// SPDX-License-Identifier: GPL-2.0
/*
* AMD Encrypted Register State Support
*
* Author: Joerg Roedel <[email protected]>
*
* This file is not compiled stand-alone. It contains code shared
* between the pre-decompression boot code and the running Linux kernel
* and is included directly into both code-bases.
*/
#include <asm/setup_data.h>
#ifndef __BOOT_COMPRESSED
#define error(v) pr_err(v)
#define has_cpuflag(f) boot_cpu_has(f)
#define sev_printk(fmt, ...) printk(fmt, ##__VA_ARGS__)
#define sev_printk_rtl(fmt, ...) printk_ratelimited(fmt, ##__VA_ARGS__)
#else
#undef WARN
#define WARN(condition, format...) (!!(condition))
#define sev_printk(fmt, ...)
#define sev_printk_rtl(fmt, ...)
#undef vc_forward_exception
#define vc_forward_exception(c) panic("SNP: Hypervisor requested exception\n")
#endif
/*
* SVSM related information:
* When running under an SVSM, the VMPL that Linux is executing at must be
* non-zero. The VMPL is therefore used to indicate the presence of an SVSM.
*
* During boot, the page tables are set up as identity mapped and later
* changed to use kernel virtual addresses. Maintain separate virtual and
* physical addresses for the CAA to allow SVSM functions to be used during
* early boot, both with identity mapped virtual addresses and proper kernel
* virtual addresses.
*/
u8 snp_vmpl __ro_after_init;
EXPORT_SYMBOL_GPL(snp_vmpl);
static struct svsm_ca *boot_svsm_caa __ro_after_init;
static u64 boot_svsm_caa_pa __ro_after_init;
static struct svsm_ca *svsm_get_caa(void);
static u64 svsm_get_caa_pa(void);
static int svsm_perform_call_protocol(struct svsm_call *call);
/* I/O parameters for CPUID-related helpers */
struct cpuid_leaf {
u32 fn;
u32 subfn;
u32 eax;
u32 ebx;
u32 ecx;
u32 edx;
};
/*
* Individual entries of the SNP CPUID table, as defined by the SNP
* Firmware ABI, Revision 0.9, Section 7.1, Table 14.
*/
struct snp_cpuid_fn {
u32 eax_in;
u32 ecx_in;
u64 xcr0_in;
u64 xss_in;
u32 eax;
u32 ebx;
u32 ecx;
u32 edx;
u64 __reserved;
} __packed;
/*
* SNP CPUID table, as defined by the SNP Firmware ABI, Revision 0.9,
* Section 8.14.2.6. Also noted there is the SNP firmware-enforced limit
* of 64 entries per CPUID table.
*/
#define SNP_CPUID_COUNT_MAX 64
struct snp_cpuid_table {
u32 count;
u32 __reserved1;
u64 __reserved2;
struct snp_cpuid_fn fn[SNP_CPUID_COUNT_MAX];
} __packed;
/*
* Since feature negotiation related variables are set early in the boot
* process they must reside in the .data section so as not to be zeroed
* out when the .bss section is later cleared.
*
* GHCB protocol version negotiated with the hypervisor.
*/
static u16 ghcb_version __ro_after_init;
/* Copy of the SNP firmware's CPUID page. */
static struct snp_cpuid_table cpuid_table_copy __ro_after_init;
/*
* These will be initialized based on CPUID table so that non-present
* all-zero leaves (for sparse tables) can be differentiated from
* invalid/out-of-range leaves. This is needed since all-zero leaves
* still need to be post-processed.
*/
static u32 cpuid_std_range_max __ro_after_init;
static u32 cpuid_hyp_range_max __ro_after_init;
static u32 cpuid_ext_range_max __ro_after_init;
static bool __init sev_es_check_cpu_features(void)
{
if (!has_cpuflag(X86_FEATURE_RDRAND)) {
error("RDRAND instruction not supported - no trusted source of randomness available\n");
return false;
}
return true;
}
static void __head __noreturn
sev_es_terminate(unsigned int set, unsigned int reason)
{
u64 val = GHCB_MSR_TERM_REQ;
/* Tell the hypervisor what went wrong. */
val |= GHCB_SEV_TERM_REASON(set, reason);
/* Request Guest Termination from Hypervisor */
sev_es_wr_ghcb_msr(val);
VMGEXIT();
while (true)
asm volatile("hlt\n" : : : "memory");
}
/*
* The hypervisor features are available from GHCB version 2 onward.
*/
static u64 get_hv_features(void)
{
u64 val;
if (ghcb_version < 2)
return 0;
sev_es_wr_ghcb_msr(GHCB_MSR_HV_FT_REQ);
VMGEXIT();
val = sev_es_rd_ghcb_msr();
if (GHCB_RESP_CODE(val) != GHCB_MSR_HV_FT_RESP)
return 0;
return GHCB_MSR_HV_FT_RESP_VAL(val);
}
static void snp_register_ghcb_early(unsigned long paddr)
{
unsigned long pfn = paddr >> PAGE_SHIFT;
u64 val;
sev_es_wr_ghcb_msr(GHCB_MSR_REG_GPA_REQ_VAL(pfn));
VMGEXIT();
val = sev_es_rd_ghcb_msr();
/* If the response GPA is not ours then abort the guest */
if ((GHCB_RESP_CODE(val) != GHCB_MSR_REG_GPA_RESP) ||
(GHCB_MSR_REG_GPA_RESP_VAL(val) != pfn))
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_REGISTER);
}
static bool sev_es_negotiate_protocol(void)
{
u64 val;
/* Do the GHCB protocol version negotiation */
sev_es_wr_ghcb_msr(GHCB_MSR_SEV_INFO_REQ);
VMGEXIT();
val = sev_es_rd_ghcb_msr();
if (GHCB_MSR_INFO(val) != GHCB_MSR_SEV_INFO_RESP)
return false;
if (GHCB_MSR_PROTO_MAX(val) < GHCB_PROTOCOL_MIN ||
GHCB_MSR_PROTO_MIN(val) > GHCB_PROTOCOL_MAX)
return false;
ghcb_version = min_t(size_t, GHCB_MSR_PROTO_MAX(val), GHCB_PROTOCOL_MAX);
return true;
}
static __always_inline void vc_ghcb_invalidate(struct ghcb *ghcb)
{
ghcb->save.sw_exit_code = 0;
__builtin_memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
}
static bool vc_decoding_needed(unsigned long exit_code)
{
/* Exceptions don't require to decode the instruction */
return !(exit_code >= SVM_EXIT_EXCP_BASE &&
exit_code <= SVM_EXIT_LAST_EXCP);
}
static enum es_result vc_init_em_ctxt(struct es_em_ctxt *ctxt,
struct pt_regs *regs,
unsigned long exit_code)
{
enum es_result ret = ES_OK;
memset(ctxt, 0, sizeof(*ctxt));
ctxt->regs = regs;
if (vc_decoding_needed(exit_code))
ret = vc_decode_insn(ctxt);
return ret;
}
static void vc_finish_insn(struct es_em_ctxt *ctxt)
{
ctxt->regs->ip += ctxt->insn.length;
}
static enum es_result verify_exception_info(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
{
u32 ret;
ret = ghcb->save.sw_exit_info_1 & GENMASK_ULL(31, 0);
if (!ret)
return ES_OK;
if (ret == 1) {
u64 info = ghcb->save.sw_exit_info_2;
unsigned long v = info & SVM_EVTINJ_VEC_MASK;
/* Check if exception information from hypervisor is sane. */
if ((info & SVM_EVTINJ_VALID) &&
((v == X86_TRAP_GP) || (v == X86_TRAP_UD)) &&
((info & SVM_EVTINJ_TYPE_MASK) == SVM_EVTINJ_TYPE_EXEPT)) {
ctxt->fi.vector = v;
if (info & SVM_EVTINJ_VALID_ERR)
ctxt->fi.error_code = info >> 32;
return ES_EXCEPTION;
}
}
return ES_VMM_ERROR;
}
static inline int svsm_process_result_codes(struct svsm_call *call)
{
switch (call->rax_out) {
case SVSM_SUCCESS:
return 0;
case SVSM_ERR_INCOMPLETE:
case SVSM_ERR_BUSY:
return -EAGAIN;
default:
return -EINVAL;
}
}
/*
* Issue a VMGEXIT to call the SVSM:
* - Load the SVSM register state (RAX, RCX, RDX, R8 and R9)
* - Set the CA call pending field to 1
* - Issue VMGEXIT
* - Save the SVSM return register state (RAX, RCX, RDX, R8 and R9)
* - Perform atomic exchange of the CA call pending field
*
* - See the "Secure VM Service Module for SEV-SNP Guests" specification for
* details on the calling convention.
* - The calling convention loosely follows the Microsoft X64 calling
* convention by putting arguments in RCX, RDX, R8 and R9.
* - RAX specifies the SVSM protocol/callid as input and the return code
* as output.
*/
static __always_inline void svsm_issue_call(struct svsm_call *call, u8 *pending)
{
register unsigned long rax asm("rax") = call->rax;
register unsigned long rcx asm("rcx") = call->rcx;
register unsigned long rdx asm("rdx") = call->rdx;
register unsigned long r8 asm("r8") = call->r8;
register unsigned long r9 asm("r9") = call->r9;
call->caa->call_pending = 1;
asm volatile("rep; vmmcall\n\t"
: "+r" (rax), "+r" (rcx), "+r" (rdx), "+r" (r8), "+r" (r9)
: : "memory");
*pending = xchg(&call->caa->call_pending, *pending);
call->rax_out = rax;
call->rcx_out = rcx;
call->rdx_out = rdx;
call->r8_out = r8;
call->r9_out = r9;
}
static int svsm_perform_msr_protocol(struct svsm_call *call)
{
u8 pending = 0;
u64 val, resp;
/*
* When using the MSR protocol, be sure to save and restore
* the current MSR value.
*/
val = sev_es_rd_ghcb_msr();
sev_es_wr_ghcb_msr(GHCB_MSR_VMPL_REQ_LEVEL(0));
svsm_issue_call(call, &pending);
resp = sev_es_rd_ghcb_msr();
sev_es_wr_ghcb_msr(val);
if (pending)
return -EINVAL;
if (GHCB_RESP_CODE(resp) != GHCB_MSR_VMPL_RESP)
return -EINVAL;
if (GHCB_MSR_VMPL_RESP_VAL(resp))
return -EINVAL;
return svsm_process_result_codes(call);
}
static int svsm_perform_ghcb_protocol(struct ghcb *ghcb, struct svsm_call *call)
{
struct es_em_ctxt ctxt;
u8 pending = 0;
vc_ghcb_invalidate(ghcb);
/*
* Fill in protocol and format specifiers. This can be called very early
* in the boot, so use rip-relative references as needed.
*/
ghcb->protocol_version = RIP_REL_REF(ghcb_version);
ghcb->ghcb_usage = GHCB_DEFAULT_USAGE;
ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_SNP_RUN_VMPL);
ghcb_set_sw_exit_info_1(ghcb, 0);
ghcb_set_sw_exit_info_2(ghcb, 0);
sev_es_wr_ghcb_msr(__pa(ghcb));
svsm_issue_call(call, &pending);
if (pending)
return -EINVAL;
switch (verify_exception_info(ghcb, &ctxt)) {
case ES_OK:
break;
case ES_EXCEPTION:
vc_forward_exception(&ctxt);
fallthrough;
default:
return -EINVAL;
}
return svsm_process_result_codes(call);
}
static enum es_result sev_es_ghcb_hv_call(struct ghcb *ghcb,
struct es_em_ctxt *ctxt,
u64 exit_code, u64 exit_info_1,
u64 exit_info_2)
{
/* Fill in protocol and format specifiers */
ghcb->protocol_version = ghcb_version;
ghcb->ghcb_usage = GHCB_DEFAULT_USAGE;
ghcb_set_sw_exit_code(ghcb, exit_code);
ghcb_set_sw_exit_info_1(ghcb, exit_info_1);
ghcb_set_sw_exit_info_2(ghcb, exit_info_2);
sev_es_wr_ghcb_msr(__pa(ghcb));
VMGEXIT();
return verify_exception_info(ghcb, ctxt);
}
static int __sev_cpuid_hv(u32 fn, int reg_idx, u32 *reg)
{
u64 val;
sev_es_wr_ghcb_msr(GHCB_CPUID_REQ(fn, reg_idx));
VMGEXIT();
val = sev_es_rd_ghcb_msr();
if (GHCB_RESP_CODE(val) != GHCB_MSR_CPUID_RESP)
return -EIO;
*reg = (val >> 32);
return 0;
}
static int __sev_cpuid_hv_msr(struct cpuid_leaf *leaf)
{
int ret;
/*
* MSR protocol does not support fetching non-zero subfunctions, but is
* sufficient to handle current early-boot cases. Should that change,
* make sure to report an error rather than ignoring the index and
* grabbing random values. If this issue arises in the future, handling
* can be added here to use GHCB-page protocol for cases that occur late
* enough in boot that GHCB page is available.
*/
if (cpuid_function_is_indexed(leaf->fn) && leaf->subfn)
return -EINVAL;
ret = __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EAX, &leaf->eax);
ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EBX, &leaf->ebx);
ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_ECX, &leaf->ecx);
ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EDX, &leaf->edx);
return ret;
}
static int __sev_cpuid_hv_ghcb(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
{
u32 cr4 = native_read_cr4();
int ret;
ghcb_set_rax(ghcb, leaf->fn);
ghcb_set_rcx(ghcb, leaf->subfn);
if (cr4 & X86_CR4_OSXSAVE)
/* Safe to read xcr0 */
ghcb_set_xcr0(ghcb, xgetbv(XCR_XFEATURE_ENABLED_MASK));
else
/* xgetbv will cause #UD - use reset value for xcr0 */
ghcb_set_xcr0(ghcb, 1);
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_CPUID, 0, 0);
if (ret != ES_OK)
return ret;
if (!(ghcb_rax_is_valid(ghcb) &&
ghcb_rbx_is_valid(ghcb) &&
ghcb_rcx_is_valid(ghcb) &&
ghcb_rdx_is_valid(ghcb)))
return ES_VMM_ERROR;
leaf->eax = ghcb->save.rax;
leaf->ebx = ghcb->save.rbx;
leaf->ecx = ghcb->save.rcx;
leaf->edx = ghcb->save.rdx;
return ES_OK;
}
static int sev_cpuid_hv(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
{
return ghcb ? __sev_cpuid_hv_ghcb(ghcb, ctxt, leaf)
: __sev_cpuid_hv_msr(leaf);
}
/*
* This may be called early while still running on the initial identity
* mapping. Use RIP-relative addressing to obtain the correct address
* while running with the initial identity mapping as well as the
* switch-over to kernel virtual addresses later.
*/
static const struct snp_cpuid_table *snp_cpuid_get_table(void)
{
return &RIP_REL_REF(cpuid_table_copy);
}
/*
* The SNP Firmware ABI, Revision 0.9, Section 7.1, details the use of
* XCR0_IN and XSS_IN to encode multiple versions of 0xD subfunctions 0
* and 1 based on the corresponding features enabled by a particular
* combination of XCR0 and XSS registers so that a guest can look up the
* version corresponding to the features currently enabled in its XCR0/XSS
* registers. The only values that differ between these versions/table
* entries is the enabled XSAVE area size advertised via EBX.
*
* While hypervisors may choose to make use of this support, it is more
* robust/secure for a guest to simply find the entry corresponding to the
* base/legacy XSAVE area size (XCR0=1 or XCR0=3), and then calculate the
* XSAVE area size using subfunctions 2 through 64, as documented in APM
* Volume 3, Rev 3.31, Appendix E.3.8, which is what is done here.
*
* Since base/legacy XSAVE area size is documented as 0x240, use that value
* directly rather than relying on the base size in the CPUID table.
*
* Return: XSAVE area size on success, 0 otherwise.
*/
static u32 snp_cpuid_calc_xsave_size(u64 xfeatures_en, bool compacted)
{
const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
u64 xfeatures_found = 0;
u32 xsave_size = 0x240;
int i;
for (i = 0; i < cpuid_table->count; i++) {
const struct snp_cpuid_fn *e = &cpuid_table->fn[i];
if (!(e->eax_in == 0xD && e->ecx_in > 1 && e->ecx_in < 64))
continue;
if (!(xfeatures_en & (BIT_ULL(e->ecx_in))))
continue;
if (xfeatures_found & (BIT_ULL(e->ecx_in)))
continue;
xfeatures_found |= (BIT_ULL(e->ecx_in));
if (compacted)
xsave_size += e->eax;
else
xsave_size = max(xsave_size, e->eax + e->ebx);
}
/*
* Either the guest set unsupported XCR0/XSS bits, or the corresponding
* entries in the CPUID table were not present. This is not a valid
* state to be in.
*/
if (xfeatures_found != (xfeatures_en & GENMASK_ULL(63, 2)))
return 0;
return xsave_size;
}
static bool __head
snp_cpuid_get_validated_func(struct cpuid_leaf *leaf)
{
const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
int i;
for (i = 0; i < cpuid_table->count; i++) {
const struct snp_cpuid_fn *e = &cpuid_table->fn[i];
if (e->eax_in != leaf->fn)
continue;
if (cpuid_function_is_indexed(leaf->fn) && e->ecx_in != leaf->subfn)
continue;
/*
* For 0xD subfunctions 0 and 1, only use the entry corresponding
* to the base/legacy XSAVE area size (XCR0=1 or XCR0=3, XSS=0).
* See the comments above snp_cpuid_calc_xsave_size() for more
* details.
*/
if (e->eax_in == 0xD && (e->ecx_in == 0 || e->ecx_in == 1))
if (!(e->xcr0_in == 1 || e->xcr0_in == 3) || e->xss_in)
continue;
leaf->eax = e->eax;
leaf->ebx = e->ebx;
leaf->ecx = e->ecx;
leaf->edx = e->edx;
return true;
}
return false;
}
static void snp_cpuid_hv(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
{
if (sev_cpuid_hv(ghcb, ctxt, leaf))
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID_HV);
}
static int snp_cpuid_postprocess(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
struct cpuid_leaf *leaf)
{
struct cpuid_leaf leaf_hv = *leaf;
switch (leaf->fn) {
case 0x1:
snp_cpuid_hv(ghcb, ctxt, &leaf_hv);
/* initial APIC ID */
leaf->ebx = (leaf_hv.ebx & GENMASK(31, 24)) | (leaf->ebx & GENMASK(23, 0));
/* APIC enabled bit */
leaf->edx = (leaf_hv.edx & BIT(9)) | (leaf->edx & ~BIT(9));
/* OSXSAVE enabled bit */
if (native_read_cr4() & X86_CR4_OSXSAVE)
leaf->ecx |= BIT(27);
break;
case 0x7:
/* OSPKE enabled bit */
leaf->ecx &= ~BIT(4);
if (native_read_cr4() & X86_CR4_PKE)
leaf->ecx |= BIT(4);
break;
case 0xB:
leaf_hv.subfn = 0;
snp_cpuid_hv(ghcb, ctxt, &leaf_hv);
/* extended APIC ID */
leaf->edx = leaf_hv.edx;
break;
case 0xD: {
bool compacted = false;
u64 xcr0 = 1, xss = 0;
u32 xsave_size;
if (leaf->subfn != 0 && leaf->subfn != 1)
return 0;
if (native_read_cr4() & X86_CR4_OSXSAVE)
xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
if (leaf->subfn == 1) {
/* Get XSS value if XSAVES is enabled. */
if (leaf->eax & BIT(3)) {
unsigned long lo, hi;
asm volatile("rdmsr" : "=a" (lo), "=d" (hi)
: "c" (MSR_IA32_XSS));
xss = (hi << 32) | lo;
}
/*
* The PPR and APM aren't clear on what size should be
* encoded in 0xD:0x1:EBX when compaction is not enabled
* by either XSAVEC (feature bit 1) or XSAVES (feature
* bit 3) since SNP-capable hardware has these feature
* bits fixed as 1. KVM sets it to 0 in this case, but
* to avoid this becoming an issue it's safer to simply
* treat this as unsupported for SNP guests.
*/
if (!(leaf->eax & (BIT(1) | BIT(3))))
return -EINVAL;
compacted = true;
}
xsave_size = snp_cpuid_calc_xsave_size(xcr0 | xss, compacted);
if (!xsave_size)
return -EINVAL;
leaf->ebx = xsave_size;
}
break;
case 0x8000001E:
snp_cpuid_hv(ghcb, ctxt, &leaf_hv);
/* extended APIC ID */
leaf->eax = leaf_hv.eax;
/* compute ID */
leaf->ebx = (leaf->ebx & GENMASK(31, 8)) | (leaf_hv.ebx & GENMASK(7, 0));
/* node ID */
leaf->ecx = (leaf->ecx & GENMASK(31, 8)) | (leaf_hv.ecx & GENMASK(7, 0));
break;
default:
/* No fix-ups needed, use values as-is. */
break;
}
return 0;
}
/*
* Returns -EOPNOTSUPP if feature not enabled. Any other non-zero return value
* should be treated as fatal by caller.
*/
static int __head
snp_cpuid(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
{
const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
if (!cpuid_table->count)
return -EOPNOTSUPP;
if (!snp_cpuid_get_validated_func(leaf)) {
/*
* Some hypervisors will avoid keeping track of CPUID entries
* where all values are zero, since they can be handled the
* same as out-of-range values (all-zero). This is useful here
* as well as it allows virtually all guest configurations to
* work using a single SNP CPUID table.
*
* To allow for this, there is a need to distinguish between
* out-of-range entries and in-range zero entries, since the
* CPUID table entries are only a template that may need to be
* augmented with additional values for things like
* CPU-specific information during post-processing. So if it's
* not in the table, set the values to zero. Then, if they are
* within a valid CPUID range, proceed with post-processing
* using zeros as the initial values. Otherwise, skip
* post-processing and just return zeros immediately.
*/
leaf->eax = leaf->ebx = leaf->ecx = leaf->edx = 0;
/* Skip post-processing for out-of-range zero leafs. */
if (!(leaf->fn <= RIP_REL_REF(cpuid_std_range_max) ||
(leaf->fn >= 0x40000000 && leaf->fn <= RIP_REL_REF(cpuid_hyp_range_max)) ||
(leaf->fn >= 0x80000000 && leaf->fn <= RIP_REL_REF(cpuid_ext_range_max))))
return 0;
}
return snp_cpuid_postprocess(ghcb, ctxt, leaf);
}
/*
* Boot VC Handler - This is the first VC handler during boot, there is no GHCB
* page yet, so it only supports the MSR based communication with the
* hypervisor and only the CPUID exit-code.
*/
void __head do_vc_no_ghcb(struct pt_regs *regs, unsigned long exit_code)
{
unsigned int subfn = lower_bits(regs->cx, 32);
unsigned int fn = lower_bits(regs->ax, 32);
u16 opcode = *(unsigned short *)regs->ip;
struct cpuid_leaf leaf;
int ret;
/* Only CPUID is supported via MSR protocol */
if (exit_code != SVM_EXIT_CPUID)
goto fail;
/* Is it really a CPUID insn? */
if (opcode != 0xa20f)
goto fail;
leaf.fn = fn;
leaf.subfn = subfn;
ret = snp_cpuid(NULL, NULL, &leaf);
if (!ret)
goto cpuid_done;
if (ret != -EOPNOTSUPP)
goto fail;
if (__sev_cpuid_hv_msr(&leaf))
goto fail;
cpuid_done:
regs->ax = leaf.eax;
regs->bx = leaf.ebx;
regs->cx = leaf.ecx;
regs->dx = leaf.edx;
/*
* This is a VC handler and the #VC is only raised when SEV-ES is
* active, which means SEV must be active too. Do sanity checks on the
* CPUID results to make sure the hypervisor does not trick the kernel
* into the no-sev path. This could map sensitive data unencrypted and
* make it accessible to the hypervisor.
*
* In particular, check for:
* - Availability of CPUID leaf 0x8000001f
* - SEV CPUID bit.
*
* The hypervisor might still report the wrong C-bit position, but this
* can't be checked here.
*/
if (fn == 0x80000000 && (regs->ax < 0x8000001f))
/* SEV leaf check */
goto fail;
else if ((fn == 0x8000001f && !(regs->ax & BIT(1))))
/* SEV bit */
goto fail;
/* Skip over the CPUID two-byte opcode */
regs->ip += 2;
return;
fail:
/* Terminate the guest */
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
}
static enum es_result vc_insn_string_check(struct es_em_ctxt *ctxt,
unsigned long address,
bool write)
{
if (user_mode(ctxt->regs) && fault_in_kernel_space(address)) {
ctxt->fi.vector = X86_TRAP_PF;
ctxt->fi.error_code = X86_PF_USER;
ctxt->fi.cr2 = address;
if (write)
ctxt->fi.error_code |= X86_PF_WRITE;
return ES_EXCEPTION;
}
return ES_OK;
}
static enum es_result vc_insn_string_read(struct es_em_ctxt *ctxt,
void *src, char *buf,
unsigned int data_size,
unsigned int count,
bool backwards)
{
int i, b = backwards ? -1 : 1;
unsigned long address = (unsigned long)src;
enum es_result ret;
ret = vc_insn_string_check(ctxt, address, false);
if (ret != ES_OK)
return ret;
for (i = 0; i < count; i++) {
void *s = src + (i * data_size * b);
char *d = buf + (i * data_size);
ret = vc_read_mem(ctxt, s, d, data_size);
if (ret != ES_OK)
break;
}
return ret;
}
static enum es_result vc_insn_string_write(struct es_em_ctxt *ctxt,
void *dst, char *buf,
unsigned int data_size,
unsigned int count,
bool backwards)
{
int i, s = backwards ? -1 : 1;
unsigned long address = (unsigned long)dst;
enum es_result ret;
ret = vc_insn_string_check(ctxt, address, true);
if (ret != ES_OK)
return ret;
for (i = 0; i < count; i++) {
void *d = dst + (i * data_size * s);
char *b = buf + (i * data_size);
ret = vc_write_mem(ctxt, d, b, data_size);
if (ret != ES_OK)
break;
}
return ret;
}
#define IOIO_TYPE_STR BIT(2)
#define IOIO_TYPE_IN 1
#define IOIO_TYPE_INS (IOIO_TYPE_IN | IOIO_TYPE_STR)
#define IOIO_TYPE_OUT 0
#define IOIO_TYPE_OUTS (IOIO_TYPE_OUT | IOIO_TYPE_STR)
#define IOIO_REP BIT(3)
#define IOIO_ADDR_64 BIT(9)
#define IOIO_ADDR_32 BIT(8)
#define IOIO_ADDR_16 BIT(7)
#define IOIO_DATA_32 BIT(6)
#define IOIO_DATA_16 BIT(5)
#define IOIO_DATA_8 BIT(4)
#define IOIO_SEG_ES (0 << 10)
#define IOIO_SEG_DS (3 << 10)
static enum es_result vc_ioio_exitinfo(struct es_em_ctxt *ctxt, u64 *exitinfo)
{
struct insn *insn = &ctxt->insn;
size_t size;
u64 port;
*exitinfo = 0;
switch (insn->opcode.bytes[0]) {
/* INS opcodes */
case 0x6c:
case 0x6d:
*exitinfo |= IOIO_TYPE_INS;
*exitinfo |= IOIO_SEG_ES;
port = ctxt->regs->dx & 0xffff;
break;
/* OUTS opcodes */
case 0x6e:
case 0x6f:
*exitinfo |= IOIO_TYPE_OUTS;
*exitinfo |= IOIO_SEG_DS;
port = ctxt->regs->dx & 0xffff;
break;
/* IN immediate opcodes */
case 0xe4:
case 0xe5:
*exitinfo |= IOIO_TYPE_IN;
port = (u8)insn->immediate.value & 0xffff;
break;
/* OUT immediate opcodes */
case 0xe6:
case 0xe7:
*exitinfo |= IOIO_TYPE_OUT;
port = (u8)insn->immediate.value & 0xffff;
break;
/* IN register opcodes */
case 0xec:
case 0xed:
*exitinfo |= IOIO_TYPE_IN;
port = ctxt->regs->dx & 0xffff;
break;
/* OUT register opcodes */
case 0xee:
case 0xef:
*exitinfo |= IOIO_TYPE_OUT;
port = ctxt->regs->dx & 0xffff;
break;
default:
return ES_DECODE_FAILED;
}
*exitinfo |= port << 16;
switch (insn->opcode.bytes[0]) {
case 0x6c:
case 0x6e:
case 0xe4:
case 0xe6:
case 0xec:
case 0xee:
/* Single byte opcodes */
*exitinfo |= IOIO_DATA_8;
size = 1;
break;
default:
/* Length determined by instruction parsing */
*exitinfo |= (insn->opnd_bytes == 2) ? IOIO_DATA_16
: IOIO_DATA_32;
size = (insn->opnd_bytes == 2) ? 2 : 4;
}
switch (insn->addr_bytes) {
case 2:
*exitinfo |= IOIO_ADDR_16;
break;
case 4:
*exitinfo |= IOIO_ADDR_32;
break;
case 8:
*exitinfo |= IOIO_ADDR_64;
break;
}
if (insn_has_rep_prefix(insn))
*exitinfo |= IOIO_REP;
return vc_ioio_check(ctxt, (u16)port, size);
}
static enum es_result vc_handle_ioio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
{
struct pt_regs *regs = ctxt->regs;
u64 exit_info_1, exit_info_2;
enum es_result ret;
ret = vc_ioio_exitinfo(ctxt, &exit_info_1);
if (ret != ES_OK)
return ret;
if (exit_info_1 & IOIO_TYPE_STR) {
/* (REP) INS/OUTS */
bool df = ((regs->flags & X86_EFLAGS_DF) == X86_EFLAGS_DF);
unsigned int io_bytes, exit_bytes;
unsigned int ghcb_count, op_count;
unsigned long es_base;
u64 sw_scratch;
/*
* For the string variants with rep prefix the amount of in/out
* operations per #VC exception is limited so that the kernel
* has a chance to take interrupts and re-schedule while the
* instruction is emulated.
*/
io_bytes = (exit_info_1 >> 4) & 0x7;
ghcb_count = sizeof(ghcb->shared_buffer) / io_bytes;
op_count = (exit_info_1 & IOIO_REP) ? regs->cx : 1;
exit_info_2 = min(op_count, ghcb_count);
exit_bytes = exit_info_2 * io_bytes;
es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
/* Read bytes of OUTS into the shared buffer */
if (!(exit_info_1 & IOIO_TYPE_IN)) {
ret = vc_insn_string_read(ctxt,
(void *)(es_base + regs->si),
ghcb->shared_buffer, io_bytes,
exit_info_2, df);
if (ret)
return ret;
}
/*
* Issue an VMGEXIT to the HV to consume the bytes from the
* shared buffer or to have it write them into the shared buffer
* depending on the instruction: OUTS or INS.
*/
sw_scratch = __pa(ghcb) + offsetof(struct ghcb, shared_buffer);
ghcb_set_sw_scratch(ghcb, sw_scratch);
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_IOIO,
exit_info_1, exit_info_2);
if (ret != ES_OK)
return ret;
/* Read bytes from shared buffer into the guest's destination. */
if (exit_info_1 & IOIO_TYPE_IN) {
ret = vc_insn_string_write(ctxt,
(void *)(es_base + regs->di),
ghcb->shared_buffer, io_bytes,
exit_info_2, df);
if (ret)
return ret;
if (df)
regs->di -= exit_bytes;
else
regs->di += exit_bytes;
} else {
if (df)
regs->si -= exit_bytes;
else
regs->si += exit_bytes;
}
if (exit_info_1 & IOIO_REP)
regs->cx -= exit_info_2;
ret = regs->cx ? ES_RETRY : ES_OK;
} else {
/* IN/OUT into/from rAX */
int bits = (exit_info_1 & 0x70) >> 1;
u64 rax = 0;
if (!(exit_info_1 & IOIO_TYPE_IN))
rax = lower_bits(regs->ax, bits);
ghcb_set_rax(ghcb, rax);
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_IOIO, exit_info_1, 0);
if (ret != ES_OK)
return ret;
if (exit_info_1 & IOIO_TYPE_IN) {
if (!ghcb_rax_is_valid(ghcb))
return ES_VMM_ERROR;
regs->ax = lower_bits(ghcb->save.rax, bits);
}
}
return ret;
}
static int vc_handle_cpuid_snp(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
{
struct pt_regs *regs = ctxt->regs;
struct cpuid_leaf leaf;
int ret;
leaf.fn = regs->ax;
leaf.subfn = regs->cx;
ret = snp_cpuid(ghcb, ctxt, &leaf);
if (!ret) {
regs->ax = leaf.eax;
regs->bx = leaf.ebx;
regs->cx = leaf.ecx;
regs->dx = leaf.edx;
}
return ret;
}
static enum es_result vc_handle_cpuid(struct ghcb *ghcb,
struct es_em_ctxt *ctxt)
{
struct pt_regs *regs = ctxt->regs;
u32 cr4 = native_read_cr4();
enum es_result ret;
int snp_cpuid_ret;
snp_cpuid_ret = vc_handle_cpuid_snp(ghcb, ctxt);
if (!snp_cpuid_ret)
return ES_OK;
if (snp_cpuid_ret != -EOPNOTSUPP)
return ES_VMM_ERROR;
ghcb_set_rax(ghcb, regs->ax);
ghcb_set_rcx(ghcb, regs->cx);
if (cr4 & X86_CR4_OSXSAVE)
/* Safe to read xcr0 */
ghcb_set_xcr0(ghcb, xgetbv(XCR_XFEATURE_ENABLED_MASK));
else
/* xgetbv will cause #GP - use reset value for xcr0 */
ghcb_set_xcr0(ghcb, 1);
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_CPUID, 0, 0);
if (ret != ES_OK)
return ret;
if (!(ghcb_rax_is_valid(ghcb) &&
ghcb_rbx_is_valid(ghcb) &&
ghcb_rcx_is_valid(ghcb) &&
ghcb_rdx_is_valid(ghcb)))
return ES_VMM_ERROR;
regs->ax = ghcb->save.rax;
regs->bx = ghcb->save.rbx;
regs->cx = ghcb->save.rcx;
regs->dx = ghcb->save.rdx;
return ES_OK;
}
static enum es_result vc_handle_rdtsc(struct ghcb *ghcb,
struct es_em_ctxt *ctxt,
unsigned long exit_code)
{
bool rdtscp = (exit_code == SVM_EXIT_RDTSCP);
enum es_result ret;
ret = sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, 0, 0);
if (ret != ES_OK)
return ret;
if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb) &&
(!rdtscp || ghcb_rcx_is_valid(ghcb))))
return ES_VMM_ERROR;
ctxt->regs->ax = ghcb->save.rax;
ctxt->regs->dx = ghcb->save.rdx;
if (rdtscp)
ctxt->regs->cx = ghcb->save.rcx;
return ES_OK;
}
struct cc_setup_data {
struct setup_data header;
u32 cc_blob_address;
};
/*
* Search for a Confidential Computing blob passed in as a setup_data entry
* via the Linux Boot Protocol.
*/
static __head
struct cc_blob_sev_info *find_cc_blob_setup_data(struct boot_params *bp)
{
struct cc_setup_data *sd = NULL;
struct setup_data *hdr;
hdr = (struct setup_data *)bp->hdr.setup_data;
while (hdr) {
if (hdr->type == SETUP_CC_BLOB) {
sd = (struct cc_setup_data *)hdr;
return (struct cc_blob_sev_info *)(unsigned long)sd->cc_blob_address;
}
hdr = (struct setup_data *)hdr->next;
}
return NULL;
}
/*
* Initialize the kernel's copy of the SNP CPUID table, and set up the
* pointer that will be used to access it.
*
* Maintaining a direct mapping of the SNP CPUID table used by firmware would
* be possible as an alternative, but the approach is brittle since the
* mapping needs to be updated in sync with all the changes to virtual memory
* layout and related mapping facilities throughout the boot process.
*/
static void __head setup_cpuid_table(const struct cc_blob_sev_info *cc_info)
{
const struct snp_cpuid_table *cpuid_table_fw, *cpuid_table;
int i;
if (!cc_info || !cc_info->cpuid_phys || cc_info->cpuid_len < PAGE_SIZE)
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID);
cpuid_table_fw = (const struct snp_cpuid_table *)cc_info->cpuid_phys;
if (!cpuid_table_fw->count || cpuid_table_fw->count > SNP_CPUID_COUNT_MAX)
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID);
cpuid_table = snp_cpuid_get_table();
memcpy((void *)cpuid_table, cpuid_table_fw, sizeof(*cpuid_table));
/* Initialize CPUID ranges for range-checking. */
for (i = 0; i < cpuid_table->count; i++) {
const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
if (fn->eax_in == 0x0)
RIP_REL_REF(cpuid_std_range_max) = fn->eax;
else if (fn->eax_in == 0x40000000)
RIP_REL_REF(cpuid_hyp_range_max) = fn->eax;
else if (fn->eax_in == 0x80000000)
RIP_REL_REF(cpuid_ext_range_max) = fn->eax;
}
}
static inline void __pval_terminate(u64 pfn, bool action, unsigned int page_size,
int ret, u64 svsm_ret)
{
WARN(1, "PVALIDATE failure: pfn: 0x%llx, action: %u, size: %u, ret: %d, svsm_ret: 0x%llx\n",
pfn, action, page_size, ret, svsm_ret);
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
}
static void svsm_pval_terminate(struct svsm_pvalidate_call *pc, int ret, u64 svsm_ret)
{
unsigned int page_size;
bool action;
u64 pfn;
pfn = pc->entry[pc->cur_index].pfn;
action = pc->entry[pc->cur_index].action;
page_size = pc->entry[pc->cur_index].page_size;
__pval_terminate(pfn, action, page_size, ret, svsm_ret);
}
static void svsm_pval_4k_page(unsigned long paddr, bool validate)
{
struct svsm_pvalidate_call *pc;
struct svsm_call call = {};
unsigned long flags;
u64 pc_pa;
int ret;
/*
* This can be called very early in the boot, use native functions in
* order to avoid paravirt issues.
*/
flags = native_local_irq_save();
call.caa = svsm_get_caa();
pc = (struct svsm_pvalidate_call *)call.caa->svsm_buffer;
pc_pa = svsm_get_caa_pa() + offsetof(struct svsm_ca, svsm_buffer);
pc->num_entries = 1;
pc->cur_index = 0;
pc->entry[0].page_size = RMP_PG_SIZE_4K;
pc->entry[0].action = validate;
pc->entry[0].ignore_cf = 0;
pc->entry[0].pfn = paddr >> PAGE_SHIFT;
/* Protocol 0, Call ID 1 */
call.rax = SVSM_CORE_CALL(SVSM_CORE_PVALIDATE);
call.rcx = pc_pa;
ret = svsm_perform_call_protocol(&call);
if (ret)
svsm_pval_terminate(pc, ret, call.rax_out);
native_local_irq_restore(flags);
}
static void pvalidate_4k_page(unsigned long vaddr, unsigned long paddr, bool validate)
{
int ret;
/*
* This can be called very early during boot, so use rIP-relative
* references as needed.
*/
if (RIP_REL_REF(snp_vmpl)) {
svsm_pval_4k_page(paddr, validate);
} else {
ret = pvalidate(vaddr, RMP_PG_SIZE_4K, validate);
if (ret)
__pval_terminate(PHYS_PFN(paddr), validate, RMP_PG_SIZE_4K, ret, 0);
}
}
static void pval_pages(struct snp_psc_desc *desc)
{
struct psc_entry *e;
unsigned long vaddr;
unsigned int size;
unsigned int i;
bool validate;
u64 pfn;
int rc;
for (i = 0; i <= desc->hdr.end_entry; i++) {
e = &desc->entries[i];
pfn = e->gfn;
vaddr = (unsigned long)pfn_to_kaddr(pfn);
size = e->pagesize ? RMP_PG_SIZE_2M : RMP_PG_SIZE_4K;
validate = e->operation == SNP_PAGE_STATE_PRIVATE;
rc = pvalidate(vaddr, size, validate);
if (!rc)
continue;
if (rc == PVALIDATE_FAIL_SIZEMISMATCH && size == RMP_PG_SIZE_2M) {
unsigned long vaddr_end = vaddr + PMD_SIZE;
for (; vaddr < vaddr_end; vaddr += PAGE_SIZE, pfn++) {
rc = pvalidate(vaddr, RMP_PG_SIZE_4K, validate);
if (rc)
__pval_terminate(pfn, validate, RMP_PG_SIZE_4K, rc, 0);
}
} else {
__pval_terminate(pfn, validate, size, rc, 0);
}
}
}
static u64 svsm_build_ca_from_pfn_range(u64 pfn, u64 pfn_end, bool action,
struct svsm_pvalidate_call *pc)
{
struct svsm_pvalidate_entry *pe;
/* Nothing in the CA yet */
pc->num_entries = 0;
pc->cur_index = 0;
pe = &pc->entry[0];
while (pfn < pfn_end) {
pe->page_size = RMP_PG_SIZE_4K;
pe->action = action;
pe->ignore_cf = 0;
pe->pfn = pfn;
pe++;
pfn++;
pc->num_entries++;
if (pc->num_entries == SVSM_PVALIDATE_MAX_COUNT)
break;
}
return pfn;
}
static int svsm_build_ca_from_psc_desc(struct snp_psc_desc *desc, unsigned int desc_entry,
struct svsm_pvalidate_call *pc)
{
struct svsm_pvalidate_entry *pe;
struct psc_entry *e;
/* Nothing in the CA yet */
pc->num_entries = 0;
pc->cur_index = 0;
pe = &pc->entry[0];
e = &desc->entries[desc_entry];
while (desc_entry <= desc->hdr.end_entry) {
pe->page_size = e->pagesize ? RMP_PG_SIZE_2M : RMP_PG_SIZE_4K;
pe->action = e->operation == SNP_PAGE_STATE_PRIVATE;
pe->ignore_cf = 0;
pe->pfn = e->gfn;
pe++;
e++;
desc_entry++;
pc->num_entries++;
if (pc->num_entries == SVSM_PVALIDATE_MAX_COUNT)
break;
}
return desc_entry;
}
static void svsm_pval_pages(struct snp_psc_desc *desc)
{
struct svsm_pvalidate_entry pv_4k[VMGEXIT_PSC_MAX_ENTRY];
unsigned int i, pv_4k_count = 0;
struct svsm_pvalidate_call *pc;
struct svsm_call call = {};
unsigned long flags;
bool action;
u64 pc_pa;
int ret;
/*
* This can be called very early in the boot, use native functions in
* order to avoid paravirt issues.
*/
flags = native_local_irq_save();
/*
* The SVSM calling area (CA) can support processing 510 entries at a
* time. Loop through the Page State Change descriptor until the CA is
* full or the last entry in the descriptor is reached, at which time
* the SVSM is invoked. This repeats until all entries in the descriptor
* are processed.
*/
call.caa = svsm_get_caa();
pc = (struct svsm_pvalidate_call *)call.caa->svsm_buffer;
pc_pa = svsm_get_caa_pa() + offsetof(struct svsm_ca, svsm_buffer);
/* Protocol 0, Call ID 1 */
call.rax = SVSM_CORE_CALL(SVSM_CORE_PVALIDATE);
call.rcx = pc_pa;
for (i = 0; i <= desc->hdr.end_entry;) {
i = svsm_build_ca_from_psc_desc(desc, i, pc);
do {
ret = svsm_perform_call_protocol(&call);
if (!ret)
continue;
/*
* Check if the entry failed because of an RMP mismatch (a
* PVALIDATE at 2M was requested, but the page is mapped in
* the RMP as 4K).
*/
if (call.rax_out == SVSM_PVALIDATE_FAIL_SIZEMISMATCH &&
pc->entry[pc->cur_index].page_size == RMP_PG_SIZE_2M) {
/* Save this entry for post-processing at 4K */
pv_4k[pv_4k_count++] = pc->entry[pc->cur_index];
/* Skip to the next one unless at the end of the list */
pc->cur_index++;
if (pc->cur_index < pc->num_entries)
ret = -EAGAIN;
else
ret = 0;
}
} while (ret == -EAGAIN);
if (ret)
svsm_pval_terminate(pc, ret, call.rax_out);
}
/* Process any entries that failed to be validated at 2M and validate them at 4K */
for (i = 0; i < pv_4k_count; i++) {
u64 pfn, pfn_end;
action = pv_4k[i].action;
pfn = pv_4k[i].pfn;
pfn_end = pfn + 512;
while (pfn < pfn_end) {
pfn = svsm_build_ca_from_pfn_range(pfn, pfn_end, action, pc);
ret = svsm_perform_call_protocol(&call);
if (ret)
svsm_pval_terminate(pc, ret, call.rax_out);
}
}
native_local_irq_restore(flags);
}
static void pvalidate_pages(struct snp_psc_desc *desc)
{
if (snp_vmpl)
svsm_pval_pages(desc);
else
pval_pages(desc);
}
static int vmgexit_psc(struct ghcb *ghcb, struct snp_psc_desc *desc)
{
int cur_entry, end_entry, ret = 0;
struct snp_psc_desc *data;
struct es_em_ctxt ctxt;
vc_ghcb_invalidate(ghcb);
/* Copy the input desc into GHCB shared buffer */
data = (struct snp_psc_desc *)ghcb->shared_buffer;
memcpy(ghcb->shared_buffer, desc, min_t(int, GHCB_SHARED_BUF_SIZE, sizeof(*desc)));
/*
* As per the GHCB specification, the hypervisor can resume the guest
* before processing all the entries. Check whether all the entries
* are processed. If not, then keep retrying. Note, the hypervisor
* will update the data memory directly to indicate the status, so
* reference the data->hdr everywhere.
*
* The strategy here is to wait for the hypervisor to change the page
* state in the RMP table before guest accesses the memory pages. If the
* page state change was not successful, then later memory access will
* result in a crash.
*/
cur_entry = data->hdr.cur_entry;
end_entry = data->hdr.end_entry;
while (data->hdr.cur_entry <= data->hdr.end_entry) {
ghcb_set_sw_scratch(ghcb, (u64)__pa(data));
/* This will advance the shared buffer data points to. */
ret = sev_es_ghcb_hv_call(ghcb, &ctxt, SVM_VMGEXIT_PSC, 0, 0);
/*
* Page State Change VMGEXIT can pass error code through
* exit_info_2.
*/
if (WARN(ret || ghcb->save.sw_exit_info_2,
"SNP: PSC failed ret=%d exit_info_2=%llx\n",
ret, ghcb->save.sw_exit_info_2)) {
ret = 1;
goto out;
}
/* Verify that reserved bit is not set */
if (WARN(data->hdr.reserved, "Reserved bit is set in the PSC header\n")) {
ret = 1;
goto out;
}
/*
* Sanity check that entry processing is not going backwards.
* This will happen only if hypervisor is tricking us.
*/
if (WARN(data->hdr.end_entry > end_entry || cur_entry > data->hdr.cur_entry,
"SNP: PSC processing going backward, end_entry %d (got %d) cur_entry %d (got %d)\n",
end_entry, data->hdr.end_entry, cur_entry, data->hdr.cur_entry)) {
ret = 1;
goto out;
}
}
out:
return ret;
}
static enum es_result vc_check_opcode_bytes(struct es_em_ctxt *ctxt,
unsigned long exit_code)
{
unsigned int opcode = (unsigned int)ctxt->insn.opcode.value;
u8 modrm = ctxt->insn.modrm.value;
switch (exit_code) {
case SVM_EXIT_IOIO:
case SVM_EXIT_NPF:
/* handled separately */
return ES_OK;
case SVM_EXIT_CPUID:
if (opcode == 0xa20f)
return ES_OK;
break;
case SVM_EXIT_INVD:
if (opcode == 0x080f)
return ES_OK;
break;
case SVM_EXIT_MONITOR:
/* MONITOR and MONITORX instructions generate the same error code */
if (opcode == 0x010f && (modrm == 0xc8 || modrm == 0xfa))
return ES_OK;
break;
case SVM_EXIT_MWAIT:
/* MWAIT and MWAITX instructions generate the same error code */
if (opcode == 0x010f && (modrm == 0xc9 || modrm == 0xfb))
return ES_OK;
break;
case SVM_EXIT_MSR:
/* RDMSR */
if (opcode == 0x320f ||
/* WRMSR */
opcode == 0x300f)
return ES_OK;
break;
case SVM_EXIT_RDPMC:
if (opcode == 0x330f)
return ES_OK;
break;
case SVM_EXIT_RDTSC:
if (opcode == 0x310f)
return ES_OK;
break;
case SVM_EXIT_RDTSCP:
if (opcode == 0x010f && modrm == 0xf9)
return ES_OK;
break;
case SVM_EXIT_READ_DR7:
if (opcode == 0x210f &&
X86_MODRM_REG(ctxt->insn.modrm.value) == 7)
return ES_OK;
break;
case SVM_EXIT_VMMCALL:
if (opcode == 0x010f && modrm == 0xd9)
return ES_OK;
break;
case SVM_EXIT_WRITE_DR7:
if (opcode == 0x230f &&
X86_MODRM_REG(ctxt->insn.modrm.value) == 7)
return ES_OK;
break;
case SVM_EXIT_WBINVD:
if (opcode == 0x90f)
return ES_OK;
break;
default:
break;
}
sev_printk(KERN_ERR "Wrong/unhandled opcode bytes: 0x%x, exit_code: 0x%lx, rIP: 0x%lx\n",
opcode, exit_code, ctxt->regs->ip);
return ES_UNSUPPORTED;
}
/*
* Maintain the GPA of the SVSM Calling Area (CA) in order to utilize the SVSM
* services needed when not running in VMPL0.
*/
static bool __head svsm_setup_ca(const struct cc_blob_sev_info *cc_info)
{
struct snp_secrets_page *secrets_page;
struct snp_cpuid_table *cpuid_table;
unsigned int i;
u64 caa;
BUILD_BUG_ON(sizeof(*secrets_page) != PAGE_SIZE);
/*
* Check if running at VMPL0.
*
* Use RMPADJUST (see the rmpadjust() function for a description of what
* the instruction does) to update the VMPL1 permissions of a page. If
* the guest is running at VMPL0, this will succeed and implies there is
* no SVSM. If the guest is running at any other VMPL, this will fail.
* Linux SNP guests only ever run at a single VMPL level so permission mask
* changes of a lesser-privileged VMPL are a don't-care.
*
* Use a rip-relative reference to obtain the proper address, since this
* routine is running identity mapped when called, both by the decompressor
* code and the early kernel code.
*/
if (!rmpadjust((unsigned long)&RIP_REL_REF(boot_ghcb_page), RMP_PG_SIZE_4K, 1))
return false;
/*
* Not running at VMPL0, ensure everything has been properly supplied
* for running under an SVSM.
*/
if (!cc_info || !cc_info->secrets_phys || cc_info->secrets_len != PAGE_SIZE)
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SECRETS_PAGE);
secrets_page = (struct snp_secrets_page *)cc_info->secrets_phys;
if (!secrets_page->svsm_size)
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_NO_SVSM);
if (!secrets_page->svsm_guest_vmpl)
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SVSM_VMPL0);
RIP_REL_REF(snp_vmpl) = secrets_page->svsm_guest_vmpl;
caa = secrets_page->svsm_caa;
/*
* An open-coded PAGE_ALIGNED() in order to avoid including
* kernel-proper headers into the decompressor.
*/
if (caa & (PAGE_SIZE - 1))
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SVSM_CAA);
/*
* The CA is identity mapped when this routine is called, both by the
* decompressor code and the early kernel code.
*/
RIP_REL_REF(boot_svsm_caa) = (struct svsm_ca *)caa;
RIP_REL_REF(boot_svsm_caa_pa) = caa;
/* Advertise the SVSM presence via CPUID. */
cpuid_table = (struct snp_cpuid_table *)snp_cpuid_get_table();
for (i = 0; i < cpuid_table->count; i++) {
struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
if (fn->eax_in == 0x8000001f)
fn->eax |= BIT(28);
}
return true;
}