// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2020-2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/types.h>
#include <linux/hmm.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/migrate.h>
#include "amdgpu_sync.h"
#include "amdgpu_object.h"
#include "amdgpu_vm.h"
#include "amdgpu_res_cursor.h"
#include "kfd_priv.h"
#include "kfd_svm.h"
#include "kfd_migrate.h"
#include "kfd_smi_events.h"
#ifdef dev_fmt
#undef dev_fmt
#endif
#define dev_fmt(fmt) "kfd_migrate: " fmt
static uint64_t
svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, uint64_t addr)
{
return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM);
}
static int
svm_migrate_gart_map(struct amdgpu_ring *ring, uint64_t npages,
dma_addr_t *addr, uint64_t *gart_addr, uint64_t flags)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_job *job;
unsigned int num_dw, num_bytes;
struct dma_fence *fence;
uint64_t src_addr, dst_addr;
uint64_t pte_flags;
void *cpu_addr;
int r;
/* use gart window 0 */
*gart_addr = adev->gmc.gart_start;
num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
num_bytes = npages * 8;
r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
AMDGPU_FENCE_OWNER_UNDEFINED,
num_dw * 4 + num_bytes,
AMDGPU_IB_POOL_DELAYED,
&job);
if (r)
return r;
src_addr = num_dw * 4;
src_addr += job->ibs[0].gpu_addr;
dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
dst_addr, num_bytes, 0);
amdgpu_ring_pad_ib(ring, &job->ibs[0]);
WARN_ON(job->ibs[0].length_dw > num_dw);
pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED;
if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO))
pte_flags |= AMDGPU_PTE_WRITEABLE;
pte_flags |= adev->gart.gart_pte_flags;
cpu_addr = &job->ibs[0].ptr[num_dw];
amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr);
fence = amdgpu_job_submit(job);
dma_fence_put(fence);
return r;
}
/**
* svm_migrate_copy_memory_gart - sdma copy data between ram and vram
*
* @adev: amdgpu device the sdma ring running
* @sys: system DMA pointer to be copied
* @vram: vram destination DMA pointer
* @npages: number of pages to copy
* @direction: enum MIGRATION_COPY_DIR
* @mfence: output, sdma fence to signal after sdma is done
*
* ram address uses GART table continuous entries mapping to ram pages,
* vram address uses direct mapping of vram pages, which must have npages
* number of continuous pages.
* GART update and sdma uses same buf copy function ring, sdma is splited to
* multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for
* the last sdma finish fence which is returned to check copy memory is done.
*
* Context: Process context, takes and releases gtt_window_lock
*
* Return:
* 0 - OK, otherwise error code
*/
static int
svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys,
uint64_t *vram, uint64_t npages,
enum MIGRATION_COPY_DIR direction,
struct dma_fence **mfence)
{
const uint64_t GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE;
struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
uint64_t gart_s, gart_d;
struct dma_fence *next;
uint64_t size;
int r;
mutex_lock(&adev->mman.gtt_window_lock);
while (npages) {
size = min(GTT_MAX_PAGES, npages);
if (direction == FROM_VRAM_TO_RAM) {
gart_s = svm_migrate_direct_mapping_addr(adev, *vram);
r = svm_migrate_gart_map(ring, size, sys, &gart_d, 0);
} else if (direction == FROM_RAM_TO_VRAM) {
r = svm_migrate_gart_map(ring, size, sys, &gart_s,
KFD_IOCTL_SVM_FLAG_GPU_RO);
gart_d = svm_migrate_direct_mapping_addr(adev, *vram);
}
if (r) {
dev_err(adev->dev, "fail %d create gart mapping\n", r);
goto out_unlock;
}
r = amdgpu_copy_buffer(ring, gart_s, gart_d, size * PAGE_SIZE,
NULL, &next, false, true, 0);
if (r) {
dev_err(adev->dev, "fail %d to copy memory\n", r);
goto out_unlock;
}
dma_fence_put(*mfence);
*mfence = next;
npages -= size;
if (npages) {
sys += size;
vram += size;
}
}
out_unlock:
mutex_unlock(&adev->mman.gtt_window_lock);
return r;
}
/**
* svm_migrate_copy_done - wait for memory copy sdma is done
*
* @adev: amdgpu device the sdma memory copy is executing on
* @mfence: migrate fence
*
* Wait for dma fence is signaled, if the copy ssplit into multiple sdma
* operations, this is the last sdma operation fence.
*
* Context: called after svm_migrate_copy_memory
*
* Return:
* 0 - success
* otherwise - error code from dma fence signal
*/
static int
svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence)
{
int r = 0;
if (mfence) {
r = dma_fence_wait(mfence, false);
dma_fence_put(mfence);
pr_debug("sdma copy memory fence done\n");
}
return r;
}
unsigned long
svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr)
{
return (addr + adev->kfd.pgmap.range.start) >> PAGE_SHIFT;
}
static void
svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn)
{
struct page *page;
page = pfn_to_page(pfn);
svm_range_bo_ref(prange->svm_bo);
page->zone_device_data = prange->svm_bo;
zone_device_page_init(page);
}
static void
svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr)
{
struct page *page;
page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr));
unlock_page(page);
put_page(page);
}
static unsigned long
svm_migrate_addr(struct amdgpu_device *adev, struct page *page)
{
unsigned long addr;
addr = page_to_pfn(page) << PAGE_SHIFT;
return (addr - adev->kfd.pgmap.range.start);
}
static struct page *
svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr)
{
struct page *page;
page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
if (page)
lock_page(page);
return page;
}
static void svm_migrate_put_sys_page(unsigned long addr)
{
struct page *page;
page = pfn_to_page(addr >> PAGE_SHIFT);
unlock_page(page);
put_page(page);
}
static unsigned long svm_migrate_unsuccessful_pages(struct migrate_vma *migrate)
{
unsigned long upages = 0;
unsigned long i;
for (i = 0; i < migrate->npages; i++) {
if (migrate->src[i] & MIGRATE_PFN_VALID &&
!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
upages++;
}
return upages;
}
static int
svm_migrate_copy_to_vram(struct kfd_node *node, struct svm_range *prange,
struct migrate_vma *migrate, struct dma_fence **mfence,
dma_addr_t *scratch, uint64_t ttm_res_offset)
{
uint64_t npages = migrate->cpages;
struct amdgpu_device *adev = node->adev;
struct device *dev = adev->dev;
struct amdgpu_res_cursor cursor;
dma_addr_t *src;
uint64_t *dst;
uint64_t i, j;
int r;
pr_debug("svms 0x%p [0x%lx 0x%lx 0x%llx]\n", prange->svms, prange->start,
prange->last, ttm_res_offset);
src = scratch;
dst = (uint64_t *)(scratch + npages);
amdgpu_res_first(prange->ttm_res, ttm_res_offset,
npages << PAGE_SHIFT, &cursor);
for (i = j = 0; i < npages; i++) {
struct page *spage;
dst[i] = cursor.start + (j << PAGE_SHIFT);
migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]);
svm_migrate_get_vram_page(prange, migrate->dst[i]);
migrate->dst[i] = migrate_pfn(migrate->dst[i]);
spage = migrate_pfn_to_page(migrate->src[i]);
if (spage && !is_zone_device_page(spage)) {
src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE,
DMA_TO_DEVICE);
r = dma_mapping_error(dev, src[i]);
if (r) {
dev_err(dev, "%s: fail %d dma_map_page\n",
__func__, r);
goto out_free_vram_pages;
}
} else {
if (j) {
r = svm_migrate_copy_memory_gart(
adev, src + i - j,
dst + i - j, j,
FROM_RAM_TO_VRAM,
mfence);
if (r)
goto out_free_vram_pages;
amdgpu_res_next(&cursor, (j + 1) << PAGE_SHIFT);
j = 0;
} else {
amdgpu_res_next(&cursor, PAGE_SIZE);
}
continue;
}
pr_debug_ratelimited("dma mapping src to 0x%llx, pfn 0x%lx\n",
src[i] >> PAGE_SHIFT, page_to_pfn(spage));
if (j >= (cursor.size >> PAGE_SHIFT) - 1 && i < npages - 1) {
r = svm_migrate_copy_memory_gart(adev, src + i - j,
dst + i - j, j + 1,
FROM_RAM_TO_VRAM,
mfence);
if (r)
goto out_free_vram_pages;
amdgpu_res_next(&cursor, (j + 1) * PAGE_SIZE);
j = 0;
} else {
j++;
}
}
r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j,
FROM_RAM_TO_VRAM, mfence);
out_free_vram_pages:
if (r) {
pr_debug("failed %d to copy memory to vram\n", r);
while (i--) {
svm_migrate_put_vram_page(adev, dst[i]);
migrate->dst[i] = 0;
}
}
#ifdef DEBUG_FORCE_MIXED_DOMAINS
for (i = 0, j = 0; i < npages; i += 4, j++) {
if (j & 1)
continue;
svm_migrate_put_vram_page(adev, dst[i]);
migrate->dst[i] = 0;
svm_migrate_put_vram_page(adev, dst[i + 1]);
migrate->dst[i + 1] = 0;
svm_migrate_put_vram_page(adev, dst[i + 2]);
migrate->dst[i + 2] = 0;
svm_migrate_put_vram_page(adev, dst[i + 3]);
migrate->dst[i + 3] = 0;
}
#endif
return r;
}
static long
svm_migrate_vma_to_vram(struct kfd_node *node, struct svm_range *prange,
struct vm_area_struct *vma, uint64_t start,
uint64_t end, uint32_t trigger, uint64_t ttm_res_offset)
{
struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
uint64_t npages = (end - start) >> PAGE_SHIFT;
struct amdgpu_device *adev = node->adev;
struct kfd_process_device *pdd;
struct dma_fence *mfence = NULL;
struct migrate_vma migrate = { 0 };
unsigned long cpages = 0;
unsigned long mpages = 0;
dma_addr_t *scratch;
void *buf;
int r = -ENOMEM;
memset(&migrate, 0, sizeof(migrate));
migrate.vma = vma;
migrate.start = start;
migrate.end = end;
migrate.flags = MIGRATE_VMA_SELECT_SYSTEM;
migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev);
buf = kvcalloc(npages,
2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t),
GFP_KERNEL);
if (!buf)
goto out;
migrate.src = buf;
migrate.dst = migrate.src + npages;
scratch = (dma_addr_t *)(migrate.dst + npages);
kfd_smi_event_migration_start(node, p->lead_thread->pid,
start >> PAGE_SHIFT, end >> PAGE_SHIFT,
0, node->id, prange->prefetch_loc,
prange->preferred_loc, trigger);
r = migrate_vma_setup(&migrate);
if (r) {
dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n",
__func__, r, prange->start, prange->last);
goto out_free;
}
cpages = migrate.cpages;
if (!cpages) {
pr_debug("failed collect migrate sys pages [0x%lx 0x%lx]\n",
prange->start, prange->last);
goto out_free;
}
if (cpages != npages)
pr_debug("partial migration, 0x%lx/0x%llx pages collected\n",
cpages, npages);
else
pr_debug("0x%lx pages collected\n", cpages);
r = svm_migrate_copy_to_vram(node, prange, &migrate, &mfence, scratch, ttm_res_offset);
migrate_vma_pages(&migrate);
svm_migrate_copy_done(adev, mfence);
migrate_vma_finalize(&migrate);
mpages = cpages - svm_migrate_unsuccessful_pages(&migrate);
pr_debug("successful/cpages/npages 0x%lx/0x%lx/0x%lx\n",
mpages, cpages, migrate.npages);
kfd_smi_event_migration_end(node, p->lead_thread->pid,
start >> PAGE_SHIFT, end >> PAGE_SHIFT,
0, node->id, trigger);
svm_range_dma_unmap_dev(adev->dev, scratch, 0, npages);
out_free:
kvfree(buf);
out:
if (!r && mpages) {
pdd = svm_range_get_pdd_by_node(prange, node);
if (pdd)
WRITE_ONCE(pdd->page_in, pdd->page_in + mpages);
return mpages;
}
return r;
}
/**
* svm_migrate_ram_to_vram - migrate svm range from system to device
* @prange: range structure
* @best_loc: the device to migrate to
* @start_mgr: start page to migrate
* @last_mgr: last page to migrate
* @mm: the process mm structure
* @trigger: reason of migration
*
* Context: Process context, caller hold mmap read lock, svms lock, prange lock
*
* Return:
* 0 - OK, otherwise error code
*/
static int
svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc,
unsigned long start_mgr, unsigned long last_mgr,
struct mm_struct *mm, uint32_t trigger)
{
unsigned long addr, start, end;
struct vm_area_struct *vma;
uint64_t ttm_res_offset;
struct kfd_node *node;
unsigned long mpages = 0;
long r = 0;
if (start_mgr < prange->start || last_mgr > prange->last) {
pr_debug("range [0x%lx 0x%lx] out prange [0x%lx 0x%lx]\n",
start_mgr, last_mgr, prange->start, prange->last);
return -EFAULT;
}
node = svm_range_get_node_by_id(prange, best_loc);
if (!node) {
pr_debug("failed to get kfd node by id 0x%x\n", best_loc);
return -ENODEV;
}
pr_debug("svms 0x%p [0x%lx 0x%lx] in [0x%lx 0x%lx] to gpu 0x%x\n",
prange->svms, start_mgr, last_mgr, prange->start, prange->last,
best_loc);
start = start_mgr << PAGE_SHIFT;
end = (last_mgr + 1) << PAGE_SHIFT;
r = amdgpu_amdkfd_reserve_mem_limit(node->adev,
prange->npages * PAGE_SIZE,
KFD_IOC_ALLOC_MEM_FLAGS_VRAM,
node->xcp ? node->xcp->id : 0);
if (r) {
dev_dbg(node->adev->dev, "failed to reserve VRAM, r: %ld\n", r);
return -ENOSPC;
}
r = svm_range_vram_node_new(node, prange, true);
if (r) {
dev_dbg(node->adev->dev, "fail %ld to alloc vram\n", r);
goto out;
}
ttm_res_offset = (start_mgr - prange->start + prange->offset) << PAGE_SHIFT;
for (addr = start; addr < end;) {
unsigned long next;
vma = vma_lookup(mm, addr);
if (!vma)
break;
next = min(vma->vm_end, end);
r = svm_migrate_vma_to_vram(node, prange, vma, addr, next, trigger, ttm_res_offset);
if (r < 0) {
pr_debug("failed %ld to migrate\n", r);
break;
} else {
mpages += r;
}
ttm_res_offset += next - addr;
addr = next;
}
if (mpages) {
prange->actual_loc = best_loc;
prange->vram_pages += mpages;
} else if (!prange->actual_loc) {
/* if no page migrated and all pages from prange are at
* sys ram drop svm_bo got from svm_range_vram_node_new
*/
svm_range_vram_node_free(prange);
}
out:
amdgpu_amdkfd_unreserve_mem_limit(node->adev,
prange->npages * PAGE_SIZE,
KFD_IOC_ALLOC_MEM_FLAGS_VRAM,
node->xcp ? node->xcp->id : 0);
return r < 0 ? r : 0;
}
static void svm_migrate_page_free(struct page *page)
{
struct svm_range_bo *svm_bo = page->zone_device_data;
if (svm_bo) {
pr_debug_ratelimited("ref: %d\n", kref_read(&svm_bo->kref));
svm_range_bo_unref_async(svm_bo);
}
}
static int
svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange,
struct migrate_vma *migrate, struct dma_fence **mfence,
dma_addr_t *scratch, uint64_t npages)
{
struct device *dev = adev->dev;
uint64_t *src;
dma_addr_t *dst;
struct page *dpage;
uint64_t i = 0, j;
uint64_t addr;
int r = 0;
pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start,
prange->last);
addr = migrate->start;
src = (uint64_t *)(scratch + npages);
dst = scratch;
for (i = 0, j = 0; i < npages; i++, addr += PAGE_SIZE) {
struct page *spage;
spage = migrate_pfn_to_page(migrate->src[i]);
if (!spage || !is_zone_device_page(spage)) {
pr_debug("invalid page. Could be in CPU already svms 0x%p [0x%lx 0x%lx]\n",
prange->svms, prange->start, prange->last);
if (j) {
r = svm_migrate_copy_memory_gart(adev, dst + i - j,
src + i - j, j,
FROM_VRAM_TO_RAM,
mfence);
if (r)
goto out_oom;
j = 0;
}
continue;
}
src[i] = svm_migrate_addr(adev, spage);
if (j > 0 && src[i] != src[i - 1] + PAGE_SIZE) {
r = svm_migrate_copy_memory_gart(adev, dst + i - j,
src + i - j, j,
FROM_VRAM_TO_RAM,
mfence);
if (r)
goto out_oom;
j = 0;
}
dpage = svm_migrate_get_sys_page(migrate->vma, addr);
if (!dpage) {
pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n",
prange->svms, prange->start, prange->last);
r = -ENOMEM;
goto out_oom;
}
dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_FROM_DEVICE);
r = dma_mapping_error(dev, dst[i]);
if (r) {
dev_err(adev->dev, "%s: fail %d dma_map_page\n", __func__, r);
goto out_oom;
}
pr_debug_ratelimited("dma mapping dst to 0x%llx, pfn 0x%lx\n",
dst[i] >> PAGE_SHIFT, page_to_pfn(dpage));
migrate->dst[i] = migrate_pfn(page_to_pfn(dpage));
j++;
}
r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j,
FROM_VRAM_TO_RAM, mfence);
out_oom:
if (r) {
pr_debug("failed %d copy to ram\n", r);
while (i--) {
svm_migrate_put_sys_page(dst[i]);
migrate->dst[i] = 0;
}
}
return r;
}
/**
* svm_migrate_vma_to_ram - migrate range inside one vma from device to system
*
* @prange: svm range structure
* @vma: vm_area_struct that range [start, end] belongs to
* @start: range start virtual address in pages
* @end: range end virtual address in pages
* @node: kfd node device to migrate from
* @trigger: reason of migration
* @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback
*
* Context: Process context, caller hold mmap read lock, prange->migrate_mutex
*
* Return:
* negative values - indicate error
* positive values or zero - number of pages got migrated
*/
static long
svm_migrate_vma_to_ram(struct kfd_node *node, struct svm_range *prange,
struct vm_area_struct *vma, uint64_t start, uint64_t end,
uint32_t trigger, struct page *fault_page)
{
struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
uint64_t npages = (end - start) >> PAGE_SHIFT;
unsigned long upages = npages;
unsigned long cpages = 0;
unsigned long mpages = 0;
struct amdgpu_device *adev = node->adev;
struct kfd_process_device *pdd;
struct dma_fence *mfence = NULL;
struct migrate_vma migrate = { 0 };
dma_addr_t *scratch;
void *buf;
int r = -ENOMEM;
memset(&migrate, 0, sizeof(migrate));
migrate.vma = vma;
migrate.start = start;
migrate.end = end;
migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev);
if (adev->gmc.xgmi.connected_to_cpu)
migrate.flags = MIGRATE_VMA_SELECT_DEVICE_COHERENT;
else
migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
buf = kvcalloc(npages,
2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t),
GFP_KERNEL);
if (!buf)
goto out;
migrate.src = buf;
migrate.dst = migrate.src + npages;
migrate.fault_page = fault_page;
scratch = (dma_addr_t *)(migrate.dst + npages);
kfd_smi_event_migration_start(node, p->lead_thread->pid,
start >> PAGE_SHIFT, end >> PAGE_SHIFT,
node->id, 0, prange->prefetch_loc,
prange->preferred_loc, trigger);
r = migrate_vma_setup(&migrate);
if (r) {
dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n",
__func__, r, prange->start, prange->last);
goto out_free;
}
cpages = migrate.cpages;
if (!cpages) {
pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n",
prange->start, prange->last);
upages = svm_migrate_unsuccessful_pages(&migrate);
goto out_free;
}
if (cpages != npages)
pr_debug("partial migration, 0x%lx/0x%llx pages collected\n",
cpages, npages);
else
pr_debug("0x%lx pages collected\n", cpages);
r = svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence,
scratch, npages);
migrate_vma_pages(&migrate);
upages = svm_migrate_unsuccessful_pages(&migrate);
pr_debug("unsuccessful/cpages/npages 0x%lx/0x%lx/0x%lx\n",
upages, cpages, migrate.npages);
svm_migrate_copy_done(adev, mfence);
migrate_vma_finalize(&migrate);
kfd_smi_event_migration_end(node, p->lead_thread->pid,
start >> PAGE_SHIFT, end >> PAGE_SHIFT,
node->id, 0, trigger);
svm_range_dma_unmap_dev(adev->dev, scratch, 0, npages);
out_free:
kvfree(buf);
out:
if (!r && cpages) {
mpages = cpages - upages;
pdd = svm_range_get_pdd_by_node(prange, node);
if (pdd)
WRITE_ONCE(pdd->page_out, pdd->page_out + mpages);
}
return r ? r : mpages;
}
/**
* svm_migrate_vram_to_ram - migrate svm range from device to system
* @prange: range structure
* @mm: process mm, use current->mm if NULL
* @start_mgr: start page need be migrated to sys ram
* @last_mgr: last page need be migrated to sys ram
* @trigger: reason of migration
* @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback
*
* Context: Process context, caller hold mmap read lock, prange->migrate_mutex
*
* Return:
* 0 - OK, otherwise error code
*/
int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm,
unsigned long start_mgr, unsigned long last_mgr,
uint32_t trigger, struct page *fault_page)
{
struct kfd_node *node;
struct vm_area_struct *vma;
unsigned long addr;
unsigned long start;
unsigned long end;
unsigned long mpages = 0;
long r = 0;
/* this pragne has no any vram page to migrate to sys ram */
if (!prange->actual_loc) {
pr_debug("[0x%lx 0x%lx] already migrated to ram\n",
prange->start, prange->last);
return 0;
}
if (start_mgr < prange->start || last_mgr > prange->last) {
pr_debug("range [0x%lx 0x%lx] out prange [0x%lx 0x%lx]\n",
start_mgr, last_mgr, prange->start, prange->last);
return -EFAULT;
}
node = svm_range_get_node_by_id(prange, prange->actual_loc);
if (!node) {
pr_debug("failed to get kfd node by id 0x%x\n", prange->actual_loc);
return -ENODEV;
}
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n",
prange->svms, prange, start_mgr, last_mgr,
prange->actual_loc);
start = start_mgr << PAGE_SHIFT;
end = (last_mgr + 1) << PAGE_SHIFT;
for (addr = start; addr < end;) {
unsigned long next;
vma = vma_lookup(mm, addr);
if (!vma) {
pr_debug("failed to find vma for prange %p\n", prange);
r = -EFAULT;
break;
}
next = min(vma->vm_end, end);
r = svm_migrate_vma_to_ram(node, prange, vma, addr, next, trigger,
fault_page);
if (r < 0) {
pr_debug("failed %ld to migrate prange %p\n", r, prange);
break;
} else {
mpages += r;
}
addr = next;
}
if (r >= 0) {
prange->vram_pages -= mpages;
/* prange does not have vram page set its actual_loc to system
* and drop its svm_bo ref
*/
if (prange->vram_pages == 0 && prange->ttm_res) {
prange->actual_loc = 0;
svm_range_vram_node_free(prange);
}
}
return r < 0 ? r : 0;
}
/**
* svm_migrate_vram_to_vram - migrate svm range from device to device
* @prange: range structure
* @best_loc: the device to migrate to
* @start: start page need be migrated to sys ram
* @last: last page need be migrated to sys ram
* @mm: process mm, use current->mm if NULL
* @trigger: reason of migration
*
* Context: Process context, caller hold mmap read lock, svms lock, prange lock
*
* migrate all vram pages in prange to sys ram, then migrate
* [start, last] pages from sys ram to gpu node best_loc.
*
* Return:
* 0 - OK, otherwise error code
*/
static int
svm_migrate_vram_to_vram(struct svm_range *prange, uint32_t best_loc,
unsigned long start, unsigned long last,
struct mm_struct *mm, uint32_t trigger)
{
int r, retries = 3;
/*
* TODO: for both devices with PCIe large bar or on same xgmi hive, skip
* system memory as migration bridge
*/
pr_debug("from gpu 0x%x to gpu 0x%x\n", prange->actual_loc, best_loc);
do {
r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
trigger, NULL);
if (r)
return r;
} while (prange->actual_loc && --retries);
if (prange->actual_loc)
return -EDEADLK;
return svm_migrate_ram_to_vram(prange, best_loc, start, last, mm, trigger);
}
int
svm_migrate_to_vram(struct svm_range *prange, uint32_t best_loc,
unsigned long start, unsigned long last,
struct mm_struct *mm, uint32_t trigger)
{
if (!prange->actual_loc || prange->actual_loc == best_loc)
return svm_migrate_ram_to_vram(prange, best_loc, start, last,
mm, trigger);
else
return svm_migrate_vram_to_vram(prange, best_loc, start, last,
mm, trigger);
}
/**
* svm_migrate_to_ram - CPU page fault handler
* @vmf: CPU vm fault vma, address
*
* Context: vm fault handler, caller holds the mmap read lock
*
* Return:
* 0 - OK
* VM_FAULT_SIGBUS - notice application to have SIGBUS page fault
*/
static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf)
{
unsigned long start, last, size;
unsigned long addr = vmf->address;
struct svm_range_bo *svm_bo;
struct svm_range *prange;
struct kfd_process *p;
struct mm_struct *mm;
int r = 0;
svm_bo = vmf->page->zone_device_data;
if (!svm_bo) {
pr_debug("failed get device page at addr 0x%lx\n", addr);
return VM_FAULT_SIGBUS;
}
if (!mmget_not_zero(svm_bo->eviction_fence->mm)) {
pr_debug("addr 0x%lx of process mm is destroyed\n", addr);
return VM_FAULT_SIGBUS;
}
mm = svm_bo->eviction_fence->mm;
if (mm != vmf->vma->vm_mm)
pr_debug("addr 0x%lx is COW mapping in child process\n", addr);
p = kfd_lookup_process_by_mm(mm);
if (!p) {
pr_debug("failed find process at fault address 0x%lx\n", addr);
r = VM_FAULT_SIGBUS;
goto out_mmput;
}
if (READ_ONCE(p->svms.faulting_task) == current) {
pr_debug("skipping ram migration\n");
r = 0;
goto out_unref_process;
}
pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr);
addr >>= PAGE_SHIFT;
mutex_lock(&p->svms.lock);
prange = svm_range_from_addr(&p->svms, addr, NULL);
if (!prange) {
pr_debug("failed get range svms 0x%p addr 0x%lx\n", &p->svms, addr);
r = -EFAULT;
goto out_unlock_svms;
}
mutex_lock(&prange->migrate_mutex);
if (!prange->actual_loc)
goto out_unlock_prange;
/* Align migration range start and size to granularity size */
size = 1UL << prange->granularity;
start = max(ALIGN_DOWN(addr, size), prange->start);
last = min(ALIGN(addr + 1, size) - 1, prange->last);
r = svm_migrate_vram_to_ram(prange, vmf->vma->vm_mm, start, last,
KFD_MIGRATE_TRIGGER_PAGEFAULT_CPU, vmf->page);
if (r)
pr_debug("failed %d migrate svms 0x%p range 0x%p [0x%lx 0x%lx]\n",
r, prange->svms, prange, start, last);
out_unlock_prange:
mutex_unlock(&prange->migrate_mutex);
out_unlock_svms:
mutex_unlock(&p->svms.lock);
out_unref_process:
pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr);
kfd_unref_process(p);
out_mmput:
mmput(mm);
return r ? VM_FAULT_SIGBUS : 0;
}
static const struct dev_pagemap_ops svm_migrate_pgmap_ops = {
.page_free = svm_migrate_page_free,
.migrate_to_ram = svm_migrate_to_ram,
};
/* Each VRAM page uses sizeof(struct page) on system memory */
#define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page))
int kgd2kfd_init_zone_device(struct amdgpu_device *adev)
{
struct amdgpu_kfd_dev *kfddev = &adev->kfd;
struct dev_pagemap *pgmap;
struct resource *res = NULL;
unsigned long size;
void *r;
/* Page migration works on gfx9 or newer */
if (amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 1))
return -EINVAL;
if (adev->flags & AMD_IS_APU)
return 0;
pgmap = &kfddev->pgmap;
memset(pgmap, 0, sizeof(*pgmap));
/* TODO: register all vram to HMM for now.
* should remove reserved size
*/
size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20);
if (adev->gmc.xgmi.connected_to_cpu) {
pgmap->range.start = adev->gmc.aper_base;
pgmap->range.end = adev->gmc.aper_base + adev->gmc.aper_size - 1;
pgmap->type = MEMORY_DEVICE_COHERENT;
} else {
res = devm_request_free_mem_region(adev->dev, &iomem_resource, size);
if (IS_ERR(res))
return PTR_ERR(res);
pgmap->range.start = res->start;
pgmap->range.end = res->end;
pgmap->type = MEMORY_DEVICE_PRIVATE;
}
pgmap->nr_range = 1;
pgmap->ops = &svm_migrate_pgmap_ops;
pgmap->owner = SVM_ADEV_PGMAP_OWNER(adev);
pgmap->flags = 0;
/* Device manager releases device-specific resources, memory region and
* pgmap when driver disconnects from device.
*/
r = devm_memremap_pages(adev->dev, pgmap);
if (IS_ERR(r)) {
pr_err("failed to register HMM device memory\n");
if (pgmap->type == MEMORY_DEVICE_PRIVATE)
devm_release_mem_region(adev->dev, res->start, resource_size(res));
/* Disable SVM support capability */
pgmap->type = 0;
return PTR_ERR(r);
}
pr_debug("reserve %ldMB system memory for VRAM pages struct\n",
SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20);
amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size));
pr_info("HMM registered %ldMB device memory\n", size >> 20);
return 0;
}