// SPDX-License-Identifier: GPL-2.0
/*
* PiSP Back End driver.
* Copyright (c) 2021-2024 Raspberry Pi Limited.
*
*/
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/lockdep.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ioctl.h>
#include <media/videobuf2-dma-contig.h>
#include <media/videobuf2-vmalloc.h>
#include <uapi/linux/media/raspberrypi/pisp_be_config.h>
#include "pisp_be_formats.h"
/* Maximum number of config buffers possible */
#define PISP_BE_NUM_CONFIG_BUFFERS VB2_MAX_FRAME
#define PISPBE_NAME "pispbe"
/* Some ISP-BE registers */
#define PISP_BE_VERSION_REG 0x0
#define PISP_BE_CONTROL_REG 0x4
#define PISP_BE_CONTROL_COPY_CONFIG BIT(1)
#define PISP_BE_CONTROL_QUEUE_JOB BIT(0)
#define PISP_BE_CONTROL_NUM_TILES(n) ((n) << 16)
#define PISP_BE_TILE_ADDR_LO_REG 0x8
#define PISP_BE_TILE_ADDR_HI_REG 0xc
#define PISP_BE_STATUS_REG 0x10
#define PISP_BE_STATUS_QUEUED BIT(0)
#define PISP_BE_BATCH_STATUS_REG 0x14
#define PISP_BE_INTERRUPT_EN_REG 0x18
#define PISP_BE_INTERRUPT_STATUS_REG 0x1c
#define PISP_BE_AXI_REG 0x20
#define PISP_BE_CONFIG_BASE_REG 0x40
#define PISP_BE_IO_ADDR_LOW(n) (PISP_BE_CONFIG_BASE_REG + 8 * (n))
#define PISP_BE_IO_ADDR_HIGH(n) (PISP_BE_IO_ADDR_LOW((n)) + 4)
#define PISP_BE_GLOBAL_BAYER_ENABLE 0xb0
#define PISP_BE_GLOBAL_RGB_ENABLE 0xb4
#define N_HW_ADDRESSES 13
#define N_HW_ENABLES 2
#define PISP_BE_VERSION_2712 0x02252700
#define PISP_BE_VERSION_MINOR_BITS 0xf
/*
* This maps our nodes onto the inputs/outputs of the actual PiSP Back End.
* Be wary of the word "OUTPUT" which is used ambiguously here. In a V4L2
* context it means an input to the hardware (source image or metadata).
* Elsewhere it means an output from the hardware.
*/
enum pispbe_node_ids {
MAIN_INPUT_NODE,
TDN_INPUT_NODE,
STITCH_INPUT_NODE,
OUTPUT0_NODE,
OUTPUT1_NODE,
TDN_OUTPUT_NODE,
STITCH_OUTPUT_NODE,
CONFIG_NODE,
PISPBE_NUM_NODES
};
struct pispbe_node_description {
const char *ent_name;
enum v4l2_buf_type buf_type;
unsigned int caps;
};
static const struct pispbe_node_description node_desc[PISPBE_NUM_NODES] = {
/* MAIN_INPUT_NODE */
{
.ent_name = PISPBE_NAME "-input",
.buf_type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE,
.caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE,
},
/* TDN_INPUT_NODE */
{
.ent_name = PISPBE_NAME "-tdn_input",
.buf_type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE,
.caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE,
},
/* STITCH_INPUT_NODE */
{
.ent_name = PISPBE_NAME "-stitch_input",
.buf_type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE,
.caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE,
},
/* OUTPUT0_NODE */
{
.ent_name = PISPBE_NAME "-output0",
.buf_type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE,
.caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE,
},
/* OUTPUT1_NODE */
{
.ent_name = PISPBE_NAME "-output1",
.buf_type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE,
.caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE,
},
/* TDN_OUTPUT_NODE */
{
.ent_name = PISPBE_NAME "-tdn_output",
.buf_type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE,
.caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE,
},
/* STITCH_OUTPUT_NODE */
{
.ent_name = PISPBE_NAME "-stitch_output",
.buf_type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE,
.caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE,
},
/* CONFIG_NODE */
{
.ent_name = PISPBE_NAME "-config",
.buf_type = V4L2_BUF_TYPE_META_OUTPUT,
.caps = V4L2_CAP_META_OUTPUT,
}
};
#define NODE_DESC_IS_OUTPUT(desc) ( \
((desc)->buf_type == V4L2_BUF_TYPE_META_OUTPUT) || \
((desc)->buf_type == V4L2_BUF_TYPE_VIDEO_OUTPUT) || \
((desc)->buf_type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE))
#define NODE_IS_META(node) ( \
((node)->buf_type == V4L2_BUF_TYPE_META_OUTPUT))
#define NODE_IS_OUTPUT(node) ( \
((node)->buf_type == V4L2_BUF_TYPE_META_OUTPUT) || \
((node)->buf_type == V4L2_BUF_TYPE_VIDEO_OUTPUT) || \
((node)->buf_type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE))
#define NODE_IS_CAPTURE(node) ( \
((node)->buf_type == V4L2_BUF_TYPE_VIDEO_CAPTURE) || \
((node)->buf_type == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE))
#define NODE_IS_MPLANE(node) ( \
((node)->buf_type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) || \
((node)->buf_type == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE))
/*
* Structure to describe a single node /dev/video<N> which represents a single
* input or output queue to the PiSP Back End device.
*/
struct pispbe_node {
unsigned int id;
int vfl_dir;
enum v4l2_buf_type buf_type;
struct video_device vfd;
struct media_pad pad;
struct media_intf_devnode *intf_devnode;
struct media_link *intf_link;
struct pispbe_dev *pispbe;
/* Video device lock */
struct mutex node_lock;
/* vb2_queue lock */
struct mutex queue_lock;
/* Protect pispbe_node->ready_queue and pispbe_buffer->ready_list */
spinlock_t ready_lock;
struct list_head ready_queue;
struct vb2_queue queue;
struct v4l2_format format;
const struct pisp_be_format *pisp_format;
};
/* For logging only, use the entity name with "pispbe" and separator removed */
#define NODE_NAME(node) \
(node_desc[(node)->id].ent_name + sizeof(PISPBE_NAME))
/* Records details of the jobs currently running or queued on the h/w. */
struct pispbe_job {
bool valid;
/*
* An array of buffer pointers - remember it's source buffers first,
* then captures, then metadata last.
*/
struct pispbe_buffer *buf[PISPBE_NUM_NODES];
};
struct pispbe_hw_enables {
u32 bayer_enables;
u32 rgb_enables;
};
/* Records a job configuration and memory addresses. */
struct pispbe_job_descriptor {
dma_addr_t hw_dma_addrs[N_HW_ADDRESSES];
struct pisp_be_tiles_config *config;
struct pispbe_hw_enables hw_enables;
dma_addr_t tiles;
};
/*
* Structure representing the entire PiSP Back End device, comprising several
* nodes which share platform resources and a mutex for the actual HW.
*/
struct pispbe_dev {
struct device *dev;
struct pispbe_dev *pispbe;
struct pisp_be_tiles_config *config;
void __iomem *be_reg_base;
struct clk *clk;
struct v4l2_device v4l2_dev;
struct v4l2_subdev sd;
struct media_device mdev;
struct media_pad pad[PISPBE_NUM_NODES]; /* output pads first */
struct pispbe_node node[PISPBE_NUM_NODES];
dma_addr_t config_dma_addr;
unsigned int sequence;
u32 streaming_map;
struct pispbe_job queued_job, running_job;
spinlock_t hw_lock; /* protects "hw_busy" flag and streaming_map */
bool hw_busy; /* non-zero if a job is queued or is being started */
int irq;
u32 hw_version;
u8 done, started;
};
static u32 pispbe_rd(struct pispbe_dev *pispbe, unsigned int offset)
{
return readl(pispbe->be_reg_base + offset);
}
static void pispbe_wr(struct pispbe_dev *pispbe, unsigned int offset, u32 val)
{
writel(val, pispbe->be_reg_base + offset);
}
/*
* Queue a job to the h/w. If the h/w is idle it will begin immediately.
* Caller must ensure it is "safe to queue", i.e. we don't already have a
* queued, unstarted job.
*/
static void pispbe_queue_job(struct pispbe_dev *pispbe,
struct pispbe_job_descriptor *job)
{
unsigned int begin, end;
if (pispbe_rd(pispbe, PISP_BE_STATUS_REG) & PISP_BE_STATUS_QUEUED)
dev_err(pispbe->dev, "ERROR: not safe to queue new job!\n");
/*
* Write configuration to hardware. DMA addresses and enable flags
* are passed separately, because the driver needs to sanitize them,
* and we don't want to modify (or be vulnerable to modifications of)
* the mmap'd buffer.
*/
for (unsigned int u = 0; u < N_HW_ADDRESSES; ++u) {
pispbe_wr(pispbe, PISP_BE_IO_ADDR_LOW(u),
lower_32_bits(job->hw_dma_addrs[u]));
pispbe_wr(pispbe, PISP_BE_IO_ADDR_HIGH(u),
upper_32_bits(job->hw_dma_addrs[u]));
}
pispbe_wr(pispbe, PISP_BE_GLOBAL_BAYER_ENABLE,
job->hw_enables.bayer_enables);
pispbe_wr(pispbe, PISP_BE_GLOBAL_RGB_ENABLE,
job->hw_enables.rgb_enables);
/* Everything else is as supplied by the user. */
begin = offsetof(struct pisp_be_config, global.bayer_order) /
sizeof(u32);
end = sizeof(struct pisp_be_config) / sizeof(u32);
for (unsigned int u = begin; u < end; u++)
pispbe_wr(pispbe, PISP_BE_CONFIG_BASE_REG + sizeof(u32) * u,
((u32 *)job->config)[u]);
/* Read back the addresses -- an error here could be fatal */
for (unsigned int u = 0; u < N_HW_ADDRESSES; ++u) {
unsigned int offset = PISP_BE_IO_ADDR_LOW(u);
u64 along = pispbe_rd(pispbe, offset);
along += ((u64)pispbe_rd(pispbe, offset + 4)) << 32;
if (along != (u64)(job->hw_dma_addrs[u])) {
dev_dbg(pispbe->dev,
"ISP BE config error: check if ISP RAMs enabled?\n");
return;
}
}
/*
* Write tile pointer to hardware. The IOMMU should prevent
* out-of-bounds offsets reaching non-ISP buffers.
*/
pispbe_wr(pispbe, PISP_BE_TILE_ADDR_LO_REG, lower_32_bits(job->tiles));
pispbe_wr(pispbe, PISP_BE_TILE_ADDR_HI_REG, upper_32_bits(job->tiles));
/* Enqueue the job */
pispbe_wr(pispbe, PISP_BE_CONTROL_REG,
PISP_BE_CONTROL_COPY_CONFIG | PISP_BE_CONTROL_QUEUE_JOB |
PISP_BE_CONTROL_NUM_TILES(job->config->num_tiles));
}
struct pispbe_buffer {
struct vb2_v4l2_buffer vb;
struct list_head ready_list;
unsigned int config_index;
};
static int pispbe_get_planes_addr(dma_addr_t addr[3], struct pispbe_buffer *buf,
struct pispbe_node *node)
{
unsigned int num_planes = node->format.fmt.pix_mp.num_planes;
unsigned int plane_factor = 0;
unsigned int size;
unsigned int p;
if (!buf || !node->pisp_format)
return 0;
/*
* Determine the base plane size. This will not be the same
* as node->format.fmt.pix_mp.plane_fmt[0].sizeimage for a single
* plane buffer in an mplane format.
*/
size = node->format.fmt.pix_mp.plane_fmt[0].bytesperline *
node->format.fmt.pix_mp.height;
for (p = 0; p < num_planes && p < PISPBE_MAX_PLANES; p++) {
addr[p] = vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, p);
plane_factor += node->pisp_format->plane_factor[p];
}
for (; p < PISPBE_MAX_PLANES && node->pisp_format->plane_factor[p]; p++) {
/*
* Calculate the address offset of this plane as needed
* by the hardware. This is specifically for non-mplane
* buffer formats, where there are 3 image planes, e.g.
* for the V4L2_PIX_FMT_YUV420 format.
*/
addr[p] = addr[0] + ((size * plane_factor) >> 3);
plane_factor += node->pisp_format->plane_factor[p];
}
return num_planes;
}
static dma_addr_t pispbe_get_addr(struct pispbe_buffer *buf)
{
if (buf)
return vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0);
return 0;
}
static void pispbe_xlate_addrs(struct pispbe_dev *pispbe,
struct pispbe_job_descriptor *job,
struct pispbe_buffer *buf[PISPBE_NUM_NODES])
{
struct pispbe_hw_enables *hw_en = &job->hw_enables;
struct pisp_be_tiles_config *config = job->config;
dma_addr_t *addrs = job->hw_dma_addrs;
int ret;
/* Take a copy of the "enable" bitmaps so we can modify them. */
hw_en->bayer_enables = config->config.global.bayer_enables;
hw_en->rgb_enables = config->config.global.rgb_enables;
/*
* Main input first. There are 3 address pointers, corresponding to up
* to 3 planes.
*/
ret = pispbe_get_planes_addr(addrs, buf[MAIN_INPUT_NODE],
&pispbe->node[MAIN_INPUT_NODE]);
if (ret <= 0) {
/*
* This shouldn't happen; pispbe_schedule_internal should insist
* on an input.
*/
dev_warn(pispbe->dev, "ISP-BE missing input\n");
hw_en->bayer_enables = 0;
hw_en->rgb_enables = 0;
return;
}
/*
* Now TDN/Stitch inputs and outputs. These are single-plane and only
* used with Bayer input. Input enables must match the requirements
* of the processing stages, otherwise the hardware can lock up!
*/
if (hw_en->bayer_enables & PISP_BE_BAYER_ENABLE_INPUT) {
addrs[3] = pispbe_get_addr(buf[TDN_INPUT_NODE]);
if (addrs[3] == 0 ||
!(hw_en->bayer_enables & PISP_BE_BAYER_ENABLE_TDN_INPUT) ||
!(hw_en->bayer_enables & PISP_BE_BAYER_ENABLE_TDN) ||
(config->config.tdn.reset & 1)) {
hw_en->bayer_enables &=
~(PISP_BE_BAYER_ENABLE_TDN_INPUT |
PISP_BE_BAYER_ENABLE_TDN_DECOMPRESS);
if (!(config->config.tdn.reset & 1))
hw_en->bayer_enables &=
~PISP_BE_BAYER_ENABLE_TDN;
}
addrs[4] = pispbe_get_addr(buf[STITCH_INPUT_NODE]);
if (addrs[4] == 0 ||
!(hw_en->bayer_enables & PISP_BE_BAYER_ENABLE_STITCH_INPUT) ||
!(hw_en->bayer_enables & PISP_BE_BAYER_ENABLE_STITCH)) {
hw_en->bayer_enables &=
~(PISP_BE_BAYER_ENABLE_STITCH_INPUT |
PISP_BE_BAYER_ENABLE_STITCH_DECOMPRESS |
PISP_BE_BAYER_ENABLE_STITCH);
}
addrs[5] = pispbe_get_addr(buf[TDN_OUTPUT_NODE]);
if (addrs[5] == 0)
hw_en->bayer_enables &=
~(PISP_BE_BAYER_ENABLE_TDN_COMPRESS |
PISP_BE_BAYER_ENABLE_TDN_OUTPUT);
addrs[6] = pispbe_get_addr(buf[STITCH_OUTPUT_NODE]);
if (addrs[6] == 0)
hw_en->bayer_enables &=
~(PISP_BE_BAYER_ENABLE_STITCH_COMPRESS |
PISP_BE_BAYER_ENABLE_STITCH_OUTPUT);
} else {
/* No Bayer input? Disable entire Bayer pipe (else lockup) */
hw_en->bayer_enables = 0;
}
/* Main image output channels. */
for (unsigned int i = 0; i < PISP_BACK_END_NUM_OUTPUTS; i++) {
ret = pispbe_get_planes_addr(addrs + 7 + 3 * i,
buf[OUTPUT0_NODE + i],
&pispbe->node[OUTPUT0_NODE + i]);
if (ret <= 0)
hw_en->rgb_enables &= ~(PISP_BE_RGB_ENABLE_OUTPUT0 << i);
}
}
/*
* Prepare a job description to be submitted to the HW.
*
* To schedule a job, we need all streaming nodes (apart from Output0,
* Output1, Tdn and Stitch) to have a buffer ready, which must
* include at least a config buffer and a main input image.
*
* For Output0, Output1, Tdn and Stitch, a buffer only needs to be
* available if the blocks are enabled in the config.
*
* Needs to be called with hw_lock held.
*
* Returns 0 if a job has been successfully prepared, < 0 otherwise.
*/
static int pispbe_prepare_job(struct pispbe_dev *pispbe,
struct pispbe_job_descriptor *job)
{
struct pispbe_buffer *buf[PISPBE_NUM_NODES] = {};
unsigned int config_index;
struct pispbe_node *node;
unsigned long flags;
lockdep_assert_held(&pispbe->hw_lock);
memset(job, 0, sizeof(struct pispbe_job_descriptor));
if (((BIT(CONFIG_NODE) | BIT(MAIN_INPUT_NODE)) &
pispbe->streaming_map) !=
(BIT(CONFIG_NODE) | BIT(MAIN_INPUT_NODE)))
return -ENODEV;
node = &pispbe->node[CONFIG_NODE];
spin_lock_irqsave(&node->ready_lock, flags);
buf[CONFIG_NODE] = list_first_entry_or_null(&node->ready_queue,
struct pispbe_buffer,
ready_list);
if (buf[CONFIG_NODE]) {
list_del(&buf[CONFIG_NODE]->ready_list);
pispbe->queued_job.buf[CONFIG_NODE] = buf[CONFIG_NODE];
}
spin_unlock_irqrestore(&node->ready_lock, flags);
/* Exit early if no config buffer has been queued. */
if (!buf[CONFIG_NODE])
return -ENODEV;
config_index = buf[CONFIG_NODE]->vb.vb2_buf.index;
job->config = &pispbe->config[config_index];
job->tiles = pispbe->config_dma_addr +
config_index * sizeof(struct pisp_be_tiles_config) +
offsetof(struct pisp_be_tiles_config, tiles);
/* remember: srcimages, captures then metadata */
for (unsigned int i = 0; i < PISPBE_NUM_NODES; i++) {
unsigned int bayer_en =
job->config->config.global.bayer_enables;
unsigned int rgb_en =
job->config->config.global.rgb_enables;
bool ignore_buffers = false;
/* Config node is handled outside the loop above. */
if (i == CONFIG_NODE)
continue;
buf[i] = NULL;
if (!(pispbe->streaming_map & BIT(i)))
continue;
if ((!(rgb_en & PISP_BE_RGB_ENABLE_OUTPUT0) &&
i == OUTPUT0_NODE) ||
(!(rgb_en & PISP_BE_RGB_ENABLE_OUTPUT1) &&
i == OUTPUT1_NODE) ||
(!(bayer_en & PISP_BE_BAYER_ENABLE_TDN_INPUT) &&
i == TDN_INPUT_NODE) ||
(!(bayer_en & PISP_BE_BAYER_ENABLE_TDN_OUTPUT) &&
i == TDN_OUTPUT_NODE) ||
(!(bayer_en & PISP_BE_BAYER_ENABLE_STITCH_INPUT) &&
i == STITCH_INPUT_NODE) ||
(!(bayer_en & PISP_BE_BAYER_ENABLE_STITCH_OUTPUT) &&
i == STITCH_OUTPUT_NODE)) {
/*
* Ignore Output0/Output1/Tdn/Stitch buffer check if the
* global enables aren't set for these blocks. If a
* buffer has been provided, we dequeue it back to the
* user with the other in-use buffers.
*/
ignore_buffers = true;
}
node = &pispbe->node[i];
/* Pull a buffer from each V4L2 queue to form the queued job */
spin_lock_irqsave(&node->ready_lock, flags);
buf[i] = list_first_entry_or_null(&node->ready_queue,
struct pispbe_buffer,
ready_list);
if (buf[i]) {
list_del(&buf[i]->ready_list);
pispbe->queued_job.buf[i] = buf[i];
}
spin_unlock_irqrestore(&node->ready_lock, flags);
if (!buf[i] && !ignore_buffers)
goto err_return_buffers;
}
pispbe->queued_job.valid = true;
/* Convert buffers to DMA addresses for the hardware */
pispbe_xlate_addrs(pispbe, job, buf);
return 0;
err_return_buffers:
for (unsigned int i = 0; i < PISPBE_NUM_NODES; i++) {
struct pispbe_node *n = &pispbe->node[i];
if (!buf[i])
continue;
/* Return the buffer to the ready_list queue */
spin_lock_irqsave(&n->ready_lock, flags);
list_add(&buf[i]->ready_list, &n->ready_queue);
spin_unlock_irqrestore(&n->ready_lock, flags);
}
memset(&pispbe->queued_job, 0, sizeof(pispbe->queued_job));
return -ENODEV;
}
static void pispbe_schedule(struct pispbe_dev *pispbe, bool clear_hw_busy)
{
struct pispbe_job_descriptor job;
unsigned long flags;
int ret;
spin_lock_irqsave(&pispbe->hw_lock, flags);
if (clear_hw_busy)
pispbe->hw_busy = false;
if (pispbe->hw_busy)
goto unlock_and_return;
ret = pispbe_prepare_job(pispbe, &job);
if (ret)
goto unlock_and_return;
/*
* We can kick the job off without the hw_lock, as this can
* never run again until hw_busy is cleared, which will happen
* only when the following job has been queued and an interrupt
* is rised.
*/
pispbe->hw_busy = true;
spin_unlock_irqrestore(&pispbe->hw_lock, flags);
if (job.config->num_tiles <= 0 ||
job.config->num_tiles > PISP_BACK_END_NUM_TILES ||
!((job.hw_enables.bayer_enables | job.hw_enables.rgb_enables) &
PISP_BE_BAYER_ENABLE_INPUT)) {
/*
* Bad job. We can't let it proceed as it could lock up
* the hardware, or worse!
*
* For now, just force num_tiles to 0, which causes the
* H/W to do something bizarre but survivable. It
* increments (started,done) counters by more than 1,
* but we seem to survive...
*/
dev_dbg(pispbe->dev, "Bad job: invalid number of tiles: %u\n",
job.config->num_tiles);
job.config->num_tiles = 0;
}
pispbe_queue_job(pispbe, &job);
return;
unlock_and_return:
/* No job has been queued, just release the lock and return. */
spin_unlock_irqrestore(&pispbe->hw_lock, flags);
}
static void pispbe_isr_jobdone(struct pispbe_dev *pispbe,
struct pispbe_job *job)
{
struct pispbe_buffer **buf = job->buf;
u64 ts = ktime_get_ns();
for (unsigned int i = 0; i < PISPBE_NUM_NODES; i++) {
if (buf[i]) {
buf[i]->vb.vb2_buf.timestamp = ts;
buf[i]->vb.sequence = pispbe->sequence;
vb2_buffer_done(&buf[i]->vb.vb2_buf,
VB2_BUF_STATE_DONE);
}
}
pispbe->sequence++;
}
static irqreturn_t pispbe_isr(int irq, void *dev)
{
struct pispbe_dev *pispbe = (struct pispbe_dev *)dev;
bool can_queue_another = false;
u8 started, done;
u32 u;
u = pispbe_rd(pispbe, PISP_BE_INTERRUPT_STATUS_REG);
if (u == 0)
return IRQ_NONE;
pispbe_wr(pispbe, PISP_BE_INTERRUPT_STATUS_REG, u);
u = pispbe_rd(pispbe, PISP_BE_BATCH_STATUS_REG);
done = (uint8_t)u;
started = (uint8_t)(u >> 8);
/*
* Be aware that done can go up by 2 and started by 1 when: a job that
* we previously saw "start" now finishes, and we then queued a new job
* which we see both start and finish "simultaneously".
*/
if (pispbe->running_job.valid && pispbe->done != done) {
pispbe_isr_jobdone(pispbe, &pispbe->running_job);
memset(&pispbe->running_job, 0, sizeof(pispbe->running_job));
pispbe->done++;
}
if (pispbe->started != started) {
pispbe->started++;
can_queue_another = 1;
if (pispbe->done != done && pispbe->queued_job.valid) {
pispbe_isr_jobdone(pispbe, &pispbe->queued_job);
pispbe->done++;
} else {
pispbe->running_job = pispbe->queued_job;
}
memset(&pispbe->queued_job, 0, sizeof(pispbe->queued_job));
}
if (pispbe->done != done || pispbe->started != started) {
dev_dbg(pispbe->dev,
"Job counters not matching: done = %u, expected %u - started = %u, expected %u\n",
pispbe->done, done, pispbe->started, started);
pispbe->started = started;
pispbe->done = done;
}
/* check if there's more to do before going to sleep */
pispbe_schedule(pispbe, can_queue_another);
return IRQ_HANDLED;
}
static int pisp_be_validate_config(struct pispbe_dev *pispbe,
struct pisp_be_tiles_config *config)
{
u32 bayer_enables = config->config.global.bayer_enables;
u32 rgb_enables = config->config.global.rgb_enables;
struct device *dev = pispbe->dev;
struct v4l2_format *fmt;
unsigned int bpl, size;
if (!(bayer_enables & PISP_BE_BAYER_ENABLE_INPUT) ==
!(rgb_enables & PISP_BE_RGB_ENABLE_INPUT)) {
dev_dbg(dev, "%s: Not one input enabled\n", __func__);
return -EIO;
}
/* Ensure output config strides and buffer sizes match the V4L2 formats. */
fmt = &pispbe->node[TDN_OUTPUT_NODE].format;
if (bayer_enables & PISP_BE_BAYER_ENABLE_TDN_OUTPUT) {
bpl = config->config.tdn_output_format.stride;
size = bpl * config->config.tdn_output_format.height;
if (fmt->fmt.pix_mp.plane_fmt[0].bytesperline < bpl) {
dev_dbg(dev, "%s: bpl mismatch on tdn_output\n",
__func__);
return -EINVAL;
}
if (fmt->fmt.pix_mp.plane_fmt[0].sizeimage < size) {
dev_dbg(dev, "%s: size mismatch on tdn_output\n",
__func__);
return -EINVAL;
}
}
fmt = &pispbe->node[STITCH_OUTPUT_NODE].format;
if (bayer_enables & PISP_BE_BAYER_ENABLE_STITCH_OUTPUT) {
bpl = config->config.stitch_output_format.stride;
size = bpl * config->config.stitch_output_format.height;
if (fmt->fmt.pix_mp.plane_fmt[0].bytesperline < bpl) {
dev_dbg(dev, "%s: bpl mismatch on stitch_output\n",
__func__);
return -EINVAL;
}
if (fmt->fmt.pix_mp.plane_fmt[0].sizeimage < size) {
dev_dbg(dev, "%s: size mismatch on stitch_output\n",
__func__);
return -EINVAL;
}
}
for (unsigned int j = 0; j < PISP_BACK_END_NUM_OUTPUTS; j++) {
if (!(rgb_enables & PISP_BE_RGB_ENABLE_OUTPUT(j)))
continue;
if (config->config.output_format[j].image.format &
PISP_IMAGE_FORMAT_WALLPAPER_ROLL)
continue; /* TODO: Size checks for wallpaper formats */
fmt = &pispbe->node[OUTPUT0_NODE + j].format;
for (unsigned int i = 0; i < fmt->fmt.pix_mp.num_planes; i++) {
bpl = !i ? config->config.output_format[j].image.stride
: config->config.output_format[j].image.stride2;
size = bpl * config->config.output_format[j].image.height;
if (config->config.output_format[j].image.format &
PISP_IMAGE_FORMAT_SAMPLING_420)
size >>= 1;
if (fmt->fmt.pix_mp.plane_fmt[i].bytesperline < bpl) {
dev_dbg(dev, "%s: bpl mismatch on output %d\n",
__func__, j);
return -EINVAL;
}
if (fmt->fmt.pix_mp.plane_fmt[i].sizeimage < size) {
dev_dbg(dev, "%s: size mismatch on output\n",
__func__);
return -EINVAL;
}
}
}
return 0;
}
static int pispbe_node_queue_setup(struct vb2_queue *q, unsigned int *nbuffers,
unsigned int *nplanes, unsigned int sizes[],
struct device *alloc_devs[])
{
struct pispbe_node *node = vb2_get_drv_priv(q);
struct pispbe_dev *pispbe = node->pispbe;
unsigned int num_planes = NODE_IS_MPLANE(node) ?
node->format.fmt.pix_mp.num_planes : 1;
if (*nplanes) {
if (*nplanes != num_planes)
return -EINVAL;
for (unsigned int i = 0; i < *nplanes; i++) {
unsigned int size = NODE_IS_MPLANE(node) ?
node->format.fmt.pix_mp.plane_fmt[i].sizeimage :
node->format.fmt.meta.buffersize;
if (sizes[i] < size)
return -EINVAL;
}
return 0;
}
*nplanes = num_planes;
for (unsigned int i = 0; i < *nplanes; i++) {
unsigned int size = NODE_IS_MPLANE(node) ?
node->format.fmt.pix_mp.plane_fmt[i].sizeimage :
node->format.fmt.meta.buffersize;
sizes[i] = size;
}
dev_dbg(pispbe->dev,
"Image (or metadata) size %u, nbuffers %u for node %s\n",
sizes[0], *nbuffers, NODE_NAME(node));
return 0;
}
static int pispbe_node_buffer_prepare(struct vb2_buffer *vb)
{
struct pispbe_node *node = vb2_get_drv_priv(vb->vb2_queue);
struct pispbe_dev *pispbe = node->pispbe;
unsigned int num_planes = NODE_IS_MPLANE(node) ?
node->format.fmt.pix_mp.num_planes : 1;
for (unsigned int i = 0; i < num_planes; i++) {
unsigned long size = NODE_IS_MPLANE(node) ?
node->format.fmt.pix_mp.plane_fmt[i].sizeimage :
node->format.fmt.meta.buffersize;
if (vb2_plane_size(vb, i) < size) {
dev_dbg(pispbe->dev,
"data will not fit into plane %d (%lu < %lu)\n",
i, vb2_plane_size(vb, i), size);
return -EINVAL;
}
vb2_set_plane_payload(vb, i, size);
}
if (node->id == CONFIG_NODE) {
void *dst = &node->pispbe->config[vb->index];
void *src = vb2_plane_vaddr(vb, 0);
memcpy(dst, src, sizeof(struct pisp_be_tiles_config));
return pisp_be_validate_config(pispbe, dst);
}
return 0;
}
static void pispbe_node_buffer_queue(struct vb2_buffer *buf)
{
struct vb2_v4l2_buffer *vbuf =
container_of(buf, struct vb2_v4l2_buffer, vb2_buf);
struct pispbe_buffer *buffer =
container_of(vbuf, struct pispbe_buffer, vb);
struct pispbe_node *node = vb2_get_drv_priv(buf->vb2_queue);
struct pispbe_dev *pispbe = node->pispbe;
unsigned long flags;
dev_dbg(pispbe->dev, "%s: for node %s\n", __func__, NODE_NAME(node));
spin_lock_irqsave(&node->ready_lock, flags);
list_add_tail(&buffer->ready_list, &node->ready_queue);
spin_unlock_irqrestore(&node->ready_lock, flags);
/*
* Every time we add a buffer, check if there's now some work for the hw
* to do.
*/
pispbe_schedule(pispbe, false);
}
static int pispbe_node_start_streaming(struct vb2_queue *q, unsigned int count)
{
struct pispbe_node *node = vb2_get_drv_priv(q);
struct pispbe_dev *pispbe = node->pispbe;
struct pispbe_buffer *buf, *tmp;
unsigned long flags;
int ret;
ret = pm_runtime_resume_and_get(pispbe->dev);
if (ret < 0)
goto err_return_buffers;
spin_lock_irqsave(&pispbe->hw_lock, flags);
node->pispbe->streaming_map |= BIT(node->id);
node->pispbe->sequence = 0;
spin_unlock_irqrestore(&pispbe->hw_lock, flags);
dev_dbg(pispbe->dev, "%s: for node %s (count %u)\n",
__func__, NODE_NAME(node), count);
dev_dbg(pispbe->dev, "Nodes streaming now 0x%x\n",
node->pispbe->streaming_map);
/* Maybe we're ready to run. */
pispbe_schedule(pispbe, false);
return 0;
err_return_buffers:
spin_lock_irqsave(&pispbe->hw_lock, flags);
list_for_each_entry_safe(buf, tmp, &node->ready_queue, ready_list) {
list_del(&buf->ready_list);
vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_QUEUED);
}
spin_unlock_irqrestore(&pispbe->hw_lock, flags);
return ret;
}
static void pispbe_node_stop_streaming(struct vb2_queue *q)
{
struct pispbe_node *node = vb2_get_drv_priv(q);
struct pispbe_dev *pispbe = node->pispbe;
struct pispbe_buffer *buf;
unsigned long flags;
/*
* Now this is a bit awkward. In a simple M2M device we could just wait
* for all queued jobs to complete, but here there's a risk that a
* partial set of buffers was queued and cannot be run. For now, just
* cancel all buffers stuck in the "ready queue", then wait for any
* running job.
*
* This may return buffers out of order.
*/
dev_dbg(pispbe->dev, "%s: for node %s\n", __func__, NODE_NAME(node));
spin_lock_irqsave(&pispbe->hw_lock, flags);
do {
unsigned long flags1;
spin_lock_irqsave(&node->ready_lock, flags1);
buf = list_first_entry_or_null(&node->ready_queue,
struct pispbe_buffer,
ready_list);
if (buf) {
list_del(&buf->ready_list);
vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
}
spin_unlock_irqrestore(&node->ready_lock, flags1);
} while (buf);
spin_unlock_irqrestore(&pispbe->hw_lock, flags);
vb2_wait_for_all_buffers(&node->queue);
spin_lock_irqsave(&pispbe->hw_lock, flags);
pispbe->streaming_map &= ~BIT(node->id);
spin_unlock_irqrestore(&pispbe->hw_lock, flags);
pm_runtime_mark_last_busy(pispbe->dev);
pm_runtime_put_autosuspend(pispbe->dev);
dev_dbg(pispbe->dev, "Nodes streaming now 0x%x\n",
pispbe->streaming_map);
}
static const struct vb2_ops pispbe_node_queue_ops = {
.queue_setup = pispbe_node_queue_setup,
.buf_prepare = pispbe_node_buffer_prepare,
.buf_queue = pispbe_node_buffer_queue,
.start_streaming = pispbe_node_start_streaming,
.stop_streaming = pispbe_node_stop_streaming,
};
static const struct v4l2_file_operations pispbe_fops = {
.owner = THIS_MODULE,
.open = v4l2_fh_open,
.release = vb2_fop_release,
.poll = vb2_fop_poll,
.unlocked_ioctl = video_ioctl2,
.mmap = vb2_fop_mmap
};
static int pispbe_node_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
struct pispbe_node *node = video_drvdata(file);
struct pispbe_dev *pispbe = node->pispbe;
strscpy(cap->driver, PISPBE_NAME, sizeof(cap->driver));
strscpy(cap->card, PISPBE_NAME, sizeof(cap->card));
dev_dbg(pispbe->dev, "Caps for node %s: %x and %x (dev %x)\n",
NODE_NAME(node), cap->capabilities, cap->device_caps,
node->vfd.device_caps);
return 0;
}
static int pispbe_node_g_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct pispbe_node *node = video_drvdata(file);
struct pispbe_dev *pispbe = node->pispbe;
if (!NODE_IS_CAPTURE(node) || NODE_IS_META(node)) {
dev_dbg(pispbe->dev,
"Cannot get capture fmt for output node %s\n",
NODE_NAME(node));
return -EINVAL;
}
*f = node->format;
dev_dbg(pispbe->dev, "Get capture format for node %s\n",
NODE_NAME(node));
return 0;
}
static int pispbe_node_g_fmt_vid_out(struct file *file, void *priv,
struct v4l2_format *f)
{
struct pispbe_node *node = video_drvdata(file);
struct pispbe_dev *pispbe = node->pispbe;
if (NODE_IS_CAPTURE(node) || NODE_IS_META(node)) {
dev_dbg(pispbe->dev,
"Cannot get capture fmt for output node %s\n",
NODE_NAME(node));
return -EINVAL;
}
*f = node->format;
dev_dbg(pispbe->dev, "Get output format for node %s\n",
NODE_NAME(node));
return 0;
}
static int pispbe_node_g_fmt_meta_out(struct file *file, void *priv,
struct v4l2_format *f)
{
struct pispbe_node *node = video_drvdata(file);
struct pispbe_dev *pispbe = node->pispbe;
if (!NODE_IS_META(node) || NODE_IS_CAPTURE(node)) {
dev_dbg(pispbe->dev,
"Cannot get capture fmt for meta output node %s\n",
NODE_NAME(node));
return -EINVAL;
}
*f = node->format;
dev_dbg(pispbe->dev, "Get output format for meta node %s\n",
NODE_NAME(node));
return 0;
}
static const struct pisp_be_format *pispbe_find_fmt(unsigned int fourcc)
{
for (unsigned int i = 0; i < ARRAY_SIZE(supported_formats); i++) {
if (supported_formats[i].fourcc == fourcc)
return &supported_formats[i];
}
return NULL;
}
static void pispbe_set_plane_params(struct v4l2_format *f,
const struct pisp_be_format *fmt)
{
unsigned int nplanes = f->fmt.pix_mp.num_planes;
unsigned int total_plane_factor = 0;
for (unsigned int i = 0; i < PISPBE_MAX_PLANES; i++)
total_plane_factor += fmt->plane_factor[i];
for (unsigned int i = 0; i < nplanes; i++) {
struct v4l2_plane_pix_format *p = &f->fmt.pix_mp.plane_fmt[i];
unsigned int bpl, plane_size;
bpl = (f->fmt.pix_mp.width * fmt->bit_depth) >> 3;
bpl = ALIGN(max(p->bytesperline, bpl), fmt->align);
plane_size = bpl * f->fmt.pix_mp.height *
(nplanes > 1 ? fmt->plane_factor[i] : total_plane_factor);
/*
* The shift is to divide out the plane_factor fixed point
* scaling of 8.
*/
plane_size = max(p->sizeimage, plane_size >> 3);
p->bytesperline = bpl;
p->sizeimage = plane_size;
}
}
static void pispbe_try_format(struct v4l2_format *f, struct pispbe_node *node)
{
struct pispbe_dev *pispbe = node->pispbe;
u32 pixfmt = f->fmt.pix_mp.pixelformat;
const struct pisp_be_format *fmt;
bool is_rgb;
dev_dbg(pispbe->dev,
"%s: [%s] req %ux%u %p4cc, planes %d\n",
__func__, NODE_NAME(node), f->fmt.pix_mp.width,
f->fmt.pix_mp.height, &pixfmt,
f->fmt.pix_mp.num_planes);
fmt = pispbe_find_fmt(pixfmt);
if (!fmt) {
dev_dbg(pispbe->dev,
"%s: [%s] Format not found, defaulting to YUV420\n",
__func__, NODE_NAME(node));
fmt = pispbe_find_fmt(V4L2_PIX_FMT_YUV420);
}
f->fmt.pix_mp.pixelformat = fmt->fourcc;
f->fmt.pix_mp.num_planes = fmt->num_planes;
f->fmt.pix_mp.field = V4L2_FIELD_NONE;
f->fmt.pix_mp.width = max(min(f->fmt.pix_mp.width, 65536u),
PISP_BACK_END_MIN_TILE_WIDTH);
f->fmt.pix_mp.height = max(min(f->fmt.pix_mp.height, 65536u),
PISP_BACK_END_MIN_TILE_HEIGHT);
/*
* Fill in the actual colour space when the requested one was
* not supported. This also catches the case when the "default"
* colour space was requested (as that's never in the mask).
*/
if (!(V4L2_COLORSPACE_MASK(f->fmt.pix_mp.colorspace) &
fmt->colorspace_mask))
f->fmt.pix_mp.colorspace = fmt->colorspace_default;
/* In all cases, we only support the defaults for these: */
f->fmt.pix_mp.ycbcr_enc =
V4L2_MAP_YCBCR_ENC_DEFAULT(f->fmt.pix_mp.colorspace);
f->fmt.pix_mp.xfer_func =
V4L2_MAP_XFER_FUNC_DEFAULT(f->fmt.pix_mp.colorspace);
is_rgb = f->fmt.pix_mp.colorspace == V4L2_COLORSPACE_SRGB;
f->fmt.pix_mp.quantization =
V4L2_MAP_QUANTIZATION_DEFAULT(is_rgb, f->fmt.pix_mp.colorspace,
f->fmt.pix_mp.ycbcr_enc);
/* Set plane size and bytes/line for each plane. */
pispbe_set_plane_params(f, fmt);
for (unsigned int i = 0; i < f->fmt.pix_mp.num_planes; i++) {
dev_dbg(pispbe->dev,
"%s: [%s] calc plane %d, %ux%u, depth %u, bpl %u size %u\n",
__func__, NODE_NAME(node), i, f->fmt.pix_mp.width,
f->fmt.pix_mp.height, fmt->bit_depth,
f->fmt.pix_mp.plane_fmt[i].bytesperline,
f->fmt.pix_mp.plane_fmt[i].sizeimage);
}
}
static int pispbe_node_try_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct pispbe_node *node = video_drvdata(file);
struct pispbe_dev *pispbe = node->pispbe;
if (!NODE_IS_CAPTURE(node) || NODE_IS_META(node)) {
dev_dbg(pispbe->dev,
"Cannot set capture fmt for output node %s\n",
NODE_NAME(node));
return -EINVAL;
}
pispbe_try_format(f, node);
return 0;
}
static int pispbe_node_try_fmt_vid_out(struct file *file, void *priv,
struct v4l2_format *f)
{
struct pispbe_node *node = video_drvdata(file);
struct pispbe_dev *pispbe = node->pispbe;
if (!NODE_IS_OUTPUT(node) || NODE_IS_META(node)) {
dev_dbg(pispbe->dev,
"Cannot set capture fmt for output node %s\n",
NODE_NAME(node));
return -EINVAL;
}
pispbe_try_format(f, node);
return 0;
}
static int pispbe_node_try_fmt_meta_out(struct file *file, void *priv,
struct v4l2_format *f)
{
struct pispbe_node *node = video_drvdata(file);
struct pispbe_dev *pispbe = node->pispbe;
if (!NODE_IS_META(node) || NODE_IS_CAPTURE(node)) {
dev_dbg(pispbe->dev,
"Cannot set capture fmt for meta output node %s\n",
NODE_NAME(node));
return -EINVAL;
}
f->fmt.meta.dataformat = V4L2_META_FMT_RPI_BE_CFG;
f->fmt.meta.buffersize = sizeof(struct pisp_be_tiles_config);
return 0;
}
static int pispbe_node_s_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct pispbe_node *node = video_drvdata(file);
struct pispbe_dev *pispbe = node->pispbe;
int ret;
ret = pispbe_node_try_fmt_vid_cap(file, priv, f);
if (ret < 0)
return ret;
if (vb2_is_busy(&node->queue))
return -EBUSY;
node->format = *f;
node->pisp_format = pispbe_find_fmt(f->fmt.pix_mp.pixelformat);
dev_dbg(pispbe->dev, "Set capture format for node %s to %p4cc\n",
NODE_NAME(node), &f->fmt.pix_mp.pixelformat);
return 0;
}
static int pispbe_node_s_fmt_vid_out(struct file *file, void *priv,
struct v4l2_format *f)
{
struct pispbe_node *node = video_drvdata(file);
struct pispbe_dev *pispbe = node->pispbe;
int ret;
ret = pispbe_node_try_fmt_vid_out(file, priv, f);
if (ret < 0)
return ret;
if (vb2_is_busy(&node->queue))
return -EBUSY;
node->format = *f;
node->pisp_format = pispbe_find_fmt(f->fmt.pix_mp.pixelformat);
dev_dbg(pispbe->dev, "Set output format for node %s to %p4cc\n",
NODE_NAME(node), &f->fmt.pix_mp.pixelformat);
return 0;
}
static int pispbe_node_s_fmt_meta_out(struct file *file, void *priv,
struct v4l2_format *f)
{
struct pispbe_node *node = video_drvdata(file);
struct pispbe_dev *pispbe = node->pispbe;
int ret;
ret = pispbe_node_try_fmt_meta_out(file, priv, f);
if (ret < 0)
return ret;
if (vb2_is_busy(&node->queue))
return -EBUSY;
node->format = *f;
node->pisp_format = &meta_out_supported_formats[0];
dev_dbg(pispbe->dev, "Set output format for meta node %s to %p4cc\n",
NODE_NAME(node), &f->fmt.meta.dataformat);
return 0;
}
static int pispbe_node_enum_fmt(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
struct pispbe_node *node = video_drvdata(file);
if (f->type != node->queue.type)
return -EINVAL;
if (NODE_IS_META(node)) {
if (f->index)
return -EINVAL;
f->pixelformat = V4L2_META_FMT_RPI_BE_CFG;
f->flags = 0;
return 0;
}
if (f->index >= ARRAY_SIZE(supported_formats))
return -EINVAL;
f->pixelformat = supported_formats[f->index].fourcc;
f->flags = 0;
return 0;
}
static int pispbe_enum_framesizes(struct file *file, void *priv,
struct v4l2_frmsizeenum *fsize)
{
struct pispbe_node *node = video_drvdata(file);
struct pispbe_dev *pispbe = node->pispbe;
if (NODE_IS_META(node) || fsize->index)
return -EINVAL;
if (!pispbe_find_fmt(fsize->pixel_format)) {
dev_dbg(pispbe->dev, "Invalid pixel code: %x\n",
fsize->pixel_format);
return -EINVAL;
}
fsize->type = V4L2_FRMSIZE_TYPE_STEPWISE;
fsize->stepwise.min_width = 32;
fsize->stepwise.max_width = 65535;
fsize->stepwise.step_width = 2;
fsize->stepwise.min_height = 32;
fsize->stepwise.max_height = 65535;
fsize->stepwise.step_height = 2;
return 0;
}
static const struct v4l2_ioctl_ops pispbe_node_ioctl_ops = {
.vidioc_querycap = pispbe_node_querycap,
.vidioc_g_fmt_vid_cap_mplane = pispbe_node_g_fmt_vid_cap,
.vidioc_g_fmt_vid_out_mplane = pispbe_node_g_fmt_vid_out,
.vidioc_g_fmt_meta_out = pispbe_node_g_fmt_meta_out,
.vidioc_try_fmt_vid_cap_mplane = pispbe_node_try_fmt_vid_cap,
.vidioc_try_fmt_vid_out_mplane = pispbe_node_try_fmt_vid_out,
.vidioc_try_fmt_meta_out = pispbe_node_try_fmt_meta_out,
.vidioc_s_fmt_vid_cap_mplane = pispbe_node_s_fmt_vid_cap,
.vidioc_s_fmt_vid_out_mplane = pispbe_node_s_fmt_vid_out,
.vidioc_s_fmt_meta_out = pispbe_node_s_fmt_meta_out,
.vidioc_enum_fmt_vid_cap = pispbe_node_enum_fmt,
.vidioc_enum_fmt_vid_out = pispbe_node_enum_fmt,
.vidioc_enum_fmt_meta_out = pispbe_node_enum_fmt,
.vidioc_enum_framesizes = pispbe_enum_framesizes,
.vidioc_create_bufs = vb2_ioctl_create_bufs,
.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
.vidioc_querybuf = vb2_ioctl_querybuf,
.vidioc_qbuf = vb2_ioctl_qbuf,
.vidioc_dqbuf = vb2_ioctl_dqbuf,
.vidioc_expbuf = vb2_ioctl_expbuf,
.vidioc_reqbufs = vb2_ioctl_reqbufs,
.vidioc_streamon = vb2_ioctl_streamon,
.vidioc_streamoff = vb2_ioctl_streamoff,
};
static const struct video_device pispbe_videodev = {
.name = PISPBE_NAME,
.vfl_dir = VFL_DIR_M2M, /* gets overwritten */
.fops = &pispbe_fops,
.ioctl_ops = &pispbe_node_ioctl_ops,
.minor = -1,
.release = video_device_release_empty,
};
static void pispbe_node_def_fmt(struct pispbe_node *node)
{
if (NODE_IS_META(node) && NODE_IS_OUTPUT(node)) {
/* Config node */
struct v4l2_format *f = &node->format;
f->fmt.meta.dataformat = V4L2_META_FMT_RPI_BE_CFG;
f->fmt.meta.buffersize = sizeof(struct pisp_be_tiles_config);
f->type = node->buf_type;
} else {
struct v4l2_format f = {
.fmt.pix_mp.pixelformat = V4L2_PIX_FMT_YUV420,
.fmt.pix_mp.width = 1920,
.fmt.pix_mp.height = 1080,
.type = node->buf_type,
};
pispbe_try_format(&f, node);
node->format = f;
}
node->pisp_format = pispbe_find_fmt(node->format.fmt.pix_mp.pixelformat);
}
/*
* Initialise a struct pispbe_node and register it as /dev/video<N>
* to represent one of the PiSP Back End's input or output streams.
*/
static int pispbe_init_node(struct pispbe_dev *pispbe, unsigned int id)
{
bool output = NODE_DESC_IS_OUTPUT(&node_desc[id]);
struct pispbe_node *node = &pispbe->node[id];
struct media_entity *entity = &node->vfd.entity;
struct video_device *vdev = &node->vfd;
struct vb2_queue *q = &node->queue;
int ret;
node->id = id;
node->pispbe = pispbe;
node->buf_type = node_desc[id].buf_type;
mutex_init(&node->node_lock);
mutex_init(&node->queue_lock);
INIT_LIST_HEAD(&node->ready_queue);
spin_lock_init(&node->ready_lock);
node->format.type = node->buf_type;
pispbe_node_def_fmt(node);
q->type = node->buf_type;
q->io_modes = VB2_MMAP | VB2_DMABUF;
q->mem_ops = &vb2_dma_contig_memops;
q->drv_priv = node;
q->ops = &pispbe_node_queue_ops;
q->buf_struct_size = sizeof(struct pispbe_buffer);
q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
q->dev = pispbe->dev;
/* get V4L2 to handle node->queue locking */
q->lock = &node->queue_lock;
ret = vb2_queue_init(q);
if (ret < 0) {
dev_err(pispbe->dev, "vb2_queue_init failed\n");
goto err_mutex_destroy;
}
*vdev = pispbe_videodev; /* default initialization */
strscpy(vdev->name, node_desc[id].ent_name, sizeof(vdev->name));
vdev->v4l2_dev = &pispbe->v4l2_dev;
vdev->vfl_dir = output ? VFL_DIR_TX : VFL_DIR_RX;
/* get V4L2 to serialise our ioctls */
vdev->lock = &node->node_lock;
vdev->queue = &node->queue;
vdev->device_caps = V4L2_CAP_STREAMING | node_desc[id].caps;
node->pad.flags = output ? MEDIA_PAD_FL_SOURCE : MEDIA_PAD_FL_SINK;
ret = media_entity_pads_init(entity, 1, &node->pad);
if (ret) {
dev_err(pispbe->dev,
"Failed to register media pads for %s device node\n",
NODE_NAME(node));
goto err_unregister_queue;
}
ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
if (ret) {
dev_err(pispbe->dev,
"Failed to register video %s device node\n",
NODE_NAME(node));
goto err_unregister_queue;
}
video_set_drvdata(vdev, node);
if (output)
ret = media_create_pad_link(entity, 0, &pispbe->sd.entity,
id, MEDIA_LNK_FL_IMMUTABLE |
MEDIA_LNK_FL_ENABLED);
else
ret = media_create_pad_link(&pispbe->sd.entity, id, entity,
0, MEDIA_LNK_FL_IMMUTABLE |
MEDIA_LNK_FL_ENABLED);
if (ret)
goto err_unregister_video_dev;
dev_dbg(pispbe->dev, "%s device node registered as /dev/video%d\n",
NODE_NAME(node), node->vfd.num);
return 0;
err_unregister_video_dev:
video_unregister_device(&node->vfd);
err_unregister_queue:
vb2_queue_release(&node->queue);
err_mutex_destroy:
mutex_destroy(&node->node_lock);
mutex_destroy(&node->queue_lock);
return ret;
}
static const struct v4l2_subdev_pad_ops pispbe_pad_ops = {
.link_validate = v4l2_subdev_link_validate_default,
};
static const struct v4l2_subdev_ops pispbe_sd_ops = {
.pad = &pispbe_pad_ops,
};
static int pispbe_init_subdev(struct pispbe_dev *pispbe)
{
struct v4l2_subdev *sd = &pispbe->sd;
int ret;
v4l2_subdev_init(sd, &pispbe_sd_ops);
sd->entity.function = MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER;
sd->owner = THIS_MODULE;
sd->dev = pispbe->dev;
strscpy(sd->name, PISPBE_NAME, sizeof(sd->name));
for (unsigned int i = 0; i < PISPBE_NUM_NODES; i++)
pispbe->pad[i].flags =
NODE_DESC_IS_OUTPUT(&node_desc[i]) ?
MEDIA_PAD_FL_SINK : MEDIA_PAD_FL_SOURCE;
ret = media_entity_pads_init(&sd->entity, PISPBE_NUM_NODES,
pispbe->pad);
if (ret)
goto error;
ret = v4l2_device_register_subdev(&pispbe->v4l2_dev, sd);
if (ret)
goto error;
return 0;
error:
media_entity_cleanup(&sd->entity);
return ret;
}
static int pispbe_init_devices(struct pispbe_dev *pispbe)
{
struct v4l2_device *v4l2_dev;
struct media_device *mdev;
unsigned int num_regist;
int ret;
/* Register v4l2_device and media_device */
mdev = &pispbe->mdev;
mdev->hw_revision = pispbe->hw_version;
mdev->dev = pispbe->dev;
strscpy(mdev->model, PISPBE_NAME, sizeof(mdev->model));
media_device_init(mdev);
v4l2_dev = &pispbe->v4l2_dev;
v4l2_dev->mdev = &pispbe->mdev;
strscpy(v4l2_dev->name, PISPBE_NAME, sizeof(v4l2_dev->name));
ret = v4l2_device_register(pispbe->dev, v4l2_dev);
if (ret)
goto err_media_dev_cleanup;
/* Register the PISPBE subdevice. */
ret = pispbe_init_subdev(pispbe);
if (ret)
goto err_unregister_v4l2;
/* Create device video nodes */
for (num_regist = 0; num_regist < PISPBE_NUM_NODES; num_regist++) {
ret = pispbe_init_node(pispbe, num_regist);
if (ret)
goto err_unregister_nodes;
}
ret = media_device_register(mdev);
if (ret)
goto err_unregister_nodes;
pispbe->config =
dma_alloc_coherent(pispbe->dev,
sizeof(struct pisp_be_tiles_config) *
PISP_BE_NUM_CONFIG_BUFFERS,
&pispbe->config_dma_addr, GFP_KERNEL);
if (!pispbe->config) {
dev_err(pispbe->dev, "Unable to allocate cached config buffers.\n");
ret = -ENOMEM;
goto err_unregister_mdev;
}
return 0;
err_unregister_mdev:
media_device_unregister(mdev);
err_unregister_nodes:
while (num_regist-- > 0) {
video_unregister_device(&pispbe->node[num_regist].vfd);
vb2_queue_release(&pispbe->node[num_regist].queue);
}
v4l2_device_unregister_subdev(&pispbe->sd);
media_entity_cleanup(&pispbe->sd.entity);
err_unregister_v4l2:
v4l2_device_unregister(v4l2_dev);
err_media_dev_cleanup:
media_device_cleanup(mdev);
return ret;
}
static void pispbe_destroy_devices(struct pispbe_dev *pispbe)
{
if (pispbe->config) {
dma_free_coherent(pispbe->dev,
sizeof(struct pisp_be_tiles_config) *
PISP_BE_NUM_CONFIG_BUFFERS,
pispbe->config,
pispbe->config_dma_addr);
}
dev_dbg(pispbe->dev, "Unregister from media controller\n");
v4l2_device_unregister_subdev(&pispbe->sd);
media_entity_cleanup(&pispbe->sd.entity);
media_device_unregister(&pispbe->mdev);
for (int i = PISPBE_NUM_NODES - 1; i >= 0; i--) {
video_unregister_device(&pispbe->node[i].vfd);
vb2_queue_release(&pispbe->node[i].queue);
mutex_destroy(&pispbe->node[i].node_lock);
mutex_destroy(&pispbe->node[i].queue_lock);
}
media_device_cleanup(&pispbe->mdev);
v4l2_device_unregister(&pispbe->v4l2_dev);
}
static int pispbe_runtime_suspend(struct device *dev)
{
struct pispbe_dev *pispbe = dev_get_drvdata(dev);
clk_disable_unprepare(pispbe->clk);
return 0;
}
static int pispbe_runtime_resume(struct device *dev)
{
struct pispbe_dev *pispbe = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(pispbe->clk);
if (ret) {
dev_err(dev, "Unable to enable clock\n");
return ret;
}
dev_dbg(dev, "%s: Enabled clock, rate=%lu\n",
__func__, clk_get_rate(pispbe->clk));
return 0;
}
static int pispbe_hw_init(struct pispbe_dev *pispbe)
{
u32 u;
/* Check the HW is present and has a known version */
u = pispbe_rd(pispbe, PISP_BE_VERSION_REG);
dev_dbg(pispbe->dev, "pispbe_probe: HW version: 0x%08x", u);
pispbe->hw_version = u;
if ((u & ~PISP_BE_VERSION_MINOR_BITS) != PISP_BE_VERSION_2712)
return -ENODEV;
/* Clear leftover interrupts */
pispbe_wr(pispbe, PISP_BE_INTERRUPT_STATUS_REG, 0xFFFFFFFFu);
u = pispbe_rd(pispbe, PISP_BE_BATCH_STATUS_REG);
dev_dbg(pispbe->dev, "pispbe_probe: BatchStatus: 0x%08x", u);
pispbe->done = (uint8_t)u;
pispbe->started = (uint8_t)(u >> 8);
u = pispbe_rd(pispbe, PISP_BE_STATUS_REG);
dev_dbg(pispbe->dev, "pispbe_probe: Status: 0x%08x", u);
if (u != 0 || pispbe->done != pispbe->started) {
dev_err(pispbe->dev, "pispbe_probe: HW is stuck or busy\n");
return -EBUSY;
}
/*
* AXI QOS=0, CACHE=4'b0010, PROT=3'b011
* Also set "chicken bits" 22:20 which enable sub-64-byte bursts
* and AXI AWID/BID variability (on versions which support this).
*/
pispbe_wr(pispbe, PISP_BE_AXI_REG, 0x32703200u);
/* Enable both interrupt flags */
pispbe_wr(pispbe, PISP_BE_INTERRUPT_EN_REG, 0x00000003u);
return 0;
}
/* Probe the ISP-BE hardware block, as a single platform device. */
static int pispbe_probe(struct platform_device *pdev)
{
struct pispbe_dev *pispbe;
int ret;
pispbe = devm_kzalloc(&pdev->dev, sizeof(*pispbe), GFP_KERNEL);
if (!pispbe)
return -ENOMEM;
dev_set_drvdata(&pdev->dev, pispbe);
pispbe->dev = &pdev->dev;
platform_set_drvdata(pdev, pispbe);
pispbe->be_reg_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(pispbe->be_reg_base)) {
dev_err(&pdev->dev, "Failed to get ISP-BE registers address\n");
return PTR_ERR(pispbe->be_reg_base);
}
pispbe->irq = platform_get_irq(pdev, 0);
if (pispbe->irq <= 0)
return -EINVAL;
ret = devm_request_irq(&pdev->dev, pispbe->irq, pispbe_isr, 0,
PISPBE_NAME, pispbe);
if (ret) {
dev_err(&pdev->dev, "Unable to request interrupt\n");
return ret;
}
ret = dma_set_mask_and_coherent(pispbe->dev, DMA_BIT_MASK(36));
if (ret)
return ret;
pispbe->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(pispbe->clk))
return dev_err_probe(&pdev->dev, PTR_ERR(pispbe->clk),
"Failed to get clock");
/* Hardware initialisation */
pm_runtime_set_autosuspend_delay(pispbe->dev, 200);
pm_runtime_use_autosuspend(pispbe->dev);
pm_runtime_enable(pispbe->dev);
ret = pispbe_runtime_resume(pispbe->dev);
if (ret)
goto pm_runtime_disable_err;
pispbe->hw_busy = false;
spin_lock_init(&pispbe->hw_lock);
ret = pispbe_hw_init(pispbe);
if (ret)
goto pm_runtime_suspend_err;
ret = pispbe_init_devices(pispbe);
if (ret)
goto disable_devs_err;
pm_runtime_mark_last_busy(pispbe->dev);
pm_runtime_put_autosuspend(pispbe->dev);
return 0;
disable_devs_err:
pispbe_destroy_devices(pispbe);
pm_runtime_suspend_err:
pispbe_runtime_suspend(pispbe->dev);
pm_runtime_disable_err:
pm_runtime_dont_use_autosuspend(pispbe->dev);
pm_runtime_disable(pispbe->dev);
return ret;
}
static void pispbe_remove(struct platform_device *pdev)
{
struct pispbe_dev *pispbe = platform_get_drvdata(pdev);
pispbe_destroy_devices(pispbe);
pispbe_runtime_suspend(pispbe->dev);
pm_runtime_dont_use_autosuspend(pispbe->dev);
pm_runtime_disable(pispbe->dev);
}
static const struct dev_pm_ops pispbe_pm_ops = {
SET_RUNTIME_PM_OPS(pispbe_runtime_suspend, pispbe_runtime_resume, NULL)
};
static const struct of_device_id pispbe_of_match[] = {
{
.compatible = "raspberrypi,pispbe",
},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, pispbe_of_match);
static struct platform_driver pispbe_pdrv = {
.probe = pispbe_probe,
.remove_new = pispbe_remove,
.driver = {
.name = PISPBE_NAME,
.of_match_table = pispbe_of_match,
.pm = &pispbe_pm_ops,
},
};
module_platform_driver(pispbe_pdrv);
MODULE_DESCRIPTION("PiSP Back End driver");
MODULE_AUTHOR("David Plowman <[email protected]>");
MODULE_AUTHOR("Nick Hollinghurst <[email protected]>");
MODULE_LICENSE("GPL");