/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */ // // AES-NI optimized AES-GCM for x86_64 // // Copyright 2024 Google LLC // // Author: Eric Biggers <[email protected]> // //------------------------------------------------------------------------------ // // This file is dual-licensed, meaning that you can use it under your choice of // either of the following two licenses: // // Licensed under the Apache License 2.0 (the "License"). You may obtain a copy // of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // or // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // //------------------------------------------------------------------------------ // // This file implements AES-GCM (Galois/Counter Mode) for x86_64 CPUs that // support the original set of AES instructions, i.e. AES-NI. Two // implementations are provided, one that uses AVX and one that doesn't. They // are very similar, being generated by the same macros. The only difference is // that the AVX implementation takes advantage of VEX-coded instructions in some // places to avoid some 'movdqu' and 'movdqa' instructions. The AVX // implementation does *not* use 256-bit vectors, as AES is not supported on // 256-bit vectors until the VAES feature (which this file doesn't target). // // The specific CPU feature prerequisites are AES-NI and PCLMULQDQ, plus SSE4.1 // for the *_aesni functions or AVX for the *_aesni_avx ones. (But it seems // there are no CPUs that support AES-NI without also PCLMULQDQ and SSE4.1.) // // The design generally follows that of aes-gcm-avx10-x86_64.S, and that file is // more thoroughly commented. This file has the following notable changes: // // - The vector length is fixed at 128-bit, i.e. xmm registers. This means // there is only one AES block (and GHASH block) per register. // // - Without AVX512 / AVX10, only 16 SIMD registers are available instead of // 32. We work around this by being much more careful about using // registers, relying heavily on loads to load values as they are needed. // // - Masking is not available either. We work around this by implementing // partial block loads and stores using overlapping scalar loads and stores // combined with shifts and SSE4.1 insertion and extraction instructions. // // - The main loop is organized differently due to the different design // constraints. First, with just one AES block per SIMD register, on some // CPUs 4 registers don't saturate the 'aesenc' throughput. We therefore // do an 8-register wide loop. Considering that and the fact that we have // just 16 SIMD registers to work with, it's not feasible to cache AES // round keys and GHASH key powers in registers across loop iterations. // That's not ideal, but also not actually that bad, since loads can run in // parallel with other instructions. Significantly, this also makes it // possible to roll up the inner loops, relying on hardware loop unrolling // instead of software loop unrolling, greatly reducing code size. // // - We implement the GHASH multiplications in the main loop using Karatsuba // multiplication instead of schoolbook multiplication. This saves one // pclmulqdq instruction per block, at the cost of one 64-bit load, one // pshufd, and 0.25 pxors per block. (This is without the three-argument // XOR support that would be provided by AVX512 / AVX10, which would be // more beneficial to schoolbook than Karatsuba.) // // As a rough approximation, we can assume that Karatsuba multiplication is // faster than schoolbook multiplication in this context if one pshufd and // 0.25 pxors are cheaper than a pclmulqdq. (We assume that the 64-bit // load is "free" due to running in parallel with arithmetic instructions.) // This is true on AMD CPUs, including all that support pclmulqdq up to at // least Zen 3. It's also true on older Intel CPUs: Westmere through // Haswell on the Core side, and Silvermont through Goldmont Plus on the // low-power side. On some of these CPUs, pclmulqdq is quite slow, and the // benefit of Karatsuba should be substantial. On newer Intel CPUs, // schoolbook multiplication should be faster, but only marginally. // // Not all these CPUs were available to be tested. However, benchmarks on // available CPUs suggest that this approximation is plausible. Switching // to Karatsuba showed negligible change (< 1%) on Intel Broadwell, // Skylake, and Cascade Lake, but it improved AMD Zen 1-3 by 6-7%. // Considering that and the fact that Karatsuba should be even more // beneficial on older Intel CPUs, it seems like the right choice here. // // An additional 0.25 pclmulqdq per block (2 per 8 blocks) could be // saved by using a multiplication-less reduction method. We don't do that // because it would require a large number of shift and xor instructions, // making it less worthwhile and likely harmful on newer CPUs. // // It does make sense to sometimes use a different reduction optimization // that saves a pclmulqdq, though: precompute the hash key times x^64, and // multiply the low half of the data block by the hash key with the extra // factor of x^64. This eliminates one step of the reduction. However, // this is incompatible with Karatsuba multiplication. Therefore, for // multi-block processing we use Karatsuba multiplication with a regular // reduction. For single-block processing, we use the x^64 optimization. #include <linux/linkage.h> .section .rodata .p2align 4 .Lbswap_mask: .octa 0x000102030405060708090a0b0c0d0e0f .Lgfpoly: .quad 0xc200000000000000 .Lone: .quad 1 .Lgfpoly_and_internal_carrybit: .octa 0xc2000000000000010000000000000001 // Loading 16 bytes from '.Lzeropad_mask + 16 - len' produces a mask of // 'len' 0xff bytes and the rest zeroes. .Lzeropad_mask: .octa 0xffffffffffffffffffffffffffffffff .octa 0 // Offsets in struct aes_gcm_key_aesni #define OFFSETOF_AESKEYLEN 480 #define OFFSETOF_H_POWERS 496 #define OFFSETOF_H_POWERS_XORED 624 #define OFFSETOF_H_TIMES_X64 688 .text // Do a vpclmulqdq, or fall back to a movdqa and a pclmulqdq. The fallback // assumes that all operands are distinct and that any mem operand is aligned. .macro _vpclmulqdq imm, src1, src2, dst .if USE_AVX vpclmulqdq \imm, \src1, \src2, \dst .else movdqa \src2, \dst pclmulqdq \imm, \src1, \dst .endif .endm // Do a vpshufb, or fall back to a movdqa and a pshufb. The fallback assumes // that all operands are distinct and that any mem operand is aligned. .macro _vpshufb src1, src2, dst .if USE_AVX vpshufb \src1, \src2, \dst .else movdqa \src2, \dst pshufb \src1, \dst .endif .endm // Do a vpand, or fall back to a movdqu and a pand. The fallback assumes that // all operands are distinct. .macro _vpand src1, src2, dst .if USE_AVX vpand \src1, \src2, \dst .else movdqu \src1, \dst pand \src2, \dst .endif .endm // XOR the unaligned memory operand \mem into the xmm register \reg. \tmp must // be a temporary xmm register. .macro _xor_mem_to_reg mem, reg, tmp .if USE_AVX vpxor \mem, \reg, \reg .else movdqu \mem, \tmp pxor \tmp, \reg .endif .endm // Test the unaligned memory operand \mem against the xmm register \reg. \tmp // must be a temporary xmm register. .macro _test_mem mem, reg, tmp .if USE_AVX vptest \mem, \reg .else movdqu \mem, \tmp ptest \tmp, \reg .endif .endm // Load 1 <= %ecx <= 15 bytes from the pointer \src into the xmm register \dst // and zeroize any remaining bytes. Clobbers %rax, %rcx, and \tmp{64,32}. .macro _load_partial_block src, dst, tmp64, tmp32 sub $8, %ecx // LEN - 8 jle .Lle8\@ // Load 9 <= LEN <= 15 bytes. movq (\src), \dst // Load first 8 bytes mov (\src, %rcx), %rax // Load last 8 bytes neg %ecx shl $3, %ecx shr %cl, %rax // Discard overlapping bytes pinsrq $1, %rax, \dst jmp .Ldone\@ .Lle8\@: add $4, %ecx // LEN - 4 jl .Llt4\@ // Load 4 <= LEN <= 8 bytes. mov (\src), %eax // Load first 4 bytes mov (\src, %rcx), \tmp32 // Load last 4 bytes jmp .Lcombine\@ .Llt4\@: // Load 1 <= LEN <= 3 bytes. add $2, %ecx // LEN - 2 movzbl (\src), %eax // Load first byte jl .Lmovq\@ movzwl (\src, %rcx), \tmp32 // Load last 2 bytes .Lcombine\@: shl $3, %ecx shl %cl, \tmp64 or \tmp64, %rax // Combine the two parts .Lmovq\@: movq %rax, \dst .Ldone\@: .endm // Store 1 <= %ecx <= 15 bytes from the xmm register \src to the pointer \dst. // Clobbers %rax, %rcx, and %rsi. .macro _store_partial_block src, dst sub $8, %ecx // LEN - 8 jl .Llt8\@ // Store 8 <= LEN <= 15 bytes. pextrq $1, \src, %rax mov %ecx, %esi shl $3, %ecx ror %cl, %rax mov %rax, (\dst, %rsi) // Store last LEN - 8 bytes movq \src, (\dst) // Store first 8 bytes jmp .Ldone\@ .Llt8\@: add $4, %ecx // LEN - 4 jl .Llt4\@ // Store 4 <= LEN <= 7 bytes. pextrd $1, \src, %eax mov %ecx, %esi shl $3, %ecx ror %cl, %eax mov %eax, (\dst, %rsi) // Store last LEN - 4 bytes movd \src, (\dst) // Store first 4 bytes jmp .Ldone\@ .Llt4\@: // Store 1 <= LEN <= 3 bytes. pextrb $0, \src, 0(\dst) cmp $-2, %ecx // LEN - 4 == -2, i.e. LEN == 2? jl .Ldone\@ pextrb $1, \src, 1(\dst) je .Ldone\@ pextrb $2, \src, 2(\dst) .Ldone\@: .endm // Do one step of GHASH-multiplying \a by \b and storing the reduced product in // \b. To complete all steps, this must be invoked with \i=0 through \i=9. // \a_times_x64 must contain \a * x^64 in reduced form, \gfpoly must contain the // .Lgfpoly constant, and \t0-\t1 must be temporary registers. .macro _ghash_mul_step i, a, a_times_x64, b, gfpoly, t0, t1 // MI = (a_L * b_H) + ((a*x^64)_L * b_L) .if \i == 0 _vpclmulqdq $0x01, \a, \b, \t0 .elseif \i == 1 _vpclmulqdq $0x00, \a_times_x64, \b, \t1 .elseif \i == 2 pxor \t1, \t0 // HI = (a_H * b_H) + ((a*x^64)_H * b_L) .elseif \i == 3 _vpclmulqdq $0x11, \a, \b, \t1 .elseif \i == 4 pclmulqdq $0x10, \a_times_x64, \b .elseif \i == 5 pxor \t1, \b .elseif \i == 6 // Fold MI into HI. pshufd $0x4e, \t0, \t1 // Swap halves of MI .elseif \i == 7 pclmulqdq $0x00, \gfpoly, \t0 // MI_L*(x^63 + x^62 + x^57) .elseif \i == 8 pxor \t1, \b .elseif \i == 9 pxor \t0, \b .endif .endm // GHASH-multiply \a by \b and store the reduced product in \b. // See _ghash_mul_step for details. .macro _ghash_mul a, a_times_x64, b, gfpoly, t0, t1 .irp i, 0,1,2,3,4,5,6,7,8,9 _ghash_mul_step \i, \a, \a_times_x64, \b, \gfpoly, \t0, \t1 .endr .endm // GHASH-multiply \a by \b and add the unreduced product to \lo, \mi, and \hi. // This does Karatsuba multiplication and must be paired with _ghash_reduce. On // the first call, \lo, \mi, and \hi must be zero. \a_xored must contain the // two halves of \a XOR'd together, i.e. a_L + a_H. \b is clobbered. .macro _ghash_mul_noreduce a, a_xored, b, lo, mi, hi, t0 // LO += a_L * b_L _vpclmulqdq $0x00, \a, \b, \t0 pxor \t0, \lo // b_L + b_H pshufd $0x4e, \b, \t0 pxor \b, \t0 // HI += a_H * b_H pclmulqdq $0x11, \a, \b pxor \b, \hi // MI += (a_L + a_H) * (b_L + b_H) pclmulqdq $0x00, \a_xored, \t0 pxor \t0, \mi .endm // Reduce the product from \lo, \mi, and \hi, and store the result in \dst. // This assumes that _ghash_mul_noreduce was used. .macro _ghash_reduce lo, mi, hi, dst, t0 movq .Lgfpoly(%rip), \t0 // MI += LO + HI (needed because we used Karatsuba multiplication) pxor \lo, \mi pxor \hi, \mi // Fold LO into MI. pshufd $0x4e, \lo, \dst pclmulqdq $0x00, \t0, \lo pxor \dst, \mi pxor \lo, \mi // Fold MI into HI. pshufd $0x4e, \mi, \dst pclmulqdq $0x00, \t0, \mi pxor \hi, \dst pxor \mi, \dst .endm // Do the first step of the GHASH update of a set of 8 ciphertext blocks. // // The whole GHASH update does: // // GHASH_ACC = (blk0+GHASH_ACC)*H^8 + blk1*H^7 + blk2*H^6 + blk3*H^5 + // blk4*H^4 + blk5*H^3 + blk6*H^2 + blk7*H^1 // // This macro just does the first step: it does the unreduced multiplication // (blk0+GHASH_ACC)*H^8 and starts gathering the unreduced product in the xmm // registers LO, MI, and GHASH_ACC a.k.a. HI. It also zero-initializes the // inner block counter in %rax, which is a value that counts up by 8 for each // block in the set of 8 and is used later to index by 8*blknum and 16*blknum. // // To reduce the number of pclmulqdq instructions required, both this macro and // _ghash_update_continue_8x use Karatsuba multiplication instead of schoolbook // multiplication. See the file comment for more details about this choice. // // Both macros expect the ciphertext blocks blk[0-7] to be available at DST if // encrypting, or SRC if decrypting. They also expect the precomputed hash key // powers H^i and their XOR'd-together halves to be available in the struct // pointed to by KEY. Both macros clobber TMP[0-2]. .macro _ghash_update_begin_8x enc // Initialize the inner block counter. xor %eax, %eax // Load the highest hash key power, H^8. movdqa OFFSETOF_H_POWERS(KEY), TMP0 // Load the first ciphertext block and byte-reflect it. .if \enc movdqu (DST), TMP1 .else movdqu (SRC), TMP1 .endif pshufb BSWAP_MASK, TMP1 // Add the GHASH accumulator to the ciphertext block to get the block // 'b' that needs to be multiplied with the hash key power 'a'. pxor TMP1, GHASH_ACC // b_L + b_H pshufd $0x4e, GHASH_ACC, MI pxor GHASH_ACC, MI // LO = a_L * b_L _vpclmulqdq $0x00, TMP0, GHASH_ACC, LO // HI = a_H * b_H pclmulqdq $0x11, TMP0, GHASH_ACC // MI = (a_L + a_H) * (b_L + b_H) pclmulqdq $0x00, OFFSETOF_H_POWERS_XORED(KEY), MI .endm // Continue the GHASH update of 8 ciphertext blocks as described above by doing // an unreduced multiplication of the next ciphertext block by the next lowest // key power and accumulating the result into LO, MI, and GHASH_ACC a.k.a. HI. .macro _ghash_update_continue_8x enc add $8, %eax // Load the next lowest key power. movdqa OFFSETOF_H_POWERS(KEY,%rax,2), TMP0 // Load the next ciphertext block and byte-reflect it. .if \enc movdqu (DST,%rax,2), TMP1 .else movdqu (SRC,%rax,2), TMP1 .endif pshufb BSWAP_MASK, TMP1 // LO += a_L * b_L _vpclmulqdq $0x00, TMP0, TMP1, TMP2 pxor TMP2, LO // b_L + b_H pshufd $0x4e, TMP1, TMP2 pxor TMP1, TMP2 // HI += a_H * b_H pclmulqdq $0x11, TMP0, TMP1 pxor TMP1, GHASH_ACC // MI += (a_L + a_H) * (b_L + b_H) movq OFFSETOF_H_POWERS_XORED(KEY,%rax), TMP1 pclmulqdq $0x00, TMP1, TMP2 pxor TMP2, MI .endm // Reduce LO, MI, and GHASH_ACC a.k.a. HI into GHASH_ACC. This is similar to // _ghash_reduce, but it's hardcoded to use the registers of the main loop and // it uses the same register for HI and the destination. It's also divided into // two steps. TMP1 must be preserved across steps. // // One pshufd could be saved by shuffling MI and XOR'ing LO into it, instead of // shuffling LO, XOR'ing LO into MI, and shuffling MI. However, this would // increase the critical path length, and it seems to slightly hurt performance. .macro _ghash_update_end_8x_step i .if \i == 0 movq .Lgfpoly(%rip), TMP1 pxor LO, MI pxor GHASH_ACC, MI pshufd $0x4e, LO, TMP2 pclmulqdq $0x00, TMP1, LO pxor TMP2, MI pxor LO, MI .elseif \i == 1 pshufd $0x4e, MI, TMP2 pclmulqdq $0x00, TMP1, MI pxor TMP2, GHASH_ACC pxor MI, GHASH_ACC .endif .endm // void aes_gcm_precompute_##suffix(struct aes_gcm_key_aesni *key); // // Given the expanded AES key, derive the GHASH subkey and initialize the GHASH // related fields in the key struct. .macro _aes_gcm_precompute // Function arguments .set KEY, %rdi // Additional local variables. // %xmm0-%xmm1 and %rax are used as temporaries. .set RNDKEYLAST_PTR, %rsi .set H_CUR, %xmm2 .set H_POW1, %xmm3 // H^1 .set H_POW1_X64, %xmm4 // H^1 * x^64 .set GFPOLY, %xmm5 // Encrypt an all-zeroes block to get the raw hash subkey. movl OFFSETOF_AESKEYLEN(KEY), %eax lea 6*16(KEY,%rax,4), RNDKEYLAST_PTR movdqa (KEY), H_POW1 // Zero-th round key XOR all-zeroes block lea 16(KEY), %rax 1: aesenc (%rax), H_POW1 add $16, %rax cmp %rax, RNDKEYLAST_PTR jne 1b aesenclast (RNDKEYLAST_PTR), H_POW1 // Preprocess the raw hash subkey as needed to operate on GHASH's // bit-reflected values directly: reflect its bytes, then multiply it by // x^-1 (using the backwards interpretation of polynomial coefficients // from the GCM spec) or equivalently x^1 (using the alternative, // natural interpretation of polynomial coefficients). pshufb .Lbswap_mask(%rip), H_POW1 movdqa H_POW1, %xmm0 pshufd $0xd3, %xmm0, %xmm0 psrad $31, %xmm0 paddq H_POW1, H_POW1 pand .Lgfpoly_and_internal_carrybit(%rip), %xmm0 pxor %xmm0, H_POW1 // Store H^1. movdqa H_POW1, OFFSETOF_H_POWERS+7*16(KEY) // Compute and store H^1 * x^64. movq .Lgfpoly(%rip), GFPOLY pshufd $0x4e, H_POW1, %xmm0 _vpclmulqdq $0x00, H_POW1, GFPOLY, H_POW1_X64 pxor %xmm0, H_POW1_X64 movdqa H_POW1_X64, OFFSETOF_H_TIMES_X64(KEY) // Compute and store the halves of H^1 XOR'd together. pxor H_POW1, %xmm0 movq %xmm0, OFFSETOF_H_POWERS_XORED+7*8(KEY) // Compute and store the remaining key powers H^2 through H^8. movdqa H_POW1, H_CUR mov $6*8, %eax .Lprecompute_next\@: // Compute H^i = H^{i-1} * H^1. _ghash_mul H_POW1, H_POW1_X64, H_CUR, GFPOLY, %xmm0, %xmm1 // Store H^i. movdqa H_CUR, OFFSETOF_H_POWERS(KEY,%rax,2) // Compute and store the halves of H^i XOR'd together. pshufd $0x4e, H_CUR, %xmm0 pxor H_CUR, %xmm0 movq %xmm0, OFFSETOF_H_POWERS_XORED(KEY,%rax) sub $8, %eax jge .Lprecompute_next\@ RET .endm // void aes_gcm_aad_update_aesni(const struct aes_gcm_key_aesni *key, // u8 ghash_acc[16], const u8 *aad, int aadlen); // // This function processes the AAD (Additional Authenticated Data) in GCM. // Using the key |key|, it updates the GHASH accumulator |ghash_acc| with the // data given by |aad| and |aadlen|. On the first call, |ghash_acc| must be all // zeroes. |aadlen| must be a multiple of 16, except on the last call where it // can be any length. The caller must do any buffering needed to ensure this. .macro _aes_gcm_aad_update // Function arguments .set KEY, %rdi .set GHASH_ACC_PTR, %rsi .set AAD, %rdx .set AADLEN, %ecx // Note: _load_partial_block relies on AADLEN being in %ecx. // Additional local variables. // %rax, %r10, and %xmm0-%xmm1 are used as temporary registers. .set BSWAP_MASK, %xmm2 .set GHASH_ACC, %xmm3 .set H_POW1, %xmm4 // H^1 .set H_POW1_X64, %xmm5 // H^1 * x^64 .set GFPOLY, %xmm6 movdqa .Lbswap_mask(%rip), BSWAP_MASK movdqu (GHASH_ACC_PTR), GHASH_ACC movdqa OFFSETOF_H_POWERS+7*16(KEY), H_POW1 movdqa OFFSETOF_H_TIMES_X64(KEY), H_POW1_X64 movq .Lgfpoly(%rip), GFPOLY // Process the AAD one full block at a time. sub $16, AADLEN jl .Laad_loop_1x_done\@ .Laad_loop_1x\@: movdqu (AAD), %xmm0 pshufb BSWAP_MASK, %xmm0 pxor %xmm0, GHASH_ACC _ghash_mul H_POW1, H_POW1_X64, GHASH_ACC, GFPOLY, %xmm0, %xmm1 add $16, AAD sub $16, AADLEN jge .Laad_loop_1x\@ .Laad_loop_1x_done\@: // Check whether there is a partial block at the end. add $16, AADLEN jz .Laad_done\@ // Process a partial block of length 1 <= AADLEN <= 15. // _load_partial_block assumes that %ecx contains AADLEN. _load_partial_block AAD, %xmm0, %r10, %r10d pshufb BSWAP_MASK, %xmm0 pxor %xmm0, GHASH_ACC _ghash_mul H_POW1, H_POW1_X64, GHASH_ACC, GFPOLY, %xmm0, %xmm1 .Laad_done\@: movdqu GHASH_ACC, (GHASH_ACC_PTR) RET .endm // Increment LE_CTR eight times to generate eight little-endian counter blocks, // swap each to big-endian, and store them in AESDATA[0-7]. Also XOR them with // the zero-th AES round key. Clobbers TMP0 and TMP1. .macro _ctr_begin_8x movq .Lone(%rip), TMP0 movdqa (KEY), TMP1 // zero-th round key .irp i, 0,1,2,3,4,5,6,7 _vpshufb BSWAP_MASK, LE_CTR, AESDATA\i pxor TMP1, AESDATA\i paddd TMP0, LE_CTR .endr .endm // Do a non-last round of AES on AESDATA[0-7] using \round_key. .macro _aesenc_8x round_key .irp i, 0,1,2,3,4,5,6,7 aesenc \round_key, AESDATA\i .endr .endm // Do the last round of AES on AESDATA[0-7] using \round_key. .macro _aesenclast_8x round_key .irp i, 0,1,2,3,4,5,6,7 aesenclast \round_key, AESDATA\i .endr .endm // XOR eight blocks from SRC with the keystream blocks in AESDATA[0-7], and // store the result to DST. Clobbers TMP0. .macro _xor_data_8x .irp i, 0,1,2,3,4,5,6,7 _xor_mem_to_reg \i*16(SRC), AESDATA\i, tmp=TMP0 .endr .irp i, 0,1,2,3,4,5,6,7 movdqu AESDATA\i, \i*16(DST) .endr .endm // void aes_gcm_{enc,dec}_update_##suffix(const struct aes_gcm_key_aesni *key, // const u32 le_ctr[4], u8 ghash_acc[16], // const u8 *src, u8 *dst, int datalen); // // This macro generates a GCM encryption or decryption update function with the // above prototype (with \enc selecting which one). // // This function computes the next portion of the CTR keystream, XOR's it with // |datalen| bytes from |src|, and writes the resulting encrypted or decrypted // data to |dst|. It also updates the GHASH accumulator |ghash_acc| using the // next |datalen| ciphertext bytes. // // |datalen| must be a multiple of 16, except on the last call where it can be // any length. The caller must do any buffering needed to ensure this. Both // in-place and out-of-place en/decryption are supported. // // |le_ctr| must give the current counter in little-endian format. For a new // message, the low word of the counter must be 2. This function loads the // counter from |le_ctr| and increments the loaded counter as needed, but it // does *not* store the updated counter back to |le_ctr|. The caller must // update |le_ctr| if any more data segments follow. Internally, only the low // 32-bit word of the counter is incremented, following the GCM standard. .macro _aes_gcm_update enc // Function arguments .set KEY, %rdi .set LE_CTR_PTR, %rsi // Note: overlaps with usage as temp reg .set GHASH_ACC_PTR, %rdx .set SRC, %rcx .set DST, %r8 .set DATALEN, %r9d .set DATALEN64, %r9 // Zero-extend DATALEN before using! // Note: the code setting up for _load_partial_block assumes that SRC is // in %rcx (and that DATALEN is *not* in %rcx). // Additional local variables // %rax and %rsi are used as temporary registers. Note: %rsi overlaps // with LE_CTR_PTR, which is used only at the beginning. .set AESKEYLEN, %r10d // AES key length in bytes .set AESKEYLEN64, %r10 .set RNDKEYLAST_PTR, %r11 // Pointer to last AES round key // Put the most frequently used values in %xmm0-%xmm7 to reduce code // size. (%xmm0-%xmm7 take fewer bytes to encode than %xmm8-%xmm15.) .set TMP0, %xmm0 .set TMP1, %xmm1 .set TMP2, %xmm2 .set LO, %xmm3 // Low part of unreduced product .set MI, %xmm4 // Middle part of unreduced product .set GHASH_ACC, %xmm5 // GHASH accumulator; in main loop also // the high part of unreduced product .set BSWAP_MASK, %xmm6 // Shuffle mask for reflecting bytes .set LE_CTR, %xmm7 // Little-endian counter value .set AESDATA0, %xmm8 .set AESDATA1, %xmm9 .set AESDATA2, %xmm10 .set AESDATA3, %xmm11 .set AESDATA4, %xmm12 .set AESDATA5, %xmm13 .set AESDATA6, %xmm14 .set AESDATA7, %xmm15 movdqa .Lbswap_mask(%rip), BSWAP_MASK movdqu (GHASH_ACC_PTR), GHASH_ACC movdqu (LE_CTR_PTR), LE_CTR movl OFFSETOF_AESKEYLEN(KEY), AESKEYLEN lea 6*16(KEY,AESKEYLEN64,4), RNDKEYLAST_PTR // If there are at least 8*16 bytes of data, then continue into the main // loop, which processes 8*16 bytes of data per iteration. // // The main loop interleaves AES and GHASH to improve performance on // CPUs that can execute these instructions in parallel. When // decrypting, the GHASH input (the ciphertext) is immediately // available. When encrypting, we instead encrypt a set of 8 blocks // first and then GHASH those blocks while encrypting the next set of 8, // repeat that as needed, and finally GHASH the last set of 8 blocks. // // Code size optimization: Prefer adding or subtracting -8*16 over 8*16, // as this makes the immediate fit in a signed byte, saving 3 bytes. add $-8*16, DATALEN jl .Lcrypt_loop_8x_done\@ .if \enc // Encrypt the first 8 plaintext blocks. _ctr_begin_8x lea 16(KEY), %rsi .p2align 4 1: movdqa (%rsi), TMP0 _aesenc_8x TMP0 add $16, %rsi cmp %rsi, RNDKEYLAST_PTR jne 1b movdqa (%rsi), TMP0 _aesenclast_8x TMP0 _xor_data_8x // Don't increment DST until the ciphertext blocks have been hashed. sub $-8*16, SRC add $-8*16, DATALEN jl .Lghash_last_ciphertext_8x\@ .endif .p2align 4 .Lcrypt_loop_8x\@: // Generate the next set of 8 counter blocks and start encrypting them. _ctr_begin_8x lea 16(KEY), %rsi // Do a round of AES, and start the GHASH update of 8 ciphertext blocks // by doing the unreduced multiplication for the first ciphertext block. movdqa (%rsi), TMP0 add $16, %rsi _aesenc_8x TMP0 _ghash_update_begin_8x \enc // Do 7 more rounds of AES, and continue the GHASH update by doing the // unreduced multiplication for the remaining ciphertext blocks. .p2align 4 1: movdqa (%rsi), TMP0 add $16, %rsi _aesenc_8x TMP0 _ghash_update_continue_8x \enc cmp $7*8, %eax jne 1b // Do the remaining AES rounds. .p2align 4 1: movdqa (%rsi), TMP0 add $16, %rsi _aesenc_8x TMP0 cmp %rsi, RNDKEYLAST_PTR jne 1b // Do the GHASH reduction and the last round of AES. movdqa (RNDKEYLAST_PTR), TMP0 _ghash_update_end_8x_step 0 _aesenclast_8x TMP0 _ghash_update_end_8x_step 1 // XOR the data with the AES-CTR keystream blocks. .if \enc sub $-8*16, DST .endif _xor_data_8x sub $-8*16, SRC .if !\enc sub $-8*16, DST .endif add $-8*16, DATALEN jge .Lcrypt_loop_8x\@ .if \enc .Lghash_last_ciphertext_8x\@: // Update GHASH with the last set of 8 ciphertext blocks. _ghash_update_begin_8x \enc .p2align 4 1: _ghash_update_continue_8x \enc cmp $7*8, %eax jne 1b _ghash_update_end_8x_step 0 _ghash_update_end_8x_step 1 sub $-8*16, DST .endif .Lcrypt_loop_8x_done\@: sub $-8*16, DATALEN jz .Ldone\@ // Handle the remainder of length 1 <= DATALEN < 8*16 bytes. We keep // things simple and keep the code size down by just going one block at // a time, again taking advantage of hardware loop unrolling. Since // there are enough key powers available for all remaining data, we do // the GHASH multiplications unreduced, and only reduce at the very end. .set HI, TMP2 .set H_POW, AESDATA0 .set H_POW_XORED, AESDATA1 .set ONE, AESDATA2 movq .Lone(%rip), ONE // Start collecting the unreduced GHASH intermediate value LO, MI, HI. pxor LO, LO pxor MI, MI pxor HI, HI // Set up a block counter %rax to contain 8*(8-n), where n is the number // of blocks that remain, counting any partial block. This will be used // to access the key powers H^n through H^1. mov DATALEN, %eax neg %eax and $~15, %eax sar $1, %eax add $64, %eax sub $16, DATALEN jl .Lcrypt_loop_1x_done\@ // Process the data one full block at a time. .Lcrypt_loop_1x\@: // Encrypt the next counter block. _vpshufb BSWAP_MASK, LE_CTR, TMP0 paddd ONE, LE_CTR pxor (KEY), TMP0 lea -6*16(RNDKEYLAST_PTR), %rsi // Reduce code size cmp $24, AESKEYLEN jl 128f // AES-128? je 192f // AES-192? // AES-256 aesenc -7*16(%rsi), TMP0 aesenc -6*16(%rsi), TMP0 192: aesenc -5*16(%rsi), TMP0 aesenc -4*16(%rsi), TMP0 128: .irp i, -3,-2,-1,0,1,2,3,4,5 aesenc \i*16(%rsi), TMP0 .endr aesenclast (RNDKEYLAST_PTR), TMP0 // Load the next key power H^i. movdqa OFFSETOF_H_POWERS(KEY,%rax,2), H_POW movq OFFSETOF_H_POWERS_XORED(KEY,%rax), H_POW_XORED // XOR the keystream block that was just generated in TMP0 with the next // source data block and store the resulting en/decrypted data to DST. .if \enc _xor_mem_to_reg (SRC), TMP0, tmp=TMP1 movdqu TMP0, (DST) .else movdqu (SRC), TMP1 pxor TMP1, TMP0 movdqu TMP0, (DST) .endif // Update GHASH with the ciphertext block. .if \enc pshufb BSWAP_MASK, TMP0 pxor TMP0, GHASH_ACC .else pshufb BSWAP_MASK, TMP1 pxor TMP1, GHASH_ACC .endif _ghash_mul_noreduce H_POW, H_POW_XORED, GHASH_ACC, LO, MI, HI, TMP0 pxor GHASH_ACC, GHASH_ACC add $8, %eax add $16, SRC add $16, DST sub $16, DATALEN jge .Lcrypt_loop_1x\@ .Lcrypt_loop_1x_done\@: // Check whether there is a partial block at the end. add $16, DATALEN jz .Lghash_reduce\@ // Process a partial block of length 1 <= DATALEN <= 15. // Encrypt a counter block for the last time. pshufb BSWAP_MASK, LE_CTR pxor (KEY), LE_CTR lea 16(KEY), %rsi 1: aesenc (%rsi), LE_CTR add $16, %rsi cmp %rsi, RNDKEYLAST_PTR jne 1b aesenclast (RNDKEYLAST_PTR), LE_CTR // Load the lowest key power, H^1. movdqa OFFSETOF_H_POWERS(KEY,%rax,2), H_POW movq OFFSETOF_H_POWERS_XORED(KEY,%rax), H_POW_XORED // Load and zero-pad 1 <= DATALEN <= 15 bytes of data from SRC. SRC is // in %rcx, but _load_partial_block needs DATALEN in %rcx instead. // RNDKEYLAST_PTR is no longer needed, so reuse it for SRC. mov SRC, RNDKEYLAST_PTR mov DATALEN, %ecx _load_partial_block RNDKEYLAST_PTR, TMP0, %rsi, %esi // XOR the keystream block that was just generated in LE_CTR with the // source data block and store the resulting en/decrypted data to DST. pxor TMP0, LE_CTR mov DATALEN, %ecx _store_partial_block LE_CTR, DST // If encrypting, zero-pad the final ciphertext block for GHASH. (If // decrypting, this was already done by _load_partial_block.) .if \enc lea .Lzeropad_mask+16(%rip), %rax sub DATALEN64, %rax _vpand (%rax), LE_CTR, TMP0 .endif // Update GHASH with the final ciphertext block. pshufb BSWAP_MASK, TMP0 pxor TMP0, GHASH_ACC _ghash_mul_noreduce H_POW, H_POW_XORED, GHASH_ACC, LO, MI, HI, TMP0 .Lghash_reduce\@: // Finally, do the GHASH reduction. _ghash_reduce LO, MI, HI, GHASH_ACC, TMP0 .Ldone\@: // Store the updated GHASH accumulator back to memory. movdqu GHASH_ACC, (GHASH_ACC_PTR) RET .endm // void aes_gcm_enc_final_##suffix(const struct aes_gcm_key_aesni *key, // const u32 le_ctr[4], u8 ghash_acc[16], // u64 total_aadlen, u64 total_datalen); // bool aes_gcm_dec_final_##suffix(const struct aes_gcm_key_aesni *key, // const u32 le_ctr[4], const u8 ghash_acc[16], // u64 total_aadlen, u64 total_datalen, // const u8 tag[16], int taglen); // // This macro generates one of the above two functions (with \enc selecting // which one). Both functions finish computing the GCM authentication tag by // updating GHASH with the lengths block and encrypting the GHASH accumulator. // |total_aadlen| and |total_datalen| must be the total length of the additional // authenticated data and the en/decrypted data in bytes, respectively. // // The encryption function then stores the full-length (16-byte) computed // authentication tag to |ghash_acc|. The decryption function instead loads the // expected authentication tag (the one that was transmitted) from the 16-byte // buffer |tag|, compares the first 4 <= |taglen| <= 16 bytes of it to the // computed tag in constant time, and returns true if and only if they match. .macro _aes_gcm_final enc // Function arguments .set KEY, %rdi .set LE_CTR_PTR, %rsi .set GHASH_ACC_PTR, %rdx .set TOTAL_AADLEN, %rcx .set TOTAL_DATALEN, %r8 .set TAG, %r9 .set TAGLEN, %r10d // Originally at 8(%rsp) .set TAGLEN64, %r10 // Additional local variables. // %rax and %xmm0-%xmm2 are used as temporary registers. .set AESKEYLEN, %r11d .set AESKEYLEN64, %r11 .set BSWAP_MASK, %xmm3 .set GHASH_ACC, %xmm4 .set H_POW1, %xmm5 // H^1 .set H_POW1_X64, %xmm6 // H^1 * x^64 .set GFPOLY, %xmm7 movdqa .Lbswap_mask(%rip), BSWAP_MASK movl OFFSETOF_AESKEYLEN(KEY), AESKEYLEN // Set up a counter block with 1 in the low 32-bit word. This is the // counter that produces the ciphertext needed to encrypt the auth tag. movdqu (LE_CTR_PTR), %xmm0 mov $1, %eax pinsrd $0, %eax, %xmm0 // Build the lengths block and XOR it into the GHASH accumulator. movq TOTAL_DATALEN, GHASH_ACC pinsrq $1, TOTAL_AADLEN, GHASH_ACC psllq $3, GHASH_ACC // Bytes to bits _xor_mem_to_reg (GHASH_ACC_PTR), GHASH_ACC, %xmm1 movdqa OFFSETOF_H_POWERS+7*16(KEY), H_POW1 movdqa OFFSETOF_H_TIMES_X64(KEY), H_POW1_X64 movq .Lgfpoly(%rip), GFPOLY // Make %rax point to the 6th from last AES round key. (Using signed // byte offsets -7*16 through 6*16 decreases code size.) lea (KEY,AESKEYLEN64,4), %rax // AES-encrypt the counter block and also multiply GHASH_ACC by H^1. // Interleave the AES and GHASH instructions to improve performance. pshufb BSWAP_MASK, %xmm0 pxor (KEY), %xmm0 cmp $24, AESKEYLEN jl 128f // AES-128? je 192f // AES-192? // AES-256 aesenc -7*16(%rax), %xmm0 aesenc -6*16(%rax), %xmm0 192: aesenc -5*16(%rax), %xmm0 aesenc -4*16(%rax), %xmm0 128: .irp i, 0,1,2,3,4,5,6,7,8 aesenc (\i-3)*16(%rax), %xmm0 _ghash_mul_step \i, H_POW1, H_POW1_X64, GHASH_ACC, GFPOLY, %xmm1, %xmm2 .endr aesenclast 6*16(%rax), %xmm0 _ghash_mul_step 9, H_POW1, H_POW1_X64, GHASH_ACC, GFPOLY, %xmm1, %xmm2 // Undo the byte reflection of the GHASH accumulator. pshufb BSWAP_MASK, GHASH_ACC // Encrypt the GHASH accumulator. pxor %xmm0, GHASH_ACC .if \enc // Return the computed auth tag. movdqu GHASH_ACC, (GHASH_ACC_PTR) .else .set ZEROPAD_MASK_PTR, TOTAL_AADLEN // Reusing TOTAL_AADLEN! // Verify the auth tag in constant time by XOR'ing the transmitted and // computed auth tags together and using the ptest instruction to check // whether the first TAGLEN bytes of the result are zero. _xor_mem_to_reg (TAG), GHASH_ACC, tmp=%xmm0 movl 8(%rsp), TAGLEN lea .Lzeropad_mask+16(%rip), ZEROPAD_MASK_PTR sub TAGLEN64, ZEROPAD_MASK_PTR xor %eax, %eax _test_mem (ZEROPAD_MASK_PTR), GHASH_ACC, tmp=%xmm0 sete %al .endif RET .endm .set USE_AVX, 0 SYM_FUNC_START(aes_gcm_precompute_aesni) _aes_gcm_precompute SYM_FUNC_END(aes_gcm_precompute_aesni) SYM_FUNC_START(aes_gcm_aad_update_aesni) _aes_gcm_aad_update SYM_FUNC_END(aes_gcm_aad_update_aesni) SYM_FUNC_START(aes_gcm_enc_update_aesni) _aes_gcm_update 1 SYM_FUNC_END(aes_gcm_enc_update_aesni) SYM_FUNC_START(aes_gcm_dec_update_aesni) _aes_gcm_update 0 SYM_FUNC_END(aes_gcm_dec_update_aesni) SYM_FUNC_START(aes_gcm_enc_final_aesni) _aes_gcm_final 1 SYM_FUNC_END(aes_gcm_enc_final_aesni) SYM_FUNC_START(aes_gcm_dec_final_aesni) _aes_gcm_final 0 SYM_FUNC_END(aes_gcm_dec_final_aesni) .set USE_AVX, 1 SYM_FUNC_START(aes_gcm_precompute_aesni_avx) _aes_gcm_precompute SYM_FUNC_END(aes_gcm_precompute_aesni_avx) SYM_FUNC_START(aes_gcm_aad_update_aesni_avx) _aes_gcm_aad_update SYM_FUNC_END(aes_gcm_aad_update_aesni_avx) SYM_FUNC_START(aes_gcm_enc_update_aesni_avx) _aes_gcm_update 1 SYM_FUNC_END(aes_gcm_enc_update_aesni_avx) SYM_FUNC_START(aes_gcm_dec_update_aesni_avx) _aes_gcm_update 0 SYM_FUNC_END(aes_gcm_dec_update_aesni_avx) SYM_FUNC_START(aes_gcm_enc_final_aesni_avx) _aes_gcm_final 1 SYM_FUNC_END(aes_gcm_enc_final_aesni_avx) SYM_FUNC_START(aes_gcm_dec_final_aesni_avx) _aes_gcm_final 0 SYM_FUNC_END(aes_gcm_dec_final_aesni_avx)