// SPDX-License-Identifier: GPL-2.0-only
/* Network filesystem high-level (buffered) writeback.
*
* Copyright (C) 2024 Red Hat, Inc. All Rights Reserved.
* Written by David Howells ([email protected])
*
*
* To support network filesystems with local caching, we manage a situation
* that can be envisioned like the following:
*
* +---+---+-----+-----+---+----------+
* Folios: | | | | | | |
* +---+---+-----+-----+---+----------+
*
* +------+------+ +----+----+
* Upload: | | |.....| | |
* (Stream 0) +------+------+ +----+----+
*
* +------+------+------+------+------+
* Cache: | | | | | |
* (Stream 1) +------+------+------+------+------+
*
* Where we have a sequence of folios of varying sizes that we need to overlay
* with multiple parallel streams of I/O requests, where the I/O requests in a
* stream may also be of various sizes (in cifs, for example, the sizes are
* negotiated with the server; in something like ceph, they may represent the
* sizes of storage objects).
*
* The sequence in each stream may contain gaps and noncontiguous subrequests
* may be glued together into single vectored write RPCs.
*/
#include <linux/export.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include "internal.h"
/*
* Kill all dirty folios in the event of an unrecoverable error, starting with
* a locked folio we've already obtained from writeback_iter().
*/
static void netfs_kill_dirty_pages(struct address_space *mapping,
struct writeback_control *wbc,
struct folio *folio)
{
int error = 0;
do {
enum netfs_folio_trace why = netfs_folio_trace_kill;
struct netfs_group *group = NULL;
struct netfs_folio *finfo = NULL;
void *priv;
priv = folio_detach_private(folio);
if (priv) {
finfo = __netfs_folio_info(priv);
if (finfo) {
/* Kill folio from streaming write. */
group = finfo->netfs_group;
why = netfs_folio_trace_kill_s;
} else {
group = priv;
if (group == NETFS_FOLIO_COPY_TO_CACHE) {
/* Kill copy-to-cache folio */
why = netfs_folio_trace_kill_cc;
group = NULL;
} else {
/* Kill folio with group */
why = netfs_folio_trace_kill_g;
}
}
}
trace_netfs_folio(folio, why);
folio_start_writeback(folio);
folio_unlock(folio);
folio_end_writeback(folio);
netfs_put_group(group);
kfree(finfo);
} while ((folio = writeback_iter(mapping, wbc, folio, &error)));
}
/*
* Create a write request and set it up appropriately for the origin type.
*/
struct netfs_io_request *netfs_create_write_req(struct address_space *mapping,
struct file *file,
loff_t start,
enum netfs_io_origin origin)
{
struct netfs_io_request *wreq;
struct netfs_inode *ictx;
bool is_buffered = (origin == NETFS_WRITEBACK ||
origin == NETFS_WRITETHROUGH ||
origin == NETFS_PGPRIV2_COPY_TO_CACHE);
wreq = netfs_alloc_request(mapping, file, start, 0, origin);
if (IS_ERR(wreq))
return wreq;
_enter("R=%x", wreq->debug_id);
ictx = netfs_inode(wreq->inode);
if (is_buffered && netfs_is_cache_enabled(ictx))
fscache_begin_write_operation(&wreq->cache_resources, netfs_i_cookie(ictx));
wreq->cleaned_to = wreq->start;
wreq->io_streams[0].stream_nr = 0;
wreq->io_streams[0].source = NETFS_UPLOAD_TO_SERVER;
wreq->io_streams[0].prepare_write = ictx->ops->prepare_write;
wreq->io_streams[0].issue_write = ictx->ops->issue_write;
wreq->io_streams[0].collected_to = start;
wreq->io_streams[0].transferred = LONG_MAX;
wreq->io_streams[1].stream_nr = 1;
wreq->io_streams[1].source = NETFS_WRITE_TO_CACHE;
wreq->io_streams[1].collected_to = start;
wreq->io_streams[1].transferred = LONG_MAX;
if (fscache_resources_valid(&wreq->cache_resources)) {
wreq->io_streams[1].avail = true;
wreq->io_streams[1].active = true;
wreq->io_streams[1].prepare_write = wreq->cache_resources.ops->prepare_write_subreq;
wreq->io_streams[1].issue_write = wreq->cache_resources.ops->issue_write;
}
return wreq;
}
/**
* netfs_prepare_write_failed - Note write preparation failed
* @subreq: The subrequest to mark
*
* Mark a subrequest to note that preparation for write failed.
*/
void netfs_prepare_write_failed(struct netfs_io_subrequest *subreq)
{
__set_bit(NETFS_SREQ_FAILED, &subreq->flags);
trace_netfs_sreq(subreq, netfs_sreq_trace_prep_failed);
}
EXPORT_SYMBOL(netfs_prepare_write_failed);
/*
* Prepare a write subrequest. We need to allocate a new subrequest
* if we don't have one.
*/
static void netfs_prepare_write(struct netfs_io_request *wreq,
struct netfs_io_stream *stream,
loff_t start)
{
struct netfs_io_subrequest *subreq;
struct iov_iter *wreq_iter = &wreq->io_iter;
/* Make sure we don't point the iterator at a used-up folio_queue
* struct being used as a placeholder to prevent the queue from
* collapsing. In such a case, extend the queue.
*/
if (iov_iter_is_folioq(wreq_iter) &&
wreq_iter->folioq_slot >= folioq_nr_slots(wreq_iter->folioq)) {
netfs_buffer_make_space(wreq);
}
subreq = netfs_alloc_subrequest(wreq);
subreq->source = stream->source;
subreq->start = start;
subreq->stream_nr = stream->stream_nr;
subreq->io_iter = *wreq_iter;
_enter("R=%x[%x]", wreq->debug_id, subreq->debug_index);
trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
stream->sreq_max_len = UINT_MAX;
stream->sreq_max_segs = INT_MAX;
switch (stream->source) {
case NETFS_UPLOAD_TO_SERVER:
netfs_stat(&netfs_n_wh_upload);
stream->sreq_max_len = wreq->wsize;
break;
case NETFS_WRITE_TO_CACHE:
netfs_stat(&netfs_n_wh_write);
break;
default:
WARN_ON_ONCE(1);
break;
}
if (stream->prepare_write)
stream->prepare_write(subreq);
__set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
/* We add to the end of the list whilst the collector may be walking
* the list. The collector only goes nextwards and uses the lock to
* remove entries off of the front.
*/
spin_lock_bh(&wreq->lock);
list_add_tail(&subreq->rreq_link, &stream->subrequests);
if (list_is_first(&subreq->rreq_link, &stream->subrequests)) {
stream->front = subreq;
if (!stream->active) {
stream->collected_to = stream->front->start;
/* Write list pointers before active flag */
smp_store_release(&stream->active, true);
}
}
spin_unlock_bh(&wreq->lock);
stream->construct = subreq;
}
/*
* Set the I/O iterator for the filesystem/cache to use and dispatch the I/O
* operation. The operation may be asynchronous and should call
* netfs_write_subrequest_terminated() when complete.
*/
static void netfs_do_issue_write(struct netfs_io_stream *stream,
struct netfs_io_subrequest *subreq)
{
struct netfs_io_request *wreq = subreq->rreq;
_enter("R=%x[%x],%zx", wreq->debug_id, subreq->debug_index, subreq->len);
if (test_bit(NETFS_SREQ_FAILED, &subreq->flags))
return netfs_write_subrequest_terminated(subreq, subreq->error, false);
trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
stream->issue_write(subreq);
}
void netfs_reissue_write(struct netfs_io_stream *stream,
struct netfs_io_subrequest *subreq,
struct iov_iter *source)
{
size_t size = subreq->len - subreq->transferred;
// TODO: Use encrypted buffer
subreq->io_iter = *source;
iov_iter_advance(source, size);
iov_iter_truncate(&subreq->io_iter, size);
__set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
netfs_do_issue_write(stream, subreq);
}
void netfs_issue_write(struct netfs_io_request *wreq,
struct netfs_io_stream *stream)
{
struct netfs_io_subrequest *subreq = stream->construct;
if (!subreq)
return;
stream->construct = NULL;
subreq->io_iter.count = subreq->len;
netfs_do_issue_write(stream, subreq);
}
/*
* Add data to the write subrequest, dispatching each as we fill it up or if it
* is discontiguous with the previous. We only fill one part at a time so that
* we can avoid overrunning the credits obtained (cifs) and try to parallelise
* content-crypto preparation with network writes.
*/
int netfs_advance_write(struct netfs_io_request *wreq,
struct netfs_io_stream *stream,
loff_t start, size_t len, bool to_eof)
{
struct netfs_io_subrequest *subreq = stream->construct;
size_t part;
if (!stream->avail) {
_leave("no write");
return len;
}
_enter("R=%x[%x]", wreq->debug_id, subreq ? subreq->debug_index : 0);
if (subreq && start != subreq->start + subreq->len) {
netfs_issue_write(wreq, stream);
subreq = NULL;
}
if (!stream->construct)
netfs_prepare_write(wreq, stream, start);
subreq = stream->construct;
part = umin(stream->sreq_max_len - subreq->len, len);
_debug("part %zx/%zx %zx/%zx", subreq->len, stream->sreq_max_len, part, len);
subreq->len += part;
subreq->nr_segs++;
stream->submit_extendable_to -= part;
if (subreq->len >= stream->sreq_max_len ||
subreq->nr_segs >= stream->sreq_max_segs ||
to_eof) {
netfs_issue_write(wreq, stream);
subreq = NULL;
}
return part;
}
/*
* Write some of a pending folio data back to the server.
*/
static int netfs_write_folio(struct netfs_io_request *wreq,
struct writeback_control *wbc,
struct folio *folio)
{
struct netfs_io_stream *upload = &wreq->io_streams[0];
struct netfs_io_stream *cache = &wreq->io_streams[1];
struct netfs_io_stream *stream;
struct netfs_group *fgroup; /* TODO: Use this with ceph */
struct netfs_folio *finfo;
size_t iter_off = 0;
size_t fsize = folio_size(folio), flen = fsize, foff = 0;
loff_t fpos = folio_pos(folio), i_size;
bool to_eof = false, streamw = false;
bool debug = false;
_enter("");
/* netfs_perform_write() may shift i_size around the page or from out
* of the page to beyond it, but cannot move i_size into or through the
* page since we have it locked.
*/
i_size = i_size_read(wreq->inode);
if (fpos >= i_size) {
/* mmap beyond eof. */
_debug("beyond eof");
folio_start_writeback(folio);
folio_unlock(folio);
wreq->nr_group_rel += netfs_folio_written_back(folio);
netfs_put_group_many(wreq->group, wreq->nr_group_rel);
wreq->nr_group_rel = 0;
return 0;
}
if (fpos + fsize > wreq->i_size)
wreq->i_size = i_size;
fgroup = netfs_folio_group(folio);
finfo = netfs_folio_info(folio);
if (finfo) {
foff = finfo->dirty_offset;
flen = foff + finfo->dirty_len;
streamw = true;
}
if (wreq->origin == NETFS_WRITETHROUGH) {
to_eof = false;
if (flen > i_size - fpos)
flen = i_size - fpos;
} else if (flen > i_size - fpos) {
flen = i_size - fpos;
if (!streamw)
folio_zero_segment(folio, flen, fsize);
to_eof = true;
} else if (flen == i_size - fpos) {
to_eof = true;
}
flen -= foff;
_debug("folio %zx %zx %zx", foff, flen, fsize);
/* Deal with discontinuities in the stream of dirty pages. These can
* arise from a number of sources:
*
* (1) Intervening non-dirty pages from random-access writes, multiple
* flushers writing back different parts simultaneously and manual
* syncing.
*
* (2) Partially-written pages from write-streaming.
*
* (3) Pages that belong to a different write-back group (eg. Ceph
* snapshots).
*
* (4) Actually-clean pages that were marked for write to the cache
* when they were read. Note that these appear as a special
* write-back group.
*/
if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) {
netfs_issue_write(wreq, upload);
} else if (fgroup != wreq->group) {
/* We can't write this page to the server yet. */
kdebug("wrong group");
folio_redirty_for_writepage(wbc, folio);
folio_unlock(folio);
netfs_issue_write(wreq, upload);
netfs_issue_write(wreq, cache);
return 0;
}
if (foff > 0)
netfs_issue_write(wreq, upload);
if (streamw)
netfs_issue_write(wreq, cache);
/* Flip the page to the writeback state and unlock. If we're called
* from write-through, then the page has already been put into the wb
* state.
*/
if (wreq->origin == NETFS_WRITEBACK)
folio_start_writeback(folio);
folio_unlock(folio);
if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) {
if (!cache->avail) {
trace_netfs_folio(folio, netfs_folio_trace_cancel_copy);
netfs_issue_write(wreq, upload);
netfs_folio_written_back(folio);
return 0;
}
trace_netfs_folio(folio, netfs_folio_trace_store_copy);
} else if (!upload->avail && !cache->avail) {
trace_netfs_folio(folio, netfs_folio_trace_cancel_store);
netfs_folio_written_back(folio);
return 0;
} else if (!upload->construct) {
trace_netfs_folio(folio, netfs_folio_trace_store);
} else {
trace_netfs_folio(folio, netfs_folio_trace_store_plus);
}
/* Attach the folio to the rolling buffer. */
netfs_buffer_append_folio(wreq, folio, false);
/* Move the submission point forward to allow for write-streaming data
* not starting at the front of the page. We don't do write-streaming
* with the cache as the cache requires DIO alignment.
*
* Also skip uploading for data that's been read and just needs copying
* to the cache.
*/
for (int s = 0; s < NR_IO_STREAMS; s++) {
stream = &wreq->io_streams[s];
stream->submit_off = foff;
stream->submit_len = flen;
if ((stream->source == NETFS_WRITE_TO_CACHE && streamw) ||
(stream->source == NETFS_UPLOAD_TO_SERVER &&
fgroup == NETFS_FOLIO_COPY_TO_CACHE)) {
stream->submit_off = UINT_MAX;
stream->submit_len = 0;
}
}
/* Attach the folio to one or more subrequests. For a big folio, we
* could end up with thousands of subrequests if the wsize is small -
* but we might need to wait during the creation of subrequests for
* network resources (eg. SMB credits).
*/
for (;;) {
ssize_t part;
size_t lowest_off = ULONG_MAX;
int choose_s = -1;
/* Always add to the lowest-submitted stream first. */
for (int s = 0; s < NR_IO_STREAMS; s++) {
stream = &wreq->io_streams[s];
if (stream->submit_len > 0 &&
stream->submit_off < lowest_off) {
lowest_off = stream->submit_off;
choose_s = s;
}
}
if (choose_s < 0)
break;
stream = &wreq->io_streams[choose_s];
/* Advance the iterator(s). */
if (stream->submit_off > iter_off) {
iov_iter_advance(&wreq->io_iter, stream->submit_off - iter_off);
iter_off = stream->submit_off;
}
atomic64_set(&wreq->issued_to, fpos + stream->submit_off);
stream->submit_extendable_to = fsize - stream->submit_off;
part = netfs_advance_write(wreq, stream, fpos + stream->submit_off,
stream->submit_len, to_eof);
stream->submit_off += part;
if (part > stream->submit_len)
stream->submit_len = 0;
else
stream->submit_len -= part;
if (part > 0)
debug = true;
}
if (fsize > iter_off)
iov_iter_advance(&wreq->io_iter, fsize - iter_off);
atomic64_set(&wreq->issued_to, fpos + fsize);
if (!debug)
kdebug("R=%x: No submit", wreq->debug_id);
if (foff + flen < fsize)
for (int s = 0; s < NR_IO_STREAMS; s++)
netfs_issue_write(wreq, &wreq->io_streams[s]);
_leave(" = 0");
return 0;
}
/*
* End the issuing of writes, letting the collector know we're done.
*/
static void netfs_end_issue_write(struct netfs_io_request *wreq)
{
bool needs_poke = true;
smp_wmb(); /* Write subreq lists before ALL_QUEUED. */
set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags);
for (int s = 0; s < NR_IO_STREAMS; s++) {
struct netfs_io_stream *stream = &wreq->io_streams[s];
if (!stream->active)
continue;
if (!list_empty(&stream->subrequests))
needs_poke = false;
netfs_issue_write(wreq, stream);
}
if (needs_poke)
netfs_wake_write_collector(wreq, false);
}
/*
* Write some of the pending data back to the server
*/
int netfs_writepages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct netfs_inode *ictx = netfs_inode(mapping->host);
struct netfs_io_request *wreq = NULL;
struct folio *folio;
int error = 0;
if (!mutex_trylock(&ictx->wb_lock)) {
if (wbc->sync_mode == WB_SYNC_NONE) {
netfs_stat(&netfs_n_wb_lock_skip);
return 0;
}
netfs_stat(&netfs_n_wb_lock_wait);
mutex_lock(&ictx->wb_lock);
}
/* Need the first folio to be able to set up the op. */
folio = writeback_iter(mapping, wbc, NULL, &error);
if (!folio)
goto out;
wreq = netfs_create_write_req(mapping, NULL, folio_pos(folio), NETFS_WRITEBACK);
if (IS_ERR(wreq)) {
error = PTR_ERR(wreq);
goto couldnt_start;
}
trace_netfs_write(wreq, netfs_write_trace_writeback);
netfs_stat(&netfs_n_wh_writepages);
do {
_debug("wbiter %lx %llx", folio->index, atomic64_read(&wreq->issued_to));
/* It appears we don't have to handle cyclic writeback wrapping. */
WARN_ON_ONCE(wreq && folio_pos(folio) < atomic64_read(&wreq->issued_to));
if (netfs_folio_group(folio) != NETFS_FOLIO_COPY_TO_CACHE &&
unlikely(!test_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags))) {
set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags);
wreq->netfs_ops->begin_writeback(wreq);
}
error = netfs_write_folio(wreq, wbc, folio);
if (error < 0)
break;
} while ((folio = writeback_iter(mapping, wbc, folio, &error)));
netfs_end_issue_write(wreq);
mutex_unlock(&ictx->wb_lock);
netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
_leave(" = %d", error);
return error;
couldnt_start:
netfs_kill_dirty_pages(mapping, wbc, folio);
out:
mutex_unlock(&ictx->wb_lock);
_leave(" = %d", error);
return error;
}
EXPORT_SYMBOL(netfs_writepages);
/*
* Begin a write operation for writing through the pagecache.
*/
struct netfs_io_request *netfs_begin_writethrough(struct kiocb *iocb, size_t len)
{
struct netfs_io_request *wreq = NULL;
struct netfs_inode *ictx = netfs_inode(file_inode(iocb->ki_filp));
mutex_lock(&ictx->wb_lock);
wreq = netfs_create_write_req(iocb->ki_filp->f_mapping, iocb->ki_filp,
iocb->ki_pos, NETFS_WRITETHROUGH);
if (IS_ERR(wreq)) {
mutex_unlock(&ictx->wb_lock);
return wreq;
}
wreq->io_streams[0].avail = true;
trace_netfs_write(wreq, netfs_write_trace_writethrough);
return wreq;
}
/*
* Advance the state of the write operation used when writing through the
* pagecache. Data has been copied into the pagecache that we need to append
* to the request. If we've added more than wsize then we need to create a new
* subrequest.
*/
int netfs_advance_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc,
struct folio *folio, size_t copied, bool to_page_end,
struct folio **writethrough_cache)
{
_enter("R=%x ic=%zu ws=%u cp=%zu tp=%u",
wreq->debug_id, wreq->iter.count, wreq->wsize, copied, to_page_end);
if (!*writethrough_cache) {
if (folio_test_dirty(folio))
/* Sigh. mmap. */
folio_clear_dirty_for_io(folio);
/* We can make multiple writes to the folio... */
folio_start_writeback(folio);
if (wreq->len == 0)
trace_netfs_folio(folio, netfs_folio_trace_wthru);
else
trace_netfs_folio(folio, netfs_folio_trace_wthru_plus);
*writethrough_cache = folio;
}
wreq->len += copied;
if (!to_page_end)
return 0;
*writethrough_cache = NULL;
return netfs_write_folio(wreq, wbc, folio);
}
/*
* End a write operation used when writing through the pagecache.
*/
int netfs_end_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc,
struct folio *writethrough_cache)
{
struct netfs_inode *ictx = netfs_inode(wreq->inode);
int ret;
_enter("R=%x", wreq->debug_id);
if (writethrough_cache)
netfs_write_folio(wreq, wbc, writethrough_cache);
netfs_end_issue_write(wreq);
mutex_unlock(&ictx->wb_lock);
if (wreq->iocb) {
ret = -EIOCBQUEUED;
} else {
wait_on_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS, TASK_UNINTERRUPTIBLE);
ret = wreq->error;
}
netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
return ret;
}
/*
* Write data to the server without going through the pagecache and without
* writing it to the local cache.
*/
int netfs_unbuffered_write(struct netfs_io_request *wreq, bool may_wait, size_t len)
{
struct netfs_io_stream *upload = &wreq->io_streams[0];
ssize_t part;
loff_t start = wreq->start;
int error = 0;
_enter("%zx", len);
if (wreq->origin == NETFS_DIO_WRITE)
inode_dio_begin(wreq->inode);
while (len) {
// TODO: Prepare content encryption
_debug("unbuffered %zx", len);
part = netfs_advance_write(wreq, upload, start, len, false);
start += part;
len -= part;
iov_iter_advance(&wreq->io_iter, part);
if (test_bit(NETFS_RREQ_PAUSE, &wreq->flags)) {
trace_netfs_rreq(wreq, netfs_rreq_trace_wait_pause);
wait_on_bit(&wreq->flags, NETFS_RREQ_PAUSE, TASK_UNINTERRUPTIBLE);
}
if (test_bit(NETFS_RREQ_FAILED, &wreq->flags))
break;
}
netfs_end_issue_write(wreq);
_leave(" = %d", error);
return error;
}