// SPDX-License-Identifier: MIT
//
// Copyright 2024 Advanced Micro Devices, Inc.
#include "dml2_pmo_factory.h"
#include "dml2_pmo_dcn3.h"
static void sort(double *list_a, int list_a_size)
{
// For all elements b[i] in list_b[]
for (int i = 0; i < list_a_size - 1; i++) {
// Find the first element of list_a that's larger than b[i]
for (int j = i; j < list_a_size - 1; j++) {
if (list_a[j] > list_a[j + 1])
swap(list_a[j], list_a[j + 1]);
}
}
}
static double get_max_reserved_time_on_all_planes_with_stream_index(struct display_configuation_with_meta *config, unsigned int stream_index)
{
struct dml2_plane_parameters *plane_descriptor;
long max_reserved_time_ns = 0;
for (unsigned int i = 0; i < config->display_config.num_planes; i++) {
plane_descriptor = &config->display_config.plane_descriptors[i];
if (plane_descriptor->stream_index == stream_index)
if (plane_descriptor->overrides.reserved_vblank_time_ns > max_reserved_time_ns)
max_reserved_time_ns = plane_descriptor->overrides.reserved_vblank_time_ns;
}
return (max_reserved_time_ns / 1000.0);
}
static void set_reserved_time_on_all_planes_with_stream_index(struct display_configuation_with_meta *config, unsigned int stream_index, double reserved_time_us)
{
struct dml2_plane_parameters *plane_descriptor;
for (unsigned int i = 0; i < config->display_config.num_planes; i++) {
plane_descriptor = &config->display_config.plane_descriptors[i];
if (plane_descriptor->stream_index == stream_index)
plane_descriptor->overrides.reserved_vblank_time_ns = (long int)(reserved_time_us * 1000);
}
}
static void remove_duplicates(double *list_a, int *list_a_size)
{
int cur_element = 0;
// For all elements b[i] in list_b[]
while (cur_element < *list_a_size - 1) {
if (list_a[cur_element] == list_a[cur_element + 1]) {
for (int j = cur_element + 1; j < *list_a_size - 1; j++) {
list_a[j] = list_a[j + 1];
}
*list_a_size = *list_a_size - 1;
} else {
cur_element++;
}
}
}
static bool increase_mpc_combine_factor(unsigned int *mpc_combine_factor, unsigned int limit)
{
if (*mpc_combine_factor < limit) {
(*mpc_combine_factor)++;
return true;
}
return false;
}
static bool optimize_dcc_mcache_no_odm(struct dml2_pmo_optimize_dcc_mcache_in_out *in_out,
int free_pipes)
{
struct dml2_pmo_instance *pmo = in_out->instance;
unsigned int i;
bool result = true;
for (i = 0; i < in_out->optimized_display_cfg->num_planes; i++) {
// For pipes that failed dcc mcache check, we want to increase the pipe count.
// The logic for doing this depends on how many pipes is already being used,
// and whether it's mpcc or odm combine.
if (!in_out->dcc_mcache_supported[i]) {
// For the general case of "n displays", we can only optimize streams with an ODM combine factor of 1
if (in_out->cfg_support_info->stream_support_info[in_out->optimized_display_cfg->plane_descriptors[i].stream_index].odms_used == 1) {
in_out->optimized_display_cfg->plane_descriptors[i].overrides.mpcc_combine_factor =
in_out->cfg_support_info->plane_support_info[i].dpps_used;
// For each plane that is not passing mcache validation, just add another pipe to it, up to the limit.
if (free_pipes > 0) {
if (!increase_mpc_combine_factor(&in_out->optimized_display_cfg->plane_descriptors[i].overrides.mpcc_combine_factor,
pmo->mpc_combine_limit)) {
// We've reached max pipes allocatable to a single plane, so we fail.
result = false;
break;
} else {
// Successfully added another pipe to this failing plane.
free_pipes--;
}
} else {
// No free pipes to add.
result = false;
break;
}
} else {
// If the stream of this plane needs ODM combine, no further optimization can be done.
result = false;
break;
}
}
}
return result;
}
static bool iterate_to_next_candidiate(struct dml2_pmo_instance *pmo, int size)
{
int borrow_from, i;
bool success = false;
if (pmo->scratch.pmo_dcn3.current_candidate[0] > 0) {
pmo->scratch.pmo_dcn3.current_candidate[0]--;
success = true;
} else {
for (borrow_from = 1; borrow_from < size && pmo->scratch.pmo_dcn3.current_candidate[borrow_from] == 0; borrow_from++)
;
if (borrow_from < size) {
pmo->scratch.pmo_dcn3.current_candidate[borrow_from]--;
for (i = 0; i < borrow_from; i++) {
pmo->scratch.pmo_dcn3.current_candidate[i] = pmo->scratch.pmo_dcn3.reserved_time_candidates_count[i] - 1;
}
success = true;
}
}
return success;
}
static bool increase_odm_combine_factor(enum dml2_odm_mode *odm_mode, int odms_calculated)
{
bool result = true;
if (*odm_mode == dml2_odm_mode_auto) {
switch (odms_calculated) {
case 1:
*odm_mode = dml2_odm_mode_bypass;
break;
case 2:
*odm_mode = dml2_odm_mode_combine_2to1;
break;
case 3:
*odm_mode = dml2_odm_mode_combine_3to1;
break;
case 4:
*odm_mode = dml2_odm_mode_combine_4to1;
break;
default:
result = false;
break;
}
}
if (result) {
if (*odm_mode == dml2_odm_mode_bypass) {
*odm_mode = dml2_odm_mode_combine_2to1;
} else if (*odm_mode == dml2_odm_mode_combine_2to1) {
*odm_mode = dml2_odm_mode_combine_3to1;
} else if (*odm_mode == dml2_odm_mode_combine_3to1) {
*odm_mode = dml2_odm_mode_combine_4to1;
} else {
result = false;
}
}
return result;
}
static int count_planes_with_stream_index(const struct dml2_display_cfg *display_cfg, unsigned int stream_index)
{
unsigned int i, count;
count = 0;
for (i = 0; i < display_cfg->num_planes; i++) {
if (display_cfg->plane_descriptors[i].stream_index == stream_index)
count++;
}
return count;
}
static bool are_timings_trivially_synchronizable(struct display_configuation_with_meta *display_config, int mask)
{
unsigned char i;
bool identical = true;
bool contains_drr = false;
unsigned char remap_array[DML2_MAX_PLANES];
unsigned char remap_array_size = 0;
// Create a remap array to enable simple iteration through only masked stream indicies
for (i = 0; i < display_config->display_config.num_streams; i++) {
if (mask & (0x1 << i)) {
remap_array[remap_array_size++] = i;
}
}
// 0 or 1 display is always trivially synchronizable
if (remap_array_size <= 1)
return true;
for (i = 1; i < remap_array_size; i++) {
if (memcmp(&display_config->display_config.stream_descriptors[remap_array[i - 1]].timing,
&display_config->display_config.stream_descriptors[remap_array[i]].timing,
sizeof(struct dml2_timing_cfg))) {
identical = false;
break;
}
}
for (i = 0; i < remap_array_size; i++) {
if (display_config->display_config.stream_descriptors[remap_array[i]].timing.drr_config.enabled) {
contains_drr = true;
break;
}
}
return !contains_drr && identical;
}
bool pmo_dcn3_initialize(struct dml2_pmo_initialize_in_out *in_out)
{
struct dml2_pmo_instance *pmo = in_out->instance;
pmo->soc_bb = in_out->soc_bb;
pmo->ip_caps = in_out->ip_caps;
pmo->mpc_combine_limit = 2;
pmo->odm_combine_limit = 4;
pmo->mcg_clock_table_size = in_out->mcg_clock_table_size;
pmo->options = in_out->options;
return true;
}
static bool is_h_timing_divisible_by(const struct dml2_timing_cfg *timing, unsigned char denominator)
{
/*
* Htotal, Hblank start/end, and Hsync start/end all must be divisible
* in order for the horizontal timing params to be considered divisible
* by 2. Hsync start is always 0.
*/
unsigned long h_blank_start = timing->h_total - timing->h_front_porch;
return (timing->h_total % denominator == 0) &&
(h_blank_start % denominator == 0) &&
(timing->h_blank_end % denominator == 0) &&
(timing->h_sync_width % denominator == 0);
}
static bool is_dp_encoder(enum dml2_output_encoder_class encoder_type)
{
switch (encoder_type) {
case dml2_dp:
case dml2_edp:
case dml2_dp2p0:
case dml2_none:
return true;
case dml2_hdmi:
case dml2_hdmifrl:
default:
return false;
}
}
bool pmo_dcn3_init_for_vmin(struct dml2_pmo_init_for_vmin_in_out *in_out)
{
unsigned int i;
const struct dml2_display_cfg *display_config =
&in_out->base_display_config->display_config;
const struct dml2_core_mode_support_result *mode_support_result =
&in_out->base_display_config->mode_support_result;
if (in_out->instance->options->disable_dyn_odm ||
(in_out->instance->options->disable_dyn_odm_for_multi_stream && display_config->num_streams > 1))
return false;
for (i = 0; i < display_config->num_planes; i++)
/*
* vmin optimization is required to be seamlessly switched off
* at any time when the new configuration is no longer
* supported. However switching from ODM combine to MPC combine
* is not always seamless. When there not enough free pipes, we
* will have to use the same secondary OPP heads as secondary
* DPP pipes in MPC combine in new state. This transition is
* expected to cause glitches. To avoid the transition, we only
* allow vmin optimization if the stream's base configuration
* doesn't require MPC combine. This condition checks if MPC
* combine is enabled. If so do not optimize the stream.
*/
if (mode_support_result->cfg_support_info.plane_support_info[i].dpps_used > 1 &&
mode_support_result->cfg_support_info.stream_support_info[display_config->plane_descriptors[i].stream_index].odms_used == 1)
in_out->base_display_config->stage4.unoptimizable_streams[display_config->plane_descriptors[i].stream_index] = true;
for (i = 0; i < display_config->num_streams; i++) {
if (display_config->stream_descriptors[i].overrides.disable_dynamic_odm)
in_out->base_display_config->stage4.unoptimizable_streams[i] = true;
else if (in_out->base_display_config->stage3.stream_svp_meta[i].valid &&
in_out->instance->options->disable_dyn_odm_for_stream_with_svp)
in_out->base_display_config->stage4.unoptimizable_streams[i] = true;
/*
* ODM Combine requires horizontal timing divisible by 2 so each
* ODM segment has the same size.
*/
else if (!is_h_timing_divisible_by(&display_config->stream_descriptors[i].timing, 2))
in_out->base_display_config->stage4.unoptimizable_streams[i] = true;
/*
* Our hardware support seamless ODM transitions for DP encoders
* only.
*/
else if (!is_dp_encoder(display_config->stream_descriptors[i].output.output_encoder))
in_out->base_display_config->stage4.unoptimizable_streams[i] = true;
}
return true;
}
bool pmo_dcn3_test_for_vmin(struct dml2_pmo_test_for_vmin_in_out *in_out)
{
bool is_vmin = true;
if (in_out->vmin_limits->dispclk_khz > 0 &&
in_out->display_config->mode_support_result.global.dispclk_khz > in_out->vmin_limits->dispclk_khz)
is_vmin = false;
return is_vmin;
}
static int find_highest_odm_load_stream_index(
const struct dml2_display_cfg *display_config,
const struct dml2_core_mode_support_result *mode_support_result)
{
unsigned int i;
int odm_load, highest_odm_load = -1, highest_odm_load_index = -1;
for (i = 0; i < display_config->num_streams; i++) {
odm_load = display_config->stream_descriptors[i].timing.pixel_clock_khz
/ mode_support_result->cfg_support_info.stream_support_info[i].odms_used;
if (odm_load > highest_odm_load) {
highest_odm_load_index = i;
highest_odm_load = odm_load;
}
}
return highest_odm_load_index;
}
bool pmo_dcn3_optimize_for_vmin(struct dml2_pmo_optimize_for_vmin_in_out *in_out)
{
int stream_index;
const struct dml2_display_cfg *display_config =
&in_out->base_display_config->display_config;
const struct dml2_core_mode_support_result *mode_support_result =
&in_out->base_display_config->mode_support_result;
unsigned int odms_used;
struct dml2_stream_parameters *stream_descriptor;
bool optimizable = false;
/*
* highest odm load stream must be optimizable to continue as dispclk is
* bounded by it.
*/
stream_index = find_highest_odm_load_stream_index(display_config,
mode_support_result);
if (stream_index < 0 ||
in_out->base_display_config->stage4.unoptimizable_streams[stream_index])
return false;
odms_used = mode_support_result->cfg_support_info.stream_support_info[stream_index].odms_used;
if ((int)odms_used >= in_out->instance->odm_combine_limit)
return false;
memcpy(in_out->optimized_display_config,
in_out->base_display_config,
sizeof(struct display_configuation_with_meta));
stream_descriptor = &in_out->optimized_display_config->display_config.stream_descriptors[stream_index];
while (!optimizable && increase_odm_combine_factor(
&stream_descriptor->overrides.odm_mode,
odms_used)) {
switch (stream_descriptor->overrides.odm_mode) {
case dml2_odm_mode_combine_2to1:
optimizable = true;
break;
case dml2_odm_mode_combine_3to1:
/*
* In ODM Combine 3:1 OTG_valid_pixel rate is 1/4 of
* actual pixel rate. Therefore horizontal timing must
* be divisible by 4.
*/
if (is_h_timing_divisible_by(&display_config->stream_descriptors[stream_index].timing, 4)) {
if (mode_support_result->cfg_support_info.stream_support_info[stream_index].dsc_enable) {
/*
* DSC h slice count must be divisible
* by 3.
*/
if (mode_support_result->cfg_support_info.stream_support_info[stream_index].num_dsc_slices % 3 == 0)
optimizable = true;
} else {
optimizable = true;
}
}
break;
case dml2_odm_mode_combine_4to1:
/*
* In ODM Combine 4:1 OTG_valid_pixel rate is 1/4 of
* actual pixel rate. Therefore horizontal timing must
* be divisible by 4.
*/
if (is_h_timing_divisible_by(&display_config->stream_descriptors[stream_index].timing, 4)) {
if (mode_support_result->cfg_support_info.stream_support_info[stream_index].dsc_enable) {
/*
* DSC h slice count must be divisible
* by 4.
*/
if (mode_support_result->cfg_support_info.stream_support_info[stream_index].num_dsc_slices % 4 == 0)
optimizable = true;
} else {
optimizable = true;
}
}
break;
case dml2_odm_mode_auto:
case dml2_odm_mode_bypass:
case dml2_odm_mode_split_1to2:
case dml2_odm_mode_mso_1to2:
case dml2_odm_mode_mso_1to4:
default:
break;
}
}
return optimizable;
}
bool pmo_dcn3_optimize_dcc_mcache(struct dml2_pmo_optimize_dcc_mcache_in_out *in_out)
{
struct dml2_pmo_instance *pmo = in_out->instance;
unsigned int i, used_pipes, free_pipes, planes_on_stream;
bool result;
if (in_out->display_config != in_out->optimized_display_cfg) {
memcpy(in_out->optimized_display_cfg, in_out->display_config, sizeof(struct dml2_display_cfg));
}
//Count number of free pipes, and check if any odm combine is in use.
used_pipes = 0;
for (i = 0; i < in_out->optimized_display_cfg->num_planes; i++) {
used_pipes += in_out->cfg_support_info->plane_support_info[i].dpps_used;
}
free_pipes = pmo->ip_caps->pipe_count - used_pipes;
// Optimization loop
// The goal here is to add more pipes to any planes
// which are failing mcache admissibility
result = true;
// The optimization logic depends on whether ODM combine is enabled, and the stream count.
if (in_out->optimized_display_cfg->num_streams > 1) {
// If there are multiple streams, we are limited to only be able to optimize mcache failures on planes
// which are not ODM combined.
result = optimize_dcc_mcache_no_odm(in_out, free_pipes);
} else if (in_out->optimized_display_cfg->num_streams == 1) {
// In single stream cases, we still optimize mcache failures when there's ODM combine with some
// additional logic.
if (in_out->cfg_support_info->stream_support_info[0].odms_used > 1) {
// If ODM combine is enabled, then the logic is to increase ODM combine factor.
// Optimization for streams with > 1 ODM combine factor is only supported for single display.
planes_on_stream = count_planes_with_stream_index(in_out->optimized_display_cfg, 0);
for (i = 0; i < in_out->optimized_display_cfg->num_planes; i++) {
// For pipes that failed dcc mcache check, we want to increase the pipe count.
// The logic for doing this depends on how many pipes is already being used,
// and whether it's mpcc or odm combine.
if (!in_out->dcc_mcache_supported[i]) {
// Increasing ODM combine factor on a stream requires a free pipe for each plane on the stream.
if (free_pipes >= planes_on_stream) {
if (!increase_odm_combine_factor(&in_out->optimized_display_cfg->stream_descriptors[i].overrides.odm_mode,
in_out->cfg_support_info->plane_support_info[i].dpps_used)) {
result = false;
} else {
break;
}
} else {
result = false;
break;
}
}
}
} else {
// If ODM combine is not enabled, then we can actually use the same logic as before.
result = optimize_dcc_mcache_no_odm(in_out, free_pipes);
}
} else {
result = true;
}
return result;
}
bool pmo_dcn3_init_for_pstate_support(struct dml2_pmo_init_for_pstate_support_in_out *in_out)
{
struct dml2_pmo_instance *pmo = in_out->instance;
struct dml2_optimization_stage3_state *state = &in_out->base_display_config->stage3;
const struct dml2_stream_parameters *stream_descriptor;
const struct dml2_plane_parameters *plane_descriptor;
unsigned int stream_index, plane_index, candidate_count;
double min_reserved_vblank_time = 0;
int fclk_twait_needed_mask = 0x0;
int uclk_twait_needed_mask = 0x0;
state->performed = true;
state->min_clk_index_for_latency = in_out->base_display_config->stage1.min_clk_index_for_latency;
pmo->scratch.pmo_dcn3.min_latency_index = in_out->base_display_config->stage1.min_clk_index_for_latency;
pmo->scratch.pmo_dcn3.max_latency_index = pmo->mcg_clock_table_size - 1;
pmo->scratch.pmo_dcn3.cur_latency_index = in_out->base_display_config->stage1.min_clk_index_for_latency;
pmo->scratch.pmo_dcn3.stream_mask = 0xF;
for (plane_index = 0; plane_index < in_out->base_display_config->display_config.num_planes; plane_index++) {
plane_descriptor = &in_out->base_display_config->display_config.plane_descriptors[plane_index];
stream_descriptor = &in_out->base_display_config->display_config.stream_descriptors[plane_descriptor->stream_index];
if (in_out->base_display_config->mode_support_result.cfg_support_info.plane_support_info[plane_index].active_latency_hiding_us <
in_out->instance->soc_bb->power_management_parameters.dram_clk_change_blackout_us &&
stream_descriptor->overrides.hw.twait_budgeting.uclk_pstate == dml2_twait_budgeting_setting_if_needed)
uclk_twait_needed_mask |= (0x1 << plane_descriptor->stream_index);
if (stream_descriptor->overrides.hw.twait_budgeting.uclk_pstate == dml2_twait_budgeting_setting_try)
uclk_twait_needed_mask |= (0x1 << plane_descriptor->stream_index);
if (in_out->base_display_config->mode_support_result.cfg_support_info.plane_support_info[plane_index].active_latency_hiding_us <
in_out->instance->soc_bb->power_management_parameters.fclk_change_blackout_us &&
stream_descriptor->overrides.hw.twait_budgeting.fclk_pstate == dml2_twait_budgeting_setting_if_needed)
fclk_twait_needed_mask |= (0x1 << plane_descriptor->stream_index);
if (stream_descriptor->overrides.hw.twait_budgeting.fclk_pstate == dml2_twait_budgeting_setting_try)
fclk_twait_needed_mask |= (0x1 << plane_descriptor->stream_index);
if (plane_descriptor->overrides.legacy_svp_config != dml2_svp_mode_override_auto) {
pmo->scratch.pmo_dcn3.stream_mask &= ~(0x1 << plane_descriptor->stream_index);
}
}
for (stream_index = 0; stream_index < in_out->base_display_config->display_config.num_streams; stream_index++) {
stream_descriptor = &in_out->base_display_config->display_config.stream_descriptors[stream_index];
// The absolute minimum required time is the minimum of all the required budgets
/*
if (stream_descriptor->overrides.hw.twait_budgeting.fclk_pstate
== dml2_twait_budgeting_setting_require)
if (are_timings_trivially_synchronizable(in_out->base_display_config, pmo->scratch.pmo_dcn3.stream_mask)) {
min_reserved_vblank_time = max_double2(min_reserved_vblank_time,
in_out->instance->soc_bb->power_management_parameters.fclk_change_blackout_us);
}
if (stream_descriptor->overrides.hw.twait_budgeting.uclk_pstate
== dml2_twait_budgeting_setting_require) {
if (are_timings_trivially_synchronizable(in_out->base_display_config, pmo->scratch.pmo_dcn3.stream_mask)) {
min_reserved_vblank_time = max_double2(min_reserved_vblank_time,
in_out->instance->soc_bb->power_management_parameters.dram_clk_change_blackout_us);
}
}
if (stream_descriptor->overrides.hw.twait_budgeting.stutter_enter_exit
== dml2_twait_budgeting_setting_require)
min_reserved_vblank_time = max_double2(min_reserved_vblank_time,
in_out->instance->soc_bb->power_management_parameters.stutter_enter_plus_exit_latency_us);
*/
min_reserved_vblank_time = get_max_reserved_time_on_all_planes_with_stream_index(in_out->base_display_config, stream_index);
// Insert the absolute minimum into the array
candidate_count = 1;
pmo->scratch.pmo_dcn3.reserved_time_candidates[stream_index][0] = min_reserved_vblank_time;
pmo->scratch.pmo_dcn3.reserved_time_candidates_count[stream_index] = candidate_count;
if (!(pmo->scratch.pmo_dcn3.stream_mask & (0x1 << stream_index)))
continue;
// For every optional feature, we create a candidate for it only if it's larger minimum.
if ((fclk_twait_needed_mask & (0x1 << stream_index)) &&
in_out->instance->soc_bb->power_management_parameters.fclk_change_blackout_us > min_reserved_vblank_time) {
if (are_timings_trivially_synchronizable(in_out->base_display_config, pmo->scratch.pmo_dcn3.stream_mask)) {
pmo->scratch.pmo_dcn3.reserved_time_candidates[stream_index][candidate_count++] =
in_out->instance->soc_bb->power_management_parameters.fclk_change_blackout_us;
}
}
if ((uclk_twait_needed_mask & (0x1 << stream_index)) &&
in_out->instance->soc_bb->power_management_parameters.dram_clk_change_blackout_us > min_reserved_vblank_time) {
if (are_timings_trivially_synchronizable(in_out->base_display_config, pmo->scratch.pmo_dcn3.stream_mask)) {
pmo->scratch.pmo_dcn3.reserved_time_candidates[stream_index][candidate_count++] =
in_out->instance->soc_bb->power_management_parameters.dram_clk_change_blackout_us;
}
}
if ((stream_descriptor->overrides.hw.twait_budgeting.stutter_enter_exit == dml2_twait_budgeting_setting_try ||
stream_descriptor->overrides.hw.twait_budgeting.stutter_enter_exit == dml2_twait_budgeting_setting_if_needed) &&
in_out->instance->soc_bb->power_management_parameters.stutter_enter_plus_exit_latency_us > min_reserved_vblank_time) {
pmo->scratch.pmo_dcn3.reserved_time_candidates[stream_index][candidate_count++] =
in_out->instance->soc_bb->power_management_parameters.stutter_enter_plus_exit_latency_us;
}
pmo->scratch.pmo_dcn3.reserved_time_candidates_count[stream_index] = candidate_count;
// Finally sort the array of candidates
sort(pmo->scratch.pmo_dcn3.reserved_time_candidates[stream_index],
pmo->scratch.pmo_dcn3.reserved_time_candidates_count[stream_index]);
remove_duplicates(pmo->scratch.pmo_dcn3.reserved_time_candidates[stream_index],
&pmo->scratch.pmo_dcn3.reserved_time_candidates_count[stream_index]);
pmo->scratch.pmo_dcn3.current_candidate[stream_index] =
pmo->scratch.pmo_dcn3.reserved_time_candidates_count[stream_index] - 1;
}
return true;
}
bool pmo_dcn3_test_for_pstate_support(struct dml2_pmo_test_for_pstate_support_in_out *in_out)
{
struct dml2_pmo_instance *pmo = in_out->instance;
unsigned int i, stream_index;
for (i = 0; i < in_out->base_display_config->display_config.num_planes; i++) {
stream_index = in_out->base_display_config->display_config.plane_descriptors[i].stream_index;
if (in_out->base_display_config->display_config.plane_descriptors[i].overrides.reserved_vblank_time_ns <
pmo->scratch.pmo_dcn3.reserved_time_candidates[stream_index][pmo->scratch.pmo_dcn3.current_candidate[stream_index]] * 1000) {
return false;
}
}
return true;
}
bool pmo_dcn3_optimize_for_pstate_support(struct dml2_pmo_optimize_for_pstate_support_in_out *in_out)
{
struct dml2_pmo_instance *pmo = in_out->instance;
unsigned int stream_index;
bool success = false;
bool reached_end;
memcpy(in_out->optimized_display_config, in_out->base_display_config, sizeof(struct display_configuation_with_meta));
if (in_out->last_candidate_failed) {
if (pmo->scratch.pmo_dcn3.cur_latency_index < pmo->scratch.pmo_dcn3.max_latency_index) {
// If we haven't tried all the clock bounds to support this state, try a higher one
pmo->scratch.pmo_dcn3.cur_latency_index++;
success = true;
} else {
// If there's nothing higher to try, then we have to have a smaller canadidate
reached_end = !iterate_to_next_candidiate(pmo, in_out->optimized_display_config->display_config.num_streams);
if (!reached_end) {
pmo->scratch.pmo_dcn3.cur_latency_index = pmo->scratch.pmo_dcn3.min_latency_index;
success = true;
}
}
} else {
success = true;
}
if (success) {
in_out->optimized_display_config->stage3.min_clk_index_for_latency = pmo->scratch.pmo_dcn3.cur_latency_index;
for (stream_index = 0; stream_index < in_out->optimized_display_config->display_config.num_streams; stream_index++) {
set_reserved_time_on_all_planes_with_stream_index(in_out->optimized_display_config, stream_index,
pmo->scratch.pmo_dcn3.reserved_time_candidates[stream_index][pmo->scratch.pmo_dcn3.current_candidate[stream_index]]);
}
}
return success;
}