// SPDX-License-Identifier: GPL-2.0
/*
* R-Car Gen3 THS thermal sensor driver
* Based on rcar_thermal.c and work from Hien Dang and Khiem Nguyen.
*
* Copyright (C) 2016 Renesas Electronics Corporation.
* Copyright (C) 2016 Sang Engineering
*/
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/thermal.h>
#include "../thermal_hwmon.h"
/* Register offsets */
#define REG_GEN3_IRQSTR 0x04
#define REG_GEN3_IRQMSK 0x08
#define REG_GEN3_IRQCTL 0x0C
#define REG_GEN3_IRQEN 0x10
#define REG_GEN3_IRQTEMP1 0x14
#define REG_GEN3_IRQTEMP2 0x18
#define REG_GEN3_IRQTEMP3 0x1C
#define REG_GEN3_THCTR 0x20
#define REG_GEN3_TEMP 0x28
#define REG_GEN3_THCODE1 0x50
#define REG_GEN3_THCODE2 0x54
#define REG_GEN3_THCODE3 0x58
#define REG_GEN3_PTAT1 0x5c
#define REG_GEN3_PTAT2 0x60
#define REG_GEN3_PTAT3 0x64
#define REG_GEN3_THSCP 0x68
#define REG_GEN4_THSFMON00 0x180
#define REG_GEN4_THSFMON01 0x184
#define REG_GEN4_THSFMON02 0x188
#define REG_GEN4_THSFMON15 0x1BC
#define REG_GEN4_THSFMON16 0x1C0
#define REG_GEN4_THSFMON17 0x1C4
/* IRQ{STR,MSK,EN} bits */
#define IRQ_TEMP1 BIT(0)
#define IRQ_TEMP2 BIT(1)
#define IRQ_TEMP3 BIT(2)
#define IRQ_TEMPD1 BIT(3)
#define IRQ_TEMPD2 BIT(4)
#define IRQ_TEMPD3 BIT(5)
/* THCTR bits */
#define THCTR_PONM BIT(6)
#define THCTR_THSST BIT(0)
/* THSCP bits */
#define THSCP_COR_PARA_VLD (BIT(15) | BIT(14))
#define CTEMP_MASK 0xFFF
#define MCELSIUS(temp) ((temp) * 1000)
#define GEN3_FUSE_MASK 0xFFF
#define GEN4_FUSE_MASK 0xFFF
#define TSC_MAX_NUM 5
struct rcar_gen3_thermal_priv;
struct rcar_thermal_info {
int scale;
int adj_below;
int adj_above;
void (*read_fuses)(struct rcar_gen3_thermal_priv *priv);
};
struct equation_set_coef {
int a;
int b;
};
struct rcar_gen3_thermal_tsc {
struct rcar_gen3_thermal_priv *priv;
void __iomem *base;
struct thermal_zone_device *zone;
/* Different coefficients are used depending on a threshold. */
struct {
struct equation_set_coef below;
struct equation_set_coef above;
} coef;
int thcode[3];
};
struct rcar_gen3_thermal_priv {
struct rcar_gen3_thermal_tsc *tscs[TSC_MAX_NUM];
struct thermal_zone_device_ops ops;
unsigned int num_tscs;
int ptat[3];
int tj_t;
const struct rcar_thermal_info *info;
};
static inline u32 rcar_gen3_thermal_read(struct rcar_gen3_thermal_tsc *tsc,
u32 reg)
{
return ioread32(tsc->base + reg);
}
static inline void rcar_gen3_thermal_write(struct rcar_gen3_thermal_tsc *tsc,
u32 reg, u32 data)
{
iowrite32(data, tsc->base + reg);
}
/*
* Linear approximation for temperature
*
* [temp] = ((thadj - [reg]) * a) / b + adj
* [reg] = thadj - ([temp] - adj) * b / a
*
* The constants a and b are calculated using two triplets of int values PTAT
* and THCODE. PTAT and THCODE can either be read from hardware or use hard
* coded values from the driver. The formula to calculate a and b are taken from
* the datasheet. Different calculations are needed for a and b depending on
* if the input variables ([temp] or [reg]) are above or below a threshold. The
* threshold is also calculated from PTAT and THCODE using formulas from the
* datasheet.
*
* The constant thadj is one of the THCODE values, which one to use depends on
* the threshold and input value.
*
* The constants adj is taken verbatim from the datasheet. Two values exists,
* which one to use depends on the input value and the calculated threshold.
* Furthermore different SoC models supported by the driver have different sets
* of values. The values for each model are stored in the device match data.
*/
static void rcar_gen3_thermal_shared_coefs(struct rcar_gen3_thermal_priv *priv)
{
priv->tj_t =
DIV_ROUND_CLOSEST((priv->ptat[1] - priv->ptat[2]) * priv->info->scale,
priv->ptat[0] - priv->ptat[2])
+ priv->info->adj_below;
}
static void rcar_gen3_thermal_tsc_coefs(struct rcar_gen3_thermal_priv *priv,
struct rcar_gen3_thermal_tsc *tsc)
{
tsc->coef.below.a = priv->info->scale * (priv->ptat[2] - priv->ptat[1]);
tsc->coef.above.a = priv->info->scale * (priv->ptat[0] - priv->ptat[1]);
tsc->coef.below.b = (priv->ptat[2] - priv->ptat[0]) * (tsc->thcode[2] - tsc->thcode[1]);
tsc->coef.above.b = (priv->ptat[0] - priv->ptat[2]) * (tsc->thcode[1] - tsc->thcode[0]);
}
static int rcar_gen3_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
{
struct rcar_gen3_thermal_tsc *tsc = thermal_zone_device_priv(tz);
struct rcar_gen3_thermal_priv *priv = tsc->priv;
const struct equation_set_coef *coef;
int adj, decicelsius, reg, thcode;
/* Read register and convert to mili Celsius */
reg = rcar_gen3_thermal_read(tsc, REG_GEN3_TEMP) & CTEMP_MASK;
if (reg < tsc->thcode[1]) {
adj = priv->info->adj_below;
coef = &tsc->coef.below;
thcode = tsc->thcode[2];
} else {
adj = priv->info->adj_above;
coef = &tsc->coef.above;
thcode = tsc->thcode[0];
}
/*
* The dividend can't be grown as it might overflow, instead shorten the
* divisor to convert to decidegree Celsius. If we convert after the
* division precision is lost as we will scale up from whole degrees
* Celsius.
*/
decicelsius = DIV_ROUND_CLOSEST(coef->a * (thcode - reg), coef->b / 10);
/* Guaranteed operating range is -40C to 125C. */
/* Reporting is done in millidegree Celsius */
*temp = decicelsius * 100 + adj * 1000;
return 0;
}
static int rcar_gen3_thermal_mcelsius_to_temp(struct rcar_gen3_thermal_tsc *tsc,
int mcelsius)
{
struct rcar_gen3_thermal_priv *priv = tsc->priv;
const struct equation_set_coef *coef;
int adj, celsius, thcode;
celsius = DIV_ROUND_CLOSEST(mcelsius, 1000);
if (celsius < priv->tj_t) {
coef = &tsc->coef.below;
adj = priv->info->adj_below;
thcode = tsc->thcode[2];
} else {
coef = &tsc->coef.above;
adj = priv->info->adj_above;
thcode = tsc->thcode[0];
}
return thcode - DIV_ROUND_CLOSEST((celsius - adj) * coef->b, coef->a);
}
static int rcar_gen3_thermal_set_trips(struct thermal_zone_device *tz, int low, int high)
{
struct rcar_gen3_thermal_tsc *tsc = thermal_zone_device_priv(tz);
u32 irqmsk = 0;
if (low != -INT_MAX) {
irqmsk |= IRQ_TEMPD1;
rcar_gen3_thermal_write(tsc, REG_GEN3_IRQTEMP1,
rcar_gen3_thermal_mcelsius_to_temp(tsc, low));
}
if (high != INT_MAX) {
irqmsk |= IRQ_TEMP2;
rcar_gen3_thermal_write(tsc, REG_GEN3_IRQTEMP2,
rcar_gen3_thermal_mcelsius_to_temp(tsc, high));
}
rcar_gen3_thermal_write(tsc, REG_GEN3_IRQMSK, irqmsk);
return 0;
}
static const struct thermal_zone_device_ops rcar_gen3_tz_of_ops = {
.get_temp = rcar_gen3_thermal_get_temp,
.set_trips = rcar_gen3_thermal_set_trips,
};
static irqreturn_t rcar_gen3_thermal_irq(int irq, void *data)
{
struct rcar_gen3_thermal_priv *priv = data;
unsigned int i;
u32 status;
for (i = 0; i < priv->num_tscs; i++) {
status = rcar_gen3_thermal_read(priv->tscs[i], REG_GEN3_IRQSTR);
rcar_gen3_thermal_write(priv->tscs[i], REG_GEN3_IRQSTR, 0);
if (status && priv->tscs[i]->zone)
thermal_zone_device_update(priv->tscs[i]->zone,
THERMAL_EVENT_UNSPECIFIED);
}
return IRQ_HANDLED;
}
static void rcar_gen3_thermal_read_fuses_gen3(struct rcar_gen3_thermal_priv *priv)
{
unsigned int i;
/*
* Set the pseudo calibration points with fused values.
* PTAT is shared between all TSCs but only fused for the first
* TSC while THCODEs are fused for each TSC.
*/
priv->ptat[0] = rcar_gen3_thermal_read(priv->tscs[0], REG_GEN3_PTAT1) &
GEN3_FUSE_MASK;
priv->ptat[1] = rcar_gen3_thermal_read(priv->tscs[0], REG_GEN3_PTAT2) &
GEN3_FUSE_MASK;
priv->ptat[2] = rcar_gen3_thermal_read(priv->tscs[0], REG_GEN3_PTAT3) &
GEN3_FUSE_MASK;
for (i = 0; i < priv->num_tscs; i++) {
struct rcar_gen3_thermal_tsc *tsc = priv->tscs[i];
tsc->thcode[0] = rcar_gen3_thermal_read(tsc, REG_GEN3_THCODE1) &
GEN3_FUSE_MASK;
tsc->thcode[1] = rcar_gen3_thermal_read(tsc, REG_GEN3_THCODE2) &
GEN3_FUSE_MASK;
tsc->thcode[2] = rcar_gen3_thermal_read(tsc, REG_GEN3_THCODE3) &
GEN3_FUSE_MASK;
}
}
static void rcar_gen3_thermal_read_fuses_gen4(struct rcar_gen3_thermal_priv *priv)
{
unsigned int i;
/*
* Set the pseudo calibration points with fused values.
* PTAT is shared between all TSCs but only fused for the first
* TSC while THCODEs are fused for each TSC.
*/
priv->ptat[0] = rcar_gen3_thermal_read(priv->tscs[0], REG_GEN4_THSFMON16) &
GEN4_FUSE_MASK;
priv->ptat[1] = rcar_gen3_thermal_read(priv->tscs[0], REG_GEN4_THSFMON17) &
GEN4_FUSE_MASK;
priv->ptat[2] = rcar_gen3_thermal_read(priv->tscs[0], REG_GEN4_THSFMON15) &
GEN4_FUSE_MASK;
for (i = 0; i < priv->num_tscs; i++) {
struct rcar_gen3_thermal_tsc *tsc = priv->tscs[i];
tsc->thcode[0] = rcar_gen3_thermal_read(tsc, REG_GEN4_THSFMON01) &
GEN4_FUSE_MASK;
tsc->thcode[1] = rcar_gen3_thermal_read(tsc, REG_GEN4_THSFMON02) &
GEN4_FUSE_MASK;
tsc->thcode[2] = rcar_gen3_thermal_read(tsc, REG_GEN4_THSFMON00) &
GEN4_FUSE_MASK;
}
}
static bool rcar_gen3_thermal_read_fuses(struct rcar_gen3_thermal_priv *priv)
{
unsigned int i;
u32 thscp;
/* If fuses are not set, fallback to pseudo values. */
thscp = rcar_gen3_thermal_read(priv->tscs[0], REG_GEN3_THSCP);
if (!priv->info->read_fuses ||
(thscp & THSCP_COR_PARA_VLD) != THSCP_COR_PARA_VLD) {
/* Default THCODE values in case FUSEs are not set. */
static const int thcodes[TSC_MAX_NUM][3] = {
{ 3397, 2800, 2221 },
{ 3393, 2795, 2216 },
{ 3389, 2805, 2237 },
{ 3415, 2694, 2195 },
{ 3356, 2724, 2244 },
};
priv->ptat[0] = 2631;
priv->ptat[1] = 1509;
priv->ptat[2] = 435;
for (i = 0; i < priv->num_tscs; i++) {
struct rcar_gen3_thermal_tsc *tsc = priv->tscs[i];
tsc->thcode[0] = thcodes[i][0];
tsc->thcode[1] = thcodes[i][1];
tsc->thcode[2] = thcodes[i][2];
}
return false;
}
priv->info->read_fuses(priv);
return true;
}
static void rcar_gen3_thermal_init(struct rcar_gen3_thermal_priv *priv,
struct rcar_gen3_thermal_tsc *tsc)
{
u32 reg_val;
reg_val = rcar_gen3_thermal_read(tsc, REG_GEN3_THCTR);
reg_val &= ~THCTR_PONM;
rcar_gen3_thermal_write(tsc, REG_GEN3_THCTR, reg_val);
usleep_range(1000, 2000);
rcar_gen3_thermal_write(tsc, REG_GEN3_IRQCTL, 0);
rcar_gen3_thermal_write(tsc, REG_GEN3_IRQMSK, 0);
if (priv->ops.set_trips)
rcar_gen3_thermal_write(tsc, REG_GEN3_IRQEN,
IRQ_TEMPD1 | IRQ_TEMP2);
reg_val = rcar_gen3_thermal_read(tsc, REG_GEN3_THCTR);
reg_val |= THCTR_THSST;
rcar_gen3_thermal_write(tsc, REG_GEN3_THCTR, reg_val);
usleep_range(1000, 2000);
}
static const struct rcar_thermal_info rcar_m3w_thermal_info = {
.scale = 157,
.adj_below = -41,
.adj_above = 116,
.read_fuses = rcar_gen3_thermal_read_fuses_gen3,
};
static const struct rcar_thermal_info rcar_gen3_thermal_info = {
.scale = 167,
.adj_below = -41,
.adj_above = 126,
.read_fuses = rcar_gen3_thermal_read_fuses_gen3,
};
static const struct rcar_thermal_info rcar_gen4_thermal_info = {
.scale = 167,
.adj_below = -41,
.adj_above = 126,
.read_fuses = rcar_gen3_thermal_read_fuses_gen4,
};
static const struct of_device_id rcar_gen3_thermal_dt_ids[] = {
{
.compatible = "renesas,r8a774a1-thermal",
.data = &rcar_m3w_thermal_info,
},
{
.compatible = "renesas,r8a774b1-thermal",
.data = &rcar_gen3_thermal_info,
},
{
.compatible = "renesas,r8a774e1-thermal",
.data = &rcar_gen3_thermal_info,
},
{
.compatible = "renesas,r8a7795-thermal",
.data = &rcar_gen3_thermal_info,
},
{
.compatible = "renesas,r8a7796-thermal",
.data = &rcar_m3w_thermal_info,
},
{
.compatible = "renesas,r8a77961-thermal",
.data = &rcar_m3w_thermal_info,
},
{
.compatible = "renesas,r8a77965-thermal",
.data = &rcar_gen3_thermal_info,
},
{
.compatible = "renesas,r8a77980-thermal",
.data = &rcar_gen3_thermal_info,
},
{
.compatible = "renesas,r8a779a0-thermal",
.data = &rcar_gen3_thermal_info,
},
{
.compatible = "renesas,r8a779f0-thermal",
.data = &rcar_gen4_thermal_info,
},
{
.compatible = "renesas,r8a779g0-thermal",
.data = &rcar_gen4_thermal_info,
},
{
.compatible = "renesas,r8a779h0-thermal",
.data = &rcar_gen4_thermal_info,
},
{},
};
MODULE_DEVICE_TABLE(of, rcar_gen3_thermal_dt_ids);
static void rcar_gen3_thermal_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
pm_runtime_put(dev);
pm_runtime_disable(dev);
}
static void rcar_gen3_hwmon_action(void *data)
{
struct thermal_zone_device *zone = data;
thermal_remove_hwmon_sysfs(zone);
}
static int rcar_gen3_thermal_request_irqs(struct rcar_gen3_thermal_priv *priv,
struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
unsigned int i;
char *irqname;
int ret, irq;
for (i = 0; i < 2; i++) {
irq = platform_get_irq_optional(pdev, i);
if (irq < 0)
return irq;
irqname = devm_kasprintf(dev, GFP_KERNEL, "%s:ch%d",
dev_name(dev), i);
if (!irqname)
return -ENOMEM;
ret = devm_request_threaded_irq(dev, irq, NULL,
rcar_gen3_thermal_irq,
IRQF_ONESHOT, irqname, priv);
if (ret)
return ret;
}
return 0;
}
static int rcar_gen3_thermal_probe(struct platform_device *pdev)
{
struct rcar_gen3_thermal_priv *priv;
struct device *dev = &pdev->dev;
struct resource *res;
struct thermal_zone_device *zone;
unsigned int i;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->ops = rcar_gen3_tz_of_ops;
priv->info = of_device_get_match_data(dev);
platform_set_drvdata(pdev, priv);
if (rcar_gen3_thermal_request_irqs(priv, pdev))
priv->ops.set_trips = NULL;
pm_runtime_enable(dev);
pm_runtime_get_sync(dev);
for (i = 0; i < TSC_MAX_NUM; i++) {
struct rcar_gen3_thermal_tsc *tsc;
res = platform_get_resource(pdev, IORESOURCE_MEM, i);
if (!res)
break;
tsc = devm_kzalloc(dev, sizeof(*tsc), GFP_KERNEL);
if (!tsc) {
ret = -ENOMEM;
goto error_unregister;
}
tsc->priv = priv;
tsc->base = devm_ioremap_resource(dev, res);
if (IS_ERR(tsc->base)) {
ret = PTR_ERR(tsc->base);
goto error_unregister;
}
priv->tscs[i] = tsc;
}
priv->num_tscs = i;
if (!rcar_gen3_thermal_read_fuses(priv))
dev_info(dev, "No calibration values fused, fallback to driver values\n");
rcar_gen3_thermal_shared_coefs(priv);
for (i = 0; i < priv->num_tscs; i++) {
struct rcar_gen3_thermal_tsc *tsc = priv->tscs[i];
rcar_gen3_thermal_init(priv, tsc);
rcar_gen3_thermal_tsc_coefs(priv, tsc);
zone = devm_thermal_of_zone_register(dev, i, tsc, &priv->ops);
if (IS_ERR(zone)) {
dev_err(dev, "Sensor %u: Can't register thermal zone\n", i);
ret = PTR_ERR(zone);
goto error_unregister;
}
tsc->zone = zone;
ret = thermal_add_hwmon_sysfs(tsc->zone);
if (ret)
goto error_unregister;
ret = devm_add_action_or_reset(dev, rcar_gen3_hwmon_action, zone);
if (ret)
goto error_unregister;
dev_info(dev, "Sensor %u: Loaded\n", i);
}
if (!priv->num_tscs) {
ret = -ENODEV;
goto error_unregister;
}
return 0;
error_unregister:
rcar_gen3_thermal_remove(pdev);
return ret;
}
static int __maybe_unused rcar_gen3_thermal_resume(struct device *dev)
{
struct rcar_gen3_thermal_priv *priv = dev_get_drvdata(dev);
unsigned int i;
for (i = 0; i < priv->num_tscs; i++) {
struct rcar_gen3_thermal_tsc *tsc = priv->tscs[i];
rcar_gen3_thermal_init(priv, tsc);
}
return 0;
}
static SIMPLE_DEV_PM_OPS(rcar_gen3_thermal_pm_ops, NULL,
rcar_gen3_thermal_resume);
static struct platform_driver rcar_gen3_thermal_driver = {
.driver = {
.name = "rcar_gen3_thermal",
.pm = &rcar_gen3_thermal_pm_ops,
.of_match_table = rcar_gen3_thermal_dt_ids,
},
.probe = rcar_gen3_thermal_probe,
.remove_new = rcar_gen3_thermal_remove,
};
module_platform_driver(rcar_gen3_thermal_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("R-Car Gen3 THS thermal sensor driver");
MODULE_AUTHOR("Wolfram Sang <[email protected]>");