/*
* Copyright 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dcn30/dcn30_hubbub.h"
#include "dcn401_hubbub.h"
#include "dm_services.h"
#include "reg_helper.h"
#define CTX \
hubbub2->base.ctx
#define DC_LOGGER \
hubbub2->base.ctx->logger
#define REG(reg)\
hubbub2->regs->reg
#undef FN
#define FN(reg_name, field_name) \
hubbub2->shifts->field_name, hubbub2->masks->field_name
static void dcn401_init_crb(struct hubbub *hubbub)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
REG_GET(DCHUBBUB_DET0_CTRL, DET0_SIZE_CURRENT,
&hubbub2->det0_size);
REG_GET(DCHUBBUB_DET1_CTRL, DET1_SIZE_CURRENT,
&hubbub2->det1_size);
REG_GET(DCHUBBUB_DET2_CTRL, DET2_SIZE_CURRENT,
&hubbub2->det2_size);
REG_GET(DCHUBBUB_DET3_CTRL, DET3_SIZE_CURRENT,
&hubbub2->det3_size);
REG_GET(DCHUBBUB_COMPBUF_CTRL, COMPBUF_SIZE_CURRENT,
&hubbub2->compbuf_size_segments);
REG_SET(COMPBUF_RESERVED_SPACE, 0,
COMPBUF_RESERVED_SPACE_64B, hubbub2->pixel_chunk_size / 32); // 256 64Bytes
}
bool hubbub401_program_urgent_watermarks(
struct hubbub *hubbub,
union dcn_watermark_set *watermarks,
unsigned int refclk_mhz,
bool safe_to_lower)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
bool wm_pending = false;
/* Repeat for water mark set A and B */
/* clock state A */
if (safe_to_lower || watermarks->dcn4x.a.urgent > hubbub2->watermarks.dcn4x.a.urgent) {
hubbub2->watermarks.dcn4x.a.urgent = watermarks->dcn4x.a.urgent;
REG_SET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, 0,
DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, watermarks->dcn4x.a.urgent);
DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->dcn4x.a.urgent, watermarks->dcn4x.a.urgent);
} else if (watermarks->dcn4x.a.urgent < hubbub2->watermarks.dcn4x.a.urgent)
wm_pending = true;
/* determine the transfer time for a quantity of data for a particular requestor.*/
if (safe_to_lower || watermarks->dcn4x.a.frac_urg_bw_flip
> hubbub2->watermarks.dcn4x.a.frac_urg_bw_flip) {
hubbub2->watermarks.dcn4x.a.frac_urg_bw_flip = watermarks->dcn4x.a.frac_urg_bw_flip;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_A, 0,
DCHUBBUB_ARB_FRAC_URG_BW_FLIP_A, watermarks->dcn4x.a.frac_urg_bw_flip);
} else if (watermarks->dcn4x.a.frac_urg_bw_flip
< hubbub2->watermarks.dcn4x.a.frac_urg_bw_flip)
wm_pending = true;
if (safe_to_lower || watermarks->dcn4x.a.frac_urg_bw_nom
> hubbub2->watermarks.dcn4x.a.frac_urg_bw_nom) {
hubbub2->watermarks.dcn4x.a.frac_urg_bw_nom = watermarks->dcn4x.a.frac_urg_bw_nom;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_A, 0,
DCHUBBUB_ARB_FRAC_URG_BW_NOM_A, watermarks->dcn4x.a.frac_urg_bw_nom);
} else if (watermarks->dcn4x.a.frac_urg_bw_nom
< hubbub2->watermarks.dcn4x.a.frac_urg_bw_nom)
wm_pending = true;
if (safe_to_lower || watermarks->dcn4x.a.frac_urg_bw_mall
> hubbub2->watermarks.dcn4x.a.frac_urg_bw_mall) {
hubbub2->watermarks.dcn4x.a.frac_urg_bw_mall = watermarks->dcn4x.a.frac_urg_bw_mall;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_MALL_A, 0,
DCHUBBUB_ARB_FRAC_URG_BW_MALL_A, watermarks->dcn4x.a.frac_urg_bw_mall);
} else if (watermarks->dcn4x.a.frac_urg_bw_mall < hubbub2->watermarks.dcn4x.a.frac_urg_bw_mall)
wm_pending = true;
if (safe_to_lower || watermarks->dcn4x.a.refcyc_per_trip_to_mem > hubbub2->watermarks.dcn4x.a.refcyc_per_trip_to_mem) {
hubbub2->watermarks.dcn4x.a.refcyc_per_trip_to_mem = watermarks->dcn4x.a.refcyc_per_trip_to_mem;
REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_A, 0,
DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_A, watermarks->dcn4x.a.refcyc_per_trip_to_mem);
} else if (watermarks->dcn4x.a.refcyc_per_trip_to_mem < hubbub2->watermarks.dcn4x.a.refcyc_per_trip_to_mem)
wm_pending = true;
if (safe_to_lower || watermarks->dcn4x.a.refcyc_per_meta_trip_to_mem > hubbub2->watermarks.dcn4x.a.refcyc_per_meta_trip_to_mem) {
hubbub2->watermarks.dcn4x.a.refcyc_per_meta_trip_to_mem = watermarks->dcn4x.a.refcyc_per_meta_trip_to_mem;
REG_SET(DCHUBBUB_ARB_REFCYC_PER_META_TRIP_A, 0,
DCHUBBUB_ARB_REFCYC_PER_META_TRIP_A, watermarks->dcn4x.a.refcyc_per_meta_trip_to_mem);
} else if (watermarks->dcn4x.a.refcyc_per_meta_trip_to_mem < hubbub2->watermarks.dcn4x.a.refcyc_per_meta_trip_to_mem)
wm_pending = true;
/* clock state B */
if (safe_to_lower || watermarks->dcn4x.b.urgent > hubbub2->watermarks.dcn4x.b.urgent) {
hubbub2->watermarks.dcn4x.b.urgent = watermarks->dcn4x.b.urgent;
REG_SET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, 0,
DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, watermarks->dcn4x.b.urgent);
DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->dcn4x.b.urgent, watermarks->dcn4x.b.urgent);
} else if (watermarks->dcn4x.b.urgent < hubbub2->watermarks.dcn4x.b.urgent)
wm_pending = true;
/* determine the transfer time for a quantity of data for a particular requestor.*/
if (safe_to_lower || watermarks->dcn4x.b.frac_urg_bw_flip
> hubbub2->watermarks.dcn4x.b.frac_urg_bw_flip) {
hubbub2->watermarks.dcn4x.b.frac_urg_bw_flip = watermarks->dcn4x.b.frac_urg_bw_flip;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_B, 0,
DCHUBBUB_ARB_FRAC_URG_BW_FLIP_B, watermarks->dcn4x.b.frac_urg_bw_flip);
} else if (watermarks->dcn4x.b.frac_urg_bw_flip
< hubbub2->watermarks.dcn4x.b.frac_urg_bw_flip)
wm_pending = true;
if (safe_to_lower || watermarks->dcn4x.b.frac_urg_bw_nom
> hubbub2->watermarks.dcn4x.b.frac_urg_bw_nom) {
hubbub2->watermarks.dcn4x.b.frac_urg_bw_nom = watermarks->dcn4x.b.frac_urg_bw_nom;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_B, 0,
DCHUBBUB_ARB_FRAC_URG_BW_NOM_B, watermarks->dcn4x.b.frac_urg_bw_nom);
} else if (watermarks->dcn4x.b.frac_urg_bw_nom
< hubbub2->watermarks.dcn4x.b.frac_urg_bw_nom)
wm_pending = true;
if (safe_to_lower || watermarks->dcn4x.b.frac_urg_bw_mall
> hubbub2->watermarks.dcn4x.b.frac_urg_bw_mall) {
hubbub2->watermarks.dcn4x.b.frac_urg_bw_mall = watermarks->dcn4x.b.frac_urg_bw_mall;
REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_MALL_B, 0,
DCHUBBUB_ARB_FRAC_URG_BW_MALL_B, watermarks->dcn4x.b.frac_urg_bw_mall);
} else if (watermarks->dcn4x.b.frac_urg_bw_mall < hubbub2->watermarks.dcn4x.b.frac_urg_bw_mall)
wm_pending = true;
if (safe_to_lower || watermarks->dcn4x.b.refcyc_per_trip_to_mem > hubbub2->watermarks.dcn4x.b.refcyc_per_trip_to_mem) {
hubbub2->watermarks.dcn4x.b.refcyc_per_trip_to_mem = watermarks->dcn4x.b.refcyc_per_trip_to_mem;
REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_B, 0,
DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_B, watermarks->dcn4x.b.refcyc_per_trip_to_mem);
} else if (watermarks->dcn4x.b.refcyc_per_trip_to_mem < hubbub2->watermarks.dcn4x.b.refcyc_per_trip_to_mem)
wm_pending = true;
if (safe_to_lower || watermarks->dcn4x.b.refcyc_per_meta_trip_to_mem > hubbub2->watermarks.dcn4x.b.refcyc_per_meta_trip_to_mem) {
hubbub2->watermarks.dcn4x.b.refcyc_per_meta_trip_to_mem = watermarks->dcn4x.b.refcyc_per_meta_trip_to_mem;
REG_SET(DCHUBBUB_ARB_REFCYC_PER_META_TRIP_B, 0,
DCHUBBUB_ARB_REFCYC_PER_META_TRIP_B, watermarks->dcn4x.b.refcyc_per_meta_trip_to_mem);
} else if (watermarks->dcn4x.b.refcyc_per_meta_trip_to_mem < hubbub2->watermarks.dcn4x.b.refcyc_per_meta_trip_to_mem)
wm_pending = true;
return wm_pending;
}
bool hubbub401_program_stutter_watermarks(
struct hubbub *hubbub,
union dcn_watermark_set *watermarks,
unsigned int refclk_mhz,
bool safe_to_lower)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
bool wm_pending = false;
/* clock state A */
if (safe_to_lower || watermarks->dcn4x.a.sr_enter
> hubbub2->watermarks.dcn4x.a.sr_enter) {
hubbub2->watermarks.dcn4x.a.sr_enter =
watermarks->dcn4x.a.sr_enter;
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, watermarks->dcn4x.a.sr_enter);
DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->dcn4x.a.sr_enter, watermarks->dcn4x.a.sr_enter);
// On dGPU Z states are N/A, so program all other 3 Stutter Enter wm A with the same value
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK1_A, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK1_A, watermarks->dcn4x.a.sr_enter);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK2_A, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK2_A, watermarks->dcn4x.a.sr_enter);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK3_A, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK3_A, watermarks->dcn4x.a.sr_enter);
} else if (watermarks->dcn4x.a.sr_enter
< hubbub2->watermarks.dcn4x.a.sr_enter)
wm_pending = true;
if (safe_to_lower || watermarks->dcn4x.a.sr_exit
> hubbub2->watermarks.dcn4x.a.sr_exit) {
hubbub2->watermarks.dcn4x.a.sr_exit =
watermarks->dcn4x.a.sr_exit;
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, watermarks->dcn4x.a.sr_exit);
DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->dcn4x.a.sr_exit, watermarks->dcn4x.a.sr_exit);
// On dGPU Z states are N/A, so program all other 3 Stutter Exit wm A with the same value
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK1_A, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK1_A, watermarks->dcn4x.a.sr_exit);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK2_A, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK2_A, watermarks->dcn4x.a.sr_exit);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK3_A, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK3_A, watermarks->dcn4x.a.sr_exit);
} else if (watermarks->dcn4x.a.sr_exit
< hubbub2->watermarks.dcn4x.a.sr_exit)
wm_pending = true;
/* clock state B */
if (safe_to_lower || watermarks->dcn4x.b.sr_enter
> hubbub2->watermarks.dcn4x.b.sr_enter) {
hubbub2->watermarks.dcn4x.b.sr_enter =
watermarks->dcn4x.b.sr_enter;
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, watermarks->dcn4x.b.sr_enter);
DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->dcn4x.b.sr_enter, watermarks->dcn4x.b.sr_enter);
// On dGPU Z states are N/A, so program all other 3 Stutter Enter wm A with the same value
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK1_B, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK1_B, watermarks->dcn4x.b.sr_enter);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK2_B, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK2_B, watermarks->dcn4x.b.sr_enter);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK3_B, 0,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK3_B, watermarks->dcn4x.b.sr_enter);
} else if (watermarks->dcn4x.b.sr_enter
< hubbub2->watermarks.dcn4x.b.sr_enter)
wm_pending = true;
if (safe_to_lower || watermarks->dcn4x.b.sr_exit
> hubbub2->watermarks.dcn4x.b.sr_exit) {
hubbub2->watermarks.dcn4x.b.sr_exit =
watermarks->dcn4x.b.sr_exit;
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, watermarks->dcn4x.b.sr_exit);
DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->dcn4x.b.sr_exit, watermarks->dcn4x.b.sr_exit);
// On dGPU Z states are N/A, so program all other 3 Stutter Exit wm A with the same value
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK1_B, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK1_B, watermarks->dcn4x.b.sr_exit);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK2_B, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK2_B, watermarks->dcn4x.b.sr_exit);
REG_SET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK3_B, 0,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK3_B, watermarks->dcn4x.b.sr_exit);
} else if (watermarks->dcn4x.b.sr_exit
< hubbub2->watermarks.dcn4x.b.sr_exit)
wm_pending = true;
return wm_pending;
}
bool hubbub401_program_pstate_watermarks(
struct hubbub *hubbub,
union dcn_watermark_set *watermarks,
unsigned int refclk_mhz,
bool safe_to_lower)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
bool wm_pending = false;
/* Section for UCLK_PSTATE_CHANGE_WATERMARKS */
/* clock state A */
if (safe_to_lower || watermarks->dcn4x.a.uclk_pstate
> hubbub2->watermarks.dcn4x.a.uclk_pstate) {
hubbub2->watermarks.dcn4x.a.uclk_pstate =
watermarks->dcn4x.a.uclk_pstate;
REG_SET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_A, 0,
DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_A, watermarks->dcn4x.a.uclk_pstate);
DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->dcn4x.a.uclk_pstate, watermarks->dcn4x.a.uclk_pstate);
} else if (watermarks->dcn4x.a.uclk_pstate
< hubbub2->watermarks.dcn4x.a.uclk_pstate)
wm_pending = true;
/* clock state B */
if (safe_to_lower || watermarks->dcn4x.b.uclk_pstate
> hubbub2->watermarks.dcn4x.b.uclk_pstate) {
hubbub2->watermarks.dcn4x.b.uclk_pstate =
watermarks->dcn4x.b.uclk_pstate;
REG_SET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_B, 0,
DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_B, watermarks->dcn4x.b.uclk_pstate);
DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->dcn4x.b.uclk_pstate, watermarks->dcn4x.b.uclk_pstate);
} else if (watermarks->dcn4x.b.uclk_pstate
< hubbub2->watermarks.dcn4x.b.uclk_pstate)
wm_pending = true;
/* Section for UCLK_PSTATE_CHANGE_WATERMARKS1 (DUMMY_PSTATE/TEMP_READ/PPT) */
if (safe_to_lower || watermarks->dcn4x.a.temp_read_or_ppt
> hubbub2->watermarks.dcn4x.a.temp_read_or_ppt) {
hubbub2->watermarks.dcn4x.a.temp_read_or_ppt =
watermarks->dcn4x.a.temp_read_or_ppt;
REG_SET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK1_A, 0,
DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK1_A, watermarks->dcn4x.a.temp_read_or_ppt);
DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK1_A calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->dcn4x.a.temp_read_or_ppt, watermarks->dcn4x.a.temp_read_or_ppt);
} else if (watermarks->dcn4x.a.temp_read_or_ppt
< hubbub2->watermarks.dcn4x.a.temp_read_or_ppt)
wm_pending = true;
/* clock state B */
if (safe_to_lower || watermarks->dcn4x.b.temp_read_or_ppt
> hubbub2->watermarks.dcn4x.b.temp_read_or_ppt) {
hubbub2->watermarks.dcn4x.b.temp_read_or_ppt =
watermarks->dcn4x.b.temp_read_or_ppt;
REG_SET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK1_B, 0,
DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK1_B, watermarks->dcn4x.b.temp_read_or_ppt);
DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK1_B calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->dcn4x.b.temp_read_or_ppt, watermarks->dcn4x.b.temp_read_or_ppt);
} else if (watermarks->dcn4x.b.temp_read_or_ppt
< hubbub2->watermarks.dcn4x.b.temp_read_or_ppt)
wm_pending = true;
/* Section for FCLK_PSTATE_CHANGE_WATERMARKS */
/* clock state A */
if (safe_to_lower || watermarks->dcn4x.a.fclk_pstate
> hubbub2->watermarks.dcn4x.a.fclk_pstate) {
hubbub2->watermarks.dcn4x.a.fclk_pstate =
watermarks->dcn4x.a.fclk_pstate;
REG_SET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_A, 0,
DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_A, watermarks->dcn4x.a.fclk_pstate);
DC_LOG_BANDWIDTH_CALCS("FCLK_CHANGE_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->dcn4x.a.fclk_pstate, watermarks->dcn4x.a.fclk_pstate);
} else if (watermarks->dcn4x.a.fclk_pstate
< hubbub2->watermarks.dcn4x.a.fclk_pstate)
wm_pending = true;
/* clock state B */
if (safe_to_lower || watermarks->dcn4x.b.fclk_pstate
> hubbub2->watermarks.dcn4x.b.fclk_pstate) {
hubbub2->watermarks.dcn4x.b.fclk_pstate =
watermarks->dcn4x.b.fclk_pstate;
REG_SET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_B, 0,
DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_B, watermarks->dcn4x.b.fclk_pstate);
DC_LOG_BANDWIDTH_CALCS("FCLK_CHANGE_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->dcn4x.b.fclk_pstate, watermarks->dcn4x.b.fclk_pstate);
} else if (watermarks->dcn4x.b.fclk_pstate
< hubbub2->watermarks.dcn4x.b.fclk_pstate)
wm_pending = true;
/* Section for FCLK_CHANGE_WATERMARKS1 (DUMMY_PSTATE/TEMP_READ/PPT) */
if (safe_to_lower || watermarks->dcn4x.a.temp_read_or_ppt
> hubbub2->watermarks.dcn4x.a.temp_read_or_ppt) {
hubbub2->watermarks.dcn4x.a.temp_read_or_ppt =
watermarks->dcn4x.a.temp_read_or_ppt;
REG_SET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK1_A, 0,
DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK1_A, watermarks->dcn4x.a.temp_read_or_ppt);
DC_LOG_BANDWIDTH_CALCS("FCLK_CHANGE_WATERMARK1_A calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->dcn4x.a.temp_read_or_ppt, watermarks->dcn4x.a.temp_read_or_ppt);
} else if (watermarks->dcn4x.a.temp_read_or_ppt
< hubbub2->watermarks.dcn4x.a.temp_read_or_ppt)
wm_pending = true;
/* clock state B */
if (safe_to_lower || watermarks->dcn4x.b.temp_read_or_ppt
> hubbub2->watermarks.dcn4x.b.temp_read_or_ppt) {
hubbub2->watermarks.dcn4x.b.temp_read_or_ppt =
watermarks->dcn4x.b.temp_read_or_ppt;
REG_SET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK1_B, 0,
DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK1_B, watermarks->dcn4x.b.temp_read_or_ppt);
DC_LOG_BANDWIDTH_CALCS("FCLK_CHANGE_WATERMARK1_B calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->dcn4x.b.temp_read_or_ppt, watermarks->dcn4x.b.temp_read_or_ppt);
} else if (watermarks->dcn4x.b.temp_read_or_ppt
< hubbub2->watermarks.dcn4x.b.temp_read_or_ppt)
wm_pending = true;
return wm_pending;
}
bool hubbub401_program_usr_watermarks(
struct hubbub *hubbub,
union dcn_watermark_set *watermarks,
unsigned int refclk_mhz,
bool safe_to_lower)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
bool wm_pending = false;
/* clock state A */
if (safe_to_lower || watermarks->dcn4x.a.usr
> hubbub2->watermarks.dcn4x.a.usr) {
hubbub2->watermarks.dcn4x.a.usr = watermarks->dcn4x.a.usr;
REG_SET(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_A, 0,
DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_A, watermarks->dcn4x.a.usr);
DC_LOG_BANDWIDTH_CALCS("USR_RETRAINING_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->dcn4x.a.usr, watermarks->dcn4x.a.usr);
} else if (watermarks->dcn4x.a.usr
< hubbub2->watermarks.dcn4x.a.usr)
wm_pending = true;
/* clock state B */
if (safe_to_lower || watermarks->dcn4x.b.usr
> hubbub2->watermarks.dcn4x.b.usr) {
hubbub2->watermarks.dcn4x.b.usr = watermarks->dcn4x.b.usr;
REG_SET(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_B, 0,
DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_B, watermarks->dcn4x.b.usr);
DC_LOG_BANDWIDTH_CALCS("USR_RETRAINING_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->dcn4x.b.usr, watermarks->dcn4x.b.usr);
} else if (watermarks->dcn4x.b.usr
< hubbub2->watermarks.dcn4x.b.usr)
wm_pending = true;
return wm_pending;
}
static bool hubbub401_program_watermarks(
struct hubbub *hubbub,
union dcn_watermark_set *watermarks,
unsigned int refclk_mhz,
bool safe_to_lower)
{
bool wm_pending = false;
if (hubbub401_program_urgent_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower))
wm_pending = true;
if (hubbub401_program_stutter_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower))
wm_pending = true;
if (hubbub401_program_pstate_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower))
wm_pending = true;
if (hubbub401_program_usr_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower))
wm_pending = true;
/*
* The DCHub arbiter has a mechanism to dynamically rate limit the DCHub request stream to the fabric.
* If the memory controller is fully utilized and the DCHub requestors are
* well ahead of their amortized schedule, then it is safe to prevent the next winner
* from being committed and sent to the fabric.
* The utilization of the memory controller is approximated by ensuring that
* the number of outstanding requests is greater than a threshold specified
* by the ARB_MIN_REQ_OUTSTANDING. To determine that the DCHub requestors are well ahead of the amortized
* schedule, the slack of the next winner is compared with the ARB_SAT_LEVEL in DLG RefClk cycles.
*
* TODO: Revisit request limit after figure out right number. request limit for RM isn't decided yet,
* set maximum value (0x1FF) to turn off it for now.
*/
/*REG_SET(DCHUBBUB_ARB_SAT_LEVEL, 0,
DCHUBBUB_ARB_SAT_LEVEL, 60 * refclk_mhz);
REG_UPDATE(DCHUBBUB_ARB_DF_REQ_OUTSTAND,
DCHUBBUB_ARB_MIN_REQ_OUTSTAND, 0x1FF);
*/
hubbub1_allow_self_refresh_control(hubbub, !hubbub->ctx->dc->debug.disable_stutter);
hubbub32_force_usr_retraining_allow(hubbub, hubbub->ctx->dc->debug.force_usr_allow);
return wm_pending;
}
/* Copy values from WM set A to all other sets */
static void hubbub401_init_watermarks(struct hubbub *hubbub)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
uint32_t reg;
reg = REG_READ(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A);
REG_WRITE(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, reg);
reg = REG_READ(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_A);
REG_WRITE(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_B, reg);
reg = REG_READ(DCHUBBUB_ARB_FRAC_URG_BW_NOM_A);
REG_WRITE(DCHUBBUB_ARB_FRAC_URG_BW_NOM_B, reg);
reg = REG_READ(DCHUBBUB_ARB_FRAC_URG_BW_MALL_A);
REG_WRITE(DCHUBBUB_ARB_FRAC_URG_BW_MALL_B, reg);
reg = REG_READ(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_A);
REG_WRITE(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_B, reg);
reg = REG_READ(DCHUBBUB_ARB_REFCYC_PER_META_TRIP_A);
REG_WRITE(DCHUBBUB_ARB_REFCYC_PER_META_TRIP_B, reg);
reg = REG_READ(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, reg);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK1_A, reg);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK1_B, reg);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK2_A, reg);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK2_B, reg);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK3_A, reg);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK3_B, reg);
reg = REG_READ(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, reg);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK1_A, reg);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK1_B, reg);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK2_A, reg);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK2_B, reg);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK3_A, reg);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK3_B, reg);
reg = REG_READ(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_A);
REG_WRITE(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_B, reg);
reg = REG_READ(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_A);
REG_WRITE(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_B, reg);
reg = REG_READ(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK1_A);
REG_WRITE(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK1_B, reg);
reg = REG_READ(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_A);
REG_WRITE(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_B, reg);
reg = REG_READ(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK1_A);
REG_WRITE(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK1_B, reg);
}
static void hubbub401_wm_read_state(struct hubbub *hubbub,
struct dcn_hubbub_wm *wm)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
struct dcn_hubbub_wm_set *s;
memset(wm, 0, sizeof(struct dcn_hubbub_wm));
s = &wm->sets[0];
s->wm_set = 0;
REG_GET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A,
DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, &s->data_urgent);
REG_GET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, &s->sr_enter);
REG_GET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, &s->sr_exit);
REG_GET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_A,
DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_A, &s->dram_clk_change);
REG_GET(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_A,
DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_A, &s->usr_retrain);
REG_GET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_A,
DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_A, &s->fclk_pstate_change);
s = &wm->sets[1];
s->wm_set = 1;
REG_GET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B,
DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, &s->data_urgent);
REG_GET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B,
DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, &s->sr_enter);
REG_GET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B,
DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, &s->sr_exit);
REG_GET(DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_B,
DCHUBBUB_ARB_UCLK_PSTATE_CHANGE_WATERMARK_B, &s->dram_clk_change);
REG_GET(DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_B,
DCHUBBUB_ARB_USR_RETRAINING_WATERMARK_B, &s->usr_retrain);
REG_GET(DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_B,
DCHUBBUB_ARB_FCLK_PSTATE_CHANGE_WATERMARK_B, &s->fclk_pstate_change);
}
bool hubbub401_dcc_support_swizzle(
enum swizzle_mode_addr3_values swizzle,
unsigned int plane_pitch,
unsigned int bytes_per_element,
enum segment_order *segment_order_horz,
enum segment_order *segment_order_vert)
{
bool swizzle_supported = false;
switch (swizzle) {
case DC_ADDR3_SW_LINEAR:
if ((plane_pitch * bytes_per_element) % 256 == 0)
swizzle_supported = true;
break;
case DC_ADDR3_SW_64KB_2D:
case DC_ADDR3_SW_256KB_2D:
swizzle_supported = true;
break;
default:
swizzle_supported = false;
break;
}
if (swizzle_supported) {
if (bytes_per_element == 1) {
*segment_order_horz = segment_order__contiguous;
*segment_order_vert = segment_order__non_contiguous;
return true;
}
if (bytes_per_element == 2) {
*segment_order_horz = segment_order__non_contiguous;
*segment_order_vert = segment_order__contiguous;
return true;
}
if (bytes_per_element == 4) {
*segment_order_horz = segment_order__contiguous;
*segment_order_vert = segment_order__non_contiguous;
return true;
}
if (bytes_per_element == 8) {
*segment_order_horz = segment_order__contiguous;
*segment_order_vert = segment_order__non_contiguous;
return true;
}
}
return false;
}
bool hubbub401_dcc_support_pixel_format(
enum surface_pixel_format format,
unsigned int *plane0_bpe,
unsigned int *plane1_bpe)
{
switch (format) {
case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
*plane0_bpe = 2;
*plane1_bpe = 0;
return true;
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
*plane0_bpe = 1;
*plane1_bpe = 2;
return true;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
case SURFACE_PIXEL_FORMAT_GRPH_RGB111110_FIX:
case SURFACE_PIXEL_FORMAT_GRPH_BGR101111_FIX:
case SURFACE_PIXEL_FORMAT_GRPH_RGB111110_FLOAT:
case SURFACE_PIXEL_FORMAT_GRPH_BGR101111_FLOAT:
case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
*plane0_bpe = 4;
*plane1_bpe = 0;
return true;
case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
*plane0_bpe = 4;
*plane1_bpe = 1;
return true;
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
*plane0_bpe = 2;
*plane1_bpe = 4;
return true;
case SURFACE_PIXEL_FORMAT_VIDEO_ACrYCb2101010:
case SURFACE_PIXEL_FORMAT_VIDEO_CrYCbA1010102:
case SURFACE_PIXEL_FORMAT_VIDEO_AYCrCb8888:
*plane0_bpe = 4;
*plane1_bpe = 0;
return true;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
*plane0_bpe = 8;
*plane1_bpe = 0;
return true;
default:
return false;
}
}
void hubbub401_get_blk256_size(unsigned int *blk256_width, unsigned int *blk256_height,
unsigned int bytes_per_element)
{
if (bytes_per_element == 1) {
*blk256_width = 16;
*blk256_height = 16;
} else if (bytes_per_element == 2) {
*blk256_width = 16;
*blk256_height = 8;
} else if (bytes_per_element == 4) {
*blk256_width = 8;
*blk256_height = 8;
} else if (bytes_per_element == 8) {
*blk256_width = 8;
*blk256_height = 4;
}
}
void hubbub401_det_request_size(
unsigned int detile_buf_size,
enum surface_pixel_format format,
unsigned int p0_height,
unsigned int p0_width,
unsigned int p0_bpe,
unsigned int p1_height,
unsigned int p1_width,
unsigned int p1_bpe,
bool *p0_req128_horz_wc,
bool *p0_req128_vert_wc,
bool *p1_req128_horz_wc,
bool *p1_req128_vert_wc)
{
unsigned int blk256_height = 0;
unsigned int blk256_width = 0;
unsigned int p0_swath_bytes_horz_wc, p0_swath_bytes_vert_wc;
unsigned int p1_swath_bytes_horz_wc, p1_swath_bytes_vert_wc;
//For plane0
hubbub401_get_blk256_size(&blk256_width, &blk256_height, p0_bpe);
p0_swath_bytes_horz_wc = p0_width * blk256_height * p0_bpe;
p0_swath_bytes_vert_wc = p0_height * blk256_width * p0_bpe;
*p0_req128_horz_wc = (2 * p0_swath_bytes_horz_wc <= detile_buf_size) ?
false : /* full 256B request */
true; /* half 128b request */
*p0_req128_vert_wc = (2 * p0_swath_bytes_vert_wc <= detile_buf_size) ?
false : /* full 256B request */
true; /* half 128b request */
/*For dual planes needs to be considered together */
if (p1_bpe) {
hubbub401_get_blk256_size(&blk256_width, &blk256_height, p1_bpe);
p1_swath_bytes_horz_wc = p1_width * blk256_height * p1_bpe;
p1_swath_bytes_vert_wc = p1_height * blk256_width * p1_bpe;
switch (format) {
default:
/* No any adjustment needed*/
break;
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
/* Packing at the ratio of 3:2 is supported before the detile buffer
* for YUV420 video with 10bpc (P010). Need to adjust for that.
*/
p0_swath_bytes_horz_wc = (((p0_swath_bytes_horz_wc * 2) / 3 + 255) / 256) * 256;
p0_swath_bytes_vert_wc = (((p0_swath_bytes_vert_wc * 2) / 3 + 255) / 256) * 256;
p1_swath_bytes_horz_wc = (((p1_swath_bytes_horz_wc * 2) / 3 + 255) / 256) * 256;
p1_swath_bytes_vert_wc = (((p1_swath_bytes_vert_wc * 2) / 3 + 255) / 256) * 256;
break;
}
*p0_req128_horz_wc = *p1_req128_horz_wc = (2 * p0_swath_bytes_horz_wc +
2 * p1_swath_bytes_horz_wc <= detile_buf_size) ?
false : /* full 256B request */
true; /* half 128B request */
*p0_req128_vert_wc = *p1_req128_vert_wc = (2 * p0_swath_bytes_vert_wc +
2 * p1_swath_bytes_vert_wc <= detile_buf_size) ?
false : /* full 256B request */
true; /* half 128B request */
/* If 128B requests are true, meaning 2 full swaths of data cannot fit
* in de-tile buffer, check if one plane can use 256B request while
* the other plane is using 128B requests
*/
if (*p0_req128_horz_wc) {
// If ratio around 1:1 between p0 and p1 try to recalulate if p0 can use 256B
if (p0_swath_bytes_horz_wc <= p1_swath_bytes_horz_wc + p1_swath_bytes_horz_wc / 2) {
*p0_req128_horz_wc = (2 * p0_swath_bytes_horz_wc + p1_swath_bytes_horz_wc <= detile_buf_size) ?
false : /* full 256B request */
true; /* half 128b request */
} else {
/* ratio about 2:1 between p0 and p1, try to recalulate if p1 can use 256B */
*p1_req128_horz_wc = (p0_swath_bytes_horz_wc + 2 * p1_swath_bytes_horz_wc <= detile_buf_size) ?
false : /* full 256B request */
true; /* half 128b request */
}
}
if (*p0_req128_vert_wc) {
// If ratio around 1:1 between p0 and p1 try to recalulate if p0 can use 256B
if (p0_swath_bytes_vert_wc <= p1_swath_bytes_vert_wc + p1_swath_bytes_vert_wc / 2) {
*p0_req128_vert_wc = (2 * p0_swath_bytes_vert_wc + p1_swath_bytes_vert_wc <= detile_buf_size) ?
false : /* full 256B request */
true; /* half 128b request */
} else {
/* ratio about 2:1 between p0 and p1, try to recalulate if p1 can use 256B */
*p1_req128_vert_wc = (p0_swath_bytes_vert_wc + 2 * p1_swath_bytes_vert_wc <= detile_buf_size) ?
false : /* full 256B request */
true; /* half 128b request */
}
}
}
}
bool hubbub401_get_dcc_compression_cap(struct hubbub *hubbub,
const struct dc_dcc_surface_param *input,
struct dc_surface_dcc_cap *output)
{
struct dc *dc = hubbub->ctx->dc;
const unsigned int max_dcc_plane_width = dc->caps.dcc_plane_width_limit;
/* DCN4_Programming_Guide_DCHUB.docx, Section 5.11.2.2 */
enum dcc_control dcc_control;
unsigned int plane0_bpe, plane1_bpe;
enum segment_order segment_order_horz, segment_order_vert;
enum segment_order p1_segment_order_horz, p1_segment_order_vert;
bool req128_horz_wc, req128_vert_wc;
unsigned int plane0_width = 0, plane0_height = 0, plane1_width = 0, plane1_height = 0;
bool p1_req128_horz_wc, p1_req128_vert_wc, is_dual_plane;
memset(output, 0, sizeof(*output));
if (dc->debug.disable_dcc == DCC_DISABLE)
return false;
/* Conservatively disable DCC for cases where ODM4:1 may be required. */
if (max_dcc_plane_width != 0 &&
(input->surface_size.width > max_dcc_plane_width || input->plane1_size.width > max_dcc_plane_width))
return false;
switch (input->format) {
default:
is_dual_plane = false;
plane1_width = 0;
plane1_height = 0;
if (input->surface_size.width > 6144 + 16)
plane0_width = 6160;
else
plane0_width = input->surface_size.width;
if (input->surface_size.height > 6144 + 16)
plane0_height = 6160;
else
plane0_height = input->surface_size.height;
break;
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
is_dual_plane = true;
if (input->surface_size.width > 7680 + 16)
plane0_width = 7696;
else
plane0_width = input->surface_size.width;
if (input->surface_size.height > 4320 + 16)
plane0_height = 4336;
else
plane0_height = input->surface_size.height;
if (input->plane1_size.width > 7680 + 16)
plane1_width = 7696 / 2;
else
plane1_width = input->plane1_size.width;
if (input->plane1_size.height > 4320 + 16)
plane1_height = 4336 / 2;
else
plane1_height = input->plane1_size.height;
break;
case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
is_dual_plane = true;
if (input->surface_size.width > 5120 + 16)
plane0_width = 5136;
else
plane0_width = input->surface_size.width;
if (input->surface_size.height > 5120 + 16)
plane0_height = 5136;
else
plane0_height = input->surface_size.height;
if (input->plane1_size.width > 5120 + 16)
plane1_width = 5136;
else
plane1_width = input->plane1_size.width;
if (input->plane1_size.height > 5120 + 16)
plane1_height = 5136;
else
plane1_height = input->plane1_size.height;
break;
}
if (!hubbub->funcs->dcc_support_pixel_format_plane0_plane1(input->format,
&plane0_bpe, &plane1_bpe))
return false;
/* Find plane0 DCC Controls */
if (!is_dual_plane) {
if (!hubbub->funcs->dcc_support_swizzle_addr3(input->swizzle_mode_addr3,
input->plane0_pitch, plane0_bpe,
&segment_order_horz, &segment_order_vert))
return false;
hubbub401_det_request_size(TO_DCN20_HUBBUB(hubbub)->detile_buf_size, input->format,
plane0_height, plane0_width, plane0_bpe,
plane1_height, plane1_width, plane1_bpe,
&req128_horz_wc, &req128_vert_wc, &p1_req128_horz_wc, &p1_req128_vert_wc);
if (!req128_horz_wc && !req128_vert_wc) {
dcc_control = dcc_control__256_256;
} else if (input->scan == SCAN_DIRECTION_HORIZONTAL) {
if (!req128_horz_wc)
dcc_control = dcc_control__256_256;
else if (segment_order_horz == segment_order__contiguous)
dcc_control = dcc_control__256_128;
else
dcc_control = dcc_control__256_64;
} else if (input->scan == SCAN_DIRECTION_VERTICAL) {
if (!req128_vert_wc)
dcc_control = dcc_control__256_256;
else if (segment_order_vert == segment_order__contiguous)
dcc_control = dcc_control__256_128;
else
dcc_control = dcc_control__256_64;
} else {
if ((req128_horz_wc &&
segment_order_horz == segment_order__non_contiguous) ||
(req128_vert_wc &&
segment_order_vert == segment_order__non_contiguous))
/* access_dir not known, must use most constraining */
dcc_control = dcc_control__256_64;
else
/* req128 is true for either horz and vert
* but segment_order is contiguous
*/
dcc_control = dcc_control__256_128;
}
if (dc->debug.disable_dcc == DCC_HALF_REQ_DISALBE &&
dcc_control != dcc_control__256_256)
return false;
switch (dcc_control) {
case dcc_control__256_256:
output->grph.rgb.dcc_controls.dcc_256_256 = 1;
output->grph.rgb.dcc_controls.dcc_256_128 = 1;
output->grph.rgb.dcc_controls.dcc_256_64 = 1;
break;
case dcc_control__256_128:
output->grph.rgb.dcc_controls.dcc_256_128 = 1;
output->grph.rgb.dcc_controls.dcc_256_64 = 1;
break;
case dcc_control__256_64:
output->grph.rgb.dcc_controls.dcc_256_64 = 1;
break;
default:
/* Shouldn't get here */
ASSERT(0);
break;
}
} else {
/* For dual plane cases, need to examine both planes together */
if (!hubbub->funcs->dcc_support_swizzle_addr3(input->swizzle_mode_addr3,
input->plane0_pitch, plane0_bpe,
&segment_order_horz, &segment_order_vert))
return false;
if (!hubbub->funcs->dcc_support_swizzle_addr3(input->swizzle_mode_addr3,
input->plane1_pitch, plane1_bpe,
&p1_segment_order_horz, &p1_segment_order_vert))
return false;
hubbub401_det_request_size(TO_DCN20_HUBBUB(hubbub)->detile_buf_size, input->format,
plane0_height, plane0_width, plane0_bpe,
plane1_height, plane1_width, plane1_bpe,
&req128_horz_wc, &req128_vert_wc, &p1_req128_horz_wc, &p1_req128_vert_wc);
/* Determine Plane 0 DCC Controls */
if (!req128_horz_wc && !req128_vert_wc) {
dcc_control = dcc_control__256_256;
} else if (input->scan == SCAN_DIRECTION_HORIZONTAL) {
if (!req128_horz_wc)
dcc_control = dcc_control__256_256;
else if (segment_order_horz == segment_order__contiguous)
dcc_control = dcc_control__256_128;
else
dcc_control = dcc_control__256_64;
} else if (input->scan == SCAN_DIRECTION_VERTICAL) {
if (!req128_vert_wc)
dcc_control = dcc_control__256_256;
else if (segment_order_vert == segment_order__contiguous)
dcc_control = dcc_control__256_128;
else
dcc_control = dcc_control__256_64;
} else {
if ((req128_horz_wc &&
segment_order_horz == segment_order__non_contiguous) ||
(req128_vert_wc &&
segment_order_vert == segment_order__non_contiguous))
/* access_dir not known, must use most constraining */
dcc_control = dcc_control__256_64;
else
/* req128 is true for either horz and vert
* but segment_order is contiguous
*/
dcc_control = dcc_control__256_128;
}
switch (dcc_control) {
case dcc_control__256_256:
output->video.luma.dcc_controls.dcc_256_256 = 1;
output->video.luma.dcc_controls.dcc_256_128 = 1;
output->video.luma.dcc_controls.dcc_256_64 = 1;
break;
case dcc_control__256_128:
output->video.luma.dcc_controls.dcc_256_128 = 1;
output->video.luma.dcc_controls.dcc_256_64 = 1;
break;
case dcc_control__256_64:
output->video.luma.dcc_controls.dcc_256_64 = 1;
break;
default:
ASSERT(0);
break;
}
/* Determine Plane 1 DCC Controls */
if (!p1_req128_horz_wc && !p1_req128_vert_wc) {
dcc_control = dcc_control__256_256;
} else if (input->scan == SCAN_DIRECTION_HORIZONTAL) {
if (!p1_req128_horz_wc)
dcc_control = dcc_control__256_256;
else if (p1_segment_order_horz == segment_order__contiguous)
dcc_control = dcc_control__256_128;
else
dcc_control = dcc_control__256_64;
} else if (input->scan == SCAN_DIRECTION_VERTICAL) {
if (!p1_req128_vert_wc)
dcc_control = dcc_control__256_256;
else if (p1_segment_order_vert == segment_order__contiguous)
dcc_control = dcc_control__256_128;
else
dcc_control = dcc_control__256_64;
} else {
if ((p1_req128_horz_wc &&
p1_segment_order_horz == segment_order__non_contiguous) ||
(p1_req128_vert_wc &&
p1_segment_order_vert == segment_order__non_contiguous))
/* access_dir not known, must use most constraining */
dcc_control = dcc_control__256_64;
else
/* req128 is true for either horz and vert
* but segment_order is contiguous
*/
dcc_control = dcc_control__256_128;
}
switch (dcc_control) {
case dcc_control__256_256:
output->video.chroma.dcc_controls.dcc_256_256 = 1;
output->video.chroma.dcc_controls.dcc_256_128 = 1;
output->video.chroma.dcc_controls.dcc_256_64 = 1;
break;
case dcc_control__256_128:
output->video.chroma.dcc_controls.dcc_256_128 = 1;
output->video.chroma.dcc_controls.dcc_256_64 = 1;
break;
case dcc_control__256_64:
output->video.chroma.dcc_controls.dcc_256_64 = 1;
break;
default:
ASSERT(0);
break;
}
}
output->capable = true;
return true;
}
static void dcn401_program_det_segments(struct hubbub *hubbub, int hubp_inst, unsigned det_buffer_size_seg)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
switch (hubp_inst) {
case 0:
REG_UPDATE(DCHUBBUB_DET0_CTRL,
DET0_SIZE, det_buffer_size_seg);
hubbub2->det0_size = det_buffer_size_seg;
break;
case 1:
REG_UPDATE(DCHUBBUB_DET1_CTRL,
DET1_SIZE, det_buffer_size_seg);
hubbub2->det1_size = det_buffer_size_seg;
break;
case 2:
REG_UPDATE(DCHUBBUB_DET2_CTRL,
DET2_SIZE, det_buffer_size_seg);
hubbub2->det2_size = det_buffer_size_seg;
break;
case 3:
REG_UPDATE(DCHUBBUB_DET3_CTRL,
DET3_SIZE, det_buffer_size_seg);
hubbub2->det3_size = det_buffer_size_seg;
break;
default:
break;
}
if (hubbub2->det0_size + hubbub2->det1_size + hubbub2->det2_size
+ hubbub2->det3_size + hubbub2->compbuf_size_segments > hubbub2->crb_size_segs) {
/* This may happen during seamless transition from ODM 2:1 to ODM4:1 */
DC_LOG_WARNING("CRB Config Warning: DET size (%d,%d,%d,%d) + Compbuf size (%d) > CRB segments (%d)\n",
hubbub2->det0_size, hubbub2->det1_size, hubbub2->det2_size, hubbub2->det3_size,
hubbub2->compbuf_size_segments, hubbub2->crb_size_segs);
}
}
static void dcn401_program_compbuf_segments(struct hubbub *hubbub, unsigned compbuf_size_seg, bool safe_to_increase)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
unsigned int cur_compbuf_size_seg = 0;
if (safe_to_increase || compbuf_size_seg <= hubbub2->compbuf_size_segments) {
if (compbuf_size_seg > hubbub2->compbuf_size_segments) {
REG_WAIT(DCHUBBUB_DET0_CTRL, DET0_SIZE_CURRENT, hubbub2->det0_size, 1, 100);
REG_WAIT(DCHUBBUB_DET1_CTRL, DET1_SIZE_CURRENT, hubbub2->det1_size, 1, 100);
REG_WAIT(DCHUBBUB_DET2_CTRL, DET2_SIZE_CURRENT, hubbub2->det2_size, 1, 100);
REG_WAIT(DCHUBBUB_DET3_CTRL, DET3_SIZE_CURRENT, hubbub2->det3_size, 1, 100);
}
/* Should never be hit, if it is we have an erroneous hw config*/
ASSERT(hubbub2->det0_size + hubbub2->det1_size + hubbub2->det2_size
+ hubbub2->det3_size + compbuf_size_seg <= hubbub2->crb_size_segs);
REG_UPDATE(DCHUBBUB_COMPBUF_CTRL, COMPBUF_SIZE, compbuf_size_seg);
hubbub2->compbuf_size_segments = compbuf_size_seg;
ASSERT(REG_GET(DCHUBBUB_COMPBUF_CTRL, CONFIG_ERROR, &cur_compbuf_size_seg) && !cur_compbuf_size_seg);
}
}
static void dcn401_wait_for_det_update(struct hubbub *hubbub, int hubp_inst)
{
struct dcn20_hubbub *hubbub2 = TO_DCN20_HUBBUB(hubbub);
switch (hubp_inst) {
case 0:
REG_WAIT(DCHUBBUB_DET0_CTRL, DET0_SIZE_CURRENT, hubbub2->det0_size, 1, 100000); /* 1 vupdate at 10hz */
break;
case 1:
REG_WAIT(DCHUBBUB_DET1_CTRL, DET1_SIZE_CURRENT, hubbub2->det1_size, 1, 100000);
break;
case 2:
REG_WAIT(DCHUBBUB_DET2_CTRL, DET2_SIZE_CURRENT, hubbub2->det2_size, 1, 100000);
break;
case 3:
REG_WAIT(DCHUBBUB_DET3_CTRL, DET3_SIZE_CURRENT, hubbub2->det3_size, 1, 100000);
break;
default:
break;
}
}
static const struct hubbub_funcs hubbub4_01_funcs = {
.update_dchub = hubbub2_update_dchub,
.init_dchub_sys_ctx = hubbub3_init_dchub_sys_ctx,
.init_vm_ctx = hubbub2_init_vm_ctx,
.dcc_support_swizzle_addr3 = hubbub401_dcc_support_swizzle,
.dcc_support_pixel_format_plane0_plane1 = hubbub401_dcc_support_pixel_format,
.get_dcc_compression_cap = hubbub401_get_dcc_compression_cap,
.wm_read_state = hubbub401_wm_read_state,
.get_dchub_ref_freq = hubbub2_get_dchub_ref_freq,
.program_watermarks = hubbub401_program_watermarks,
.allow_self_refresh_control = hubbub1_allow_self_refresh_control,
.is_allow_self_refresh_enabled = hubbub1_is_allow_self_refresh_enabled,
.verify_allow_pstate_change_high = NULL,
.force_wm_propagate_to_pipes = hubbub32_force_wm_propagate_to_pipes,
.force_pstate_change_control = hubbub3_force_pstate_change_control,
.init_watermarks = hubbub401_init_watermarks,
.init_crb = dcn401_init_crb,
.hubbub_read_state = hubbub2_read_state,
.force_usr_retraining_allow = hubbub32_force_usr_retraining_allow,
.set_request_limit = hubbub32_set_request_limit,
.program_det_segments = dcn401_program_det_segments,
.program_compbuf_segments = dcn401_program_compbuf_segments,
.wait_for_det_update = dcn401_wait_for_det_update,
};
void hubbub401_construct(struct dcn20_hubbub *hubbub2,
struct dc_context *ctx,
const struct dcn_hubbub_registers *hubbub_regs,
const struct dcn_hubbub_shift *hubbub_shift,
const struct dcn_hubbub_mask *hubbub_mask,
int det_size_kb,
int pixel_chunk_size_kb,
int config_return_buffer_size_kb)
{
hubbub2->base.ctx = ctx;
hubbub2->base.funcs = &hubbub4_01_funcs;
hubbub2->regs = hubbub_regs;
hubbub2->shifts = hubbub_shift;
hubbub2->masks = hubbub_mask;
hubbub2->detile_buf_size = det_size_kb * 1024;
hubbub2->pixel_chunk_size = pixel_chunk_size_kb * 1024;
hubbub2->crb_size_segs = config_return_buffer_size_kb / DCN4_01_CRB_SEGMENT_SIZE_KB;
}