/*
* Copyright 2018 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "reg_helper.h"
#include "core_types.h"
#include "dcn31_dccg.h"
#include "dal_asic_id.h"
#define TO_DCN_DCCG(dccg)\
container_of(dccg, struct dcn_dccg, base)
#define REG(reg) \
(dccg_dcn->regs->reg)
#undef FN
#define FN(reg_name, field_name) \
dccg_dcn->dccg_shift->field_name, dccg_dcn->dccg_mask->field_name
#define CTX \
dccg_dcn->base.ctx
#define DC_LOGGER \
dccg->ctx->logger
void dccg31_update_dpp_dto(struct dccg *dccg, int dpp_inst, int req_dppclk)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (dccg->dpp_clock_gated[dpp_inst]) {
/*
* Do not update the DPPCLK DTO if the clock is stopped.
* It is treated the same as if the pipe itself were in PG.
*/
return;
}
if (dccg->ref_dppclk && req_dppclk) {
int ref_dppclk = dccg->ref_dppclk;
int modulo, phase;
// phase / modulo = dpp pipe clk / dpp global clk
modulo = 0xff; // use FF at the end
phase = ((modulo * req_dppclk) + ref_dppclk - 1) / ref_dppclk;
if (phase > 0xff) {
ASSERT(false);
phase = 0xff;
}
REG_SET_2(DPPCLK_DTO_PARAM[dpp_inst], 0,
DPPCLK0_DTO_PHASE, phase,
DPPCLK0_DTO_MODULO, modulo);
REG_UPDATE(DPPCLK_DTO_CTRL,
DPPCLK_DTO_ENABLE[dpp_inst], 1);
} else {
REG_UPDATE(DPPCLK_DTO_CTRL,
DPPCLK_DTO_ENABLE[dpp_inst], 0);
}
dccg->pipe_dppclk_khz[dpp_inst] = req_dppclk;
}
static enum phyd32clk_clock_source get_phy_mux_symclk(
struct dcn_dccg *dccg_dcn,
enum phyd32clk_clock_source src)
{
if (dccg_dcn->base.ctx->asic_id.chip_family == FAMILY_YELLOW_CARP &&
dccg_dcn->base.ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) {
if (src == PHYD32CLKC)
src = PHYD32CLKF;
if (src == PHYD32CLKD)
src = PHYD32CLKG;
}
return src;
}
static void dccg31_enable_dpstreamclk(struct dccg *dccg, int otg_inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* enabled to select one of the DTBCLKs for pipe */
switch (otg_inst) {
case 0:
REG_UPDATE(DPSTREAMCLK_CNTL,
DPSTREAMCLK_PIPE0_EN, 1);
break;
case 1:
REG_UPDATE(DPSTREAMCLK_CNTL,
DPSTREAMCLK_PIPE1_EN, 1);
break;
case 2:
REG_UPDATE(DPSTREAMCLK_CNTL,
DPSTREAMCLK_PIPE2_EN, 1);
break;
case 3:
REG_UPDATE(DPSTREAMCLK_CNTL,
DPSTREAMCLK_PIPE3_EN, 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream)
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
DPSTREAMCLK_GATE_DISABLE, 1,
DPSTREAMCLK_ROOT_GATE_DISABLE, 1);
}
static void dccg31_disable_dpstreamclk(struct dccg *dccg, int otg_inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream)
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
DPSTREAMCLK_ROOT_GATE_DISABLE, 0,
DPSTREAMCLK_GATE_DISABLE, 0);
switch (otg_inst) {
case 0:
REG_UPDATE(DPSTREAMCLK_CNTL,
DPSTREAMCLK_PIPE0_EN, 0);
break;
case 1:
REG_UPDATE(DPSTREAMCLK_CNTL,
DPSTREAMCLK_PIPE1_EN, 0);
break;
case 2:
REG_UPDATE(DPSTREAMCLK_CNTL,
DPSTREAMCLK_PIPE2_EN, 0);
break;
case 3:
REG_UPDATE(DPSTREAMCLK_CNTL,
DPSTREAMCLK_PIPE3_EN, 0);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
void dccg31_set_dpstreamclk(
struct dccg *dccg,
enum streamclk_source src,
int otg_inst,
int dp_hpo_inst)
{
if (src == REFCLK)
dccg31_disable_dpstreamclk(dccg, otg_inst);
else
dccg31_enable_dpstreamclk(dccg, otg_inst);
}
void dccg31_enable_symclk32_se(
struct dccg *dccg,
int hpo_se_inst,
enum phyd32clk_clock_source phyd32clk)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
phyd32clk = get_phy_mux_symclk(dccg_dcn, phyd32clk);
/* select one of the PHYD32CLKs as the source for symclk32_se */
switch (hpo_se_inst) {
case 0:
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE0_GATE_DISABLE, 1,
SYMCLK32_ROOT_SE0_GATE_DISABLE, 1);
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE0_SRC_SEL, phyd32clk,
SYMCLK32_SE0_EN, 1);
break;
case 1:
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE1_GATE_DISABLE, 1,
SYMCLK32_ROOT_SE1_GATE_DISABLE, 1);
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE1_SRC_SEL, phyd32clk,
SYMCLK32_SE1_EN, 1);
break;
case 2:
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE2_GATE_DISABLE, 1,
SYMCLK32_ROOT_SE2_GATE_DISABLE, 1);
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE2_SRC_SEL, phyd32clk,
SYMCLK32_SE2_EN, 1);
break;
case 3:
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE3_GATE_DISABLE, 1,
SYMCLK32_ROOT_SE3_GATE_DISABLE, 1);
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE3_SRC_SEL, phyd32clk,
SYMCLK32_SE3_EN, 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
void dccg31_disable_symclk32_se(
struct dccg *dccg,
int hpo_se_inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* set refclk as the source for symclk32_se */
switch (hpo_se_inst) {
case 0:
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE0_SRC_SEL, 0,
SYMCLK32_SE0_EN, 0);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE0_GATE_DISABLE, 0,
SYMCLK32_ROOT_SE0_GATE_DISABLE, 0);
break;
case 1:
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE1_SRC_SEL, 0,
SYMCLK32_SE1_EN, 0);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE1_GATE_DISABLE, 0,
SYMCLK32_ROOT_SE1_GATE_DISABLE, 0);
break;
case 2:
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE2_SRC_SEL, 0,
SYMCLK32_SE2_EN, 0);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE2_GATE_DISABLE, 0,
SYMCLK32_ROOT_SE2_GATE_DISABLE, 0);
break;
case 3:
REG_UPDATE_2(SYMCLK32_SE_CNTL,
SYMCLK32_SE3_SRC_SEL, 0,
SYMCLK32_SE3_EN, 0);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_se)
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_SE3_GATE_DISABLE, 0,
SYMCLK32_ROOT_SE3_GATE_DISABLE, 0);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
void dccg31_enable_symclk32_le(
struct dccg *dccg,
int hpo_le_inst,
enum phyd32clk_clock_source phyd32clk)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
phyd32clk = get_phy_mux_symclk(dccg_dcn, phyd32clk);
/* select one of the PHYD32CLKs as the source for symclk32_le */
switch (hpo_le_inst) {
case 0:
REG_UPDATE_2(SYMCLK32_LE_CNTL,
SYMCLK32_LE0_SRC_SEL, phyd32clk,
SYMCLK32_LE0_EN, 1);
break;
case 1:
REG_UPDATE_2(SYMCLK32_LE_CNTL,
SYMCLK32_LE1_SRC_SEL, phyd32clk,
SYMCLK32_LE1_EN, 1);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
void dccg31_disable_symclk32_le(
struct dccg *dccg,
int hpo_le_inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* set refclk as the source for symclk32_le */
switch (hpo_le_inst) {
case 0:
REG_UPDATE_2(SYMCLK32_LE_CNTL,
SYMCLK32_LE0_SRC_SEL, 0,
SYMCLK32_LE0_EN, 0);
break;
case 1:
REG_UPDATE_2(SYMCLK32_LE_CNTL,
SYMCLK32_LE1_SRC_SEL, 0,
SYMCLK32_LE1_EN, 0);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
void dccg31_set_symclk32_le_root_clock_gating(
struct dccg *dccg,
int hpo_le_inst,
bool enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (!dccg->ctx->dc->debug.root_clock_optimization.bits.symclk32_le)
return;
switch (hpo_le_inst) {
case 0:
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_LE0_GATE_DISABLE, enable ? 1 : 0,
SYMCLK32_ROOT_LE0_GATE_DISABLE, enable ? 1 : 0);
break;
case 1:
REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL3,
SYMCLK32_LE1_GATE_DISABLE, enable ? 1 : 0,
SYMCLK32_ROOT_LE1_GATE_DISABLE, enable ? 1 : 0);
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
void dccg31_disable_dscclk(struct dccg *dccg, int inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (!dccg->ctx->dc->debug.root_clock_optimization.bits.dsc)
return;
//DTO must be enabled to generate a 0 Hz clock output
switch (inst) {
case 0:
REG_UPDATE(DSCCLK_DTO_CTRL,
DSCCLK0_DTO_ENABLE, 1);
REG_UPDATE_2(DSCCLK0_DTO_PARAM,
DSCCLK0_DTO_PHASE, 0,
DSCCLK0_DTO_MODULO, 1);
break;
case 1:
REG_UPDATE(DSCCLK_DTO_CTRL,
DSCCLK1_DTO_ENABLE, 1);
REG_UPDATE_2(DSCCLK1_DTO_PARAM,
DSCCLK1_DTO_PHASE, 0,
DSCCLK1_DTO_MODULO, 1);
break;
case 2:
REG_UPDATE(DSCCLK_DTO_CTRL,
DSCCLK2_DTO_ENABLE, 1);
REG_UPDATE_2(DSCCLK2_DTO_PARAM,
DSCCLK2_DTO_PHASE, 0,
DSCCLK2_DTO_MODULO, 1);
break;
case 3:
if (REG(DSCCLK3_DTO_PARAM)) {
REG_UPDATE(DSCCLK_DTO_CTRL,
DSCCLK3_DTO_ENABLE, 1);
REG_UPDATE_2(DSCCLK3_DTO_PARAM,
DSCCLK3_DTO_PHASE, 0,
DSCCLK3_DTO_MODULO, 1);
}
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
void dccg31_enable_dscclk(struct dccg *dccg, int inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (!dccg->ctx->dc->debug.root_clock_optimization.bits.dsc)
return;
//Disable DTO
switch (inst) {
case 0:
REG_UPDATE_2(DSCCLK0_DTO_PARAM,
DSCCLK0_DTO_PHASE, 0,
DSCCLK0_DTO_MODULO, 0);
REG_UPDATE(DSCCLK_DTO_CTRL,
DSCCLK0_DTO_ENABLE, 0);
break;
case 1:
REG_UPDATE_2(DSCCLK1_DTO_PARAM,
DSCCLK1_DTO_PHASE, 0,
DSCCLK1_DTO_MODULO, 0);
REG_UPDATE(DSCCLK_DTO_CTRL,
DSCCLK1_DTO_ENABLE, 0);
break;
case 2:
REG_UPDATE_2(DSCCLK2_DTO_PARAM,
DSCCLK2_DTO_PHASE, 0,
DSCCLK2_DTO_MODULO, 0);
REG_UPDATE(DSCCLK_DTO_CTRL,
DSCCLK2_DTO_ENABLE, 0);
break;
case 3:
if (REG(DSCCLK3_DTO_PARAM)) {
REG_UPDATE(DSCCLK_DTO_CTRL,
DSCCLK3_DTO_ENABLE, 0);
REG_UPDATE_2(DSCCLK3_DTO_PARAM,
DSCCLK3_DTO_PHASE, 0,
DSCCLK3_DTO_MODULO, 0);
}
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
void dccg31_set_physymclk(
struct dccg *dccg,
int phy_inst,
enum physymclk_clock_source clk_src,
bool force_enable)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
/* Force PHYSYMCLK on and Select phyd32clk as the source of clock which is output to PHY through DCIO */
switch (phy_inst) {
case 0:
if (force_enable) {
REG_UPDATE_2(PHYASYMCLK_CLOCK_CNTL,
PHYASYMCLK_FORCE_EN, 1,
PHYASYMCLK_FORCE_SRC_SEL, clk_src);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYASYMCLK_GATE_DISABLE, 1);
} else {
REG_UPDATE_2(PHYASYMCLK_CLOCK_CNTL,
PHYASYMCLK_FORCE_EN, 0,
PHYASYMCLK_FORCE_SRC_SEL, 0);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYASYMCLK_GATE_DISABLE, 0);
}
break;
case 1:
if (force_enable) {
REG_UPDATE_2(PHYBSYMCLK_CLOCK_CNTL,
PHYBSYMCLK_FORCE_EN, 1,
PHYBSYMCLK_FORCE_SRC_SEL, clk_src);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYBSYMCLK_GATE_DISABLE, 1);
} else {
REG_UPDATE_2(PHYBSYMCLK_CLOCK_CNTL,
PHYBSYMCLK_FORCE_EN, 0,
PHYBSYMCLK_FORCE_SRC_SEL, 0);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYBSYMCLK_GATE_DISABLE, 0);
}
break;
case 2:
if (force_enable) {
REG_UPDATE_2(PHYCSYMCLK_CLOCK_CNTL,
PHYCSYMCLK_FORCE_EN, 1,
PHYCSYMCLK_FORCE_SRC_SEL, clk_src);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYCSYMCLK_GATE_DISABLE, 1);
} else {
REG_UPDATE_2(PHYCSYMCLK_CLOCK_CNTL,
PHYCSYMCLK_FORCE_EN, 0,
PHYCSYMCLK_FORCE_SRC_SEL, 0);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYCSYMCLK_GATE_DISABLE, 0);
}
break;
case 3:
if (force_enable) {
REG_UPDATE_2(PHYDSYMCLK_CLOCK_CNTL,
PHYDSYMCLK_FORCE_EN, 1,
PHYDSYMCLK_FORCE_SRC_SEL, clk_src);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYDSYMCLK_GATE_DISABLE, 1);
} else {
REG_UPDATE_2(PHYDSYMCLK_CLOCK_CNTL,
PHYDSYMCLK_FORCE_EN, 0,
PHYDSYMCLK_FORCE_SRC_SEL, 0);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYDSYMCLK_GATE_DISABLE, 0);
}
break;
case 4:
if (force_enable) {
REG_UPDATE_2(PHYESYMCLK_CLOCK_CNTL,
PHYESYMCLK_FORCE_EN, 1,
PHYESYMCLK_FORCE_SRC_SEL, clk_src);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYESYMCLK_GATE_DISABLE, 1);
} else {
REG_UPDATE_2(PHYESYMCLK_CLOCK_CNTL,
PHYESYMCLK_FORCE_EN, 0,
PHYESYMCLK_FORCE_SRC_SEL, 0);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk)
REG_UPDATE(DCCG_GATE_DISABLE_CNTL2,
PHYESYMCLK_GATE_DISABLE, 0);
}
break;
default:
BREAK_TO_DEBUGGER();
return;
}
}
/* Controls the generation of pixel valid for OTG in (OTG -> HPO case) */
void dccg31_set_dtbclk_dto(
struct dccg *dccg,
const struct dtbclk_dto_params *params)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
int req_dtbclk_khz = params->pixclk_khz;
uint32_t dtbdto_div;
/* Mode DTBDTO Rate DTBCLK_DTO<x>_DIV Register
* ODM 4:1 combine pixel rate/4 2
* ODM 2:1 combine pixel rate/2 4
* non-DSC 4:2:0 mode pixel rate/2 4
* DSC native 4:2:0 pixel rate/2 4
* DSC native 4:2:2 pixel rate/2 4
* Other modes pixel rate 8
*/
if (params->num_odm_segments == 4) {
dtbdto_div = 2;
req_dtbclk_khz = params->pixclk_khz / 4;
} else if ((params->num_odm_segments == 2) ||
(params->timing->pixel_encoding == PIXEL_ENCODING_YCBCR420) ||
(params->timing->flags.DSC && params->timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
&& !params->timing->dsc_cfg.ycbcr422_simple)) {
dtbdto_div = 4;
req_dtbclk_khz = params->pixclk_khz / 2;
} else
dtbdto_div = 8;
if (params->ref_dtbclk_khz && req_dtbclk_khz) {
uint32_t modulo, phase;
// phase / modulo = dtbclk / dtbclk ref
modulo = params->ref_dtbclk_khz * 1000;
phase = div_u64((((unsigned long long)modulo * req_dtbclk_khz) + params->ref_dtbclk_khz - 1),
params->ref_dtbclk_khz);
REG_UPDATE(OTG_PIXEL_RATE_CNTL[params->otg_inst],
DTBCLK_DTO_DIV[params->otg_inst], dtbdto_div);
REG_WRITE(DTBCLK_DTO_MODULO[params->otg_inst], modulo);
REG_WRITE(DTBCLK_DTO_PHASE[params->otg_inst], phase);
REG_UPDATE(OTG_PIXEL_RATE_CNTL[params->otg_inst],
DTBCLK_DTO_ENABLE[params->otg_inst], 1);
REG_WAIT(OTG_PIXEL_RATE_CNTL[params->otg_inst],
DTBCLKDTO_ENABLE_STATUS[params->otg_inst], 1,
1, 100);
/* The recommended programming sequence to enable DTBCLK DTO to generate
* valid pixel HPO DPSTREAM ENCODER, specifies that DTO source select should
* be set only after DTO is enabled
*/
REG_UPDATE(OTG_PIXEL_RATE_CNTL[params->otg_inst],
PIPE_DTO_SRC_SEL[params->otg_inst], 1);
} else {
REG_UPDATE_3(OTG_PIXEL_RATE_CNTL[params->otg_inst],
DTBCLK_DTO_ENABLE[params->otg_inst], 0,
PIPE_DTO_SRC_SEL[params->otg_inst], 0,
DTBCLK_DTO_DIV[params->otg_inst], dtbdto_div);
REG_WRITE(DTBCLK_DTO_MODULO[params->otg_inst], 0);
REG_WRITE(DTBCLK_DTO_PHASE[params->otg_inst], 0);
}
}
void dccg31_set_audio_dtbclk_dto(
struct dccg *dccg,
const struct dtbclk_dto_params *params)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
if (params->ref_dtbclk_khz && params->req_audio_dtbclk_khz) {
uint32_t modulo, phase;
// phase / modulo = dtbclk / dtbclk ref
modulo = params->ref_dtbclk_khz * 1000;
phase = div_u64((((unsigned long long)modulo * params->req_audio_dtbclk_khz) + params->ref_dtbclk_khz - 1),
params->ref_dtbclk_khz);
REG_WRITE(DCCG_AUDIO_DTBCLK_DTO_MODULO, modulo);
REG_WRITE(DCCG_AUDIO_DTBCLK_DTO_PHASE, phase);
//REG_UPDATE(DCCG_AUDIO_DTO_SOURCE,
// DCCG_AUDIO_DTBCLK_DTO_USE_512FBR_DTO, 1);
REG_UPDATE(DCCG_AUDIO_DTO_SOURCE,
DCCG_AUDIO_DTO_SEL, 4); // 04 - DCCG_AUDIO_DTO_SEL_AUDIO_DTO_DTBCLK
} else {
REG_WRITE(DCCG_AUDIO_DTBCLK_DTO_PHASE, 0);
REG_WRITE(DCCG_AUDIO_DTBCLK_DTO_MODULO, 0);
REG_UPDATE(DCCG_AUDIO_DTO_SOURCE,
DCCG_AUDIO_DTO_SEL, 3); // 03 - DCCG_AUDIO_DTO_SEL_NO_AUDIO_DTO
}
}
void dccg31_get_dccg_ref_freq(struct dccg *dccg,
unsigned int xtalin_freq_inKhz,
unsigned int *dccg_ref_freq_inKhz)
{
/*
* Assume refclk is sourced from xtalin
* expect 24MHz
*/
*dccg_ref_freq_inKhz = xtalin_freq_inKhz;
return;
}
void dccg31_set_dispclk_change_mode(
struct dccg *dccg,
enum dentist_dispclk_change_mode change_mode)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
REG_UPDATE(DENTIST_DISPCLK_CNTL, DENTIST_DISPCLK_CHG_MODE,
change_mode == DISPCLK_CHANGE_MODE_RAMPING ? 2 : 0);
}
void dccg31_init(struct dccg *dccg)
{
/* Set HPO stream encoder to use refclk to avoid case where PHY is
* disabled and SYMCLK32 for HPO SE is sourced from PHYD32CLK which
* will cause DCN to hang.
*/
dccg31_disable_symclk32_se(dccg, 0);
dccg31_disable_symclk32_se(dccg, 1);
dccg31_disable_symclk32_se(dccg, 2);
dccg31_disable_symclk32_se(dccg, 3);
dccg31_set_symclk32_le_root_clock_gating(dccg, 0, false);
dccg31_set_symclk32_le_root_clock_gating(dccg, 1, false);
if (dccg->ctx->dc->debug.root_clock_optimization.bits.dpstream) {
dccg31_disable_dpstreamclk(dccg, 0);
dccg31_disable_dpstreamclk(dccg, 1);
dccg31_disable_dpstreamclk(dccg, 2);
dccg31_disable_dpstreamclk(dccg, 3);
}
if (dccg->ctx->dc->debug.root_clock_optimization.bits.physymclk) {
dccg31_set_physymclk(dccg, 0, PHYSYMCLK_FORCE_SRC_SYMCLK, false);
dccg31_set_physymclk(dccg, 1, PHYSYMCLK_FORCE_SRC_SYMCLK, false);
dccg31_set_physymclk(dccg, 2, PHYSYMCLK_FORCE_SRC_SYMCLK, false);
dccg31_set_physymclk(dccg, 3, PHYSYMCLK_FORCE_SRC_SYMCLK, false);
dccg31_set_physymclk(dccg, 4, PHYSYMCLK_FORCE_SRC_SYMCLK, false);
}
}
void dccg31_otg_add_pixel(struct dccg *dccg,
uint32_t otg_inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
REG_UPDATE(OTG_PIXEL_RATE_CNTL[otg_inst],
OTG_ADD_PIXEL[otg_inst], 1);
}
void dccg31_otg_drop_pixel(struct dccg *dccg,
uint32_t otg_inst)
{
struct dcn_dccg *dccg_dcn = TO_DCN_DCCG(dccg);
REG_UPDATE(OTG_PIXEL_RATE_CNTL[otg_inst],
OTG_DROP_PIXEL[otg_inst], 1);
}
static const struct dccg_funcs dccg31_funcs = {
.update_dpp_dto = dccg31_update_dpp_dto,
.get_dccg_ref_freq = dccg31_get_dccg_ref_freq,
.dccg_init = dccg31_init,
.set_dpstreamclk = dccg31_set_dpstreamclk,
.enable_symclk32_se = dccg31_enable_symclk32_se,
.disable_symclk32_se = dccg31_disable_symclk32_se,
.enable_symclk32_le = dccg31_enable_symclk32_le,
.disable_symclk32_le = dccg31_disable_symclk32_le,
.set_physymclk = dccg31_set_physymclk,
.set_dtbclk_dto = dccg31_set_dtbclk_dto,
.set_audio_dtbclk_dto = dccg31_set_audio_dtbclk_dto,
.set_fifo_errdet_ovr_en = dccg2_set_fifo_errdet_ovr_en,
.otg_add_pixel = dccg31_otg_add_pixel,
.otg_drop_pixel = dccg31_otg_drop_pixel,
.set_dispclk_change_mode = dccg31_set_dispclk_change_mode,
.disable_dsc = dccg31_disable_dscclk,
.enable_dsc = dccg31_enable_dscclk,
};
struct dccg *dccg31_create(
struct dc_context *ctx,
const struct dccg_registers *regs,
const struct dccg_shift *dccg_shift,
const struct dccg_mask *dccg_mask)
{
struct dcn_dccg *dccg_dcn = kzalloc(sizeof(*dccg_dcn), GFP_KERNEL);
struct dccg *base;
if (dccg_dcn == NULL) {
BREAK_TO_DEBUGGER();
return NULL;
}
base = &dccg_dcn->base;
base->ctx = ctx;
base->funcs = &dccg31_funcs;
dccg_dcn->regs = regs;
dccg_dcn->dccg_shift = dccg_shift;
dccg_dcn->dccg_mask = dccg_mask;
return &dccg_dcn->base;
}