// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2014-2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/errno.h>
#include <linux/acpi.h>
#include <linux/hash.h>
#include <linux/cpufreq.h>
#include <linux/log2.h>
#include <linux/dmi.h>
#include <linux/atomic.h>
#include <linux/crc16.h>
#include "kfd_priv.h"
#include "kfd_crat.h"
#include "kfd_topology.h"
#include "kfd_device_queue_manager.h"
#include "kfd_svm.h"
#include "kfd_debug.h"
#include "amdgpu_amdkfd.h"
#include "amdgpu_ras.h"
#include "amdgpu.h"
/* topology_device_list - Master list of all topology devices */
static struct list_head topology_device_list;
static struct kfd_system_properties sys_props;
static DECLARE_RWSEM(topology_lock);
static uint32_t topology_crat_proximity_domain;
struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
uint32_t proximity_domain)
{
struct kfd_topology_device *top_dev;
struct kfd_topology_device *device = NULL;
list_for_each_entry(top_dev, &topology_device_list, list)
if (top_dev->proximity_domain == proximity_domain) {
device = top_dev;
break;
}
return device;
}
struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
uint32_t proximity_domain)
{
struct kfd_topology_device *device = NULL;
down_read(&topology_lock);
device = kfd_topology_device_by_proximity_domain_no_lock(
proximity_domain);
up_read(&topology_lock);
return device;
}
struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
{
struct kfd_topology_device *top_dev = NULL;
struct kfd_topology_device *ret = NULL;
down_read(&topology_lock);
list_for_each_entry(top_dev, &topology_device_list, list)
if (top_dev->gpu_id == gpu_id) {
ret = top_dev;
break;
}
up_read(&topology_lock);
return ret;
}
struct kfd_node *kfd_device_by_id(uint32_t gpu_id)
{
struct kfd_topology_device *top_dev;
top_dev = kfd_topology_device_by_id(gpu_id);
if (!top_dev)
return NULL;
return top_dev->gpu;
}
struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev)
{
struct kfd_topology_device *top_dev;
struct kfd_node *device = NULL;
down_read(&topology_lock);
list_for_each_entry(top_dev, &topology_device_list, list)
if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) {
device = top_dev->gpu;
break;
}
up_read(&topology_lock);
return device;
}
/* Called with write topology_lock acquired */
static void kfd_release_topology_device(struct kfd_topology_device *dev)
{
struct kfd_mem_properties *mem;
struct kfd_cache_properties *cache;
struct kfd_iolink_properties *iolink;
struct kfd_iolink_properties *p2plink;
struct kfd_perf_properties *perf;
list_del(&dev->list);
while (dev->mem_props.next != &dev->mem_props) {
mem = container_of(dev->mem_props.next,
struct kfd_mem_properties, list);
list_del(&mem->list);
kfree(mem);
}
while (dev->cache_props.next != &dev->cache_props) {
cache = container_of(dev->cache_props.next,
struct kfd_cache_properties, list);
list_del(&cache->list);
kfree(cache);
}
while (dev->io_link_props.next != &dev->io_link_props) {
iolink = container_of(dev->io_link_props.next,
struct kfd_iolink_properties, list);
list_del(&iolink->list);
kfree(iolink);
}
while (dev->p2p_link_props.next != &dev->p2p_link_props) {
p2plink = container_of(dev->p2p_link_props.next,
struct kfd_iolink_properties, list);
list_del(&p2plink->list);
kfree(p2plink);
}
while (dev->perf_props.next != &dev->perf_props) {
perf = container_of(dev->perf_props.next,
struct kfd_perf_properties, list);
list_del(&perf->list);
kfree(perf);
}
kfree(dev);
}
void kfd_release_topology_device_list(struct list_head *device_list)
{
struct kfd_topology_device *dev;
while (!list_empty(device_list)) {
dev = list_first_entry(device_list,
struct kfd_topology_device, list);
kfd_release_topology_device(dev);
}
}
static void kfd_release_live_view(void)
{
kfd_release_topology_device_list(&topology_device_list);
memset(&sys_props, 0, sizeof(sys_props));
}
struct kfd_topology_device *kfd_create_topology_device(
struct list_head *device_list)
{
struct kfd_topology_device *dev;
dev = kfd_alloc_struct(dev);
if (!dev) {
pr_err("No memory to allocate a topology device");
return NULL;
}
INIT_LIST_HEAD(&dev->mem_props);
INIT_LIST_HEAD(&dev->cache_props);
INIT_LIST_HEAD(&dev->io_link_props);
INIT_LIST_HEAD(&dev->p2p_link_props);
INIT_LIST_HEAD(&dev->perf_props);
list_add_tail(&dev->list, device_list);
return dev;
}
#define sysfs_show_gen_prop(buffer, offs, fmt, ...) \
(offs += snprintf(buffer+offs, PAGE_SIZE-offs, \
fmt, __VA_ARGS__))
#define sysfs_show_32bit_prop(buffer, offs, name, value) \
sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
#define sysfs_show_64bit_prop(buffer, offs, name, value) \
sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
#define sysfs_show_32bit_val(buffer, offs, value) \
sysfs_show_gen_prop(buffer, offs, "%u\n", value)
#define sysfs_show_str_val(buffer, offs, value) \
sysfs_show_gen_prop(buffer, offs, "%s\n", value)
static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
int offs = 0;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
if (attr == &sys_props.attr_genid) {
sysfs_show_32bit_val(buffer, offs,
sys_props.generation_count);
} else if (attr == &sys_props.attr_props) {
sysfs_show_64bit_prop(buffer, offs, "platform_oem",
sys_props.platform_oem);
sysfs_show_64bit_prop(buffer, offs, "platform_id",
sys_props.platform_id);
sysfs_show_64bit_prop(buffer, offs, "platform_rev",
sys_props.platform_rev);
} else {
offs = -EINVAL;
}
return offs;
}
static void kfd_topology_kobj_release(struct kobject *kobj)
{
kfree(kobj);
}
static const struct sysfs_ops sysprops_ops = {
.show = sysprops_show,
};
static const struct kobj_type sysprops_type = {
.release = kfd_topology_kobj_release,
.sysfs_ops = &sysprops_ops,
};
static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
int offs = 0;
struct kfd_iolink_properties *iolink;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
iolink = container_of(attr, struct kfd_iolink_properties, attr);
if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
return -EPERM;
sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
iolink->min_bandwidth);
sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
iolink->max_bandwidth);
sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
iolink->rec_transfer_size);
sysfs_show_32bit_prop(buffer, offs, "recommended_sdma_engine_id_mask",
iolink->rec_sdma_eng_id_mask);
sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
return offs;
}
static const struct sysfs_ops iolink_ops = {
.show = iolink_show,
};
static const struct kobj_type iolink_type = {
.release = kfd_topology_kobj_release,
.sysfs_ops = &iolink_ops,
};
static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
int offs = 0;
struct kfd_mem_properties *mem;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
mem = container_of(attr, struct kfd_mem_properties, attr);
if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
return -EPERM;
sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
mem->size_in_bytes);
sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
mem->mem_clk_max);
return offs;
}
static const struct sysfs_ops mem_ops = {
.show = mem_show,
};
static const struct kobj_type mem_type = {
.release = kfd_topology_kobj_release,
.sysfs_ops = &mem_ops,
};
static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
int offs = 0;
uint32_t i, j;
struct kfd_cache_properties *cache;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
cache = container_of(attr, struct kfd_cache_properties, attr);
if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
return -EPERM;
sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
cache->processor_id_low);
sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
cache->cacheline_size);
sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
cache->cachelines_per_tag);
sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
for (i = 0; i < cache->sibling_map_size; i++)
for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
/* Check each bit */
offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
(cache->sibling_map[i] >> j) & 1);
/* Replace the last "," with end of line */
buffer[offs-1] = '\n';
return offs;
}
static const struct sysfs_ops cache_ops = {
.show = kfd_cache_show,
};
static const struct kobj_type cache_type = {
.release = kfd_topology_kobj_release,
.sysfs_ops = &cache_ops,
};
/****** Sysfs of Performance Counters ******/
struct kfd_perf_attr {
struct kobj_attribute attr;
uint32_t data;
};
static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
char *buf)
{
int offs = 0;
struct kfd_perf_attr *attr;
buf[0] = 0;
attr = container_of(attrs, struct kfd_perf_attr, attr);
if (!attr->data) /* invalid data for PMC */
return 0;
else
return sysfs_show_32bit_val(buf, offs, attr->data);
}
#define KFD_PERF_DESC(_name, _data) \
{ \
.attr = __ATTR(_name, 0444, perf_show, NULL), \
.data = _data, \
}
static struct kfd_perf_attr perf_attr_iommu[] = {
KFD_PERF_DESC(max_concurrent, 0),
KFD_PERF_DESC(num_counters, 0),
KFD_PERF_DESC(counter_ids, 0),
};
/****************************************/
static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
int offs = 0;
struct kfd_topology_device *dev;
uint32_t log_max_watch_addr;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
if (strcmp(attr->name, "gpu_id") == 0) {
dev = container_of(attr, struct kfd_topology_device,
attr_gpuid);
if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
return -EPERM;
return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
}
if (strcmp(attr->name, "name") == 0) {
dev = container_of(attr, struct kfd_topology_device,
attr_name);
if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
return -EPERM;
return sysfs_show_str_val(buffer, offs, dev->node_props.name);
}
dev = container_of(attr, struct kfd_topology_device,
attr_props);
if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
return -EPERM;
sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
dev->node_props.cpu_cores_count);
sysfs_show_32bit_prop(buffer, offs, "simd_count",
dev->gpu ? dev->node_props.simd_count : 0);
sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
dev->node_props.mem_banks_count);
sysfs_show_32bit_prop(buffer, offs, "caches_count",
dev->node_props.caches_count);
sysfs_show_32bit_prop(buffer, offs, "io_links_count",
dev->node_props.io_links_count);
sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
dev->node_props.p2p_links_count);
sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
dev->node_props.cpu_core_id_base);
sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
dev->node_props.simd_id_base);
sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
dev->node_props.max_waves_per_simd);
sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
dev->node_props.lds_size_in_kb);
sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
dev->node_props.gds_size_in_kb);
sysfs_show_32bit_prop(buffer, offs, "num_gws",
dev->node_props.num_gws);
sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
dev->node_props.wave_front_size);
sysfs_show_32bit_prop(buffer, offs, "array_count",
dev->gpu ? (dev->node_props.array_count *
NUM_XCC(dev->gpu->xcc_mask)) : 0);
sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
dev->node_props.simd_arrays_per_engine);
sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
dev->node_props.cu_per_simd_array);
sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
dev->node_props.simd_per_cu);
sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
dev->node_props.max_slots_scratch_cu);
sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
dev->node_props.gfx_target_version);
sysfs_show_32bit_prop(buffer, offs, "vendor_id",
dev->node_props.vendor_id);
sysfs_show_32bit_prop(buffer, offs, "device_id",
dev->node_props.device_id);
sysfs_show_32bit_prop(buffer, offs, "location_id",
dev->node_props.location_id);
sysfs_show_32bit_prop(buffer, offs, "domain",
dev->node_props.domain);
sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
dev->node_props.drm_render_minor);
sysfs_show_64bit_prop(buffer, offs, "hive_id",
dev->node_props.hive_id);
sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
dev->node_props.num_sdma_engines);
sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
dev->node_props.num_sdma_xgmi_engines);
sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
dev->node_props.num_sdma_queues_per_engine);
sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
dev->node_props.num_cp_queues);
if (dev->gpu) {
log_max_watch_addr =
__ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points);
if (log_max_watch_addr) {
dev->node_props.capability |=
HSA_CAP_WATCH_POINTS_SUPPORTED;
dev->node_props.capability |=
((log_max_watch_addr <<
HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
}
if (dev->gpu->adev->asic_type == CHIP_TONGA)
dev->node_props.capability |=
HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
dev->node_props.max_engine_clk_fcompute);
sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
sysfs_show_32bit_prop(buffer, offs, "fw_version",
dev->gpu->kfd->mec_fw_version);
sysfs_show_32bit_prop(buffer, offs, "capability",
dev->node_props.capability);
sysfs_show_64bit_prop(buffer, offs, "debug_prop",
dev->node_props.debug_prop);
sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
dev->gpu->kfd->sdma_fw_version);
sysfs_show_64bit_prop(buffer, offs, "unique_id",
dev->gpu->adev->unique_id);
sysfs_show_32bit_prop(buffer, offs, "num_xcc",
NUM_XCC(dev->gpu->xcc_mask));
}
return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
cpufreq_quick_get_max(0)/1000);
}
static const struct sysfs_ops node_ops = {
.show = node_show,
};
static const struct kobj_type node_type = {
.release = kfd_topology_kobj_release,
.sysfs_ops = &node_ops,
};
static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
{
sysfs_remove_file(kobj, attr);
kobject_del(kobj);
kobject_put(kobj);
}
static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
{
struct kfd_iolink_properties *p2plink;
struct kfd_iolink_properties *iolink;
struct kfd_cache_properties *cache;
struct kfd_mem_properties *mem;
struct kfd_perf_properties *perf;
if (dev->kobj_iolink) {
list_for_each_entry(iolink, &dev->io_link_props, list)
if (iolink->kobj) {
kfd_remove_sysfs_file(iolink->kobj,
&iolink->attr);
iolink->kobj = NULL;
}
kobject_del(dev->kobj_iolink);
kobject_put(dev->kobj_iolink);
dev->kobj_iolink = NULL;
}
if (dev->kobj_p2plink) {
list_for_each_entry(p2plink, &dev->p2p_link_props, list)
if (p2plink->kobj) {
kfd_remove_sysfs_file(p2plink->kobj,
&p2plink->attr);
p2plink->kobj = NULL;
}
kobject_del(dev->kobj_p2plink);
kobject_put(dev->kobj_p2plink);
dev->kobj_p2plink = NULL;
}
if (dev->kobj_cache) {
list_for_each_entry(cache, &dev->cache_props, list)
if (cache->kobj) {
kfd_remove_sysfs_file(cache->kobj,
&cache->attr);
cache->kobj = NULL;
}
kobject_del(dev->kobj_cache);
kobject_put(dev->kobj_cache);
dev->kobj_cache = NULL;
}
if (dev->kobj_mem) {
list_for_each_entry(mem, &dev->mem_props, list)
if (mem->kobj) {
kfd_remove_sysfs_file(mem->kobj, &mem->attr);
mem->kobj = NULL;
}
kobject_del(dev->kobj_mem);
kobject_put(dev->kobj_mem);
dev->kobj_mem = NULL;
}
if (dev->kobj_perf) {
list_for_each_entry(perf, &dev->perf_props, list) {
kfree(perf->attr_group);
perf->attr_group = NULL;
}
kobject_del(dev->kobj_perf);
kobject_put(dev->kobj_perf);
dev->kobj_perf = NULL;
}
if (dev->kobj_node) {
sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
sysfs_remove_file(dev->kobj_node, &dev->attr_name);
sysfs_remove_file(dev->kobj_node, &dev->attr_props);
kobject_del(dev->kobj_node);
kobject_put(dev->kobj_node);
dev->kobj_node = NULL;
}
}
static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
uint32_t id)
{
struct kfd_iolink_properties *p2plink;
struct kfd_iolink_properties *iolink;
struct kfd_cache_properties *cache;
struct kfd_mem_properties *mem;
struct kfd_perf_properties *perf;
int ret;
uint32_t i, num_attrs;
struct attribute **attrs;
if (WARN_ON(dev->kobj_node))
return -EEXIST;
/*
* Creating the sysfs folders
*/
dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
if (!dev->kobj_node)
return -ENOMEM;
ret = kobject_init_and_add(dev->kobj_node, &node_type,
sys_props.kobj_nodes, "%d", id);
if (ret < 0) {
kobject_put(dev->kobj_node);
return ret;
}
dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
if (!dev->kobj_mem)
return -ENOMEM;
dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
if (!dev->kobj_cache)
return -ENOMEM;
dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
if (!dev->kobj_iolink)
return -ENOMEM;
dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
if (!dev->kobj_p2plink)
return -ENOMEM;
dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
if (!dev->kobj_perf)
return -ENOMEM;
/*
* Creating sysfs files for node properties
*/
dev->attr_gpuid.name = "gpu_id";
dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&dev->attr_gpuid);
dev->attr_name.name = "name";
dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&dev->attr_name);
dev->attr_props.name = "properties";
dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&dev->attr_props);
ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
if (ret < 0)
return ret;
ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
if (ret < 0)
return ret;
ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
if (ret < 0)
return ret;
i = 0;
list_for_each_entry(mem, &dev->mem_props, list) {
mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (!mem->kobj)
return -ENOMEM;
ret = kobject_init_and_add(mem->kobj, &mem_type,
dev->kobj_mem, "%d", i);
if (ret < 0) {
kobject_put(mem->kobj);
return ret;
}
mem->attr.name = "properties";
mem->attr.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&mem->attr);
ret = sysfs_create_file(mem->kobj, &mem->attr);
if (ret < 0)
return ret;
i++;
}
i = 0;
list_for_each_entry(cache, &dev->cache_props, list) {
cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (!cache->kobj)
return -ENOMEM;
ret = kobject_init_and_add(cache->kobj, &cache_type,
dev->kobj_cache, "%d", i);
if (ret < 0) {
kobject_put(cache->kobj);
return ret;
}
cache->attr.name = "properties";
cache->attr.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&cache->attr);
ret = sysfs_create_file(cache->kobj, &cache->attr);
if (ret < 0)
return ret;
i++;
}
i = 0;
list_for_each_entry(iolink, &dev->io_link_props, list) {
iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (!iolink->kobj)
return -ENOMEM;
ret = kobject_init_and_add(iolink->kobj, &iolink_type,
dev->kobj_iolink, "%d", i);
if (ret < 0) {
kobject_put(iolink->kobj);
return ret;
}
iolink->attr.name = "properties";
iolink->attr.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&iolink->attr);
ret = sysfs_create_file(iolink->kobj, &iolink->attr);
if (ret < 0)
return ret;
i++;
}
i = 0;
list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (!p2plink->kobj)
return -ENOMEM;
ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
dev->kobj_p2plink, "%d", i);
if (ret < 0) {
kobject_put(p2plink->kobj);
return ret;
}
p2plink->attr.name = "properties";
p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&p2plink->attr);
ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
if (ret < 0)
return ret;
i++;
}
/* All hardware blocks have the same number of attributes. */
num_attrs = ARRAY_SIZE(perf_attr_iommu);
list_for_each_entry(perf, &dev->perf_props, list) {
perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
* num_attrs + sizeof(struct attribute_group),
GFP_KERNEL);
if (!perf->attr_group)
return -ENOMEM;
attrs = (struct attribute **)(perf->attr_group + 1);
if (!strcmp(perf->block_name, "iommu")) {
/* Information of IOMMU's num_counters and counter_ids is shown
* under /sys/bus/event_source/devices/amd_iommu. We don't
* duplicate here.
*/
perf_attr_iommu[0].data = perf->max_concurrent;
for (i = 0; i < num_attrs; i++)
attrs[i] = &perf_attr_iommu[i].attr.attr;
}
perf->attr_group->name = perf->block_name;
perf->attr_group->attrs = attrs;
ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
if (ret < 0)
return ret;
}
return 0;
}
/* Called with write topology lock acquired */
static int kfd_build_sysfs_node_tree(void)
{
struct kfd_topology_device *dev;
int ret;
uint32_t i = 0;
list_for_each_entry(dev, &topology_device_list, list) {
ret = kfd_build_sysfs_node_entry(dev, i);
if (ret < 0)
return ret;
i++;
}
return 0;
}
/* Called with write topology lock acquired */
static void kfd_remove_sysfs_node_tree(void)
{
struct kfd_topology_device *dev;
list_for_each_entry(dev, &topology_device_list, list)
kfd_remove_sysfs_node_entry(dev);
}
static int kfd_topology_update_sysfs(void)
{
int ret;
if (!sys_props.kobj_topology) {
sys_props.kobj_topology =
kfd_alloc_struct(sys_props.kobj_topology);
if (!sys_props.kobj_topology)
return -ENOMEM;
ret = kobject_init_and_add(sys_props.kobj_topology,
&sysprops_type, &kfd_device->kobj,
"topology");
if (ret < 0) {
kobject_put(sys_props.kobj_topology);
return ret;
}
sys_props.kobj_nodes = kobject_create_and_add("nodes",
sys_props.kobj_topology);
if (!sys_props.kobj_nodes)
return -ENOMEM;
sys_props.attr_genid.name = "generation_id";
sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&sys_props.attr_genid);
ret = sysfs_create_file(sys_props.kobj_topology,
&sys_props.attr_genid);
if (ret < 0)
return ret;
sys_props.attr_props.name = "system_properties";
sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&sys_props.attr_props);
ret = sysfs_create_file(sys_props.kobj_topology,
&sys_props.attr_props);
if (ret < 0)
return ret;
}
kfd_remove_sysfs_node_tree();
return kfd_build_sysfs_node_tree();
}
static void kfd_topology_release_sysfs(void)
{
kfd_remove_sysfs_node_tree();
if (sys_props.kobj_topology) {
sysfs_remove_file(sys_props.kobj_topology,
&sys_props.attr_genid);
sysfs_remove_file(sys_props.kobj_topology,
&sys_props.attr_props);
if (sys_props.kobj_nodes) {
kobject_del(sys_props.kobj_nodes);
kobject_put(sys_props.kobj_nodes);
sys_props.kobj_nodes = NULL;
}
kobject_del(sys_props.kobj_topology);
kobject_put(sys_props.kobj_topology);
sys_props.kobj_topology = NULL;
}
}
/* Called with write topology_lock acquired */
static void kfd_topology_update_device_list(struct list_head *temp_list,
struct list_head *master_list)
{
while (!list_empty(temp_list)) {
list_move_tail(temp_list->next, master_list);
sys_props.num_devices++;
}
}
static void kfd_debug_print_topology(void)
{
struct kfd_topology_device *dev;
down_read(&topology_lock);
dev = list_last_entry(&topology_device_list,
struct kfd_topology_device, list);
if (dev) {
if (dev->node_props.cpu_cores_count &&
dev->node_props.simd_count) {
pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
dev->node_props.device_id,
dev->node_props.vendor_id);
} else if (dev->node_props.cpu_cores_count)
pr_info("Topology: Add CPU node\n");
else if (dev->node_props.simd_count)
pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
dev->node_props.device_id,
dev->node_props.vendor_id);
}
up_read(&topology_lock);
}
/* Helper function for intializing platform_xx members of
* kfd_system_properties. Uses OEM info from the last CPU/APU node.
*/
static void kfd_update_system_properties(void)
{
struct kfd_topology_device *dev;
down_read(&topology_lock);
dev = list_last_entry(&topology_device_list,
struct kfd_topology_device, list);
if (dev) {
sys_props.platform_id = dev->oem_id64;
sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
sys_props.platform_rev = dev->oem_revision;
}
up_read(&topology_lock);
}
static void find_system_memory(const struct dmi_header *dm,
void *private)
{
struct kfd_mem_properties *mem;
u16 mem_width, mem_clock;
struct kfd_topology_device *kdev =
(struct kfd_topology_device *)private;
const u8 *dmi_data = (const u8 *)(dm + 1);
if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
list_for_each_entry(mem, &kdev->mem_props, list) {
if (mem_width != 0xFFFF && mem_width != 0)
mem->width = mem_width;
if (mem_clock != 0)
mem->mem_clk_max = mem_clock;
}
}
}
/* kfd_add_non_crat_information - Add information that is not currently
* defined in CRAT but is necessary for KFD topology
* @dev - topology device to which addition info is added
*/
static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
{
/* Check if CPU only node. */
if (!kdev->gpu) {
/* Add system memory information */
dmi_walk(find_system_memory, kdev);
}
/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
}
int kfd_topology_init(void)
{
void *crat_image = NULL;
size_t image_size = 0;
int ret;
struct list_head temp_topology_device_list;
int cpu_only_node = 0;
struct kfd_topology_device *kdev;
int proximity_domain;
/* topology_device_list - Master list of all topology devices
* temp_topology_device_list - temporary list created while parsing CRAT
* or VCRAT. Once parsing is complete the contents of list is moved to
* topology_device_list
*/
/* Initialize the head for the both the lists */
INIT_LIST_HEAD(&topology_device_list);
INIT_LIST_HEAD(&temp_topology_device_list);
init_rwsem(&topology_lock);
memset(&sys_props, 0, sizeof(sys_props));
/* Proximity domains in ACPI CRAT tables start counting at
* 0. The same should be true for virtual CRAT tables created
* at this stage. GPUs added later in kfd_topology_add_device
* use a counter.
*/
proximity_domain = 0;
ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
COMPUTE_UNIT_CPU, NULL,
proximity_domain);
cpu_only_node = 1;
if (ret) {
pr_err("Error creating VCRAT table for CPU\n");
return ret;
}
ret = kfd_parse_crat_table(crat_image,
&temp_topology_device_list,
proximity_domain);
if (ret) {
pr_err("Error parsing VCRAT table for CPU\n");
goto err;
}
kdev = list_first_entry(&temp_topology_device_list,
struct kfd_topology_device, list);
down_write(&topology_lock);
kfd_topology_update_device_list(&temp_topology_device_list,
&topology_device_list);
topology_crat_proximity_domain = sys_props.num_devices-1;
ret = kfd_topology_update_sysfs();
up_write(&topology_lock);
if (!ret) {
sys_props.generation_count++;
kfd_update_system_properties();
kfd_debug_print_topology();
} else
pr_err("Failed to update topology in sysfs ret=%d\n", ret);
/* For nodes with GPU, this information gets added
* when GPU is detected (kfd_topology_add_device).
*/
if (cpu_only_node) {
/* Add additional information to CPU only node created above */
down_write(&topology_lock);
kdev = list_first_entry(&topology_device_list,
struct kfd_topology_device, list);
up_write(&topology_lock);
kfd_add_non_crat_information(kdev);
}
err:
kfd_destroy_crat_image(crat_image);
return ret;
}
void kfd_topology_shutdown(void)
{
down_write(&topology_lock);
kfd_topology_release_sysfs();
kfd_release_live_view();
up_write(&topology_lock);
}
static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu)
{
uint32_t gpu_id;
uint32_t buf[8];
uint64_t local_mem_size;
struct kfd_topology_device *dev;
bool is_unique;
uint8_t *crc_buf;
if (!gpu)
return 0;
crc_buf = (uint8_t *)&buf;
local_mem_size = gpu->local_mem_info.local_mem_size_private +
gpu->local_mem_info.local_mem_size_public;
buf[0] = gpu->adev->pdev->devfn;
buf[1] = gpu->adev->pdev->subsystem_vendor |
(gpu->adev->pdev->subsystem_device << 16);
buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
buf[3] = gpu->adev->pdev->device;
buf[4] = gpu->adev->pdev->bus->number;
buf[5] = lower_32_bits(local_mem_size);
buf[6] = upper_32_bits(local_mem_size);
buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16);
gpu_id = crc16(0, crc_buf, sizeof(buf)) &
((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
/* There is a very small possibility when generating a
* 16 (KFD_GPU_ID_HASH_WIDTH) bit value from 8 word buffer
* that the value could be 0 or non-unique. So, check if
* it is unique and non-zero. If not unique increment till
* unique one is found. In case of overflow, restart from 1
*/
down_read(&topology_lock);
do {
is_unique = true;
if (!gpu_id)
gpu_id = 1;
list_for_each_entry(dev, &topology_device_list, list) {
if (dev->gpu && dev->gpu_id == gpu_id) {
is_unique = false;
break;
}
}
if (unlikely(!is_unique))
gpu_id = (gpu_id + 1) &
((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
} while (!is_unique);
up_read(&topology_lock);
return gpu_id;
}
/* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
* the GPU device is not already present in the topology device
* list then return NULL. This means a new topology device has to
* be created for this GPU.
*/
static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu)
{
struct kfd_topology_device *dev;
struct kfd_topology_device *out_dev = NULL;
struct kfd_mem_properties *mem;
struct kfd_cache_properties *cache;
struct kfd_iolink_properties *iolink;
struct kfd_iolink_properties *p2plink;
list_for_each_entry(dev, &topology_device_list, list) {
/* Discrete GPUs need their own topology device list
* entries. Don't assign them to CPU/APU nodes.
*/
if (dev->node_props.cpu_cores_count)
continue;
if (!dev->gpu && (dev->node_props.simd_count > 0)) {
dev->gpu = gpu;
out_dev = dev;
list_for_each_entry(mem, &dev->mem_props, list)
mem->gpu = dev->gpu;
list_for_each_entry(cache, &dev->cache_props, list)
cache->gpu = dev->gpu;
list_for_each_entry(iolink, &dev->io_link_props, list)
iolink->gpu = dev->gpu;
list_for_each_entry(p2plink, &dev->p2p_link_props, list)
p2plink->gpu = dev->gpu;
break;
}
}
return out_dev;
}
static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
{
/*
* TODO: Generate an event for thunk about the arrival/removal
* of the GPU
*/
}
/* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
* patch this after CRAT parsing.
*/
static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
{
struct kfd_mem_properties *mem;
struct kfd_local_mem_info local_mem_info;
if (!dev)
return;
/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
* single bank of VRAM local memory.
* for dGPUs - VCRAT reports only one bank of Local Memory
* for APUs - If CRAT from ACPI reports more than one bank, then
* all the banks will report the same mem_clk_max information
*/
amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info,
dev->gpu->xcp);
list_for_each_entry(mem, &dev->mem_props, list)
mem->mem_clk_max = local_mem_info.mem_clk_max;
}
static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
struct kfd_topology_device *target_gpu_dev,
struct kfd_iolink_properties *link)
{
/* xgmi always supports atomics between links. */
if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
return;
/* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
if (target_gpu_dev) {
uint32_t cap;
pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
PCI_EXP_DEVCAP2, &cap);
if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
/* set gpu (dev) flags. */
} else {
if (!dev->gpu->kfd->pci_atomic_requested ||
dev->gpu->adev->asic_type == CHIP_HAWAII)
link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
}
}
static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
struct kfd_iolink_properties *outbound_link,
struct kfd_iolink_properties *inbound_link)
{
/* CPU -> GPU with PCIe */
if (!to_dev->gpu &&
inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
if (to_dev->gpu) {
/* GPU <-> GPU with PCIe and
* Vega20 with XGMI
*/
if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
(inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
}
}
}
#define REC_SDMA_NUM_GPU 8
static const int rec_sdma_eng_map[REC_SDMA_NUM_GPU][REC_SDMA_NUM_GPU] = {
{ -1, 14, 12, 2, 4, 8, 10, 6 },
{ 14, -1, 2, 10, 8, 4, 6, 12 },
{ 10, 2, -1, 12, 14, 6, 4, 8 },
{ 2, 12, 10, -1, 6, 14, 8, 4 },
{ 4, 8, 14, 6, -1, 10, 12, 2 },
{ 8, 4, 6, 14, 12, -1, 2, 10 },
{ 10, 6, 4, 8, 12, 2, -1, 14 },
{ 6, 12, 8, 4, 2, 10, 14, -1 }};
static void kfd_set_recommended_sdma_engines(struct kfd_topology_device *to_dev,
struct kfd_iolink_properties *outbound_link,
struct kfd_iolink_properties *inbound_link)
{
struct kfd_node *gpu = outbound_link->gpu;
struct amdgpu_device *adev = gpu->adev;
int num_xgmi_nodes = adev->gmc.xgmi.num_physical_nodes;
bool support_rec_eng = !amdgpu_sriov_vf(adev) && to_dev->gpu &&
adev->aid_mask && num_xgmi_nodes && gpu->kfd->num_nodes == 1 &&
kfd_get_num_xgmi_sdma_engines(gpu) >= 14 &&
(!(adev->flags & AMD_IS_APU) && num_xgmi_nodes == 8);
if (support_rec_eng) {
int src_socket_id = adev->gmc.xgmi.physical_node_id;
int dst_socket_id = to_dev->gpu->adev->gmc.xgmi.physical_node_id;
outbound_link->rec_sdma_eng_id_mask =
1 << rec_sdma_eng_map[src_socket_id][dst_socket_id];
inbound_link->rec_sdma_eng_id_mask =
1 << rec_sdma_eng_map[dst_socket_id][src_socket_id];
} else {
int num_sdma_eng = kfd_get_num_sdma_engines(gpu);
int i, eng_offset = 0;
if (outbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
kfd_get_num_xgmi_sdma_engines(gpu) && to_dev->gpu) {
eng_offset = num_sdma_eng;
num_sdma_eng = kfd_get_num_xgmi_sdma_engines(gpu);
}
for (i = 0; i < num_sdma_eng; i++) {
outbound_link->rec_sdma_eng_id_mask |= (1 << (i + eng_offset));
inbound_link->rec_sdma_eng_id_mask |= (1 << (i + eng_offset));
}
}
}
static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
{
struct kfd_iolink_properties *link, *inbound_link;
struct kfd_topology_device *peer_dev;
if (!dev || !dev->gpu)
return;
/* GPU only creates direct links so apply flags setting to all */
list_for_each_entry(link, &dev->io_link_props, list) {
link->flags = CRAT_IOLINK_FLAGS_ENABLED;
kfd_set_iolink_no_atomics(dev, NULL, link);
peer_dev = kfd_topology_device_by_proximity_domain(
link->node_to);
if (!peer_dev)
continue;
/* Include the CPU peer in GPU hive if connected over xGMI. */
if (!peer_dev->gpu &&
link->iolink_type == CRAT_IOLINK_TYPE_XGMI) {
/*
* If the GPU is not part of a GPU hive, use its pci
* device location as the hive ID to bind with the CPU.
*/
if (!dev->node_props.hive_id)
dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev);
peer_dev->node_props.hive_id = dev->node_props.hive_id;
}
list_for_each_entry(inbound_link, &peer_dev->io_link_props,
list) {
if (inbound_link->node_to != link->node_from)
continue;
inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
kfd_set_recommended_sdma_engines(peer_dev, link, inbound_link);
}
}
/* Create indirect links so apply flags setting to all */
list_for_each_entry(link, &dev->p2p_link_props, list) {
link->flags = CRAT_IOLINK_FLAGS_ENABLED;
kfd_set_iolink_no_atomics(dev, NULL, link);
peer_dev = kfd_topology_device_by_proximity_domain(
link->node_to);
if (!peer_dev)
continue;
list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
list) {
if (inbound_link->node_to != link->node_from)
continue;
inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
}
}
}
static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
struct kfd_iolink_properties *p2plink)
{
int ret;
p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (!p2plink->kobj)
return -ENOMEM;
ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
if (ret < 0) {
kobject_put(p2plink->kobj);
return ret;
}
p2plink->attr.name = "properties";
p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&p2plink->attr);
ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
if (ret < 0)
return ret;
return 0;
}
static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
{
struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
struct kfd_iolink_properties *props = NULL, *props2 = NULL;
struct kfd_topology_device *cpu_dev;
int ret = 0;
int i, num_cpu;
num_cpu = 0;
list_for_each_entry(cpu_dev, &topology_device_list, list) {
if (cpu_dev->gpu)
break;
num_cpu++;
}
if (list_empty(&kdev->io_link_props))
return -ENODATA;
gpu_link = list_first_entry(&kdev->io_link_props,
struct kfd_iolink_properties, list);
for (i = 0; i < num_cpu; i++) {
/* CPU <--> GPU */
if (gpu_link->node_to == i)
continue;
/* find CPU <--> CPU links */
cpu_link = NULL;
cpu_dev = kfd_topology_device_by_proximity_domain(i);
if (cpu_dev) {
list_for_each_entry(tmp_link,
&cpu_dev->io_link_props, list) {
if (tmp_link->node_to == gpu_link->node_to) {
cpu_link = tmp_link;
break;
}
}
}
if (!cpu_link)
return -ENOMEM;
/* CPU <--> CPU <--> GPU, GPU node*/
props = kfd_alloc_struct(props);
if (!props)
return -ENOMEM;
memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
props->weight = gpu_link->weight + cpu_link->weight;
props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
props->node_from = gpu_node;
props->node_to = i;
kdev->node_props.p2p_links_count++;
list_add_tail(&props->list, &kdev->p2p_link_props);
ret = kfd_build_p2p_node_entry(kdev, props);
if (ret < 0)
return ret;
/* for small Bar, no CPU --> GPU in-direct links */
if (kfd_dev_is_large_bar(kdev->gpu)) {
/* CPU <--> CPU <--> GPU, CPU node*/
props2 = kfd_alloc_struct(props2);
if (!props2)
return -ENOMEM;
memcpy(props2, props, sizeof(struct kfd_iolink_properties));
props2->node_from = i;
props2->node_to = gpu_node;
props2->kobj = NULL;
cpu_dev->node_props.p2p_links_count++;
list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
ret = kfd_build_p2p_node_entry(cpu_dev, props2);
if (ret < 0)
return ret;
}
}
return ret;
}
#if defined(CONFIG_HSA_AMD_P2P)
static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
struct kfd_topology_device *peer, int from, int to)
{
struct kfd_iolink_properties *props = NULL;
struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
struct kfd_topology_device *cpu_dev;
int ret = 0;
if (!amdgpu_device_is_peer_accessible(
kdev->gpu->adev,
peer->gpu->adev))
return ret;
if (list_empty(&kdev->io_link_props))
return -ENODATA;
iolink1 = list_first_entry(&kdev->io_link_props,
struct kfd_iolink_properties, list);
if (list_empty(&peer->io_link_props))
return -ENODATA;
iolink2 = list_first_entry(&peer->io_link_props,
struct kfd_iolink_properties, list);
props = kfd_alloc_struct(props);
if (!props)
return -ENOMEM;
memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
props->weight = iolink1->weight + iolink2->weight;
props->min_latency = iolink1->min_latency + iolink2->min_latency;
props->max_latency = iolink1->max_latency + iolink2->max_latency;
props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
if (iolink1->node_to != iolink2->node_to) {
/* CPU->CPU link*/
cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
if (cpu_dev) {
list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) {
if (iolink3->node_to != iolink2->node_to)
continue;
props->weight += iolink3->weight;
props->min_latency += iolink3->min_latency;
props->max_latency += iolink3->max_latency;
props->min_bandwidth = min(props->min_bandwidth,
iolink3->min_bandwidth);
props->max_bandwidth = min(props->max_bandwidth,
iolink3->max_bandwidth);
break;
}
} else {
WARN(1, "CPU node not found");
}
}
props->node_from = from;
props->node_to = to;
peer->node_props.p2p_links_count++;
list_add_tail(&props->list, &peer->p2p_link_props);
ret = kfd_build_p2p_node_entry(peer, props);
return ret;
}
#endif
static int kfd_dev_create_p2p_links(void)
{
struct kfd_topology_device *dev;
struct kfd_topology_device *new_dev;
#if defined(CONFIG_HSA_AMD_P2P)
uint32_t i;
#endif
uint32_t k;
int ret = 0;
k = 0;
list_for_each_entry(dev, &topology_device_list, list)
k++;
if (k < 2)
return 0;
new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
if (WARN_ON(!new_dev->gpu))
return 0;
k--;
/* create in-direct links */
ret = kfd_create_indirect_link_prop(new_dev, k);
if (ret < 0)
goto out;
/* create p2p links */
#if defined(CONFIG_HSA_AMD_P2P)
i = 0;
list_for_each_entry(dev, &topology_device_list, list) {
if (dev == new_dev)
break;
if (!dev->gpu || !dev->gpu->adev ||
(dev->gpu->kfd->hive_id &&
dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id))
goto next;
/* check if node(s) is/are peer accessible in one direction or bi-direction */
ret = kfd_add_peer_prop(new_dev, dev, i, k);
if (ret < 0)
goto out;
ret = kfd_add_peer_prop(dev, new_dev, k, i);
if (ret < 0)
goto out;
next:
i++;
}
#endif
out:
return ret;
}
/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
struct kfd_gpu_cache_info *pcache_info,
int cu_bitmask,
int cache_type, unsigned int cu_processor_id,
int cu_block)
{
unsigned int cu_sibling_map_mask;
int first_active_cu;
struct kfd_cache_properties *pcache = NULL;
cu_sibling_map_mask = cu_bitmask;
cu_sibling_map_mask >>= cu_block;
cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
first_active_cu = ffs(cu_sibling_map_mask);
/* CU could be inactive. In case of shared cache find the first active
* CU. and incase of non-shared cache check if the CU is inactive. If
* inactive active skip it
*/
if (first_active_cu) {
pcache = kfd_alloc_struct(pcache);
if (!pcache)
return -ENOMEM;
memset(pcache, 0, sizeof(struct kfd_cache_properties));
pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
pcache->cache_level = pcache_info[cache_type].cache_level;
pcache->cache_size = pcache_info[cache_type].cache_size;
pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
pcache->cache_type |= HSA_CACHE_TYPE_DATA;
if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
pcache->cache_type |= HSA_CACHE_TYPE_CPU;
if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
/* Sibling map is w.r.t processor_id_low, so shift out
* inactive CU
*/
cu_sibling_map_mask =
cu_sibling_map_mask >> (first_active_cu - 1);
pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
pcache->sibling_map[1] =
(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
pcache->sibling_map[2] =
(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
pcache->sibling_map[3] =
(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
pcache->sibling_map_size = 4;
*props_ext = pcache;
return 0;
}
return 1;
}
/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
struct kfd_gpu_cache_info *pcache_info,
struct amdgpu_cu_info *cu_info,
struct amdgpu_gfx_config *gfx_info,
int cache_type, unsigned int cu_processor_id,
struct kfd_node *knode)
{
unsigned int cu_sibling_map_mask;
int first_active_cu;
int i, j, k, xcc, start, end;
int num_xcc = NUM_XCC(knode->xcc_mask);
struct kfd_cache_properties *pcache = NULL;
enum amdgpu_memory_partition mode;
struct amdgpu_device *adev = knode->adev;
start = ffs(knode->xcc_mask) - 1;
end = start + num_xcc;
cu_sibling_map_mask = cu_info->bitmap[start][0][0];
cu_sibling_map_mask &=
((1 << pcache_info[cache_type].num_cu_shared) - 1);
first_active_cu = ffs(cu_sibling_map_mask);
/* CU could be inactive. In case of shared cache find the first active
* CU. and incase of non-shared cache check if the CU is inactive. If
* inactive active skip it
*/
if (first_active_cu) {
pcache = kfd_alloc_struct(pcache);
if (!pcache)
return -ENOMEM;
memset(pcache, 0, sizeof(struct kfd_cache_properties));
pcache->processor_id_low = cu_processor_id
+ (first_active_cu - 1);
pcache->cache_level = pcache_info[cache_type].cache_level;
pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
if (KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 3) ||
KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 4))
mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
else
mode = UNKNOWN_MEMORY_PARTITION_MODE;
pcache->cache_size = pcache_info[cache_type].cache_size;
/* Partition mode only affects L3 cache size */
if (mode && pcache->cache_level == 3)
pcache->cache_size /= mode;
if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
pcache->cache_type |= HSA_CACHE_TYPE_DATA;
if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
pcache->cache_type |= HSA_CACHE_TYPE_CPU;
if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
/* Sibling map is w.r.t processor_id_low, so shift out
* inactive CU
*/
cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
k = 0;
for (xcc = start; xcc < end; xcc++) {
for (i = 0; i < gfx_info->max_shader_engines; i++) {
for (j = 0; j < gfx_info->max_sh_per_se; j++) {
pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
k += 4;
cu_sibling_map_mask = cu_info->bitmap[xcc][i % 4][j + i / 4];
cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
}
}
}
pcache->sibling_map_size = k;
*props_ext = pcache;
return 0;
}
return 1;
}
#define KFD_MAX_CACHE_TYPES 6
/* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
* tables
*/
static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev)
{
struct kfd_gpu_cache_info *pcache_info = NULL;
int i, j, k, xcc, start, end;
int ct = 0;
unsigned int cu_processor_id;
int ret;
unsigned int num_cu_shared;
struct amdgpu_cu_info *cu_info = &kdev->adev->gfx.cu_info;
struct amdgpu_gfx_config *gfx_info = &kdev->adev->gfx.config;
int gpu_processor_id;
struct kfd_cache_properties *props_ext;
int num_of_entries = 0;
int num_of_cache_types = 0;
struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
gpu_processor_id = dev->node_props.simd_id_base;
memset(cache_info, 0, sizeof(cache_info));
pcache_info = cache_info;
num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
if (!num_of_cache_types) {
pr_warn("no cache info found\n");
return;
}
/* For each type of cache listed in the kfd_gpu_cache_info table,
* go through all available Compute Units.
* The [i,j,k] loop will
* if kfd_gpu_cache_info.num_cu_shared = 1
* will parse through all available CU
* If (kfd_gpu_cache_info.num_cu_shared != 1)
* then it will consider only one CU from
* the shared unit
*/
start = ffs(kdev->xcc_mask) - 1;
end = start + NUM_XCC(kdev->xcc_mask);
for (ct = 0; ct < num_of_cache_types; ct++) {
cu_processor_id = gpu_processor_id;
if (pcache_info[ct].cache_level == 1) {
for (xcc = start; xcc < end; xcc++) {
for (i = 0; i < gfx_info->max_shader_engines; i++) {
for (j = 0; j < gfx_info->max_sh_per_se; j++) {
for (k = 0; k < gfx_info->max_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
ret = fill_in_l1_pcache(&props_ext, pcache_info,
cu_info->bitmap[xcc][i % 4][j + i / 4], ct,
cu_processor_id, k);
if (ret < 0)
break;
if (!ret) {
num_of_entries++;
list_add_tail(&props_ext->list, &dev->cache_props);
}
/* Move to next CU block */
num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
gfx_info->max_cu_per_sh) ?
pcache_info[ct].num_cu_shared :
(gfx_info->max_cu_per_sh - k);
cu_processor_id += num_cu_shared;
}
}
}
}
} else {
ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
cu_info, gfx_info, ct, cu_processor_id, kdev);
if (ret < 0)
break;
if (!ret) {
num_of_entries++;
list_add_tail(&props_ext->list, &dev->cache_props);
}
}
}
dev->node_props.caches_count += num_of_entries;
pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
}
static int kfd_topology_add_device_locked(struct kfd_node *gpu,
struct kfd_topology_device **dev)
{
int proximity_domain = ++topology_crat_proximity_domain;
struct list_head temp_topology_device_list;
void *crat_image = NULL;
size_t image_size = 0;
int res;
res = kfd_create_crat_image_virtual(&crat_image, &image_size,
COMPUTE_UNIT_GPU, gpu,
proximity_domain);
if (res) {
dev_err(gpu->adev->dev, "Error creating VCRAT\n");
topology_crat_proximity_domain--;
goto err;
}
INIT_LIST_HEAD(&temp_topology_device_list);
res = kfd_parse_crat_table(crat_image,
&temp_topology_device_list,
proximity_domain);
if (res) {
dev_err(gpu->adev->dev, "Error parsing VCRAT\n");
topology_crat_proximity_domain--;
goto err;
}
kfd_topology_update_device_list(&temp_topology_device_list,
&topology_device_list);
*dev = kfd_assign_gpu(gpu);
if (WARN_ON(!*dev)) {
res = -ENODEV;
goto err;
}
/* Fill the cache affinity information here for the GPUs
* using VCRAT
*/
kfd_fill_cache_non_crat_info(*dev, gpu);
/* Update the SYSFS tree, since we added another topology
* device
*/
res = kfd_topology_update_sysfs();
if (!res)
sys_props.generation_count++;
else
dev_err(gpu->adev->dev, "Failed to update GPU to sysfs topology. res=%d\n",
res);
err:
kfd_destroy_crat_image(crat_image);
return res;
}
static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev)
{
bool firmware_supported = true;
if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) &&
KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) {
uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version &
AMDGPU_MES_API_VERSION_MASK) >>
AMDGPU_MES_API_VERSION_SHIFT;
uint32_t mes_rev = dev->gpu->adev->mes.sched_version &
AMDGPU_MES_VERSION_MASK;
firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64);
goto out;
}
/*
* Note: Any unlisted devices here are assumed to support exception handling.
* Add additional checks here as needed.
*/
switch (KFD_GC_VERSION(dev->gpu)) {
case IP_VERSION(9, 0, 1):
firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768;
break;
case IP_VERSION(9, 1, 0):
case IP_VERSION(9, 2, 1):
case IP_VERSION(9, 2, 2):
case IP_VERSION(9, 3, 0):
case IP_VERSION(9, 4, 0):
firmware_supported = dev->gpu->kfd->mec_fw_version >= 459;
break;
case IP_VERSION(9, 4, 1):
firmware_supported = dev->gpu->kfd->mec_fw_version >= 60;
break;
case IP_VERSION(9, 4, 2):
firmware_supported = dev->gpu->kfd->mec_fw_version >= 51;
break;
case IP_VERSION(10, 1, 10):
case IP_VERSION(10, 1, 2):
case IP_VERSION(10, 1, 1):
firmware_supported = dev->gpu->kfd->mec_fw_version >= 144;
break;
case IP_VERSION(10, 3, 0):
case IP_VERSION(10, 3, 2):
case IP_VERSION(10, 3, 1):
case IP_VERSION(10, 3, 4):
case IP_VERSION(10, 3, 5):
firmware_supported = dev->gpu->kfd->mec_fw_version >= 89;
break;
case IP_VERSION(10, 1, 3):
case IP_VERSION(10, 3, 3):
firmware_supported = false;
break;
default:
break;
}
out:
if (firmware_supported)
dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED;
}
static void kfd_topology_set_capabilities(struct kfd_topology_device *dev)
{
dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT |
HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED |
HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED;
if (kfd_dbg_has_ttmps_always_setup(dev->gpu))
dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) {
if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3) ||
KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 4))
dev->node_props.debug_prop |=
HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 |
HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3;
else
dev->node_props.debug_prop |=
HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 |
HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2))
dev->node_props.capability |=
HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
} else {
dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 |
HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0))
dev->node_props.capability |=
HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(12, 0, 0))
dev->node_props.capability |=
HSA_CAP_TRAP_DEBUG_PRECISE_ALU_OPERATIONS_SUPPORTED;
}
kfd_topology_set_dbg_firmware_support(dev);
}
int kfd_topology_add_device(struct kfd_node *gpu)
{
uint32_t gpu_id;
struct kfd_topology_device *dev;
int res = 0;
int i;
const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
struct amdgpu_gfx_config *gfx_info = &gpu->adev->gfx.config;
struct amdgpu_cu_info *cu_info = &gpu->adev->gfx.cu_info;
if (gpu->xcp && !gpu->xcp->ddev) {
dev_warn(gpu->adev->dev,
"Won't add GPU to topology since it has no drm node assigned.");
return 0;
} else {
dev_dbg(gpu->adev->dev, "Adding new GPU to topology\n");
}
/* Check to see if this gpu device exists in the topology_device_list.
* If so, assign the gpu to that device,
* else create a Virtual CRAT for this gpu device and then parse that
* CRAT to create a new topology device. Once created assign the gpu to
* that topology device
*/
down_write(&topology_lock);
dev = kfd_assign_gpu(gpu);
if (!dev)
res = kfd_topology_add_device_locked(gpu, &dev);
up_write(&topology_lock);
if (res)
return res;
gpu_id = kfd_generate_gpu_id(gpu);
dev->gpu_id = gpu_id;
gpu->id = gpu_id;
kfd_dev_create_p2p_links();
/* TODO: Move the following lines to function
* kfd_add_non_crat_information
*/
/* Fill-in additional information that is not available in CRAT but
* needed for the topology
*/
for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
dev->node_props.name[i] = __tolower(asic_name[i]);
if (asic_name[i] == '\0')
break;
}
dev->node_props.name[i] = '\0';
dev->node_props.simd_arrays_per_engine =
gfx_info->max_sh_per_se;
dev->node_props.gfx_target_version =
gpu->kfd->device_info.gfx_target_version;
dev->node_props.vendor_id = gpu->adev->pdev->vendor;
dev->node_props.device_id = gpu->adev->pdev->device;
dev->node_props.capability |=
((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
HSA_CAP_ASIC_REVISION_MASK);
dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
if (gpu->kfd->num_nodes > 1)
dev->node_props.location_id |= dev->gpu->node_id;
dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
dev->node_props.max_engine_clk_fcompute =
amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
dev->node_props.max_engine_clk_ccompute =
cpufreq_quick_get_max(0) / 1000;
if (gpu->xcp)
dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index;
else
dev->node_props.drm_render_minor =
gpu->kfd->shared_resources.drm_render_minor;
dev->node_props.hive_id = gpu->kfd->hive_id;
dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
dev->node_props.num_sdma_xgmi_engines =
kfd_get_num_xgmi_sdma_engines(gpu);
dev->node_props.num_sdma_queues_per_engine =
gpu->kfd->device_info.num_sdma_queues_per_engine -
gpu->kfd->device_info.num_reserved_sdma_queues_per_engine;
dev->node_props.num_gws = (dev->gpu->gws &&
dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
dev->gpu->adev->gds.gws_size : 0;
dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
kfd_fill_mem_clk_max_info(dev);
kfd_fill_iolink_non_crat_info(dev);
switch (dev->gpu->adev->asic_type) {
case CHIP_KAVERI:
case CHIP_HAWAII:
case CHIP_TONGA:
dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
break;
case CHIP_CARRIZO:
case CHIP_FIJI:
case CHIP_POLARIS10:
case CHIP_POLARIS11:
case CHIP_POLARIS12:
case CHIP_VEGAM:
pr_debug("Adding doorbell packet type capability\n");
dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
break;
default:
if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1))
WARN(1, "Unexpected ASIC family %u",
dev->gpu->adev->asic_type);
else
kfd_topology_set_capabilities(dev);
}
/*
* Overwrite ATS capability according to needs_iommu_device to fix
* potential missing corresponding bit in CRAT of BIOS.
*/
dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
/* Fix errors in CZ CRAT.
* simd_count: Carrizo CRAT reports wrong simd_count, probably
* because it doesn't consider masked out CUs
* max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
*/
if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
dev->node_props.simd_count =
cu_info->simd_per_cu * cu_info->number;
dev->node_props.max_waves_per_simd = 10;
}
/* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
dev->node_props.capability |=
((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
HSA_CAP_SRAM_EDCSUPPORTED : 0;
dev->node_props.capability |=
((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
HSA_CAP_MEM_EDCSUPPORTED : 0;
if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
HSA_CAP_RASEVENTNOTIFY : 0;
if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev))
dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
if (dev->gpu->adev->gmc.is_app_apu ||
dev->gpu->adev->gmc.xgmi.connected_to_cpu)
dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS;
kfd_queue_ctx_save_restore_size(dev);
kfd_debug_print_topology();
kfd_notify_gpu_change(gpu_id, 1);
return 0;
}
/**
* kfd_topology_update_io_links() - Update IO links after device removal.
* @proximity_domain: Proximity domain value of the dev being removed.
*
* The topology list currently is arranged in increasing order of
* proximity domain.
*
* Two things need to be done when a device is removed:
* 1. All the IO links to this device need to be removed.
* 2. All nodes after the current device node need to move
* up once this device node is removed from the topology
* list. As a result, the proximity domain values for
* all nodes after the node being deleted reduce by 1.
* This would also cause the proximity domain values for
* io links to be updated based on new proximity domain
* values.
*
* Context: The caller must hold write topology_lock.
*/
static void kfd_topology_update_io_links(int proximity_domain)
{
struct kfd_topology_device *dev;
struct kfd_iolink_properties *iolink, *p2plink, *tmp;
list_for_each_entry(dev, &topology_device_list, list) {
if (dev->proximity_domain > proximity_domain)
dev->proximity_domain--;
list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
/*
* If there is an io link to the dev being deleted
* then remove that IO link also.
*/
if (iolink->node_to == proximity_domain) {
list_del(&iolink->list);
dev->node_props.io_links_count--;
} else {
if (iolink->node_from > proximity_domain)
iolink->node_from--;
if (iolink->node_to > proximity_domain)
iolink->node_to--;
}
}
list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
/*
* If there is a p2p link to the dev being deleted
* then remove that p2p link also.
*/
if (p2plink->node_to == proximity_domain) {
list_del(&p2plink->list);
dev->node_props.p2p_links_count--;
} else {
if (p2plink->node_from > proximity_domain)
p2plink->node_from--;
if (p2plink->node_to > proximity_domain)
p2plink->node_to--;
}
}
}
}
int kfd_topology_remove_device(struct kfd_node *gpu)
{
struct kfd_topology_device *dev, *tmp;
uint32_t gpu_id;
int res = -ENODEV;
int i = 0;
down_write(&topology_lock);
list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
if (dev->gpu == gpu) {
gpu_id = dev->gpu_id;
kfd_remove_sysfs_node_entry(dev);
kfd_release_topology_device(dev);
sys_props.num_devices--;
kfd_topology_update_io_links(i);
topology_crat_proximity_domain = sys_props.num_devices-1;
sys_props.generation_count++;
res = 0;
if (kfd_topology_update_sysfs() < 0)
kfd_topology_release_sysfs();
break;
}
i++;
}
up_write(&topology_lock);
if (!res)
kfd_notify_gpu_change(gpu_id, 0);
return res;
}
/* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
* topology. If GPU device is found @idx, then valid kfd_dev pointer is
* returned through @kdev
* Return - 0: On success (@kdev will be NULL for non GPU nodes)
* -1: If end of list
*/
int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev)
{
struct kfd_topology_device *top_dev;
uint8_t device_idx = 0;
*kdev = NULL;
down_read(&topology_lock);
list_for_each_entry(top_dev, &topology_device_list, list) {
if (device_idx == idx) {
*kdev = top_dev->gpu;
up_read(&topology_lock);
return 0;
}
device_idx++;
}
up_read(&topology_lock);
return -1;
}
static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
{
int first_cpu_of_numa_node;
if (!cpumask || cpumask == cpu_none_mask)
return -1;
first_cpu_of_numa_node = cpumask_first(cpumask);
if (first_cpu_of_numa_node >= nr_cpu_ids)
return -1;
#ifdef CONFIG_X86_64
return cpu_data(first_cpu_of_numa_node).topo.apicid;
#else
return first_cpu_of_numa_node;
#endif
}
/* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
* of the given NUMA node (numa_node_id)
* Return -1 on failure
*/
int kfd_numa_node_to_apic_id(int numa_node_id)
{
if (numa_node_id == -1) {
pr_warn("Invalid NUMA Node. Use online CPU mask\n");
return kfd_cpumask_to_apic_id(cpu_online_mask);
}
return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
}
#if defined(CONFIG_DEBUG_FS)
int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
{
struct kfd_topology_device *dev;
unsigned int i = 0;
int r = 0;
down_read(&topology_lock);
list_for_each_entry(dev, &topology_device_list, list) {
if (!dev->gpu) {
i++;
continue;
}
seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
r = dqm_debugfs_hqds(m, dev->gpu->dqm);
if (r)
break;
}
up_read(&topology_lock);
return r;
}
int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
{
struct kfd_topology_device *dev;
unsigned int i = 0;
int r = 0;
down_read(&topology_lock);
list_for_each_entry(dev, &topology_device_list, list) {
if (!dev->gpu) {
i++;
continue;
}
seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
if (r)
break;
}
up_read(&topology_lock);
return r;
}
#endif