linux/include/linux/bio.h

/* SPDX-License-Identifier: GPL-2.0 */
/*
 * Copyright (C) 2001 Jens Axboe <[email protected]>
 */
#ifndef __LINUX_BIO_H
#define __LINUX_BIO_H

#include <linux/mempool.h>
/* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
#include <linux/blk_types.h>
#include <linux/uio.h>

#define BIO_MAX_VECS

struct queue_limits;

static inline unsigned int bio_max_segs(unsigned int nr_segs)
{}

#define bio_prio(bio)
#define bio_set_prio(bio, prio)

#define bio_iter_iovec(bio, iter)

#define bio_iter_page(bio, iter)
#define bio_iter_len(bio, iter)
#define bio_iter_offset(bio, iter)

#define bio_page(bio)
#define bio_offset(bio)
#define bio_iovec(bio)

#define bvec_iter_sectors(iter)
#define bvec_iter_end_sector(iter)

#define bio_sectors(bio)
#define bio_end_sector(bio)

/*
 * Return the data direction, READ or WRITE.
 */
#define bio_data_dir(bio)

/*
 * Check whether this bio carries any data or not. A NULL bio is allowed.
 */
static inline bool bio_has_data(struct bio *bio)
{}

static inline bool bio_no_advance_iter(const struct bio *bio)
{}

static inline void *bio_data(struct bio *bio)
{}

static inline bool bio_next_segment(const struct bio *bio,
				    struct bvec_iter_all *iter)
{}

/*
 * drivers should _never_ use the all version - the bio may have been split
 * before it got to the driver and the driver won't own all of it
 */
#define bio_for_each_segment_all(bvl, bio, iter)

static inline void bio_advance_iter(const struct bio *bio,
				    struct bvec_iter *iter, unsigned int bytes)
{}

/* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
static inline void bio_advance_iter_single(const struct bio *bio,
					   struct bvec_iter *iter,
					   unsigned int bytes)
{}

void __bio_advance(struct bio *, unsigned bytes);

/**
 * bio_advance - increment/complete a bio by some number of bytes
 * @bio:	bio to advance
 * @nbytes:	number of bytes to complete
 *
 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 * be updated on the last bvec as well.
 *
 * @bio will then represent the remaining, uncompleted portion of the io.
 */
static inline void bio_advance(struct bio *bio, unsigned int nbytes)
{}

#define __bio_for_each_segment(bvl, bio, iter, start)

#define bio_for_each_segment(bvl, bio, iter)

#define __bio_for_each_bvec(bvl, bio, iter, start)

/* iterate over multi-page bvec */
#define bio_for_each_bvec(bvl, bio, iter)

/*
 * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
 * same reasons as bio_for_each_segment_all().
 */
#define bio_for_each_bvec_all(bvl, bio, i)

#define bio_iter_last(bvec, iter)

static inline unsigned bio_segments(struct bio *bio)
{}

/*
 * get a reference to a bio, so it won't disappear. the intended use is
 * something like:
 *
 * bio_get(bio);
 * submit_bio(rw, bio);
 * if (bio->bi_flags ...)
 *	do_something
 * bio_put(bio);
 *
 * without the bio_get(), it could potentially complete I/O before submit_bio
 * returns. and then bio would be freed memory when if (bio->bi_flags ...)
 * runs
 */
static inline void bio_get(struct bio *bio)
{}

static inline void bio_cnt_set(struct bio *bio, unsigned int count)
{}

static inline bool bio_flagged(struct bio *bio, unsigned int bit)
{}

static inline void bio_set_flag(struct bio *bio, unsigned int bit)
{}

static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
{}

static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
{}

static inline struct page *bio_first_page_all(struct bio *bio)
{}

static inline struct folio *bio_first_folio_all(struct bio *bio)
{}

static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
{}

/**
 * struct folio_iter - State for iterating all folios in a bio.
 * @folio: The current folio we're iterating.  NULL after the last folio.
 * @offset: The byte offset within the current folio.
 * @length: The number of bytes in this iteration (will not cross folio
 *	boundary).
 */
struct folio_iter {};

static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
				   int i)
{}

static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
{}

/**
 * bio_for_each_folio_all - Iterate over each folio in a bio.
 * @fi: struct folio_iter which is updated for each folio.
 * @bio: struct bio to iterate over.
 */
#define bio_for_each_folio_all(fi, bio)

void bio_trim(struct bio *bio, sector_t offset, sector_t size);
extern struct bio *bio_split(struct bio *bio, int sectors,
			     gfp_t gfp, struct bio_set *bs);
int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
		unsigned *segs, unsigned max_bytes);

/**
 * bio_next_split - get next @sectors from a bio, splitting if necessary
 * @bio:	bio to split
 * @sectors:	number of sectors to split from the front of @bio
 * @gfp:	gfp mask
 * @bs:		bio set to allocate from
 *
 * Return: a bio representing the next @sectors of @bio - if the bio is smaller
 * than @sectors, returns the original bio unchanged.
 */
static inline struct bio *bio_next_split(struct bio *bio, int sectors,
					 gfp_t gfp, struct bio_set *bs)
{}

enum {};
extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
extern void bioset_exit(struct bio_set *);
extern int biovec_init_pool(mempool_t *pool, int pool_entries);

struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
			     blk_opf_t opf, gfp_t gfp_mask,
			     struct bio_set *bs);
struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
extern void bio_put(struct bio *);

struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
		gfp_t gfp, struct bio_set *bs);
int bio_init_clone(struct block_device *bdev, struct bio *bio,
		struct bio *bio_src, gfp_t gfp);

extern struct bio_set fs_bio_set;

static inline struct bio *bio_alloc(struct block_device *bdev,
		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask)
{}

void submit_bio(struct bio *bio);

extern void bio_endio(struct bio *);

static inline void bio_io_error(struct bio *bio)
{}

static inline void bio_wouldblock_error(struct bio *bio)
{}

/*
 * Calculate number of bvec segments that should be allocated to fit data
 * pointed by @iter. If @iter is backed by bvec it's going to be reused
 * instead of allocating a new one.
 */
static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
{}

struct request_queue;

extern int submit_bio_wait(struct bio *bio);
void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
	      unsigned short max_vecs, blk_opf_t opf);
extern void bio_uninit(struct bio *);
void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf);
void bio_chain(struct bio *, struct bio *);

int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len,
			      unsigned off);
bool __must_check bio_add_folio(struct bio *bio, struct folio *folio,
				size_t len, size_t off);
extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *,
			   unsigned int, unsigned int);
int bio_add_zone_append_page(struct bio *bio, struct page *page,
			     unsigned int len, unsigned int offset);
void __bio_add_page(struct bio *bio, struct page *page,
		unsigned int len, unsigned int off);
void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
			  size_t off);
int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter);
void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter);
void __bio_release_pages(struct bio *bio, bool mark_dirty);
extern void bio_set_pages_dirty(struct bio *bio);
extern void bio_check_pages_dirty(struct bio *bio);

extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
			       struct bio *src, struct bvec_iter *src_iter);
extern void bio_copy_data(struct bio *dst, struct bio *src);
extern void bio_free_pages(struct bio *bio);
void guard_bio_eod(struct bio *bio);
void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter);

static inline void zero_fill_bio(struct bio *bio)
{}

static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
{}

#define bio_dev(bio)

#ifdef CONFIG_BLK_CGROUP
void bio_associate_blkg(struct bio *bio);
void bio_associate_blkg_from_css(struct bio *bio,
				 struct cgroup_subsys_state *css);
void bio_clone_blkg_association(struct bio *dst, struct bio *src);
void blkcg_punt_bio_submit(struct bio *bio);
#else	/* CONFIG_BLK_CGROUP */
static inline void bio_associate_blkg(struct bio *bio) { }
static inline void bio_associate_blkg_from_css(struct bio *bio,
					       struct cgroup_subsys_state *css)
{ }
static inline void bio_clone_blkg_association(struct bio *dst,
					      struct bio *src) { }
static inline void blkcg_punt_bio_submit(struct bio *bio)
{
	submit_bio(bio);
}
#endif	/* CONFIG_BLK_CGROUP */

static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
{}

/*
 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
 *
 * A bio_list anchors a singly-linked list of bios chained through the bi_next
 * member of the bio.  The bio_list also caches the last list member to allow
 * fast access to the tail.
 */
struct bio_list {};

static inline int bio_list_empty(const struct bio_list *bl)
{}

static inline void bio_list_init(struct bio_list *bl)
{}

#define BIO_EMPTY_LIST

#define bio_list_for_each(bio, bl)

static inline unsigned bio_list_size(const struct bio_list *bl)
{}

static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
{}

static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
{}

static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
{}

static inline void bio_list_merge_init(struct bio_list *bl,
		struct bio_list *bl2)
{}

static inline void bio_list_merge_head(struct bio_list *bl,
				       struct bio_list *bl2)
{}

static inline struct bio *bio_list_peek(struct bio_list *bl)
{}

static inline struct bio *bio_list_pop(struct bio_list *bl)
{}

static inline struct bio *bio_list_get(struct bio_list *bl)
{}

/*
 * Increment chain count for the bio. Make sure the CHAIN flag update
 * is visible before the raised count.
 */
static inline void bio_inc_remaining(struct bio *bio)
{}

/*
 * bio_set is used to allow other portions of the IO system to
 * allocate their own private memory pools for bio and iovec structures.
 * These memory pools in turn all allocate from the bio_slab
 * and the bvec_slabs[].
 */
#define BIO_POOL_SIZE

struct bio_set {};

static inline bool bioset_initialized(struct bio_set *bs)
{}

/*
 * Mark a bio as polled. Note that for async polled IO, the caller must
 * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
 * We cannot block waiting for requests on polled IO, as those completions
 * must be found by the caller. This is different than IRQ driven IO, where
 * it's safe to wait for IO to complete.
 */
static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
{}

static inline void bio_clear_polled(struct bio *bio)
{}

struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp);
struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new);

struct bio *blk_alloc_discard_bio(struct block_device *bdev,
		sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask);

#endif /* __LINUX_BIO_H */