// SPDX-License-Identifier: GPL-2.0-only
/*
* Confidential Computing Platform Capability checks
*
* Copyright (C) 2021 Advanced Micro Devices, Inc.
* Copyright (C) 2024 Jason A. Donenfeld <[email protected]>. All Rights Reserved.
*
* Author: Tom Lendacky <[email protected]>
*/
#include <linux/export.h>
#include <linux/cc_platform.h>
#include <linux/string.h>
#include <linux/random.h>
#include <asm/archrandom.h>
#include <asm/coco.h>
#include <asm/processor.h>
enum cc_vendor cc_vendor __ro_after_init = CC_VENDOR_NONE;
u64 cc_mask __ro_after_init;
static struct cc_attr_flags {
__u64 host_sev_snp : 1,
__resv : 63;
} cc_flags;
static bool noinstr intel_cc_platform_has(enum cc_attr attr)
{
switch (attr) {
case CC_ATTR_GUEST_UNROLL_STRING_IO:
case CC_ATTR_GUEST_MEM_ENCRYPT:
case CC_ATTR_MEM_ENCRYPT:
return true;
default:
return false;
}
}
/*
* Handle the SEV-SNP vTOM case where sme_me_mask is zero, and
* the other levels of SME/SEV functionality, including C-bit
* based SEV-SNP, are not enabled.
*/
static __maybe_unused __always_inline bool amd_cc_platform_vtom(enum cc_attr attr)
{
switch (attr) {
case CC_ATTR_GUEST_MEM_ENCRYPT:
case CC_ATTR_MEM_ENCRYPT:
return true;
default:
return false;
}
}
/*
* SME and SEV are very similar but they are not the same, so there are
* times that the kernel will need to distinguish between SME and SEV. The
* cc_platform_has() function is used for this. When a distinction isn't
* needed, the CC_ATTR_MEM_ENCRYPT attribute can be used.
*
* The trampoline code is a good example for this requirement. Before
* paging is activated, SME will access all memory as decrypted, but SEV
* will access all memory as encrypted. So, when APs are being brought
* up under SME the trampoline area cannot be encrypted, whereas under SEV
* the trampoline area must be encrypted.
*/
static bool noinstr amd_cc_platform_has(enum cc_attr attr)
{
#ifdef CONFIG_AMD_MEM_ENCRYPT
if (sev_status & MSR_AMD64_SNP_VTOM)
return amd_cc_platform_vtom(attr);
switch (attr) {
case CC_ATTR_MEM_ENCRYPT:
return sme_me_mask;
case CC_ATTR_HOST_MEM_ENCRYPT:
return sme_me_mask && !(sev_status & MSR_AMD64_SEV_ENABLED);
case CC_ATTR_GUEST_MEM_ENCRYPT:
return sev_status & MSR_AMD64_SEV_ENABLED;
case CC_ATTR_GUEST_STATE_ENCRYPT:
return sev_status & MSR_AMD64_SEV_ES_ENABLED;
/*
* With SEV, the rep string I/O instructions need to be unrolled
* but SEV-ES supports them through the #VC handler.
*/
case CC_ATTR_GUEST_UNROLL_STRING_IO:
return (sev_status & MSR_AMD64_SEV_ENABLED) &&
!(sev_status & MSR_AMD64_SEV_ES_ENABLED);
case CC_ATTR_GUEST_SEV_SNP:
return sev_status & MSR_AMD64_SEV_SNP_ENABLED;
case CC_ATTR_HOST_SEV_SNP:
return cc_flags.host_sev_snp;
default:
return false;
}
#else
return false;
#endif
}
bool noinstr cc_platform_has(enum cc_attr attr)
{
switch (cc_vendor) {
case CC_VENDOR_AMD:
return amd_cc_platform_has(attr);
case CC_VENDOR_INTEL:
return intel_cc_platform_has(attr);
default:
return false;
}
}
EXPORT_SYMBOL_GPL(cc_platform_has);
u64 cc_mkenc(u64 val)
{
/*
* Both AMD and Intel use a bit in the page table to indicate
* encryption status of the page.
*
* - for AMD, bit *set* means the page is encrypted
* - for AMD with vTOM and for Intel, *clear* means encrypted
*/
switch (cc_vendor) {
case CC_VENDOR_AMD:
if (sev_status & MSR_AMD64_SNP_VTOM)
return val & ~cc_mask;
else
return val | cc_mask;
case CC_VENDOR_INTEL:
return val & ~cc_mask;
default:
return val;
}
}
u64 cc_mkdec(u64 val)
{
/* See comment in cc_mkenc() */
switch (cc_vendor) {
case CC_VENDOR_AMD:
if (sev_status & MSR_AMD64_SNP_VTOM)
return val | cc_mask;
else
return val & ~cc_mask;
case CC_VENDOR_INTEL:
return val | cc_mask;
default:
return val;
}
}
EXPORT_SYMBOL_GPL(cc_mkdec);
static void amd_cc_platform_clear(enum cc_attr attr)
{
switch (attr) {
case CC_ATTR_HOST_SEV_SNP:
cc_flags.host_sev_snp = 0;
break;
default:
break;
}
}
void cc_platform_clear(enum cc_attr attr)
{
switch (cc_vendor) {
case CC_VENDOR_AMD:
amd_cc_platform_clear(attr);
break;
default:
break;
}
}
static void amd_cc_platform_set(enum cc_attr attr)
{
switch (attr) {
case CC_ATTR_HOST_SEV_SNP:
cc_flags.host_sev_snp = 1;
break;
default:
break;
}
}
void cc_platform_set(enum cc_attr attr)
{
switch (cc_vendor) {
case CC_VENDOR_AMD:
amd_cc_platform_set(attr);
break;
default:
break;
}
}
__init void cc_random_init(void)
{
/*
* The seed is 32 bytes (in units of longs), which is 256 bits, which
* is the security level that the RNG is targeting.
*/
unsigned long rng_seed[32 / sizeof(long)];
size_t i, longs;
if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
return;
/*
* Since the CoCo threat model includes the host, the only reliable
* source of entropy that can be neither observed nor manipulated is
* RDRAND. Usually, RDRAND failure is considered tolerable, but since
* CoCo guests have no other unobservable source of entropy, it's
* important to at least ensure the RNG gets some initial random seeds.
*/
for (i = 0; i < ARRAY_SIZE(rng_seed); i += longs) {
longs = arch_get_random_longs(&rng_seed[i], ARRAY_SIZE(rng_seed) - i);
/*
* A zero return value means that the guest doesn't have RDRAND
* or the CPU is physically broken, and in both cases that
* means most crypto inside of the CoCo instance will be
* broken, defeating the purpose of CoCo in the first place. So
* just panic here because it's absolutely unsafe to continue
* executing.
*/
if (longs == 0)
panic("RDRAND is defective.");
}
add_device_randomness(rng_seed, sizeof(rng_seed));
memzero_explicit(rng_seed, sizeof(rng_seed));
}