n", nohz_full_patience_delay, 5 * MSEC_PER_SEC);
nohz_full_patience_delay = 5 * MSEC_PER_SEC;
} else if (nohz_full_patience_delay) {
pr_info("\tRCU NOCB CPU patience set to %d milliseconds.\n", nohz_full_patience_delay);
}
nohz_full_patience_delay_jiffies = msecs_to_jiffies(nohz_full_patience_delay);
if (!use_softirq)
pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
pr_info("\tRCU debug extended QS entry/exit.\n");
rcupdate_announce_bootup_oddness();
}
#ifdef CONFIG_PREEMPT_RCU
static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
static void rcu_read_unlock_special(struct task_struct *t);
/*
* Tell them what RCU they are running.
*/
static void __init rcu_bootup_announce(void)
{
pr_info("Preemptible hierarchical RCU implementation.\n");
rcu_bootup_announce_oddness();
}
/* Flags for rcu_preempt_ctxt_queue() decision table. */
#define RCU_GP_TASKS 0x8
#define RCU_EXP_TASKS 0x4
#define RCU_GP_BLKD 0x2
#define RCU_EXP_BLKD 0x1
/*
* Queues a task preempted within an RCU-preempt read-side critical
* section into the appropriate location within the ->blkd_tasks list,
* depending on the states of any ongoing normal and expedited grace
* periods. The ->gp_tasks pointer indicates which element the normal
* grace period is waiting on (NULL if none), and the ->exp_tasks pointer
* indicates which element the expedited grace period is waiting on (again,
* NULL if none). If a grace period is waiting on a given element in the
* ->blkd_tasks list, it also waits on all subsequent elements. Thus,
* adding a task to the tail of the list blocks any grace period that is
* already waiting on one of the elements. In contrast, adding a task
* to the head of the list won't block any grace period that is already
* waiting on one of the elements.
*
* This queuing is imprecise, and can sometimes make an ongoing grace
* period wait for a task that is not strictly speaking blocking it.
* Given the choice, we needlessly block a normal grace period rather than
* blocking an expedited grace period.
*
* Note that an endless sequence of expedited grace periods still cannot
* indefinitely postpone a normal grace period. Eventually, all of the
* fixed number of preempted tasks blocking the normal grace period that are
* not also blocking the expedited grace period will resume and complete
* their RCU read-side critical sections. At that point, the ->gp_tasks
* pointer will equal the ->exp_tasks pointer, at which point the end of
* the corresponding expedited grace period will also be the end of the
* normal grace period.
*/
static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
__releases(rnp->lock) /* But leaves rrupts disabled. */
{
int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
(rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
(rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
(rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
struct task_struct *t = current;
raw_lockdep_assert_held_rcu_node(rnp);
WARN_ON_ONCE(rdp->mynode != rnp);
WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
/* RCU better not be waiting on newly onlined CPUs! */
WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
rdp->grpmask);
/*
* Decide where to queue the newly blocked task. In theory,
* this could be an if-statement. In practice, when I tried
* that, it was quite messy.
*/
switch (blkd_state) {
case 0:
case RCU_EXP_TASKS:
case RCU_EXP_TASKS + RCU_GP_BLKD:
case RCU_GP_TASKS:
case RCU_GP_TASKS + RCU_EXP_TASKS:
/*
* Blocking neither GP, or first task blocking the normal
* GP but not blocking the already-waiting expedited GP.
* Queue at the head of the list to avoid unnecessarily
* blocking the already-waiting GPs.
*/
list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
break;
case RCU_EXP_BLKD:
case RCU_GP_BLKD:
case RCU_GP_BLKD + RCU_EXP_BLKD:
case RCU_GP_TASKS + RCU_EXP_BLKD:
case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
/*
* First task arriving that blocks either GP, or first task
* arriving that blocks the expedited GP (with the normal
* GP already waiting), or a task arriving that blocks
* both GPs with both GPs already waiting. Queue at the
* tail of the list to avoid any GP waiting on any of the
* already queued tasks that are not blocking it.
*/
list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
break;
case RCU_EXP_TASKS + RCU_EXP_BLKD:
case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
/*
* Second or subsequent task blocking the expedited GP.
* The task either does not block the normal GP, or is the
* first task blocking the normal GP. Queue just after
* the first task blocking the expedited GP.
*/
list_add(&t->rcu_node_entry, rnp->exp_tasks);
break;
case RCU_GP_TASKS + RCU_GP_BLKD:
case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
/*
* Second or subsequent task blocking the normal GP.
* The task does not block the expedited GP. Queue just
* after the first task blocking the normal GP.
*/
list_add(&t->rcu_node_entry, rnp->gp_tasks);
break;
default:
/* Yet another exercise in excessive paranoia. */
WARN_ON_ONCE(1);
break;
}
/*
* We have now queued the task. If it was the first one to
* block either grace period, update the ->gp_tasks and/or
* ->exp_tasks pointers, respectively, to reference the newly
* blocked tasks.
*/
if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
}
if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
!(rnp->qsmask & rdp->grpmask));
WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
!(rnp->expmask & rdp->grpmask));
raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
/*
* Report the quiescent state for the expedited GP. This expedited
* GP should not be able to end until we report, so there should be
* no need to check for a subsequent expedited GP. (Though we are
* still in a quiescent state in any case.)
*
* Interrupts are disabled, so ->cpu_no_qs.b.exp cannot change.
*/
if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp)
rcu_report_exp_rdp(rdp);
else
WARN_ON_ONCE(rdp->cpu_no_qs.b.exp);
}
/*
* Record a preemptible-RCU quiescent state for the specified CPU.
* Note that this does not necessarily mean that the task currently running
* on the CPU is in a quiescent state: Instead, it means that the current
* grace period need not wait on any RCU read-side critical section that
* starts later on this CPU. It also means that if the current task is
* in an RCU read-side critical section, it has already added itself to
* some leaf rcu_node structure's ->blkd_tasks list. In addition to the
* current task, there might be any number of other tasks blocked while
* in an RCU read-side critical section.
*
* Unlike non-preemptible-RCU, quiescent state reports for expedited
* grace periods are handled separately via deferred quiescent states
* and context switch events.
*
* Callers to this function must disable preemption.
*/
static void rcu_qs(void)
{
RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) {
trace_rcu_grace_period(TPS("rcu_preempt"),
__this_cpu_read(rcu_data.gp_seq),
TPS("cpuqs"));
__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
}
}
/*
* We have entered the scheduler, and the current task might soon be
* context-switched away from. If this task is in an RCU read-side
* critical section, we will no longer be able to rely on the CPU to
* record that fact, so we enqueue the task on the blkd_tasks list.
* The task will dequeue itself when it exits the outermost enclosing
* RCU read-side critical section. Therefore, the current grace period
* cannot be permitted to complete until the blkd_tasks list entries
* predating the current grace period drain, in other words, until
* rnp->gp_tasks becomes NULL.
*
* Caller must disable interrupts.
*/
void rcu_note_context_switch(bool preempt)
{
struct task_struct *t = current;
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
struct rcu_node *rnp;
trace_rcu_utilization(TPS("Start context switch"));
lockdep_assert_irqs_disabled();
WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!");
if (rcu_preempt_depth() > 0 &&
!t->rcu_read_unlock_special.b.blocked) {
/* Possibly blocking in an RCU read-side critical section. */
rnp = rdp->mynode;
raw_spin_lock_rcu_node(rnp);
t->rcu_read_unlock_special.b.blocked = true;
t->rcu_blocked_node = rnp;
/*
* Verify the CPU's sanity, trace the preemption, and
* then queue the task as required based on the states
* of any ongoing and expedited grace periods.
*/
WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp));
WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
trace_rcu_preempt_task(rcu_state.name,
t->pid,
(rnp->qsmask & rdp->grpmask)
? rnp->gp_seq
: rcu_seq_snap(&rnp->gp_seq));
rcu_preempt_ctxt_queue(rnp, rdp);
} else {
rcu_preempt_deferred_qs(t);
}
/*
* Either we were not in an RCU read-side critical section to
* begin with, or we have now recorded that critical section
* globally. Either way, we can now note a quiescent state
* for this CPU. Again, if we were in an RCU read-side critical
* section, and if that critical section was blocking the current
* grace period, then the fact that the task has been enqueued
* means that we continue to block the current grace period.
*/
rcu_qs();
if (rdp->cpu_no_qs.b.exp)
rcu_report_exp_rdp(rdp);
rcu_tasks_qs(current, preempt);
trace_rcu_utilization(TPS("End context switch"));
}
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
/*
* Check for preempted RCU readers blocking the current grace period
* for the specified rcu_node structure. If the caller needs a reliable
* answer, it must hold the rcu_node's ->lock.
*/
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
{
return READ_ONCE(rnp->gp_tasks) != NULL;
}
/* limit value for ->rcu_read_lock_nesting. */
#define RCU_NEST_PMAX (INT_MAX / 2)
static void rcu_preempt_read_enter(void)
{
WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1);
}
static int rcu_preempt_read_exit(void)
{
int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1;
WRITE_ONCE(current->rcu_read_lock_nesting, ret);
return ret;
}
static void rcu_preempt_depth_set(int val)
{
WRITE_ONCE(current->rcu_read_lock_nesting, val);
}
/*
* Preemptible RCU implementation for rcu_read_lock().
* Just increment ->rcu_read_lock_nesting, shared state will be updated
* if we block.
*/
void __rcu_read_lock(void)
{
rcu_preempt_read_enter();
if (IS_ENABLED(CONFIG_PROVE_LOCKING))
WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
barrier(); /* critical section after entry code. */
}
EXPORT_SYMBOL_GPL(__rcu_read_lock);
/*
* Preemptible RCU implementation for rcu_read_unlock().
* Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
* rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
* invoke rcu_read_unlock_special() to clean up after a context switch
* in an RCU read-side critical section and other special cases.
*/
void __rcu_read_unlock(void)
{
struct task_struct *t = current;
barrier(); // critical section before exit code.
if (rcu_preempt_read_exit() == 0) {
barrier(); // critical-section exit before .s check.
if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
rcu_read_unlock_special(t);
}
if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
int rrln = rcu_preempt_depth();
WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
}
}
EXPORT_SYMBOL_GPL(__rcu_read_unlock);
/*
* Advance a ->blkd_tasks-list pointer to the next entry, instead
* returning NULL if at the end of the list.
*/
static struct list_head *rcu_next_node_entry(struct task_struct *t,
struct rcu_node *rnp)
{
struct list_head *np;
np = t->rcu_node_entry.next;
if (np == &rnp->blkd_tasks)
np = NULL;
return np;
}
/*
* Return true if the specified rcu_node structure has tasks that were
* preempted within an RCU read-side critical section.
*/
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
{
return !list_empty(&rnp->blkd_tasks);
}
/*
* Report deferred quiescent states. The deferral time can
* be quite short, for example, in the case of the call from
* rcu_read_unlock_special().
*/
static notrace void
rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
{
bool empty_exp;
bool empty_norm;
bool empty_exp_now;
struct list_head *np;
bool drop_boost_mutex = false;
struct rcu_data *rdp;
struct rcu_node *rnp;
union rcu_special special;
/*
* If RCU core is waiting for this CPU to exit its critical section,
* report the fact that it has exited. Because irqs are disabled,
* t->rcu_read_unlock_special cannot change.
*/
special = t->rcu_read_unlock_special;
rdp = this_cpu_ptr(&rcu_data);
if (!special.s && !rdp->cpu_no_qs.b.exp) {
local_irq_restore(flags);
return;
}
t->rcu_read_unlock_special.s = 0;
if (special.b.need_qs) {
if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
rdp->cpu_no_qs.b.norm = false;
rcu_report_qs_rdp(rdp);
udelay(rcu_unlock_delay);
} else {
rcu_qs();
}
}
/*
* Respond to a request by an expedited grace period for a
* quiescent state from this CPU. Note that requests from
* tasks are handled when removing the task from the
* blocked-tasks list below.
*/
if (rdp->cpu_no_qs.b.exp)
rcu_report_exp_rdp(rdp);
/* Clean up if blocked during RCU read-side critical section. */
if (special.b.blocked) {
/*
* Remove this task from the list it blocked on. The task
* now remains queued on the rcu_node corresponding to the
* CPU it first blocked on, so there is no longer any need
* to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
*/
rnp = t->rcu_blocked_node;
raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
WARN_ON_ONCE(rnp != t->rcu_blocked_node);
WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
(!empty_norm || rnp->qsmask));
empty_exp = sync_rcu_exp_done(rnp);
smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
np = rcu_next_node_entry(t, rnp);
list_del_init(&t->rcu_node_entry);
t->rcu_blocked_node = NULL;
trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
rnp->gp_seq, t->pid);
if (&t->rcu_node_entry == rnp->gp_tasks)
WRITE_ONCE(rnp->gp_tasks, np);
if (&t->rcu_node_entry == rnp->exp_tasks)
WRITE_ONCE(rnp->exp_tasks, np);
if (IS_ENABLED(CONFIG_RCU_BOOST)) {
/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t;
if (&t->rcu_node_entry == rnp->boost_tasks)
WRITE_ONCE(rnp->boost_tasks, np);
}
/*
* If this was the last task on the current list, and if
* we aren't waiting on any CPUs, report the quiescent state.
* Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
* so we must take a snapshot of the expedited state.
*/
empty_exp_now = sync_rcu_exp_done(rnp);
if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
rnp->gp_seq,
0, rnp->qsmask,
rnp->level,
rnp->grplo,
rnp->grphi,
!!rnp->gp_tasks);
rcu_report_unblock_qs_rnp(rnp, flags);
} else {
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
}
/*
* If this was the last task on the expedited lists,
* then we need to report up the rcu_node hierarchy.
*/
if (!empty_exp && empty_exp_now)
rcu_report_exp_rnp(rnp, true);
/* Unboost if we were boosted. */
if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex);
} else {
local_irq_restore(flags);
}
}
/*
* Is a deferred quiescent-state pending, and are we also not in
* an RCU read-side critical section? It is the caller's responsibility
* to ensure it is otherwise safe to report any deferred quiescent
* states. The reason for this is that it is safe to report a
* quiescent state during context switch even though preemption
* is disabled. This function cannot be expected to understand these
* nuances, so the caller must handle them.
*/
static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
{
return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) ||
READ_ONCE(t->rcu_read_unlock_special.s)) &&
rcu_preempt_depth() == 0;
}
/*
* Report a deferred quiescent state if needed and safe to do so.
* As with rcu_preempt_need_deferred_qs(), "safe" involves only
* not being in an RCU read-side critical section. The caller must
* evaluate safety in terms of interrupt, softirq, and preemption
* disabling.
*/
notrace void rcu_preempt_deferred_qs(struct task_struct *t)
{
unsigned long flags;
if (!rcu_preempt_need_deferred_qs(t))
return;
local_irq_save(flags);
rcu_preempt_deferred_qs_irqrestore(t, flags);
}
/*
* Minimal handler to give the scheduler a chance to re-evaluate.
*/
static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
{
struct rcu_data *rdp;
rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
rdp->defer_qs_iw_pending = false;
}
/*
* Handle special cases during rcu_read_unlock(), such as needing to
* notify RCU core processing or task having blocked during the RCU
* read-side critical section.
*/
static void rcu_read_unlock_special(struct task_struct *t)
{
unsigned long flags;
bool irqs_were_disabled;
bool preempt_bh_were_disabled =
!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
/* NMI handlers cannot block and cannot safely manipulate state. */
if (in_nmi())
return;
local_irq_save(flags);
irqs_were_disabled = irqs_disabled_flags(flags);
if (preempt_bh_were_disabled || irqs_were_disabled) {
bool expboost; // Expedited GP in flight or possible boosting.
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
struct rcu_node *rnp = rdp->mynode;
expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
(rdp->grpmask & READ_ONCE(rnp->expmask)) ||
(IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
((rdp->grpmask & READ_ONCE(rnp->qsmask)) || t->rcu_blocked_node)) ||
(IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
t->rcu_blocked_node);
// Need to defer quiescent state until everything is enabled.
if (use_softirq && (in_hardirq() || (expboost && !irqs_were_disabled))) {
// Using softirq, safe to awaken, and either the
// wakeup is free or there is either an expedited
// GP in flight or a potential need to deboost.
raise_softirq_irqoff(RCU_SOFTIRQ);
} else {
// Enabling BH or preempt does reschedule, so...
// Also if no expediting and no possible deboosting,
// slow is OK. Plus nohz_full CPUs eventually get
// tick enabled.
set_tsk_need_resched(current);
set_preempt_need_resched();
if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) {
// Get scheduler to re-evaluate and call hooks.
// If !IRQ_WORK, FQS scan will eventually IPI.
if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
IS_ENABLED(CONFIG_PREEMPT_RT))
rdp->defer_qs_iw = IRQ_WORK_INIT_HARD(
rcu_preempt_deferred_qs_handler);
else
init_irq_work(&rdp->defer_qs_iw,
rcu_preempt_deferred_qs_handler);
rdp->defer_qs_iw_pending = true;
irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
}
}
local_irq_restore(flags);
return;
}
rcu_preempt_deferred_qs_irqrestore(t, flags);
}
/*
* Check that the list of blocked tasks for the newly completed grace
* period is in fact empty. It is a serious bug to complete a grace
* period that still has RCU readers blocked! This function must be
* invoked -before- updating this rnp's ->gp_seq.
*
* Also, if there are blocked tasks on the list, they automatically
* block the newly created grace period, so set up ->gp_tasks accordingly.
*/
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
struct task_struct *t;
RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
raw_lockdep_assert_held_rcu_node(rnp);
if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
dump_blkd_tasks(rnp, 10);
if (rcu_preempt_has_tasks(rnp) &&
(rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
t = container_of(rnp->gp_tasks, struct task_struct,
rcu_node_entry);
trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
rnp->gp_seq, t->pid);
}
WARN_ON_ONCE(rnp->qsmask);
}
/*
* Check for a quiescent state from the current CPU, including voluntary
* context switches for Tasks RCU. When a task blocks, the task is
* recorded in the corresponding CPU's rcu_node structure, which is checked
* elsewhere, hence this function need only check for quiescent states
* related to the current CPU, not to those related to tasks.
*/
static void rcu_flavor_sched_clock_irq(int user)
{
struct task_struct *t = current;
lockdep_assert_irqs_disabled();
if (rcu_preempt_depth() > 0 ||
(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
/* No QS, force context switch if deferred. */
if (rcu_preempt_need_deferred_qs(t)) {
set_tsk_need_resched(t);
set_preempt_need_resched();
}
} else if (rcu_preempt_need_deferred_qs(t)) {
rcu_preempt_deferred_qs(t); /* Report deferred QS. */
return;
} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
rcu_qs(); /* Report immediate QS. */
return;
}
/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
if (rcu_preempt_depth() > 0 &&
__this_cpu_read(rcu_data.core_needs_qs) &&
__this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
!t->rcu_read_unlock_special.b.need_qs &&
time_after(jiffies, rcu_state.gp_start + HZ))
t->rcu_read_unlock_special.b.need_qs = true;
}
/*
* Check for a task exiting while in a preemptible-RCU read-side
* critical section, clean up if so. No need to issue warnings, as
* debug_check_no_locks_held() already does this if lockdep is enabled.
* Besides, if this function does anything other than just immediately
* return, there was a bug of some sort. Spewing warnings from this
* function is like as not to simply obscure important prior warnings.
*/
void exit_rcu(void)
{
struct task_struct *t = current;
if (unlikely(!list_empty(¤t->rcu_node_entry))) {
rcu_preempt_depth_set(1);
barrier();
WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
} else if (unlikely(rcu_preempt_depth())) {
rcu_preempt_depth_set(1);
} else {
return;
}
__rcu_read_unlock();
rcu_preempt_deferred_qs(current);
}
/*
* Dump the blocked-tasks state, but limit the list dump to the
* specified number of elements.
*/
static void
dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
{
int cpu;
int i;
struct list_head *lhp;
struct rcu_data *rdp;
struct rcu_node *rnp1;
raw_lockdep_assert_held_rcu_node(rnp);
pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
__func__, rnp->grplo, rnp->grphi, rnp->level,
(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
READ_ONCE(rnp->exp_tasks));
pr_info("%s: ->blkd_tasks", __func__);
i = 0;
list_for_each(lhp, &rnp->blkd_tasks) {
pr_cont(" %p", lhp);
if (++i >= ncheck)
break;
}
pr_cont("\n");
for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
rdp = per_cpu_ptr(&rcu_data, cpu);
pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
cpu, ".o"[rcu_rdp_cpu_online(rdp)],
(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state,
(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state);
}
}
#else /* #ifdef CONFIG_PREEMPT_RCU */
/*
* If strict grace periods are enabled, and if the calling
* __rcu_read_unlock() marks the beginning of a quiescent state, immediately
* report that quiescent state and, if requested, spin for a bit.
*/
void rcu_read_unlock_strict(void)
{
struct rcu_data *rdp;
if (irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
return;
rdp = this_cpu_ptr(&rcu_data);
rdp->cpu_no_qs.b.norm = false;
rcu_report_qs_rdp(rdp);
udelay(rcu_unlock_delay);
}
EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
/*
* Tell them what RCU they are running.
*/
static void __init rcu_bootup_announce(void)
{
pr_info("Hierarchical RCU implementation.\n");
rcu_bootup_announce_oddness();
}
/*
* Note a quiescent state for PREEMPTION=n. Because we do not need to know
* how many quiescent states passed, just if there was at least one since
* the start of the grace period, this just sets a flag. The caller must
* have disabled preemption.
*/
static void rcu_qs(void)
{
RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
return;
trace_rcu_grace_period(TPS("rcu_sched"),
__this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
}
/*
* Register an urgently needed quiescent state. If there is an
* emergency, invoke rcu_momentary_eqs() to do a heavy-weight
* dyntick-idle quiescent state visible to other CPUs, which will in
* some cases serve for expedited as well as normal grace periods.
* Either way, register a lightweight quiescent state.
*/
void rcu_all_qs(void)
{
unsigned long flags;
if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
return;
preempt_disable(); // For CONFIG_PREEMPT_COUNT=y kernels
/* Load rcu_urgent_qs before other flags. */
if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
preempt_enable();
return;
}
this_cpu_write(rcu_data.rcu_urgent_qs, false);
if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
local_irq_save(flags);
rcu_momentary_eqs();
local_irq_restore(flags);
}
rcu_qs();
preempt_enable();
}
EXPORT_SYMBOL_GPL(rcu_all_qs);
/*
* Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
*/
void rcu_note_context_switch(bool preempt)
{
trace_rcu_utilization(TPS("Start context switch"));
rcu_qs();
/* Load rcu_urgent_qs before other flags. */
if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
goto out;
this_cpu_write(rcu_data.rcu_urgent_qs, false);
if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
rcu_momentary_eqs();
out:
rcu_tasks_qs(current, preempt);
trace_rcu_utilization(TPS("End context switch"));
}
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
/*
* Because preemptible RCU does not exist, there are never any preempted
* RCU readers.
*/
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
{
return 0;
}
/*
* Because there is no preemptible RCU, there can be no readers blocked.
*/
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
{
return false;
}
/*
* Because there is no preemptible RCU, there can be no deferred quiescent
* states.
*/
static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
{
return false;
}
// Except that we do need to respond to a request by an expedited
// grace period for a quiescent state from this CPU. Note that in
// non-preemptible kernels, there can be no context switches within RCU
// read-side critical sections, which in turn means that the leaf rcu_node
// structure's blocked-tasks list is always empty. is therefore no need to
// actually check it. Instead, a quiescent state from this CPU suffices,
// and this function is only called from such a quiescent state.
notrace void rcu_preempt_deferred_qs(struct task_struct *t)
{
struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
if (READ_ONCE(rdp->cpu_no_qs.b.exp))
rcu_report_exp_rdp(rdp);
}
/*
* Because there is no preemptible RCU, there can be no readers blocked,
* so there is no need to check for blocked tasks. So check only for
* bogus qsmask values.
*/
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
WARN_ON_ONCE(rnp->qsmask);
}
/*
* Check to see if this CPU is in a non-context-switch quiescent state,
* namely user mode and idle loop.
*/
static void rcu_flavor_sched_clock_irq(int user)
{
if (user || rcu_is_cpu_rrupt_from_idle()) {
/*
* Get here if this CPU took its interrupt from user
* mode or from the idle loop, and if this is not a
* nested interrupt. In this case, the CPU is in
* a quiescent state, so note it.
*
* No memory barrier is required here because rcu_qs()
* references only CPU-local variables that other CPUs
* neither access nor modify, at least not while the
* corresponding CPU is online.
*/
rcu_qs();
}
}
/*
* Because preemptible RCU does not exist, tasks cannot possibly exit
* while in preemptible RCU read-side critical sections.
*/
void exit_rcu(void)
{
}
/*
* Dump the guaranteed-empty blocked-tasks state. Trust but verify.
*/
static void
dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
{
WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
}
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
/*
* If boosting, set rcuc kthreads to realtime priority.
*/
static void rcu_cpu_kthread_setup(unsigned int cpu)
{
struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
#ifdef CONFIG_RCU_BOOST
struct sched_param sp;
sp.sched_priority = kthread_prio;
sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
#endif /* #ifdef CONFIG_RCU_BOOST */
WRITE_ONCE(rdp->rcuc_activity, jiffies);
}
static bool rcu_is_callbacks_nocb_kthread(struct rcu_data *rdp)
{
#ifdef CONFIG_RCU_NOCB_CPU
return rdp->nocb_cb_kthread == current;
#else
return false;
#endif
}
/*
* Is the current CPU running the RCU-callbacks kthread?
* Caller must have preemption disabled.
*/
static bool rcu_is_callbacks_kthread(struct rcu_data *rdp)
{
return rdp->rcu_cpu_kthread_task == current ||
rcu_is_callbacks_nocb_kthread(rdp);
}
#ifdef CONFIG_RCU_BOOST
/*
* Carry out RCU priority boosting on the task indicated by ->exp_tasks
* or ->boost_tasks, advancing the pointer to the next task in the
* ->blkd_tasks list.
*
* Note that irqs must be enabled: boosting the task can block.
* Returns 1 if there are more tasks needing to be boosted.
*/
static int rcu_boost(struct rcu_node *rnp)
{
unsigned long flags;
struct task_struct *t;
struct list_head *tb;
if (READ_ONCE(rnp->exp_tasks) == NULL &&
READ_ONCE(rnp->boost_tasks) == NULL)
return 0; /* Nothing left to boost. */
raw_spin_lock_irqsave_rcu_node(rnp, flags);
/*
* Recheck under the lock: all tasks in need of boosting
* might exit their RCU read-side critical sections on their own.
*/
if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
return 0;
}
/*
* Preferentially boost tasks blocking expedited grace periods.
* This cannot starve the normal grace periods because a second
* expedited grace period must boost all blocked tasks, including
* those blocking the pre-existing normal grace period.
*/
if (rnp->exp_tasks != NULL)
tb = rnp->exp_tasks;
else
tb = rnp->boost_tasks;
/*
* We boost task t by manufacturing an rt_mutex that appears to
* be held by task t. We leave a pointer to that rt_mutex where
* task t can find it, and task t will release the mutex when it
* exits its outermost RCU read-side critical section. Then
* simply acquiring this artificial rt_mutex will boost task
* t's priority. (Thanks to tglx for suggesting this approach!)
*
* Note that task t must acquire rnp->lock to remove itself from
* the ->blkd_tasks list, which it will do from exit() if from
* nowhere else. We therefore are guaranteed that task t will
* stay around at least until we drop rnp->lock. Note that
* rnp->lock also resolves races between our priority boosting
* and task t's exiting its outermost RCU read-side critical
* section.
*/
t = container_of(tb, struct task_struct, rcu_node_entry);
rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t);
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
/* Lock only for side effect: boosts task t's priority. */
rt_mutex_lock(&rnp->boost_mtx);
rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
rnp->n_boosts++;
return READ_ONCE(rnp->exp_tasks) != NULL ||
READ_ONCE(rnp->boost_tasks) != NULL;
}
/*
* Priority-boosting kthread, one per leaf rcu_node.
*/
static int rcu_boost_kthread(void *arg)
{
struct rcu_node *rnp = (struct rcu_node *)arg;
int spincnt = 0;
int more2boost;
trace_rcu_utilization(TPS("Start boost kthread@init"));
for (;;) {
WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
rcu_wait(READ_ONCE(rnp->boost_tasks) ||
READ_ONCE(rnp->exp_tasks));
trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
more2boost = rcu_boost(rnp);
if (more2boost)
spincnt++;
else
spincnt = 0;
if (spincnt > 10) {
WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
schedule_timeout_idle(2);
trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
spincnt = 0;
}
}
/* NOTREACHED */
trace_rcu_utilization(TPS("End boost kthread@notreached"));
return 0;
}
/*
* Check to see if it is time to start boosting RCU readers that are
* blocking the current grace period, and, if so, tell the per-rcu_node
* kthread to start boosting them. If there is an expedited grace
* period in progress, it is always time to boost.
*
* The caller must hold rnp->lock, which this function releases.
* The ->boost_kthread_task is immortal, so we don't need to worry
* about it going away.
*/
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
__releases(rnp->lock)
{
raw_lockdep_assert_held_rcu_node(rnp);
if (!rnp->boost_kthread_task ||
(!rcu_preempt_blocked_readers_cgp(rnp) && !rnp->exp_tasks)) {
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
return;
}
if (rnp->exp_tasks != NULL ||
(rnp->gp_tasks != NULL &&
rnp->boost_tasks == NULL &&
rnp->qsmask == 0 &&
(!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld ||
IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)))) {
if (rnp->exp_tasks == NULL)
WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
rcu_wake_cond(rnp->boost_kthread_task,
READ_ONCE(rnp->boost_kthread_status));
} else {
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
}
}
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
/*
* Do priority-boost accounting for the start of a new grace period.
*/
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}
/*
* Create an RCU-boost kthread for the specified node if one does not
* already exist. We only create this kthread for preemptible RCU.
*/
static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
{
unsigned long flags;
int rnp_index = rnp - rcu_get_root();
struct sched_param sp;
struct task_struct *t;
if (rnp->boost_kthread_task)
return;
t = kthread_create(rcu_boost_kthread, (void *)rnp,
"rcub/%d", rnp_index);
if (WARN_ON_ONCE(IS_ERR(t)))
return;
raw_spin_lock_irqsave_rcu_node(rnp, flags);
rnp->boost_kthread_task = t;
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
sp.sched_priority = kthread_prio;
sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
}
static struct task_struct *rcu_boost_task(struct rcu_node *rnp)
{
return READ_ONCE(rnp->boost_kthread_task);
}
#else /* #ifdef CONFIG_RCU_BOOST */
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
__releases(rnp->lock)
{
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
}
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}
static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
{
}
static struct task_struct *rcu_boost_task(struct rcu_node *rnp)
{
return NULL;
}
#endif /* #else #ifdef CONFIG_RCU_BOOST */
/*
* Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
* grace-period kthread will do force_quiescent_state() processing?
* The idea is to avoid waking up RCU core processing on such a
* CPU unless the grace period has extended for too long.
*
* This code relies on the fact that all NO_HZ_FULL CPUs are also
* RCU_NOCB_CPU CPUs.
*/
static bool rcu_nohz_full_cpu(void)
{
#ifdef CONFIG_NO_HZ_FULL
if (tick_nohz_full_cpu(smp_processor_id()) &&
(!rcu_gp_in_progress() ||
time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
return true;
#endif /* #ifdef CONFIG_NO_HZ_FULL */
return false;
}
/*
* Bind the RCU grace-period kthreads to the housekeeping CPU.
*/
static void rcu_bind_gp_kthread(void)
{
if (!tick_nohz_full_enabled())
return;
housekeeping_affine(current, HK_TYPE_RCU);
}