linux/kernel/jump_label.c

// SPDX-License-Identifier: GPL-2.0-only
/*
 * jump label support
 *
 * Copyright (C) 2009 Jason Baron <[email protected]>
 * Copyright (C) 2011 Peter Zijlstra
 *
 */
#include <linux/memory.h>
#include <linux/uaccess.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include <linux/err.h>
#include <linux/static_key.h>
#include <linux/jump_label_ratelimit.h>
#include <linux/bug.h>
#include <linux/cpu.h>
#include <asm/sections.h>

/* mutex to protect coming/going of the jump_label table */
static DEFINE_MUTEX(jump_label_mutex);

void jump_label_lock(void)
{
	mutex_lock(&jump_label_mutex);
}

void jump_label_unlock(void)
{
	mutex_unlock(&jump_label_mutex);
}

static int jump_label_cmp(const void *a, const void *b)
{
	const struct jump_entry *jea = a;
	const struct jump_entry *jeb = b;

	/*
	 * Entrires are sorted by key.
	 */
	if (jump_entry_key(jea) < jump_entry_key(jeb))
		return -1;

	if (jump_entry_key(jea) > jump_entry_key(jeb))
		return 1;

	/*
	 * In the batching mode, entries should also be sorted by the code
	 * inside the already sorted list of entries, enabling a bsearch in
	 * the vector.
	 */
	if (jump_entry_code(jea) < jump_entry_code(jeb))
		return -1;

	if (jump_entry_code(jea) > jump_entry_code(jeb))
		return 1;

	return 0;
}

static void jump_label_swap(void *a, void *b, int size)
{
	long delta = (unsigned long)a - (unsigned long)b;
	struct jump_entry *jea = a;
	struct jump_entry *jeb = b;
	struct jump_entry tmp = *jea;

	jea->code	= jeb->code - delta;
	jea->target	= jeb->target - delta;
	jea->key	= jeb->key - delta;

	jeb->code	= tmp.code + delta;
	jeb->target	= tmp.target + delta;
	jeb->key	= tmp.key + delta;
}

static void
jump_label_sort_entries(struct jump_entry *start, struct jump_entry *stop)
{
	unsigned long size;
	void *swapfn = NULL;

	if (IS_ENABLED(CONFIG_HAVE_ARCH_JUMP_LABEL_RELATIVE))
		swapfn = jump_label_swap;

	size = (((unsigned long)stop - (unsigned long)start)
					/ sizeof(struct jump_entry));
	sort(start, size, sizeof(struct jump_entry), jump_label_cmp, swapfn);
}

static void jump_label_update(struct static_key *key);

/*
 * There are similar definitions for the !CONFIG_JUMP_LABEL case in jump_label.h.
 * The use of 'atomic_read()' requires atomic.h and its problematic for some
 * kernel headers such as kernel.h and others. Since static_key_count() is not
 * used in the branch statements as it is for the !CONFIG_JUMP_LABEL case its ok
 * to have it be a function here. Similarly, for 'static_key_enable()' and
 * 'static_key_disable()', which require bug.h. This should allow jump_label.h
 * to be included from most/all places for CONFIG_JUMP_LABEL.
 */
int static_key_count(struct static_key *key)
{
	/*
	 * -1 means the first static_key_slow_inc() is in progress.
	 *  static_key_enabled() must return true, so return 1 here.
	 */
	int n = atomic_read(&key->enabled);

	return n >= 0 ? n : 1;
}
EXPORT_SYMBOL_GPL(static_key_count);

/*
 * static_key_fast_inc_not_disabled - adds a user for a static key
 * @key: static key that must be already enabled
 *
 * The caller must make sure that the static key can't get disabled while
 * in this function. It doesn't patch jump labels, only adds a user to
 * an already enabled static key.
 *
 * Returns true if the increment was done. Unlike refcount_t the ref counter
 * is not saturated, but will fail to increment on overflow.
 */
bool static_key_fast_inc_not_disabled(struct static_key *key)
{
	int v;

	STATIC_KEY_CHECK_USE(key);
	/*
	 * Negative key->enabled has a special meaning: it sends
	 * static_key_slow_inc/dec() down the slow path, and it is non-zero
	 * so it counts as "enabled" in jump_label_update().
	 *
	 * The INT_MAX overflow condition is either used by the networking
	 * code to reset or detected in the slow path of
	 * static_key_slow_inc_cpuslocked().
	 */
	v = atomic_read(&key->enabled);
	do {
		if (v <= 0 || v == INT_MAX)
			return false;
	} while (!likely(atomic_try_cmpxchg(&key->enabled, &v, v + 1)));

	return true;
}
EXPORT_SYMBOL_GPL(static_key_fast_inc_not_disabled);

bool static_key_slow_inc_cpuslocked(struct static_key *key)
{
	lockdep_assert_cpus_held();

	/*
	 * Careful if we get concurrent static_key_slow_inc/dec() calls;
	 * later calls must wait for the first one to _finish_ the
	 * jump_label_update() process.  At the same time, however,
	 * the jump_label_update() call below wants to see
	 * static_key_enabled(&key) for jumps to be updated properly.
	 */
	if (static_key_fast_inc_not_disabled(key))
		return true;

	guard(mutex)(&jump_label_mutex);
	/* Try to mark it as 'enabling in progress. */
	if (!atomic_cmpxchg(&key->enabled, 0, -1)) {
		jump_label_update(key);
		/*
		 * Ensure that when static_key_fast_inc_not_disabled() or
		 * static_key_dec_not_one() observe the positive value,
		 * they must also observe all the text changes.
		 */
		atomic_set_release(&key->enabled, 1);
	} else {
		/*
		 * While holding the mutex this should never observe
		 * anything else than a value >= 1 and succeed
		 */
		if (WARN_ON_ONCE(!static_key_fast_inc_not_disabled(key)))
			return false;
	}
	return true;
}

bool static_key_slow_inc(struct static_key *key)
{
	bool ret;

	cpus_read_lock();
	ret = static_key_slow_inc_cpuslocked(key);
	cpus_read_unlock();
	return ret;
}
EXPORT_SYMBOL_GPL(static_key_slow_inc);

void static_key_enable_cpuslocked(struct static_key *key)
{
	STATIC_KEY_CHECK_USE(key);
	lockdep_assert_cpus_held();

	if (atomic_read(&key->enabled) > 0) {
		WARN_ON_ONCE(atomic_read(&key->enabled) != 1);
		return;
	}

	jump_label_lock();
	if (atomic_read(&key->enabled) == 0) {
		atomic_set(&key->enabled, -1);
		jump_label_update(key);
		/*
		 * See static_key_slow_inc().
		 */
		atomic_set_release(&key->enabled, 1);
	}
	jump_label_unlock();
}
EXPORT_SYMBOL_GPL(static_key_enable_cpuslocked);

void static_key_enable(struct static_key *key)
{
	cpus_read_lock();
	static_key_enable_cpuslocked(key);
	cpus_read_unlock();
}
EXPORT_SYMBOL_GPL(static_key_enable);

void static_key_disable_cpuslocked(struct static_key *key)
{
	STATIC_KEY_CHECK_USE(key);
	lockdep_assert_cpus_held();

	if (atomic_read(&key->enabled) != 1) {
		WARN_ON_ONCE(atomic_read(&key->enabled) != 0);
		return;
	}

	jump_label_lock();
	if (atomic_cmpxchg(&key->enabled, 1, 0) == 1)
		jump_label_update(key);
	jump_label_unlock();
}
EXPORT_SYMBOL_GPL(static_key_disable_cpuslocked);

void static_key_disable(struct static_key *key)
{
	cpus_read_lock();
	static_key_disable_cpuslocked(key);
	cpus_read_unlock();
}
EXPORT_SYMBOL_GPL(static_key_disable);

static bool static_key_dec_not_one(struct static_key *key)
{
	int v;

	/*
	 * Go into the slow path if key::enabled is less than or equal than
	 * one. One is valid to shut down the key, anything less than one
	 * is an imbalance, which is handled at the call site.
	 *
	 * That includes the special case of '-1' which is set in
	 * static_key_slow_inc_cpuslocked(), but that's harmless as it is
	 * fully serialized in the slow path below. By the time this task
	 * acquires the jump label lock the value is back to one and the
	 * retry under the lock must succeed.
	 */
	v = atomic_read(&key->enabled);
	do {
		/*
		 * Warn about the '-1' case though; since that means a
		 * decrement is concurrent with a first (0->1) increment. IOW
		 * people are trying to disable something that wasn't yet fully
		 * enabled. This suggests an ordering problem on the user side.
		 */
		WARN_ON_ONCE(v < 0);

		/*
		 * Warn about underflow, and lie about success in an attempt to
		 * not make things worse.
		 */
		if (WARN_ON_ONCE(v == 0))
			return true;

		if (v <= 1)
			return false;
	} while (!likely(atomic_try_cmpxchg(&key->enabled, &v, v - 1)));

	return true;
}

static void __static_key_slow_dec_cpuslocked(struct static_key *key)
{
	lockdep_assert_cpus_held();
	int val;

	if (static_key_dec_not_one(key))
		return;

	guard(mutex)(&jump_label_mutex);
	val = atomic_read(&key->enabled);
	/*
	 * It should be impossible to observe -1 with jump_label_mutex held,
	 * see static_key_slow_inc_cpuslocked().
	 */
	if (WARN_ON_ONCE(val == -1))
		return;
	/*
	 * Cannot already be 0, something went sideways.
	 */
	if (WARN_ON_ONCE(val == 0))
		return;

	if (atomic_dec_and_test(&key->enabled))
		jump_label_update(key);
}

static void __static_key_slow_dec(struct static_key *key)
{
	cpus_read_lock();
	__static_key_slow_dec_cpuslocked(key);
	cpus_read_unlock();
}

void jump_label_update_timeout(struct work_struct *work)
{
	struct static_key_deferred *key =
		container_of(work, struct static_key_deferred, work.work);
	__static_key_slow_dec(&key->key);
}
EXPORT_SYMBOL_GPL(jump_label_update_timeout);

void static_key_slow_dec(struct static_key *key)
{
	STATIC_KEY_CHECK_USE(key);
	__static_key_slow_dec(key);
}
EXPORT_SYMBOL_GPL(static_key_slow_dec);

void static_key_slow_dec_cpuslocked(struct static_key *key)
{
	STATIC_KEY_CHECK_USE(key);
	__static_key_slow_dec_cpuslocked(key);
}

void __static_key_slow_dec_deferred(struct static_key *key,
				    struct delayed_work *work,
				    unsigned long timeout)
{
	STATIC_KEY_CHECK_USE(key);

	if (static_key_dec_not_one(key))
		return;

	schedule_delayed_work(work, timeout);
}
EXPORT_SYMBOL_GPL(__static_key_slow_dec_deferred);

void __static_key_deferred_flush(void *key, struct delayed_work *work)
{
	STATIC_KEY_CHECK_USE(key);
	flush_delayed_work(work);
}
EXPORT_SYMBOL_GPL(__static_key_deferred_flush);

void jump_label_rate_limit(struct static_key_deferred *key,
		unsigned long rl)
{
	STATIC_KEY_CHECK_USE(key);
	key->timeout = rl;
	INIT_DELAYED_WORK(&key->work, jump_label_update_timeout);
}
EXPORT_SYMBOL_GPL(jump_label_rate_limit);

static int addr_conflict(struct jump_entry *entry, void *start, void *end)
{
	if (jump_entry_code(entry) <= (unsigned long)end &&
	    jump_entry_code(entry) + jump_entry_size(entry) > (unsigned long)start)
		return 1;

	return 0;
}

static int __jump_label_text_reserved(struct jump_entry *iter_start,
		struct jump_entry *iter_stop, void *start, void *end, bool init)
{
	struct jump_entry *iter;

	iter = iter_start;
	while (iter < iter_stop) {
		if (init || !jump_entry_is_init(iter)) {
			if (addr_conflict(iter, start, end))
				return 1;
		}
		iter++;
	}

	return 0;
}

#ifndef arch_jump_label_transform_static
static void arch_jump_label_transform_static(struct jump_entry *entry,
					     enum jump_label_type type)
{
	/* nothing to do on most architectures */
}
#endif

static inline struct jump_entry *static_key_entries(struct static_key *key)
{
	WARN_ON_ONCE(key->type & JUMP_TYPE_LINKED);
	return (struct jump_entry *)(key->type & ~JUMP_TYPE_MASK);
}

static inline bool static_key_type(struct static_key *key)
{
	return key->type & JUMP_TYPE_TRUE;
}

static inline bool static_key_linked(struct static_key *key)
{
	return key->type & JUMP_TYPE_LINKED;
}

static inline void static_key_clear_linked(struct static_key *key)
{
	key->type &= ~JUMP_TYPE_LINKED;
}

static inline void static_key_set_linked(struct static_key *key)
{
	key->type |= JUMP_TYPE_LINKED;
}

/***
 * A 'struct static_key' uses a union such that it either points directly
 * to a table of 'struct jump_entry' or to a linked list of modules which in
 * turn point to 'struct jump_entry' tables.
 *
 * The two lower bits of the pointer are used to keep track of which pointer
 * type is in use and to store the initial branch direction, we use an access
 * function which preserves these bits.
 */
static void static_key_set_entries(struct static_key *key,
				   struct jump_entry *entries)
{
	unsigned long type;

	WARN_ON_ONCE((unsigned long)entries & JUMP_TYPE_MASK);
	type = key->type & JUMP_TYPE_MASK;
	key->entries = entries;
	key->type |= type;
}

static enum jump_label_type jump_label_type(struct jump_entry *entry)
{
	struct static_key *key = jump_entry_key(entry);
	bool enabled = static_key_enabled(key);
	bool branch = jump_entry_is_branch(entry);

	/* See the comment in linux/jump_label.h */
	return enabled ^ branch;
}

static bool jump_label_can_update(struct jump_entry *entry, bool init)
{
	/*
	 * Cannot update code that was in an init text area.
	 */
	if (!init && jump_entry_is_init(entry))
		return false;

	if (!kernel_text_address(jump_entry_code(entry))) {
		/*
		 * This skips patching built-in __exit, which
		 * is part of init_section_contains() but is
		 * not part of kernel_text_address().
		 *
		 * Skipping built-in __exit is fine since it
		 * will never be executed.
		 */
		WARN_ONCE(!jump_entry_is_init(entry),
			  "can't patch jump_label at %pS",
			  (void *)jump_entry_code(entry));
		return false;
	}

	return true;
}

#ifndef HAVE_JUMP_LABEL_BATCH
static void __jump_label_update(struct static_key *key,
				struct jump_entry *entry,
				struct jump_entry *stop,
				bool init)
{
	for (; (entry < stop) && (jump_entry_key(entry) == key); entry++) {
		if (jump_label_can_update(entry, init))
			arch_jump_label_transform(entry, jump_label_type(entry));
	}
}
#else
static void __jump_label_update(struct static_key *key,
				struct jump_entry *entry,
				struct jump_entry *stop,
				bool init)
{
	for (; (entry < stop) && (jump_entry_key(entry) == key); entry++) {

		if (!jump_label_can_update(entry, init))
			continue;

		if (!arch_jump_label_transform_queue(entry, jump_label_type(entry))) {
			/*
			 * Queue is full: Apply the current queue and try again.
			 */
			arch_jump_label_transform_apply();
			BUG_ON(!arch_jump_label_transform_queue(entry, jump_label_type(entry)));
		}
	}
	arch_jump_label_transform_apply();
}
#endif

void __init jump_label_init(void)
{
	struct jump_entry *iter_start = __start___jump_table;
	struct jump_entry *iter_stop = __stop___jump_table;
	struct static_key *key = NULL;
	struct jump_entry *iter;

	/*
	 * Since we are initializing the static_key.enabled field with
	 * with the 'raw' int values (to avoid pulling in atomic.h) in
	 * jump_label.h, let's make sure that is safe. There are only two
	 * cases to check since we initialize to 0 or 1.
	 */
	BUILD_BUG_ON((int)ATOMIC_INIT(0) != 0);
	BUILD_BUG_ON((int)ATOMIC_INIT(1) != 1);

	if (static_key_initialized)
		return;

	cpus_read_lock();
	jump_label_lock();
	jump_label_sort_entries(iter_start, iter_stop);

	for (iter = iter_start; iter < iter_stop; iter++) {
		struct static_key *iterk;
		bool in_init;

		/* rewrite NOPs */
		if (jump_label_type(iter) == JUMP_LABEL_NOP)
			arch_jump_label_transform_static(iter, JUMP_LABEL_NOP);

		in_init = init_section_contains((void *)jump_entry_code(iter), 1);
		jump_entry_set_init(iter, in_init);

		iterk = jump_entry_key(iter);
		if (iterk == key)
			continue;

		key = iterk;
		static_key_set_entries(key, iter);
	}
	static_key_initialized = true;
	jump_label_unlock();
	cpus_read_unlock();
}

static inline bool static_key_sealed(struct static_key *key)
{
	return (key->type & JUMP_TYPE_LINKED) && !(key->type & ~JUMP_TYPE_MASK);
}

static inline void static_key_seal(struct static_key *key)
{
	unsigned long type = key->type & JUMP_TYPE_TRUE;
	key->type = JUMP_TYPE_LINKED | type;
}

void jump_label_init_ro(void)
{
	struct jump_entry *iter_start = __start___jump_table;
	struct jump_entry *iter_stop = __stop___jump_table;
	struct jump_entry *iter;

	if (WARN_ON_ONCE(!static_key_initialized))
		return;

	cpus_read_lock();
	jump_label_lock();

	for (iter = iter_start; iter < iter_stop; iter++) {
		struct static_key *iterk = jump_entry_key(iter);

		if (!is_kernel_ro_after_init((unsigned long)iterk))
			continue;

		if (static_key_sealed(iterk))
			continue;

		static_key_seal(iterk);
	}

	jump_label_unlock();
	cpus_read_unlock();
}

#ifdef CONFIG_MODULES

enum jump_label_type jump_label_init_type(struct jump_entry *entry)
{
	struct static_key *key = jump_entry_key(entry);
	bool type = static_key_type(key);
	bool branch = jump_entry_is_branch(entry);

	/* See the comment in linux/jump_label.h */
	return type ^ branch;
}

struct static_key_mod {
	struct static_key_mod *next;
	struct jump_entry *entries;
	struct module *mod;
};

static inline struct static_key_mod *static_key_mod(struct static_key *key)
{
	WARN_ON_ONCE(!static_key_linked(key));
	return (struct static_key_mod *)(key->type & ~JUMP_TYPE_MASK);
}

/***
 * key->type and key->next are the same via union.
 * This sets key->next and preserves the type bits.
 *
 * See additional comments above static_key_set_entries().
 */
static void static_key_set_mod(struct static_key *key,
			       struct static_key_mod *mod)
{
	unsigned long type;

	WARN_ON_ONCE((unsigned long)mod & JUMP_TYPE_MASK);
	type = key->type & JUMP_TYPE_MASK;
	key->next = mod;
	key->type |= type;
}

static int __jump_label_mod_text_reserved(void *start, void *end)
{
	struct module *mod;
	int ret;

	preempt_disable();
	mod = __module_text_address((unsigned long)start);
	WARN_ON_ONCE(__module_text_address((unsigned long)end) != mod);
	if (!try_module_get(mod))
		mod = NULL;
	preempt_enable();

	if (!mod)
		return 0;

	ret = __jump_label_text_reserved(mod->jump_entries,
				mod->jump_entries + mod->num_jump_entries,
				start, end, mod->state == MODULE_STATE_COMING);

	module_put(mod);

	return ret;
}

static void __jump_label_mod_update(struct static_key *key)
{
	struct static_key_mod *mod;

	for (mod = static_key_mod(key); mod; mod = mod->next) {
		struct jump_entry *stop;
		struct module *m;

		/*
		 * NULL if the static_key is defined in a module
		 * that does not use it
		 */
		if (!mod->entries)
			continue;

		m = mod->mod;
		if (!m)
			stop = __stop___jump_table;
		else
			stop = m->jump_entries + m->num_jump_entries;
		__jump_label_update(key, mod->entries, stop,
				    m && m->state == MODULE_STATE_COMING);
	}
}

static int jump_label_add_module(struct module *mod)
{
	struct jump_entry *iter_start = mod->jump_entries;
	struct jump_entry *iter_stop = iter_start + mod->num_jump_entries;
	struct jump_entry *iter;
	struct static_key *key = NULL;
	struct static_key_mod *jlm, *jlm2;

	/* if the module doesn't have jump label entries, just return */
	if (iter_start == iter_stop)
		return 0;

	jump_label_sort_entries(iter_start, iter_stop);

	for (iter = iter_start; iter < iter_stop; iter++) {
		struct static_key *iterk;
		bool in_init;

		in_init = within_module_init(jump_entry_code(iter), mod);
		jump_entry_set_init(iter, in_init);

		iterk = jump_entry_key(iter);
		if (iterk == key)
			continue;

		key = iterk;
		if (within_module((unsigned long)key, mod)) {
			static_key_set_entries(key, iter);
			continue;
		}

		/*
		 * If the key was sealed at init, then there's no need to keep a
		 * reference to its module entries - just patch them now and be
		 * done with it.
		 */
		if (static_key_sealed(key))
			goto do_poke;

		jlm = kzalloc(sizeof(struct static_key_mod), GFP_KERNEL);
		if (!jlm)
			return -ENOMEM;
		if (!static_key_linked(key)) {
			jlm2 = kzalloc(sizeof(struct static_key_mod),
				       GFP_KERNEL);
			if (!jlm2) {
				kfree(jlm);
				return -ENOMEM;
			}
			preempt_disable();
			jlm2->mod = __module_address((unsigned long)key);
			preempt_enable();
			jlm2->entries = static_key_entries(key);
			jlm2->next = NULL;
			static_key_set_mod(key, jlm2);
			static_key_set_linked(key);
		}
		jlm->mod = mod;
		jlm->entries = iter;
		jlm->next = static_key_mod(key);
		static_key_set_mod(key, jlm);
		static_key_set_linked(key);

		/* Only update if we've changed from our initial state */
do_poke:
		if (jump_label_type(iter) != jump_label_init_type(iter))
			__jump_label_update(key, iter, iter_stop, true);
	}

	return 0;
}

static void jump_label_del_module(struct module *mod)
{
	struct jump_entry *iter_start = mod->jump_entries;
	struct jump_entry *iter_stop = iter_start + mod->num_jump_entries;
	struct jump_entry *iter;
	struct static_key *key = NULL;
	struct static_key_mod *jlm, **prev;

	for (iter = iter_start; iter < iter_stop; iter++) {
		if (jump_entry_key(iter) == key)
			continue;

		key = jump_entry_key(iter);

		if (within_module((unsigned long)key, mod))
			continue;

		/* No @jlm allocated because key was sealed at init. */
		if (static_key_sealed(key))
			continue;

		/* No memory during module load */
		if (WARN_ON(!static_key_linked(key)))
			continue;

		prev = &key->next;
		jlm = static_key_mod(key);

		while (jlm && jlm->mod != mod) {
			prev = &jlm->next;
			jlm = jlm->next;
		}

		/* No memory during module load */
		if (WARN_ON(!jlm))
			continue;

		if (prev == &key->next)
			static_key_set_mod(key, jlm->next);
		else
			*prev = jlm->next;

		kfree(jlm);

		jlm = static_key_mod(key);
		/* if only one etry is left, fold it back into the static_key */
		if (jlm->next == NULL) {
			static_key_set_entries(key, jlm->entries);
			static_key_clear_linked(key);
			kfree(jlm);
		}
	}
}

static int
jump_label_module_notify(struct notifier_block *self, unsigned long val,
			 void *data)
{
	struct module *mod = data;
	int ret = 0;

	cpus_read_lock();
	jump_label_lock();

	switch (val) {
	case MODULE_STATE_COMING:
		ret = jump_label_add_module(mod);
		if (ret) {
			WARN(1, "Failed to allocate memory: jump_label may not work properly.\n");
			jump_label_del_module(mod);
		}
		break;
	case MODULE_STATE_GOING:
		jump_label_del_module(mod);
		break;
	}

	jump_label_unlock();
	cpus_read_unlock();

	return notifier_from_errno(ret);
}

static struct notifier_block jump_label_module_nb = {
	.notifier_call = jump_label_module_notify,
	.priority = 1, /* higher than tracepoints */
};

static __init int jump_label_init_module(void)
{
	return register_module_notifier(&jump_label_module_nb);
}
early_initcall(jump_label_init_module);

#endif /* CONFIG_MODULES */

/***
 * jump_label_text_reserved - check if addr range is reserved
 * @start: start text addr
 * @end: end text addr
 *
 * checks if the text addr located between @start and @end
 * overlaps with any of the jump label patch addresses. Code
 * that wants to modify kernel text should first verify that
 * it does not overlap with any of the jump label addresses.
 * Caller must hold jump_label_mutex.
 *
 * returns 1 if there is an overlap, 0 otherwise
 */
int jump_label_text_reserved(void *start, void *end)
{
	bool init = system_state < SYSTEM_RUNNING;
	int ret = __jump_label_text_reserved(__start___jump_table,
			__stop___jump_table, start, end, init);

	if (ret)
		return ret;

#ifdef CONFIG_MODULES
	ret = __jump_label_mod_text_reserved(start, end);
#endif
	return ret;
}

static void jump_label_update(struct static_key *key)
{
	struct jump_entry *stop = __stop___jump_table;
	bool init = system_state < SYSTEM_RUNNING;
	struct jump_entry *entry;
#ifdef CONFIG_MODULES
	struct module *mod;

	if (static_key_linked(key)) {
		__jump_label_mod_update(key);
		return;
	}

	preempt_disable();
	mod = __module_address((unsigned long)key);
	if (mod) {
		stop = mod->jump_entries + mod->num_jump_entries;
		init = mod->state == MODULE_STATE_COMING;
	}
	preempt_enable();
#endif
	entry = static_key_entries(key);
	/* if there are no users, entry can be NULL */
	if (entry)
		__jump_label_update(key, entry, stop, init);
}

#ifdef CONFIG_STATIC_KEYS_SELFTEST
static DEFINE_STATIC_KEY_TRUE(sk_true);
static DEFINE_STATIC_KEY_FALSE(sk_false);

static __init int jump_label_test(void)
{
	int i;

	for (i = 0; i < 2; i++) {
		WARN_ON(static_key_enabled(&sk_true.key) != true);
		WARN_ON(static_key_enabled(&sk_false.key) != false);

		WARN_ON(!static_branch_likely(&sk_true));
		WARN_ON(!static_branch_unlikely(&sk_true));
		WARN_ON(static_branch_likely(&sk_false));
		WARN_ON(static_branch_unlikely(&sk_false));

		static_branch_disable(&sk_true);
		static_branch_enable(&sk_false);

		WARN_ON(static_key_enabled(&sk_true.key) == true);
		WARN_ON(static_key_enabled(&sk_false.key) == false);

		WARN_ON(static_branch_likely(&sk_true));
		WARN_ON(static_branch_unlikely(&sk_true));
		WARN_ON(!static_branch_likely(&sk_false));
		WARN_ON(!static_branch_unlikely(&sk_false));

		static_branch_enable(&sk_true);
		static_branch_disable(&sk_false);
	}

	return 0;
}
early_initcall(jump_label_test);
#endif /* STATIC_KEYS_SELFTEST */