// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2024- IBM Corp.
*
* X25519 scalar multiplication with 51 bits limbs for PPC64le.
* Based on RFC7748 and AArch64 optimized implementation for X25519
* - Algorithm 1 Scalar multiplication of a variable point
*/
#include <crypto/curve25519.h>
#include <crypto/internal/kpp.h>
#include <linux/types.h>
#include <linux/jump_label.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/cpufeature.h>
#include <linux/processor.h>
typedef uint64_t fe51[5];
asmlinkage void x25519_fe51_mul(fe51 h, const fe51 f, const fe51 g);
asmlinkage void x25519_fe51_sqr(fe51 h, const fe51 f);
asmlinkage void x25519_fe51_mul121666(fe51 h, fe51 f);
asmlinkage void x25519_fe51_sqr_times(fe51 h, const fe51 f, int n);
asmlinkage void x25519_fe51_frombytes(fe51 h, const uint8_t *s);
asmlinkage void x25519_fe51_tobytes(uint8_t *s, const fe51 h);
asmlinkage void x25519_cswap(fe51 p, fe51 q, unsigned int bit);
#define fmul x25519_fe51_mul
#define fsqr x25519_fe51_sqr
#define fmul121666 x25519_fe51_mul121666
#define fe51_tobytes x25519_fe51_tobytes
static void fadd(fe51 h, const fe51 f, const fe51 g)
{
h[0] = f[0] + g[0];
h[1] = f[1] + g[1];
h[2] = f[2] + g[2];
h[3] = f[3] + g[3];
h[4] = f[4] + g[4];
}
/*
* Prime = 2 ** 255 - 19, 255 bits
* (0x7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffed)
*
* Prime in 5 51-bit limbs
*/
static fe51 prime51 = { 0x7ffffffffffed, 0x7ffffffffffff, 0x7ffffffffffff, 0x7ffffffffffff, 0x7ffffffffffff};
static void fsub(fe51 h, const fe51 f, const fe51 g)
{
h[0] = (f[0] + ((prime51[0] * 2))) - g[0];
h[1] = (f[1] + ((prime51[1] * 2))) - g[1];
h[2] = (f[2] + ((prime51[2] * 2))) - g[2];
h[3] = (f[3] + ((prime51[3] * 2))) - g[3];
h[4] = (f[4] + ((prime51[4] * 2))) - g[4];
}
static void fe51_frombytes(fe51 h, const uint8_t *s)
{
/*
* Make sure 64-bit aligned.
*/
unsigned char sbuf[32+8];
unsigned char *sb = PTR_ALIGN((void *)sbuf, 8);
memcpy(sb, s, 32);
x25519_fe51_frombytes(h, sb);
}
static void finv(fe51 o, const fe51 i)
{
fe51 a0, b, c, t00;
fsqr(a0, i);
x25519_fe51_sqr_times(t00, a0, 2);
fmul(b, t00, i);
fmul(a0, b, a0);
fsqr(t00, a0);
fmul(b, t00, b);
x25519_fe51_sqr_times(t00, b, 5);
fmul(b, t00, b);
x25519_fe51_sqr_times(t00, b, 10);
fmul(c, t00, b);
x25519_fe51_sqr_times(t00, c, 20);
fmul(t00, t00, c);
x25519_fe51_sqr_times(t00, t00, 10);
fmul(b, t00, b);
x25519_fe51_sqr_times(t00, b, 50);
fmul(c, t00, b);
x25519_fe51_sqr_times(t00, c, 100);
fmul(t00, t00, c);
x25519_fe51_sqr_times(t00, t00, 50);
fmul(t00, t00, b);
x25519_fe51_sqr_times(t00, t00, 5);
fmul(o, t00, a0);
}
static void curve25519_fe51(uint8_t out[32], const uint8_t scalar[32],
const uint8_t point[32])
{
fe51 x1, x2, z2, x3, z3;
uint8_t s[32];
unsigned int swap = 0;
int i;
memcpy(s, scalar, 32);
s[0] &= 0xf8;
s[31] &= 0x7f;
s[31] |= 0x40;
fe51_frombytes(x1, point);
z2[0] = z2[1] = z2[2] = z2[3] = z2[4] = 0;
x3[0] = x1[0];
x3[1] = x1[1];
x3[2] = x1[2];
x3[3] = x1[3];
x3[4] = x1[4];
x2[0] = z3[0] = 1;
x2[1] = z3[1] = 0;
x2[2] = z3[2] = 0;
x2[3] = z3[3] = 0;
x2[4] = z3[4] = 0;
for (i = 254; i >= 0; --i) {
unsigned int k_t = 1 & (s[i / 8] >> (i & 7));
fe51 a, b, c, d, e;
fe51 da, cb, aa, bb;
fe51 dacb_p, dacb_m;
swap ^= k_t;
x25519_cswap(x2, x3, swap);
x25519_cswap(z2, z3, swap);
swap = k_t;
fsub(b, x2, z2); // B = x_2 - z_2
fadd(a, x2, z2); // A = x_2 + z_2
fsub(d, x3, z3); // D = x_3 - z_3
fadd(c, x3, z3); // C = x_3 + z_3
fsqr(bb, b); // BB = B^2
fsqr(aa, a); // AA = A^2
fmul(da, d, a); // DA = D * A
fmul(cb, c, b); // CB = C * B
fsub(e, aa, bb); // E = AA - BB
fmul(x2, aa, bb); // x2 = AA * BB
fadd(dacb_p, da, cb); // DA + CB
fsub(dacb_m, da, cb); // DA - CB
fmul121666(z3, e); // 121666 * E
fsqr(z2, dacb_m); // (DA - CB)^2
fsqr(x3, dacb_p); // x3 = (DA + CB)^2
fadd(b, bb, z3); // BB + 121666 * E
fmul(z3, x1, z2); // z3 = x1 * (DA - CB)^2
fmul(z2, e, b); // z2 = e * (BB + (DA + CB)^2)
}
finv(z2, z2);
fmul(x2, x2, z2);
fe51_tobytes(out, x2);
}
void curve25519_arch(u8 mypublic[CURVE25519_KEY_SIZE],
const u8 secret[CURVE25519_KEY_SIZE],
const u8 basepoint[CURVE25519_KEY_SIZE])
{
curve25519_fe51(mypublic, secret, basepoint);
}
EXPORT_SYMBOL(curve25519_arch);
void curve25519_base_arch(u8 pub[CURVE25519_KEY_SIZE],
const u8 secret[CURVE25519_KEY_SIZE])
{
curve25519_fe51(pub, secret, curve25519_base_point);
}
EXPORT_SYMBOL(curve25519_base_arch);
static int curve25519_set_secret(struct crypto_kpp *tfm, const void *buf,
unsigned int len)
{
u8 *secret = kpp_tfm_ctx(tfm);
if (!len)
curve25519_generate_secret(secret);
else if (len == CURVE25519_KEY_SIZE &&
crypto_memneq(buf, curve25519_null_point, CURVE25519_KEY_SIZE))
memcpy(secret, buf, CURVE25519_KEY_SIZE);
else
return -EINVAL;
return 0;
}
static int curve25519_generate_public_key(struct kpp_request *req)
{
struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
const u8 *secret = kpp_tfm_ctx(tfm);
u8 buf[CURVE25519_KEY_SIZE];
int copied, nbytes;
if (req->src)
return -EINVAL;
curve25519_base_arch(buf, secret);
/* might want less than we've got */
nbytes = min_t(size_t, CURVE25519_KEY_SIZE, req->dst_len);
copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst,
nbytes),
buf, nbytes);
if (copied != nbytes)
return -EINVAL;
return 0;
}
static int curve25519_compute_shared_secret(struct kpp_request *req)
{
struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
const u8 *secret = kpp_tfm_ctx(tfm);
u8 public_key[CURVE25519_KEY_SIZE];
u8 buf[CURVE25519_KEY_SIZE];
int copied, nbytes;
if (!req->src)
return -EINVAL;
copied = sg_copy_to_buffer(req->src,
sg_nents_for_len(req->src,
CURVE25519_KEY_SIZE),
public_key, CURVE25519_KEY_SIZE);
if (copied != CURVE25519_KEY_SIZE)
return -EINVAL;
curve25519_arch(buf, secret, public_key);
/* might want less than we've got */
nbytes = min_t(size_t, CURVE25519_KEY_SIZE, req->dst_len);
copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst,
nbytes),
buf, nbytes);
if (copied != nbytes)
return -EINVAL;
return 0;
}
static unsigned int curve25519_max_size(struct crypto_kpp *tfm)
{
return CURVE25519_KEY_SIZE;
}
static struct kpp_alg curve25519_alg = {
.base.cra_name = "curve25519",
.base.cra_driver_name = "curve25519-ppc64le",
.base.cra_priority = 200,
.base.cra_module = THIS_MODULE,
.base.cra_ctxsize = CURVE25519_KEY_SIZE,
.set_secret = curve25519_set_secret,
.generate_public_key = curve25519_generate_public_key,
.compute_shared_secret = curve25519_compute_shared_secret,
.max_size = curve25519_max_size,
};
static int __init curve25519_mod_init(void)
{
return IS_REACHABLE(CONFIG_CRYPTO_KPP) ?
crypto_register_kpp(&curve25519_alg) : 0;
}
static void __exit curve25519_mod_exit(void)
{
if (IS_REACHABLE(CONFIG_CRYPTO_KPP))
crypto_unregister_kpp(&curve25519_alg);
}
module_init(curve25519_mod_init);
module_exit(curve25519_mod_exit);
MODULE_ALIAS_CRYPTO("curve25519");
MODULE_ALIAS_CRYPTO("curve25519-ppc64le");
MODULE_DESCRIPTION("PPC64le Curve25519 scalar multiplication with 51 bits limbs");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Danny Tsen <[email protected]>");