/*
* Copyright 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#define SWSMU_CODE_LAYER_L2
#include <linux/firmware.h>
#include <linux/pci.h>
#include <linux/i2c.h>
#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "atomfirmware.h"
#include "amdgpu_atomfirmware.h"
#include "amdgpu_atombios.h"
#include "smu_v14_0.h"
#include "smu14_driver_if_v14_0.h"
#include "soc15_common.h"
#include "atom.h"
#include "smu_v14_0_2_ppt.h"
#include "smu_v14_0_2_pptable.h"
#include "smu_v14_0_2_ppsmc.h"
#include "mp/mp_14_0_2_offset.h"
#include "mp/mp_14_0_2_sh_mask.h"
#include "smu_cmn.h"
#include "amdgpu_ras.h"
/*
* DO NOT use these for err/warn/info/debug messages.
* Use dev_err, dev_warn, dev_info and dev_dbg instead.
* They are more MGPU friendly.
*/
#undef pr_err
#undef pr_warn
#undef pr_info
#undef pr_debug
#define to_amdgpu_device(x) (container_of(x, struct amdgpu_device, pm.smu_i2c))
#define FEATURE_MASK(feature) (1ULL << feature)
#define SMC_DPM_FEATURE ( \
FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_UCLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_LINK_BIT) | \
FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_FCLK_BIT))
#define MP0_MP1_DATA_REGION_SIZE_COMBOPPTABLE 0x4000
#define DEBUGSMC_MSG_Mode1Reset 2
#define LINK_SPEED_MAX 3
#define PP_OD_FEATURE_GFXCLK_FMIN 0
#define PP_OD_FEATURE_GFXCLK_FMAX 1
#define PP_OD_FEATURE_UCLK_FMIN 2
#define PP_OD_FEATURE_UCLK_FMAX 3
#define PP_OD_FEATURE_GFX_VF_CURVE 4
#define PP_OD_FEATURE_FAN_CURVE_TEMP 5
#define PP_OD_FEATURE_FAN_CURVE_PWM 6
#define PP_OD_FEATURE_FAN_ACOUSTIC_LIMIT 7
#define PP_OD_FEATURE_FAN_ACOUSTIC_TARGET 8
#define PP_OD_FEATURE_FAN_TARGET_TEMPERATURE 9
#define PP_OD_FEATURE_FAN_MINIMUM_PWM 10
static struct cmn2asic_msg_mapping smu_v14_0_2_message_map[SMU_MSG_MAX_COUNT] = {
MSG_MAP(TestMessage, PPSMC_MSG_TestMessage, 1),
MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion, 1),
MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion, 1),
MSG_MAP(SetAllowedFeaturesMaskLow, PPSMC_MSG_SetAllowedFeaturesMaskLow, 0),
MSG_MAP(SetAllowedFeaturesMaskHigh, PPSMC_MSG_SetAllowedFeaturesMaskHigh, 0),
MSG_MAP(EnableAllSmuFeatures, PPSMC_MSG_EnableAllSmuFeatures, 0),
MSG_MAP(DisableAllSmuFeatures, PPSMC_MSG_DisableAllSmuFeatures, 0),
MSG_MAP(EnableSmuFeaturesLow, PPSMC_MSG_EnableSmuFeaturesLow, 1),
MSG_MAP(EnableSmuFeaturesHigh, PPSMC_MSG_EnableSmuFeaturesHigh, 1),
MSG_MAP(DisableSmuFeaturesLow, PPSMC_MSG_DisableSmuFeaturesLow, 1),
MSG_MAP(DisableSmuFeaturesHigh, PPSMC_MSG_DisableSmuFeaturesHigh, 1),
MSG_MAP(GetEnabledSmuFeaturesLow, PPSMC_MSG_GetRunningSmuFeaturesLow, 1),
MSG_MAP(GetEnabledSmuFeaturesHigh, PPSMC_MSG_GetRunningSmuFeaturesHigh, 1),
MSG_MAP(SetWorkloadMask, PPSMC_MSG_SetWorkloadMask, 1),
MSG_MAP(SetPptLimit, PPSMC_MSG_SetPptLimit, 0),
MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh, 1),
MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow, 1),
MSG_MAP(SetToolsDramAddrHigh, PPSMC_MSG_SetToolsDramAddrHigh, 0),
MSG_MAP(SetToolsDramAddrLow, PPSMC_MSG_SetToolsDramAddrLow, 0),
MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram, 1),
MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu, 0),
MSG_MAP(UseDefaultPPTable, PPSMC_MSG_UseDefaultPPTable, 0),
MSG_MAP(RunDcBtc, PPSMC_MSG_RunDcBtc, 0),
MSG_MAP(EnterBaco, PPSMC_MSG_EnterBaco, 0),
MSG_MAP(ExitBaco, PPSMC_MSG_ExitBaco, 0),
MSG_MAP(SetSoftMinByFreq, PPSMC_MSG_SetSoftMinByFreq, 1),
MSG_MAP(SetSoftMaxByFreq, PPSMC_MSG_SetSoftMaxByFreq, 1),
MSG_MAP(SetHardMinByFreq, PPSMC_MSG_SetHardMinByFreq, 1),
MSG_MAP(SetHardMaxByFreq, PPSMC_MSG_SetHardMaxByFreq, 0),
MSG_MAP(GetMinDpmFreq, PPSMC_MSG_GetMinDpmFreq, 1),
MSG_MAP(GetMaxDpmFreq, PPSMC_MSG_GetMaxDpmFreq, 1),
MSG_MAP(GetDpmFreqByIndex, PPSMC_MSG_GetDpmFreqByIndex, 1),
MSG_MAP(PowerUpVcn, PPSMC_MSG_PowerUpVcn, 0),
MSG_MAP(PowerDownVcn, PPSMC_MSG_PowerDownVcn, 0),
MSG_MAP(PowerUpJpeg, PPSMC_MSG_PowerUpJpeg, 0),
MSG_MAP(PowerDownJpeg, PPSMC_MSG_PowerDownJpeg, 0),
MSG_MAP(GetDcModeMaxDpmFreq, PPSMC_MSG_GetDcModeMaxDpmFreq, 1),
MSG_MAP(OverridePcieParameters, PPSMC_MSG_OverridePcieParameters, 0),
MSG_MAP(DramLogSetDramAddrHigh, PPSMC_MSG_DramLogSetDramAddrHigh, 0),
MSG_MAP(DramLogSetDramAddrLow, PPSMC_MSG_DramLogSetDramAddrLow, 0),
MSG_MAP(DramLogSetDramSize, PPSMC_MSG_DramLogSetDramSize, 0),
MSG_MAP(AllowGfxOff, PPSMC_MSG_AllowGfxOff, 0),
MSG_MAP(DisallowGfxOff, PPSMC_MSG_DisallowGfxOff, 0),
MSG_MAP(SetMGpuFanBoostLimitRpm, PPSMC_MSG_SetMGpuFanBoostLimitRpm, 0),
MSG_MAP(GetPptLimit, PPSMC_MSG_GetPptLimit, 0),
MSG_MAP(NotifyPowerSource, PPSMC_MSG_NotifyPowerSource, 0),
MSG_MAP(PrepareMp1ForUnload, PPSMC_MSG_PrepareMp1ForUnload, 0),
MSG_MAP(DFCstateControl, PPSMC_MSG_SetExternalClientDfCstateAllow, 0),
MSG_MAP(ArmD3, PPSMC_MSG_ArmD3, 0),
MSG_MAP(SetNumBadMemoryPagesRetired, PPSMC_MSG_SetNumBadMemoryPagesRetired, 0),
MSG_MAP(SetBadMemoryPagesRetiredFlagsPerChannel,
PPSMC_MSG_SetBadMemoryPagesRetiredFlagsPerChannel, 0),
MSG_MAP(AllowIHHostInterrupt, PPSMC_MSG_AllowIHHostInterrupt, 0),
MSG_MAP(ReenableAcDcInterrupt, PPSMC_MSG_ReenableAcDcInterrupt, 0),
};
static struct cmn2asic_mapping smu_v14_0_2_clk_map[SMU_CLK_COUNT] = {
CLK_MAP(GFXCLK, PPCLK_GFXCLK),
CLK_MAP(SCLK, PPCLK_GFXCLK),
CLK_MAP(SOCCLK, PPCLK_SOCCLK),
CLK_MAP(FCLK, PPCLK_FCLK),
CLK_MAP(UCLK, PPCLK_UCLK),
CLK_MAP(MCLK, PPCLK_UCLK),
CLK_MAP(VCLK, PPCLK_VCLK_0),
CLK_MAP(DCLK, PPCLK_DCLK_0),
CLK_MAP(DCEFCLK, PPCLK_DCFCLK),
};
static struct cmn2asic_mapping smu_v14_0_2_feature_mask_map[SMU_FEATURE_COUNT] = {
FEA_MAP(FW_DATA_READ),
FEA_MAP(DPM_GFXCLK),
FEA_MAP(DPM_GFX_POWER_OPTIMIZER),
FEA_MAP(DPM_UCLK),
FEA_MAP(DPM_FCLK),
FEA_MAP(DPM_SOCCLK),
FEA_MAP(DPM_LINK),
FEA_MAP(DPM_DCN),
FEA_MAP(VMEMP_SCALING),
FEA_MAP(VDDIO_MEM_SCALING),
FEA_MAP(DS_GFXCLK),
FEA_MAP(DS_SOCCLK),
FEA_MAP(DS_FCLK),
FEA_MAP(DS_LCLK),
FEA_MAP(DS_DCFCLK),
FEA_MAP(DS_UCLK),
FEA_MAP(GFX_ULV),
FEA_MAP(FW_DSTATE),
FEA_MAP(GFXOFF),
FEA_MAP(BACO),
FEA_MAP(MM_DPM),
FEA_MAP(SOC_MPCLK_DS),
FEA_MAP(BACO_MPCLK_DS),
FEA_MAP(THROTTLERS),
FEA_MAP(SMARTSHIFT),
FEA_MAP(GTHR),
FEA_MAP(ACDC),
FEA_MAP(VR0HOT),
FEA_MAP(FW_CTF),
FEA_MAP(FAN_CONTROL),
FEA_MAP(GFX_DCS),
FEA_MAP(GFX_READ_MARGIN),
FEA_MAP(LED_DISPLAY),
FEA_MAP(GFXCLK_SPREAD_SPECTRUM),
FEA_MAP(OUT_OF_BAND_MONITOR),
FEA_MAP(OPTIMIZED_VMIN),
FEA_MAP(GFX_IMU),
FEA_MAP(BOOT_TIME_CAL),
FEA_MAP(GFX_PCC_DFLL),
FEA_MAP(SOC_CG),
FEA_MAP(DF_CSTATE),
FEA_MAP(GFX_EDC),
FEA_MAP(BOOT_POWER_OPT),
FEA_MAP(CLOCK_POWER_DOWN_BYPASS),
FEA_MAP(DS_VCN),
FEA_MAP(BACO_CG),
FEA_MAP(MEM_TEMP_READ),
FEA_MAP(ATHUB_MMHUB_PG),
FEA_MAP(SOC_PCC),
FEA_MAP(EDC_PWRBRK),
FEA_MAP(SOC_EDC_XVMIN),
FEA_MAP(GFX_PSM_DIDT),
FEA_MAP(APT_ALL_ENABLE),
FEA_MAP(APT_SQ_THROTTLE),
FEA_MAP(APT_PF_DCS),
FEA_MAP(GFX_EDC_XVMIN),
FEA_MAP(GFX_DIDT_XVMIN),
FEA_MAP(FAN_ABNORMAL),
[SMU_FEATURE_DPM_VCLK_BIT] = {1, FEATURE_MM_DPM_BIT},
[SMU_FEATURE_DPM_DCLK_BIT] = {1, FEATURE_MM_DPM_BIT},
[SMU_FEATURE_PPT_BIT] = {1, FEATURE_THROTTLERS_BIT},
};
static struct cmn2asic_mapping smu_v14_0_2_table_map[SMU_TABLE_COUNT] = {
TAB_MAP(PPTABLE),
TAB_MAP(WATERMARKS),
TAB_MAP(AVFS_PSM_DEBUG),
TAB_MAP(PMSTATUSLOG),
TAB_MAP(SMU_METRICS),
TAB_MAP(DRIVER_SMU_CONFIG),
TAB_MAP(ACTIVITY_MONITOR_COEFF),
[SMU_TABLE_COMBO_PPTABLE] = {1, TABLE_COMBO_PPTABLE},
TAB_MAP(I2C_COMMANDS),
TAB_MAP(ECCINFO),
TAB_MAP(OVERDRIVE),
};
static struct cmn2asic_mapping smu_v14_0_2_pwr_src_map[SMU_POWER_SOURCE_COUNT] = {
PWR_MAP(AC),
PWR_MAP(DC),
};
static struct cmn2asic_mapping smu_v14_0_2_workload_map[PP_SMC_POWER_PROFILE_COUNT] = {
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT, WORKLOAD_PPLIB_DEFAULT_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_FULLSCREEN3D, WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_POWERSAVING, WORKLOAD_PPLIB_POWER_SAVING_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO, WORKLOAD_PPLIB_VIDEO_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VR, WORKLOAD_PPLIB_VR_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE, WORKLOAD_PPLIB_COMPUTE_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM, WORKLOAD_PPLIB_CUSTOM_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_WINDOW3D, WORKLOAD_PPLIB_WINDOW_3D_BIT),
};
static const uint8_t smu_v14_0_2_throttler_map[] = {
[THROTTLER_PPT0_BIT] = (SMU_THROTTLER_PPT0_BIT),
[THROTTLER_PPT1_BIT] = (SMU_THROTTLER_PPT1_BIT),
[THROTTLER_PPT2_BIT] = (SMU_THROTTLER_PPT2_BIT),
[THROTTLER_PPT3_BIT] = (SMU_THROTTLER_PPT3_BIT),
[THROTTLER_TDC_GFX_BIT] = (SMU_THROTTLER_TDC_GFX_BIT),
[THROTTLER_TDC_SOC_BIT] = (SMU_THROTTLER_TDC_SOC_BIT),
[THROTTLER_TEMP_EDGE_BIT] = (SMU_THROTTLER_TEMP_EDGE_BIT),
[THROTTLER_TEMP_HOTSPOT_BIT] = (SMU_THROTTLER_TEMP_HOTSPOT_BIT),
[THROTTLER_TEMP_MEM_BIT] = (SMU_THROTTLER_TEMP_MEM_BIT),
[THROTTLER_TEMP_VR_GFX_BIT] = (SMU_THROTTLER_TEMP_VR_GFX_BIT),
[THROTTLER_TEMP_VR_SOC_BIT] = (SMU_THROTTLER_TEMP_VR_SOC_BIT),
[THROTTLER_TEMP_VR_MEM0_BIT] = (SMU_THROTTLER_TEMP_VR_MEM0_BIT),
[THROTTLER_TEMP_VR_MEM1_BIT] = (SMU_THROTTLER_TEMP_VR_MEM1_BIT),
[THROTTLER_TEMP_LIQUID0_BIT] = (SMU_THROTTLER_TEMP_LIQUID0_BIT),
[THROTTLER_TEMP_LIQUID1_BIT] = (SMU_THROTTLER_TEMP_LIQUID1_BIT),
[THROTTLER_GFX_APCC_PLUS_BIT] = (SMU_THROTTLER_APCC_BIT),
[THROTTLER_FIT_BIT] = (SMU_THROTTLER_FIT_BIT),
};
static int
smu_v14_0_2_get_allowed_feature_mask(struct smu_context *smu,
uint32_t *feature_mask, uint32_t num)
{
struct amdgpu_device *adev = smu->adev;
/*u32 smu_version;*/
if (num > 2)
return -EINVAL;
memset(feature_mask, 0xff, sizeof(uint32_t) * num);
if (adev->pm.pp_feature & PP_SCLK_DPM_MASK) {
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT);
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_GFX_IMU_BIT);
}
#if 0
if (!(adev->pg_flags & AMD_PG_SUPPORT_ATHUB) ||
!(adev->pg_flags & AMD_PG_SUPPORT_MMHUB))
*(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_ATHUB_MMHUB_PG_BIT);
if (!(adev->pm.pp_feature & PP_SOCCLK_DPM_MASK))
*(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT);
/* PMFW 78.58 contains a critical fix for gfxoff feature */
smu_cmn_get_smc_version(smu, NULL, &smu_version);
if ((smu_version < 0x004e3a00) ||
!(adev->pm.pp_feature & PP_GFXOFF_MASK))
*(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_GFXOFF_BIT);
if (!(adev->pm.pp_feature & PP_MCLK_DPM_MASK)) {
*(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_DPM_UCLK_BIT);
*(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_VMEMP_SCALING_BIT);
*(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_VDDIO_MEM_SCALING_BIT);
}
if (!(adev->pm.pp_feature & PP_SCLK_DEEP_SLEEP_MASK))
*(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_DS_GFXCLK_BIT);
if (!(adev->pm.pp_feature & PP_PCIE_DPM_MASK)) {
*(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_DPM_LINK_BIT);
*(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_DS_LCLK_BIT);
}
if (!(adev->pm.pp_feature & PP_ULV_MASK))
*(uint64_t *)feature_mask &= ~FEATURE_MASK(FEATURE_GFX_ULV_BIT);
#endif
return 0;
}
static int smu_v14_0_2_check_powerplay_table(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
struct smu_14_0_2_powerplay_table *powerplay_table =
table_context->power_play_table;
struct smu_baco_context *smu_baco = &smu->smu_baco;
PPTable_t *pptable = smu->smu_table.driver_pptable;
const OverDriveLimits_t * const overdrive_upperlimits =
&pptable->SkuTable.OverDriveLimitsBasicMax;
const OverDriveLimits_t * const overdrive_lowerlimits =
&pptable->SkuTable.OverDriveLimitsBasicMin;
if (powerplay_table->platform_caps & SMU_14_0_2_PP_PLATFORM_CAP_HARDWAREDC)
smu->dc_controlled_by_gpio = true;
if (powerplay_table->platform_caps & SMU_14_0_2_PP_PLATFORM_CAP_BACO) {
smu_baco->platform_support = true;
if (powerplay_table->platform_caps & SMU_14_0_2_PP_PLATFORM_CAP_MACO)
smu_baco->maco_support = true;
}
if (!overdrive_lowerlimits->FeatureCtrlMask ||
!overdrive_upperlimits->FeatureCtrlMask)
smu->od_enabled = false;
table_context->thermal_controller_type =
powerplay_table->thermal_controller_type;
/*
* Instead of having its own buffer space and get overdrive_table copied,
* smu->od_settings just points to the actual overdrive_table
*/
smu->od_settings = &powerplay_table->overdrive_table;
smu->adev->pm.no_fan =
!(pptable->PFE_Settings.FeaturesToRun[0] & (1 << FEATURE_FAN_CONTROL_BIT));
return 0;
}
static int smu_v14_0_2_store_powerplay_table(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
struct smu_14_0_2_powerplay_table *powerplay_table =
table_context->power_play_table;
memcpy(table_context->driver_pptable, &powerplay_table->smc_pptable,
sizeof(PPTable_t));
return 0;
}
#ifndef atom_smc_dpm_info_table_14_0_0
struct atom_smc_dpm_info_table_14_0_0 {
struct atom_common_table_header table_header;
BoardTable_t BoardTable;
};
#endif
static int smu_v14_0_2_append_powerplay_table(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *smc_pptable = table_context->driver_pptable;
struct atom_smc_dpm_info_table_14_0_0 *smc_dpm_table;
BoardTable_t *BoardTable = &smc_pptable->BoardTable;
int index, ret;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
smc_dpm_info);
ret = amdgpu_atombios_get_data_table(smu->adev, index, NULL, NULL, NULL,
(uint8_t **)&smc_dpm_table);
if (ret)
return ret;
memcpy(BoardTable, &smc_dpm_table->BoardTable, sizeof(BoardTable_t));
return 0;
}
#if 0
static int smu_v14_0_2_get_pptable_from_pmfw(struct smu_context *smu,
void **table,
uint32_t *size)
{
struct smu_table_context *smu_table = &smu->smu_table;
void *combo_pptable = smu_table->combo_pptable;
int ret = 0;
ret = smu_cmn_get_combo_pptable(smu);
if (ret)
return ret;
*table = combo_pptable;
*size = sizeof(struct smu_14_0_powerplay_table);
return 0;
}
#endif
static int smu_v14_0_2_get_pptable_from_pmfw(struct smu_context *smu,
void **table,
uint32_t *size)
{
struct smu_table_context *smu_table = &smu->smu_table;
void *combo_pptable = smu_table->combo_pptable;
int ret = 0;
ret = smu_cmn_get_combo_pptable(smu);
if (ret)
return ret;
*table = combo_pptable;
*size = sizeof(struct smu_14_0_2_powerplay_table);
return 0;
}
static int smu_v14_0_2_setup_pptable(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct amdgpu_device *adev = smu->adev;
int ret = 0;
if (amdgpu_sriov_vf(smu->adev))
return 0;
if (!adev->scpm_enabled)
ret = smu_v14_0_setup_pptable(smu);
else
ret = smu_v14_0_2_get_pptable_from_pmfw(smu,
&smu_table->power_play_table,
&smu_table->power_play_table_size);
if (ret)
return ret;
ret = smu_v14_0_2_store_powerplay_table(smu);
if (ret)
return ret;
/*
* With SCPM enabled, the operation below will be handled
* by PSP. Driver involvment is unnecessary and useless.
*/
if (!adev->scpm_enabled) {
ret = smu_v14_0_2_append_powerplay_table(smu);
if (ret)
return ret;
}
ret = smu_v14_0_2_check_powerplay_table(smu);
if (ret)
return ret;
return ret;
}
static int smu_v14_0_2_tables_init(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *tables = smu_table->tables;
SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, sizeof(PPTable_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetricsExternal_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_I2C_COMMANDS, sizeof(SwI2cRequest_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_OVERDRIVE, sizeof(OverDriveTable_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU14_TOOL_SIZE,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_ACTIVITY_MONITOR_COEFF,
sizeof(DpmActivityMonitorCoeffIntExternal_t), PAGE_SIZE,
AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_COMBO_PPTABLE, MP0_MP1_DATA_REGION_SIZE_COMBOPPTABLE,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_ECCINFO, sizeof(EccInfoTable_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
smu_table->metrics_table = kzalloc(sizeof(SmuMetricsExternal_t), GFP_KERNEL);
if (!smu_table->metrics_table)
goto err0_out;
smu_table->metrics_time = 0;
smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v1_3);
smu_table->gpu_metrics_table = kzalloc(smu_table->gpu_metrics_table_size, GFP_KERNEL);
if (!smu_table->gpu_metrics_table)
goto err1_out;
smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL);
if (!smu_table->watermarks_table)
goto err2_out;
smu_table->ecc_table = kzalloc(tables[SMU_TABLE_ECCINFO].size, GFP_KERNEL);
if (!smu_table->ecc_table)
goto err3_out;
return 0;
err3_out:
kfree(smu_table->watermarks_table);
err2_out:
kfree(smu_table->gpu_metrics_table);
err1_out:
kfree(smu_table->metrics_table);
err0_out:
return -ENOMEM;
}
static int smu_v14_0_2_allocate_dpm_context(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
smu_dpm->dpm_context = kzalloc(sizeof(struct smu_14_0_dpm_context),
GFP_KERNEL);
if (!smu_dpm->dpm_context)
return -ENOMEM;
smu_dpm->dpm_context_size = sizeof(struct smu_14_0_dpm_context);
return 0;
}
static int smu_v14_0_2_init_smc_tables(struct smu_context *smu)
{
int ret = 0;
ret = smu_v14_0_2_tables_init(smu);
if (ret)
return ret;
ret = smu_v14_0_2_allocate_dpm_context(smu);
if (ret)
return ret;
return smu_v14_0_init_smc_tables(smu);
}
static int smu_v14_0_2_set_default_dpm_table(struct smu_context *smu)
{
struct smu_14_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context;
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *pptable = table_context->driver_pptable;
SkuTable_t *skutable = &pptable->SkuTable;
struct smu_14_0_dpm_table *dpm_table;
struct smu_14_0_pcie_table *pcie_table;
uint32_t link_level;
int ret = 0;
/* socclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.soc_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
ret = smu_v14_0_set_single_dpm_table(smu,
SMU_SOCCLK,
dpm_table);
if (ret)
return ret;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.socclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* gfxclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.gfx_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) {
ret = smu_v14_0_set_single_dpm_table(smu,
SMU_GFXCLK,
dpm_table);
if (ret)
return ret;
/*
* Update the reported maximum shader clock to the value
* which can be guarded to be achieved on all cards. This
* is aligned with Window setting. And considering that value
* might be not the peak frequency the card can achieve, it
* is normal some real-time clock frequency can overtake this
* labelled maximum clock frequency(for example in pp_dpm_sclk
* sysfs output).
*/
if (skutable->DriverReportedClocks.GameClockAc &&
(dpm_table->dpm_levels[dpm_table->count - 1].value >
skutable->DriverReportedClocks.GameClockAc)) {
dpm_table->dpm_levels[dpm_table->count - 1].value =
skutable->DriverReportedClocks.GameClockAc;
dpm_table->max = skutable->DriverReportedClocks.GameClockAc;
}
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* uclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.uclk_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
ret = smu_v14_0_set_single_dpm_table(smu,
SMU_UCLK,
dpm_table);
if (ret)
return ret;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.uclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* fclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.fclk_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_FCLK_BIT)) {
ret = smu_v14_0_set_single_dpm_table(smu,
SMU_FCLK,
dpm_table);
if (ret)
return ret;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.fclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* vclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.vclk_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_VCLK_BIT)) {
ret = smu_v14_0_set_single_dpm_table(smu,
SMU_VCLK,
dpm_table);
if (ret)
return ret;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.vclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* dclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.dclk_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCLK_BIT)) {
ret = smu_v14_0_set_single_dpm_table(smu,
SMU_DCLK,
dpm_table);
if (ret)
return ret;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* lclk dpm table setup */
pcie_table = &dpm_context->dpm_tables.pcie_table;
pcie_table->num_of_link_levels = 0;
for (link_level = 0; link_level < NUM_LINK_LEVELS; link_level++) {
if (!skutable->PcieGenSpeed[link_level] &&
!skutable->PcieLaneCount[link_level] &&
!skutable->LclkFreq[link_level])
continue;
pcie_table->pcie_gen[pcie_table->num_of_link_levels] =
skutable->PcieGenSpeed[link_level];
pcie_table->pcie_lane[pcie_table->num_of_link_levels] =
skutable->PcieLaneCount[link_level];
pcie_table->clk_freq[pcie_table->num_of_link_levels] =
skutable->LclkFreq[link_level];
pcie_table->num_of_link_levels++;
if (link_level == 0)
link_level++;
}
/* dcefclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.dcef_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCN_BIT)) {
ret = smu_v14_0_set_single_dpm_table(smu,
SMU_DCEFCLK,
dpm_table);
if (ret)
return ret;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
return 0;
}
static bool smu_v14_0_2_is_dpm_running(struct smu_context *smu)
{
int ret = 0;
uint64_t feature_enabled;
ret = smu_cmn_get_enabled_mask(smu, &feature_enabled);
if (ret)
return false;
return !!(feature_enabled & SMC_DPM_FEATURE);
}
static void smu_v14_0_2_dump_pptable(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *pptable = table_context->driver_pptable;
PFE_Settings_t *PFEsettings = &pptable->PFE_Settings;
dev_info(smu->adev->dev, "Dumped PPTable:\n");
dev_info(smu->adev->dev, "Version = 0x%08x\n", PFEsettings->Version);
dev_info(smu->adev->dev, "FeaturesToRun[0] = 0x%08x\n", PFEsettings->FeaturesToRun[0]);
dev_info(smu->adev->dev, "FeaturesToRun[1] = 0x%08x\n", PFEsettings->FeaturesToRun[1]);
}
static uint32_t smu_v14_0_2_get_throttler_status(SmuMetrics_t *metrics)
{
uint32_t throttler_status = 0;
int i;
for (i = 0; i < THROTTLER_COUNT; i++)
throttler_status |=
(metrics->ThrottlingPercentage[i] ? 1U << i : 0);
return throttler_status;
}
#define SMU_14_0_2_BUSY_THRESHOLD 5
static int smu_v14_0_2_get_smu_metrics_data(struct smu_context *smu,
MetricsMember_t member,
uint32_t *value)
{
struct smu_table_context *smu_table = &smu->smu_table;
SmuMetrics_t *metrics =
&(((SmuMetricsExternal_t *)(smu_table->metrics_table))->SmuMetrics);
int ret = 0;
ret = smu_cmn_get_metrics_table(smu,
NULL,
false);
if (ret)
return ret;
switch (member) {
case METRICS_CURR_GFXCLK:
*value = metrics->CurrClock[PPCLK_GFXCLK];
break;
case METRICS_CURR_SOCCLK:
*value = metrics->CurrClock[PPCLK_SOCCLK];
break;
case METRICS_CURR_UCLK:
*value = metrics->CurrClock[PPCLK_UCLK];
break;
case METRICS_CURR_VCLK:
*value = metrics->CurrClock[PPCLK_VCLK_0];
break;
case METRICS_CURR_DCLK:
*value = metrics->CurrClock[PPCLK_DCLK_0];
break;
case METRICS_CURR_FCLK:
*value = metrics->CurrClock[PPCLK_FCLK];
break;
case METRICS_CURR_DCEFCLK:
*value = metrics->CurrClock[PPCLK_DCFCLK];
break;
case METRICS_AVERAGE_GFXCLK:
if (metrics->AverageGfxActivity <= SMU_14_0_2_BUSY_THRESHOLD)
*value = metrics->AverageGfxclkFrequencyPostDs;
else
*value = metrics->AverageGfxclkFrequencyPreDs;
break;
case METRICS_AVERAGE_FCLK:
if (metrics->AverageUclkActivity <= SMU_14_0_2_BUSY_THRESHOLD)
*value = metrics->AverageFclkFrequencyPostDs;
else
*value = metrics->AverageFclkFrequencyPreDs;
break;
case METRICS_AVERAGE_UCLK:
if (metrics->AverageUclkActivity <= SMU_14_0_2_BUSY_THRESHOLD)
*value = metrics->AverageMemclkFrequencyPostDs;
else
*value = metrics->AverageMemclkFrequencyPreDs;
break;
case METRICS_AVERAGE_VCLK:
*value = metrics->AverageVclk0Frequency;
break;
case METRICS_AVERAGE_DCLK:
*value = metrics->AverageDclk0Frequency;
break;
case METRICS_AVERAGE_VCLK1:
*value = metrics->AverageVclk1Frequency;
break;
case METRICS_AVERAGE_DCLK1:
*value = metrics->AverageDclk1Frequency;
break;
case METRICS_AVERAGE_GFXACTIVITY:
*value = metrics->AverageGfxActivity;
break;
case METRICS_AVERAGE_MEMACTIVITY:
*value = metrics->AverageUclkActivity;
break;
case METRICS_AVERAGE_SOCKETPOWER:
*value = metrics->AverageSocketPower << 8;
break;
case METRICS_TEMPERATURE_EDGE:
*value = metrics->AvgTemperature[TEMP_EDGE] *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_HOTSPOT:
*value = metrics->AvgTemperature[TEMP_HOTSPOT] *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_MEM:
*value = metrics->AvgTemperature[TEMP_MEM] *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_VRGFX:
*value = metrics->AvgTemperature[TEMP_VR_GFX] *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_VRSOC:
*value = metrics->AvgTemperature[TEMP_VR_SOC] *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_THROTTLER_STATUS:
*value = smu_v14_0_2_get_throttler_status(metrics);
break;
case METRICS_CURR_FANSPEED:
*value = metrics->AvgFanRpm;
break;
case METRICS_CURR_FANPWM:
*value = metrics->AvgFanPwm;
break;
case METRICS_VOLTAGE_VDDGFX:
*value = metrics->AvgVoltage[SVI_PLANE_VDD_GFX];
break;
case METRICS_PCIE_RATE:
*value = metrics->PcieRate;
break;
case METRICS_PCIE_WIDTH:
*value = metrics->PcieWidth;
break;
default:
*value = UINT_MAX;
break;
}
return ret;
}
static int smu_v14_0_2_get_dpm_ultimate_freq(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t *min,
uint32_t *max)
{
struct smu_14_0_dpm_context *dpm_context =
smu->smu_dpm.dpm_context;
struct smu_14_0_dpm_table *dpm_table;
switch (clk_type) {
case SMU_MCLK:
case SMU_UCLK:
/* uclk dpm table */
dpm_table = &dpm_context->dpm_tables.uclk_table;
break;
case SMU_GFXCLK:
case SMU_SCLK:
/* gfxclk dpm table */
dpm_table = &dpm_context->dpm_tables.gfx_table;
break;
case SMU_SOCCLK:
/* socclk dpm table */
dpm_table = &dpm_context->dpm_tables.soc_table;
break;
case SMU_FCLK:
/* fclk dpm table */
dpm_table = &dpm_context->dpm_tables.fclk_table;
break;
case SMU_VCLK:
case SMU_VCLK1:
/* vclk dpm table */
dpm_table = &dpm_context->dpm_tables.vclk_table;
break;
case SMU_DCLK:
case SMU_DCLK1:
/* dclk dpm table */
dpm_table = &dpm_context->dpm_tables.dclk_table;
break;
default:
dev_err(smu->adev->dev, "Unsupported clock type!\n");
return -EINVAL;
}
if (min)
*min = dpm_table->min;
if (max)
*max = dpm_table->max;
return 0;
}
static int smu_v14_0_2_read_sensor(struct smu_context *smu,
enum amd_pp_sensors sensor,
void *data,
uint32_t *size)
{
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *smc_pptable = table_context->driver_pptable;
int ret = 0;
switch (sensor) {
case AMDGPU_PP_SENSOR_MAX_FAN_RPM:
*(uint16_t *)data = smc_pptable->CustomSkuTable.FanMaximumRpm;
*size = 4;
break;
case AMDGPU_PP_SENSOR_MEM_LOAD:
ret = smu_v14_0_2_get_smu_metrics_data(smu,
METRICS_AVERAGE_MEMACTIVITY,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_LOAD:
ret = smu_v14_0_2_get_smu_metrics_data(smu,
METRICS_AVERAGE_GFXACTIVITY,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_AVG_POWER:
ret = smu_v14_0_2_get_smu_metrics_data(smu,
METRICS_AVERAGE_SOCKETPOWER,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
ret = smu_v14_0_2_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_HOTSPOT,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_EDGE_TEMP:
ret = smu_v14_0_2_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_EDGE,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_MEM_TEMP:
ret = smu_v14_0_2_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_MEM,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_MCLK:
ret = smu_v14_0_2_get_smu_metrics_data(smu,
METRICS_CURR_UCLK,
(uint32_t *)data);
*(uint32_t *)data *= 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_SCLK:
ret = smu_v14_0_2_get_smu_metrics_data(smu,
METRICS_AVERAGE_GFXCLK,
(uint32_t *)data);
*(uint32_t *)data *= 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_VDDGFX:
ret = smu_v14_0_2_get_smu_metrics_data(smu,
METRICS_VOLTAGE_VDDGFX,
(uint32_t *)data);
*size = 4;
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
static int smu_v14_0_2_get_current_clk_freq_by_table(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t *value)
{
MetricsMember_t member_type;
int clk_id = 0;
clk_id = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_CLK,
clk_type);
if (clk_id < 0)
return -EINVAL;
switch (clk_id) {
case PPCLK_GFXCLK:
member_type = METRICS_AVERAGE_GFXCLK;
break;
case PPCLK_UCLK:
member_type = METRICS_CURR_UCLK;
break;
case PPCLK_FCLK:
member_type = METRICS_CURR_FCLK;
break;
case PPCLK_SOCCLK:
member_type = METRICS_CURR_SOCCLK;
break;
case PPCLK_VCLK_0:
member_type = METRICS_AVERAGE_VCLK;
break;
case PPCLK_DCLK_0:
member_type = METRICS_AVERAGE_DCLK;
break;
case PPCLK_DCFCLK:
member_type = METRICS_CURR_DCEFCLK;
break;
default:
return -EINVAL;
}
return smu_v14_0_2_get_smu_metrics_data(smu,
member_type,
value);
}
static bool smu_v14_0_2_is_od_feature_supported(struct smu_context *smu,
int od_feature_bit)
{
PPTable_t *pptable = smu->smu_table.driver_pptable;
const OverDriveLimits_t * const overdrive_upperlimits =
&pptable->SkuTable.OverDriveLimitsBasicMax;
return overdrive_upperlimits->FeatureCtrlMask & (1U << od_feature_bit);
}
static void smu_v14_0_2_get_od_setting_limits(struct smu_context *smu,
int od_feature_bit,
int32_t *min,
int32_t *max)
{
PPTable_t *pptable = smu->smu_table.driver_pptable;
const OverDriveLimits_t * const overdrive_upperlimits =
&pptable->SkuTable.OverDriveLimitsBasicMax;
const OverDriveLimits_t * const overdrive_lowerlimits =
&pptable->SkuTable.OverDriveLimitsBasicMin;
int32_t od_min_setting, od_max_setting;
switch (od_feature_bit) {
case PP_OD_FEATURE_GFXCLK_FMIN:
od_min_setting = overdrive_lowerlimits->GfxclkFmin;
od_max_setting = overdrive_upperlimits->GfxclkFmin;
break;
case PP_OD_FEATURE_GFXCLK_FMAX:
od_min_setting = overdrive_lowerlimits->GfxclkFmax;
od_max_setting = overdrive_upperlimits->GfxclkFmax;
break;
case PP_OD_FEATURE_UCLK_FMIN:
od_min_setting = overdrive_lowerlimits->UclkFmin;
od_max_setting = overdrive_upperlimits->UclkFmin;
break;
case PP_OD_FEATURE_UCLK_FMAX:
od_min_setting = overdrive_lowerlimits->UclkFmax;
od_max_setting = overdrive_upperlimits->UclkFmax;
break;
case PP_OD_FEATURE_GFX_VF_CURVE:
od_min_setting = overdrive_lowerlimits->VoltageOffsetPerZoneBoundary[0];
od_max_setting = overdrive_upperlimits->VoltageOffsetPerZoneBoundary[0];
break;
case PP_OD_FEATURE_FAN_CURVE_TEMP:
od_min_setting = overdrive_lowerlimits->FanLinearTempPoints[0];
od_max_setting = overdrive_upperlimits->FanLinearTempPoints[0];
break;
case PP_OD_FEATURE_FAN_CURVE_PWM:
od_min_setting = overdrive_lowerlimits->FanLinearPwmPoints[0];
od_max_setting = overdrive_upperlimits->FanLinearPwmPoints[0];
break;
case PP_OD_FEATURE_FAN_ACOUSTIC_LIMIT:
od_min_setting = overdrive_lowerlimits->AcousticLimitRpmThreshold;
od_max_setting = overdrive_upperlimits->AcousticLimitRpmThreshold;
break;
case PP_OD_FEATURE_FAN_ACOUSTIC_TARGET:
od_min_setting = overdrive_lowerlimits->AcousticTargetRpmThreshold;
od_max_setting = overdrive_upperlimits->AcousticTargetRpmThreshold;
break;
case PP_OD_FEATURE_FAN_TARGET_TEMPERATURE:
od_min_setting = overdrive_lowerlimits->FanTargetTemperature;
od_max_setting = overdrive_upperlimits->FanTargetTemperature;
break;
case PP_OD_FEATURE_FAN_MINIMUM_PWM:
od_min_setting = overdrive_lowerlimits->FanMinimumPwm;
od_max_setting = overdrive_upperlimits->FanMinimumPwm;
break;
default:
od_min_setting = od_max_setting = INT_MAX;
break;
}
if (min)
*min = od_min_setting;
if (max)
*max = od_max_setting;
}
static int smu_v14_0_2_print_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type,
char *buf)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct smu_14_0_dpm_context *dpm_context = smu_dpm->dpm_context;
OverDriveTableExternal_t *od_table =
(OverDriveTableExternal_t *)smu->smu_table.overdrive_table;
struct smu_14_0_dpm_table *single_dpm_table;
struct smu_14_0_pcie_table *pcie_table;
uint32_t gen_speed, lane_width;
int i, curr_freq, size = 0;
int32_t min_value, max_value;
int ret = 0;
smu_cmn_get_sysfs_buf(&buf, &size);
if (amdgpu_ras_intr_triggered()) {
size += sysfs_emit_at(buf, size, "unavailable\n");
return size;
}
switch (clk_type) {
case SMU_SCLK:
single_dpm_table = &(dpm_context->dpm_tables.gfx_table);
break;
case SMU_MCLK:
single_dpm_table = &(dpm_context->dpm_tables.uclk_table);
break;
case SMU_SOCCLK:
single_dpm_table = &(dpm_context->dpm_tables.soc_table);
break;
case SMU_FCLK:
single_dpm_table = &(dpm_context->dpm_tables.fclk_table);
break;
case SMU_VCLK:
case SMU_VCLK1:
single_dpm_table = &(dpm_context->dpm_tables.vclk_table);
break;
case SMU_DCLK:
case SMU_DCLK1:
single_dpm_table = &(dpm_context->dpm_tables.dclk_table);
break;
case SMU_DCEFCLK:
single_dpm_table = &(dpm_context->dpm_tables.dcef_table);
break;
default:
break;
}
switch (clk_type) {
case SMU_SCLK:
case SMU_MCLK:
case SMU_SOCCLK:
case SMU_FCLK:
case SMU_VCLK:
case SMU_VCLK1:
case SMU_DCLK:
case SMU_DCLK1:
case SMU_DCEFCLK:
ret = smu_v14_0_2_get_current_clk_freq_by_table(smu, clk_type, &curr_freq);
if (ret) {
dev_err(smu->adev->dev, "Failed to get current clock freq!");
return ret;
}
if (single_dpm_table->is_fine_grained) {
/*
* For fine grained dpms, there are only two dpm levels:
* - level 0 -> min clock freq
* - level 1 -> max clock freq
* And the current clock frequency can be any value between them.
* So, if the current clock frequency is not at level 0 or level 1,
* we will fake it as three dpm levels:
* - level 0 -> min clock freq
* - level 1 -> current actual clock freq
* - level 2 -> max clock freq
*/
if ((single_dpm_table->dpm_levels[0].value != curr_freq) &&
(single_dpm_table->dpm_levels[1].value != curr_freq)) {
size += sysfs_emit_at(buf, size, "0: %uMhz\n",
single_dpm_table->dpm_levels[0].value);
size += sysfs_emit_at(buf, size, "1: %uMhz *\n",
curr_freq);
size += sysfs_emit_at(buf, size, "2: %uMhz\n",
single_dpm_table->dpm_levels[1].value);
} else {
size += sysfs_emit_at(buf, size, "0: %uMhz %s\n",
single_dpm_table->dpm_levels[0].value,
single_dpm_table->dpm_levels[0].value == curr_freq ? "*" : "");
size += sysfs_emit_at(buf, size, "1: %uMhz %s\n",
single_dpm_table->dpm_levels[1].value,
single_dpm_table->dpm_levels[1].value == curr_freq ? "*" : "");
}
} else {
for (i = 0; i < single_dpm_table->count; i++)
size += sysfs_emit_at(buf, size, "%d: %uMhz %s\n",
i, single_dpm_table->dpm_levels[i].value,
single_dpm_table->dpm_levels[i].value == curr_freq ? "*" : "");
}
break;
case SMU_PCIE:
ret = smu_v14_0_2_get_smu_metrics_data(smu,
METRICS_PCIE_RATE,
&gen_speed);
if (ret)
return ret;
ret = smu_v14_0_2_get_smu_metrics_data(smu,
METRICS_PCIE_WIDTH,
&lane_width);
if (ret)
return ret;
pcie_table = &(dpm_context->dpm_tables.pcie_table);
for (i = 0; i < pcie_table->num_of_link_levels; i++)
size += sysfs_emit_at(buf, size, "%d: %s %s %dMhz %s\n", i,
(pcie_table->pcie_gen[i] == 0) ? "2.5GT/s," :
(pcie_table->pcie_gen[i] == 1) ? "5.0GT/s," :
(pcie_table->pcie_gen[i] == 2) ? "8.0GT/s," :
(pcie_table->pcie_gen[i] == 3) ? "16.0GT/s," : "",
(pcie_table->pcie_lane[i] == 1) ? "x1" :
(pcie_table->pcie_lane[i] == 2) ? "x2" :
(pcie_table->pcie_lane[i] == 3) ? "x4" :
(pcie_table->pcie_lane[i] == 4) ? "x8" :
(pcie_table->pcie_lane[i] == 5) ? "x12" :
(pcie_table->pcie_lane[i] == 6) ? "x16" : "",
pcie_table->clk_freq[i],
(gen_speed == DECODE_GEN_SPEED(pcie_table->pcie_gen[i])) &&
(lane_width == DECODE_LANE_WIDTH(pcie_table->pcie_lane[i])) ?
"*" : "");
break;
case SMU_OD_SCLK:
if (!smu_v14_0_2_is_od_feature_supported(smu,
PP_OD_FEATURE_GFXCLK_BIT))
break;
size += sysfs_emit_at(buf, size, "OD_SCLK:\n");
size += sysfs_emit_at(buf, size, "0: %uMhz\n1: %uMhz\n",
od_table->OverDriveTable.GfxclkFmin,
od_table->OverDriveTable.GfxclkFmax);
break;
case SMU_OD_MCLK:
if (!smu_v14_0_2_is_od_feature_supported(smu,
PP_OD_FEATURE_UCLK_BIT))
break;
size += sysfs_emit_at(buf, size, "OD_MCLK:\n");
size += sysfs_emit_at(buf, size, "0: %uMhz\n1: %uMHz\n",
od_table->OverDriveTable.UclkFmin,
od_table->OverDriveTable.UclkFmax);
break;
case SMU_OD_VDDGFX_OFFSET:
if (!smu_v14_0_2_is_od_feature_supported(smu,
PP_OD_FEATURE_GFX_VF_CURVE_BIT))
break;
size += sysfs_emit_at(buf, size, "OD_VDDGFX_OFFSET:\n");
size += sysfs_emit_at(buf, size, "%dmV\n",
od_table->OverDriveTable.VoltageOffsetPerZoneBoundary[0]);
break;
case SMU_OD_FAN_CURVE:
if (!smu_v14_0_2_is_od_feature_supported(smu,
PP_OD_FEATURE_FAN_CURVE_BIT))
break;
size += sysfs_emit_at(buf, size, "OD_FAN_CURVE:\n");
for (i = 0; i < NUM_OD_FAN_MAX_POINTS - 1; i++)
size += sysfs_emit_at(buf, size, "%d: %dC %d%%\n",
i,
(int)od_table->OverDriveTable.FanLinearTempPoints[i],
(int)od_table->OverDriveTable.FanLinearPwmPoints[i]);
size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE");
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_FAN_CURVE_TEMP,
&min_value,
&max_value);
size += sysfs_emit_at(buf, size, "FAN_CURVE(hotspot temp): %uC %uC\n",
min_value, max_value);
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_FAN_CURVE_PWM,
&min_value,
&max_value);
size += sysfs_emit_at(buf, size, "FAN_CURVE(fan speed): %u%% %u%%\n",
min_value, max_value);
break;
case SMU_OD_ACOUSTIC_LIMIT:
if (!smu_v14_0_2_is_od_feature_supported(smu,
PP_OD_FEATURE_FAN_CURVE_BIT))
break;
size += sysfs_emit_at(buf, size, "OD_ACOUSTIC_LIMIT:\n");
size += sysfs_emit_at(buf, size, "%d\n",
(int)od_table->OverDriveTable.AcousticLimitRpmThreshold);
size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE");
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_FAN_ACOUSTIC_LIMIT,
&min_value,
&max_value);
size += sysfs_emit_at(buf, size, "ACOUSTIC_LIMIT: %u %u\n",
min_value, max_value);
break;
case SMU_OD_ACOUSTIC_TARGET:
if (!smu_v14_0_2_is_od_feature_supported(smu,
PP_OD_FEATURE_FAN_CURVE_BIT))
break;
size += sysfs_emit_at(buf, size, "OD_ACOUSTIC_TARGET:\n");
size += sysfs_emit_at(buf, size, "%d\n",
(int)od_table->OverDriveTable.AcousticTargetRpmThreshold);
size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE");
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_FAN_ACOUSTIC_TARGET,
&min_value,
&max_value);
size += sysfs_emit_at(buf, size, "ACOUSTIC_TARGET: %u %u\n",
min_value, max_value);
break;
case SMU_OD_FAN_TARGET_TEMPERATURE:
if (!smu_v14_0_2_is_od_feature_supported(smu,
PP_OD_FEATURE_FAN_CURVE_BIT))
break;
size += sysfs_emit_at(buf, size, "FAN_TARGET_TEMPERATURE:\n");
size += sysfs_emit_at(buf, size, "%d\n",
(int)od_table->OverDriveTable.FanTargetTemperature);
size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE");
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_FAN_TARGET_TEMPERATURE,
&min_value,
&max_value);
size += sysfs_emit_at(buf, size, "TARGET_TEMPERATURE: %u %u\n",
min_value, max_value);
break;
case SMU_OD_FAN_MINIMUM_PWM:
if (!smu_v14_0_2_is_od_feature_supported(smu,
PP_OD_FEATURE_FAN_CURVE_BIT))
break;
size += sysfs_emit_at(buf, size, "FAN_MINIMUM_PWM:\n");
size += sysfs_emit_at(buf, size, "%d\n",
(int)od_table->OverDriveTable.FanMinimumPwm);
size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE");
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_FAN_MINIMUM_PWM,
&min_value,
&max_value);
size += sysfs_emit_at(buf, size, "MINIMUM_PWM: %u %u\n",
min_value, max_value);
break;
case SMU_OD_RANGE:
if (!smu_v14_0_2_is_od_feature_supported(smu, PP_OD_FEATURE_GFXCLK_BIT) &&
!smu_v14_0_2_is_od_feature_supported(smu, PP_OD_FEATURE_UCLK_BIT) &&
!smu_v14_0_2_is_od_feature_supported(smu, PP_OD_FEATURE_GFX_VF_CURVE_BIT))
break;
size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE");
if (smu_v14_0_2_is_od_feature_supported(smu, PP_OD_FEATURE_GFXCLK_BIT)) {
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_GFXCLK_FMIN,
&min_value,
NULL);
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_GFXCLK_FMAX,
NULL,
&max_value);
size += sysfs_emit_at(buf, size, "SCLK: %7uMhz %10uMhz\n",
min_value, max_value);
}
if (smu_v14_0_2_is_od_feature_supported(smu, PP_OD_FEATURE_UCLK_BIT)) {
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_UCLK_FMIN,
&min_value,
NULL);
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_UCLK_FMAX,
NULL,
&max_value);
size += sysfs_emit_at(buf, size, "MCLK: %7uMhz %10uMhz\n",
min_value, max_value);
}
if (smu_v14_0_2_is_od_feature_supported(smu, PP_OD_FEATURE_GFX_VF_CURVE_BIT)) {
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_GFX_VF_CURVE,
&min_value,
&max_value);
size += sysfs_emit_at(buf, size, "VDDGFX_OFFSET: %7dmv %10dmv\n",
min_value, max_value);
}
break;
default:
break;
}
return size;
}
static int smu_v14_0_2_force_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t mask)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct smu_14_0_dpm_context *dpm_context = smu_dpm->dpm_context;
struct smu_14_0_dpm_table *single_dpm_table;
uint32_t soft_min_level, soft_max_level;
uint32_t min_freq, max_freq;
int ret = 0;
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
single_dpm_table = &(dpm_context->dpm_tables.gfx_table);
break;
case SMU_MCLK:
case SMU_UCLK:
single_dpm_table = &(dpm_context->dpm_tables.uclk_table);
break;
case SMU_SOCCLK:
single_dpm_table = &(dpm_context->dpm_tables.soc_table);
break;
case SMU_FCLK:
single_dpm_table = &(dpm_context->dpm_tables.fclk_table);
break;
case SMU_VCLK:
case SMU_VCLK1:
single_dpm_table = &(dpm_context->dpm_tables.vclk_table);
break;
case SMU_DCLK:
case SMU_DCLK1:
single_dpm_table = &(dpm_context->dpm_tables.dclk_table);
break;
default:
break;
}
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
case SMU_MCLK:
case SMU_UCLK:
case SMU_SOCCLK:
case SMU_FCLK:
case SMU_VCLK:
case SMU_VCLK1:
case SMU_DCLK:
case SMU_DCLK1:
if (single_dpm_table->is_fine_grained) {
/* There is only 2 levels for fine grained DPM */
soft_max_level = (soft_max_level >= 1 ? 1 : 0);
soft_min_level = (soft_min_level >= 1 ? 1 : 0);
} else {
if ((soft_max_level >= single_dpm_table->count) ||
(soft_min_level >= single_dpm_table->count))
return -EINVAL;
}
min_freq = single_dpm_table->dpm_levels[soft_min_level].value;
max_freq = single_dpm_table->dpm_levels[soft_max_level].value;
ret = smu_v14_0_set_soft_freq_limited_range(smu,
clk_type,
min_freq,
max_freq);
break;
case SMU_DCEFCLK:
case SMU_PCIE:
default:
break;
}
return ret;
}
static int smu_v14_0_2_update_pcie_parameters(struct smu_context *smu,
uint8_t pcie_gen_cap,
uint8_t pcie_width_cap)
{
struct smu_14_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context;
struct smu_14_0_pcie_table *pcie_table =
&dpm_context->dpm_tables.pcie_table;
uint32_t smu_pcie_arg;
int ret, i;
for (i = 0; i < pcie_table->num_of_link_levels; i++) {
if (pcie_table->pcie_gen[i] > pcie_gen_cap)
pcie_table->pcie_gen[i] = pcie_gen_cap;
if (pcie_table->pcie_lane[i] > pcie_width_cap)
pcie_table->pcie_lane[i] = pcie_width_cap;
smu_pcie_arg = i << 16;
smu_pcie_arg |= pcie_table->pcie_gen[i] << 8;
smu_pcie_arg |= pcie_table->pcie_lane[i];
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_OverridePcieParameters,
smu_pcie_arg,
NULL);
if (ret)
return ret;
}
return 0;
}
static const struct smu_temperature_range smu14_thermal_policy[] = {
{-273150, 99000, 99000, -273150, 99000, 99000, -273150, 99000, 99000},
{ 120000, 120000, 120000, 120000, 120000, 120000, 120000, 120000, 120000},
};
static int smu_v14_0_2_get_thermal_temperature_range(struct smu_context *smu,
struct smu_temperature_range *range)
{
struct smu_table_context *table_context = &smu->smu_table;
struct smu_14_0_2_powerplay_table *powerplay_table =
table_context->power_play_table;
PPTable_t *pptable = smu->smu_table.driver_pptable;
if (amdgpu_sriov_vf(smu->adev))
return 0;
if (!range)
return -EINVAL;
memcpy(range, &smu14_thermal_policy[0], sizeof(struct smu_temperature_range));
range->max = pptable->CustomSkuTable.TemperatureLimit[TEMP_EDGE] *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->edge_emergency_max = (pptable->CustomSkuTable.TemperatureLimit[TEMP_EDGE] + CTF_OFFSET_EDGE) *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->hotspot_crit_max = pptable->CustomSkuTable.TemperatureLimit[TEMP_HOTSPOT] *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->hotspot_emergency_max = (pptable->CustomSkuTable.TemperatureLimit[TEMP_HOTSPOT] + CTF_OFFSET_HOTSPOT) *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->mem_crit_max = pptable->CustomSkuTable.TemperatureLimit[TEMP_MEM] *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->mem_emergency_max = (pptable->CustomSkuTable.TemperatureLimit[TEMP_MEM] + CTF_OFFSET_MEM)*
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->software_shutdown_temp = powerplay_table->software_shutdown_temp;
range->software_shutdown_temp_offset = pptable->CustomSkuTable.FanAbnormalTempLimitOffset;
return 0;
}
static int smu_v14_0_2_populate_umd_state_clk(struct smu_context *smu)
{
struct smu_14_0_dpm_context *dpm_context =
smu->smu_dpm.dpm_context;
struct smu_14_0_dpm_table *gfx_table =
&dpm_context->dpm_tables.gfx_table;
struct smu_14_0_dpm_table *mem_table =
&dpm_context->dpm_tables.uclk_table;
struct smu_14_0_dpm_table *soc_table =
&dpm_context->dpm_tables.soc_table;
struct smu_14_0_dpm_table *vclk_table =
&dpm_context->dpm_tables.vclk_table;
struct smu_14_0_dpm_table *dclk_table =
&dpm_context->dpm_tables.dclk_table;
struct smu_14_0_dpm_table *fclk_table =
&dpm_context->dpm_tables.fclk_table;
struct smu_umd_pstate_table *pstate_table =
&smu->pstate_table;
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *pptable = table_context->driver_pptable;
DriverReportedClocks_t driver_clocks =
pptable->SkuTable.DriverReportedClocks;
pstate_table->gfxclk_pstate.min = gfx_table->min;
if (driver_clocks.GameClockAc &&
(driver_clocks.GameClockAc < gfx_table->max))
pstate_table->gfxclk_pstate.peak = driver_clocks.GameClockAc;
else
pstate_table->gfxclk_pstate.peak = gfx_table->max;
pstate_table->uclk_pstate.min = mem_table->min;
pstate_table->uclk_pstate.peak = mem_table->max;
pstate_table->socclk_pstate.min = soc_table->min;
pstate_table->socclk_pstate.peak = soc_table->max;
pstate_table->vclk_pstate.min = vclk_table->min;
pstate_table->vclk_pstate.peak = vclk_table->max;
pstate_table->dclk_pstate.min = dclk_table->min;
pstate_table->dclk_pstate.peak = dclk_table->max;
pstate_table->fclk_pstate.min = fclk_table->min;
pstate_table->fclk_pstate.peak = fclk_table->max;
if (driver_clocks.BaseClockAc &&
driver_clocks.BaseClockAc < gfx_table->max)
pstate_table->gfxclk_pstate.standard = driver_clocks.BaseClockAc;
else
pstate_table->gfxclk_pstate.standard = gfx_table->max;
pstate_table->uclk_pstate.standard = mem_table->max;
pstate_table->socclk_pstate.standard = soc_table->min;
pstate_table->vclk_pstate.standard = vclk_table->min;
pstate_table->dclk_pstate.standard = dclk_table->min;
pstate_table->fclk_pstate.standard = fclk_table->min;
return 0;
}
static void smu_v14_0_2_get_unique_id(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
SmuMetrics_t *metrics =
&(((SmuMetricsExternal_t *)(smu_table->metrics_table))->SmuMetrics);
struct amdgpu_device *adev = smu->adev;
uint32_t upper32 = 0, lower32 = 0;
int ret;
ret = smu_cmn_get_metrics_table(smu, NULL, false);
if (ret)
goto out;
upper32 = metrics->PublicSerialNumberUpper;
lower32 = metrics->PublicSerialNumberLower;
out:
adev->unique_id = ((uint64_t)upper32 << 32) | lower32;
}
static int smu_v14_0_2_get_power_limit(struct smu_context *smu,
uint32_t *current_power_limit,
uint32_t *default_power_limit,
uint32_t *max_power_limit,
uint32_t *min_power_limit)
{
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *pptable = table_context->driver_pptable;
CustomSkuTable_t *skutable = &pptable->CustomSkuTable;
uint32_t power_limit;
uint32_t msg_limit = pptable->SkuTable.MsgLimits.Power[PPT_THROTTLER_PPT0][POWER_SOURCE_AC];
if (smu_v14_0_get_current_power_limit(smu, &power_limit))
power_limit = smu->adev->pm.ac_power ?
skutable->SocketPowerLimitAc[PPT_THROTTLER_PPT0] :
skutable->SocketPowerLimitDc[PPT_THROTTLER_PPT0];
if (current_power_limit)
*current_power_limit = power_limit;
if (default_power_limit)
*default_power_limit = power_limit;
if (max_power_limit)
*max_power_limit = msg_limit;
if (min_power_limit)
*min_power_limit = 0;
return 0;
}
static int smu_v14_0_2_get_power_profile_mode(struct smu_context *smu,
char *buf)
{
DpmActivityMonitorCoeffIntExternal_t activity_monitor_external;
DpmActivityMonitorCoeffInt_t *activity_monitor =
&(activity_monitor_external.DpmActivityMonitorCoeffInt);
static const char *title[] = {
"PROFILE_INDEX(NAME)",
"CLOCK_TYPE(NAME)",
"FPS",
"MinActiveFreqType",
"MinActiveFreq",
"BoosterFreqType",
"BoosterFreq",
"PD_Data_limit_c",
"PD_Data_error_coeff",
"PD_Data_error_rate_coeff"};
int16_t workload_type = 0;
uint32_t i, size = 0;
int result = 0;
if (!buf)
return -EINVAL;
size += sysfs_emit_at(buf, size, "%16s %s %s %s %s %s %s %s %s %s\n",
title[0], title[1], title[2], title[3], title[4], title[5],
title[6], title[7], title[8], title[9]);
for (i = 0; i < PP_SMC_POWER_PROFILE_COUNT; i++) {
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_WORKLOAD,
i);
if (workload_type == -ENOTSUPP)
continue;
else if (workload_type < 0)
return -EINVAL;
result = smu_cmn_update_table(smu,
SMU_TABLE_ACTIVITY_MONITOR_COEFF,
workload_type,
(void *)(&activity_monitor_external),
false);
if (result) {
dev_err(smu->adev->dev, "[%s] Failed to get activity monitor!", __func__);
return result;
}
size += sysfs_emit_at(buf, size, "%2d %14s%s:\n",
i, amdgpu_pp_profile_name[i], (i == smu->power_profile_mode) ? "*" : " ");
size += sysfs_emit_at(buf, size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
0,
"GFXCLK",
activity_monitor->Gfx_FPS,
activity_monitor->Gfx_MinActiveFreqType,
activity_monitor->Gfx_MinActiveFreq,
activity_monitor->Gfx_BoosterFreqType,
activity_monitor->Gfx_BoosterFreq,
activity_monitor->Gfx_PD_Data_limit_c,
activity_monitor->Gfx_PD_Data_error_coeff,
activity_monitor->Gfx_PD_Data_error_rate_coeff);
size += sysfs_emit_at(buf, size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
1,
"FCLK",
activity_monitor->Fclk_FPS,
activity_monitor->Fclk_MinActiveFreqType,
activity_monitor->Fclk_MinActiveFreq,
activity_monitor->Fclk_BoosterFreqType,
activity_monitor->Fclk_BoosterFreq,
activity_monitor->Fclk_PD_Data_limit_c,
activity_monitor->Fclk_PD_Data_error_coeff,
activity_monitor->Fclk_PD_Data_error_rate_coeff);
}
return size;
}
static int smu_v14_0_2_set_power_profile_mode(struct smu_context *smu,
long *input,
uint32_t size)
{
DpmActivityMonitorCoeffIntExternal_t activity_monitor_external;
DpmActivityMonitorCoeffInt_t *activity_monitor =
&(activity_monitor_external.DpmActivityMonitorCoeffInt);
int workload_type, ret = 0;
smu->power_profile_mode = input[size];
if (smu->power_profile_mode >= PP_SMC_POWER_PROFILE_COUNT) {
dev_err(smu->adev->dev, "Invalid power profile mode %d\n", smu->power_profile_mode);
return -EINVAL;
}
if (smu->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
if (size != 9)
return -EINVAL;
ret = smu_cmn_update_table(smu,
SMU_TABLE_ACTIVITY_MONITOR_COEFF,
WORKLOAD_PPLIB_CUSTOM_BIT,
(void *)(&activity_monitor_external),
false);
if (ret) {
dev_err(smu->adev->dev, "[%s] Failed to get activity monitor!", __func__);
return ret;
}
switch (input[0]) {
case 0: /* Gfxclk */
activity_monitor->Gfx_FPS = input[1];
activity_monitor->Gfx_MinActiveFreqType = input[2];
activity_monitor->Gfx_MinActiveFreq = input[3];
activity_monitor->Gfx_BoosterFreqType = input[4];
activity_monitor->Gfx_BoosterFreq = input[5];
activity_monitor->Gfx_PD_Data_limit_c = input[6];
activity_monitor->Gfx_PD_Data_error_coeff = input[7];
activity_monitor->Gfx_PD_Data_error_rate_coeff = input[8];
break;
case 1: /* Fclk */
activity_monitor->Fclk_FPS = input[1];
activity_monitor->Fclk_MinActiveFreqType = input[2];
activity_monitor->Fclk_MinActiveFreq = input[3];
activity_monitor->Fclk_BoosterFreqType = input[4];
activity_monitor->Fclk_BoosterFreq = input[5];
activity_monitor->Fclk_PD_Data_limit_c = input[6];
activity_monitor->Fclk_PD_Data_error_coeff = input[7];
activity_monitor->Fclk_PD_Data_error_rate_coeff = input[8];
break;
default:
return -EINVAL;
}
ret = smu_cmn_update_table(smu,
SMU_TABLE_ACTIVITY_MONITOR_COEFF,
WORKLOAD_PPLIB_CUSTOM_BIT,
(void *)(&activity_monitor_external),
true);
if (ret) {
dev_err(smu->adev->dev, "[%s] Failed to set activity monitor!", __func__);
return ret;
}
}
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_WORKLOAD,
smu->power_profile_mode);
if (workload_type < 0)
return -EINVAL;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetWorkloadMask,
1 << workload_type,
NULL);
if (!ret)
smu->workload_mask = 1 << workload_type;
return ret;
}
static int smu_v14_0_2_baco_enter(struct smu_context *smu)
{
struct smu_baco_context *smu_baco = &smu->smu_baco;
struct amdgpu_device *adev = smu->adev;
if (adev->in_runpm && smu_cmn_is_audio_func_enabled(adev))
return smu_v14_0_baco_set_armd3_sequence(smu,
smu_baco->maco_support ? BACO_SEQ_BAMACO : BACO_SEQ_BACO);
else
return smu_v14_0_baco_enter(smu);
}
static int smu_v14_0_2_baco_exit(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
if (adev->in_runpm && smu_cmn_is_audio_func_enabled(adev)) {
/* Wait for PMFW handling for the Dstate change */
usleep_range(10000, 11000);
return smu_v14_0_baco_set_armd3_sequence(smu, BACO_SEQ_ULPS);
} else {
return smu_v14_0_baco_exit(smu);
}
}
static bool smu_v14_0_2_is_mode1_reset_supported(struct smu_context *smu)
{
// TODO
return true;
}
static int smu_v14_0_2_i2c_xfer(struct i2c_adapter *i2c_adap,
struct i2c_msg *msg, int num_msgs)
{
struct amdgpu_smu_i2c_bus *smu_i2c = i2c_get_adapdata(i2c_adap);
struct amdgpu_device *adev = smu_i2c->adev;
struct smu_context *smu = adev->powerplay.pp_handle;
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *table = &smu_table->driver_table;
SwI2cRequest_t *req, *res = (SwI2cRequest_t *)table->cpu_addr;
int i, j, r, c;
u16 dir;
if (!adev->pm.dpm_enabled)
return -EBUSY;
req = kzalloc(sizeof(*req), GFP_KERNEL);
if (!req)
return -ENOMEM;
req->I2CcontrollerPort = smu_i2c->port;
req->I2CSpeed = I2C_SPEED_FAST_400K;
req->SlaveAddress = msg[0].addr << 1; /* wants an 8-bit address */
dir = msg[0].flags & I2C_M_RD;
for (c = i = 0; i < num_msgs; i++) {
for (j = 0; j < msg[i].len; j++, c++) {
SwI2cCmd_t *cmd = &req->SwI2cCmds[c];
if (!(msg[i].flags & I2C_M_RD)) {
/* write */
cmd->CmdConfig |= CMDCONFIG_READWRITE_MASK;
cmd->ReadWriteData = msg[i].buf[j];
}
if ((dir ^ msg[i].flags) & I2C_M_RD) {
/* The direction changes.
*/
dir = msg[i].flags & I2C_M_RD;
cmd->CmdConfig |= CMDCONFIG_RESTART_MASK;
}
req->NumCmds++;
/*
* Insert STOP if we are at the last byte of either last
* message for the transaction or the client explicitly
* requires a STOP at this particular message.
*/
if ((j == msg[i].len - 1) &&
((i == num_msgs - 1) || (msg[i].flags & I2C_M_STOP))) {
cmd->CmdConfig &= ~CMDCONFIG_RESTART_MASK;
cmd->CmdConfig |= CMDCONFIG_STOP_MASK;
}
}
}
mutex_lock(&adev->pm.mutex);
r = smu_cmn_update_table(smu, SMU_TABLE_I2C_COMMANDS, 0, req, true);
mutex_unlock(&adev->pm.mutex);
if (r)
goto fail;
for (c = i = 0; i < num_msgs; i++) {
if (!(msg[i].flags & I2C_M_RD)) {
c += msg[i].len;
continue;
}
for (j = 0; j < msg[i].len; j++, c++) {
SwI2cCmd_t *cmd = &res->SwI2cCmds[c];
msg[i].buf[j] = cmd->ReadWriteData;
}
}
r = num_msgs;
fail:
kfree(req);
return r;
}
static u32 smu_v14_0_2_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm smu_v14_0_2_i2c_algo = {
.master_xfer = smu_v14_0_2_i2c_xfer,
.functionality = smu_v14_0_2_i2c_func,
};
static const struct i2c_adapter_quirks smu_v14_0_2_i2c_control_quirks = {
.flags = I2C_AQ_COMB | I2C_AQ_COMB_SAME_ADDR | I2C_AQ_NO_ZERO_LEN,
.max_read_len = MAX_SW_I2C_COMMANDS,
.max_write_len = MAX_SW_I2C_COMMANDS,
.max_comb_1st_msg_len = 2,
.max_comb_2nd_msg_len = MAX_SW_I2C_COMMANDS - 2,
};
static int smu_v14_0_2_i2c_control_init(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
int res, i;
for (i = 0; i < MAX_SMU_I2C_BUSES; i++) {
struct amdgpu_smu_i2c_bus *smu_i2c = &adev->pm.smu_i2c[i];
struct i2c_adapter *control = &smu_i2c->adapter;
smu_i2c->adev = adev;
smu_i2c->port = i;
mutex_init(&smu_i2c->mutex);
control->owner = THIS_MODULE;
control->dev.parent = &adev->pdev->dev;
control->algo = &smu_v14_0_2_i2c_algo;
snprintf(control->name, sizeof(control->name), "AMDGPU SMU %d", i);
control->quirks = &smu_v14_0_2_i2c_control_quirks;
i2c_set_adapdata(control, smu_i2c);
res = i2c_add_adapter(control);
if (res) {
DRM_ERROR("Failed to register hw i2c, err: %d\n", res);
goto Out_err;
}
}
/* assign the buses used for the FRU EEPROM and RAS EEPROM */
/* XXX ideally this would be something in a vbios data table */
adev->pm.ras_eeprom_i2c_bus = &adev->pm.smu_i2c[1].adapter;
adev->pm.fru_eeprom_i2c_bus = &adev->pm.smu_i2c[0].adapter;
return 0;
Out_err:
for ( ; i >= 0; i--) {
struct amdgpu_smu_i2c_bus *smu_i2c = &adev->pm.smu_i2c[i];
struct i2c_adapter *control = &smu_i2c->adapter;
i2c_del_adapter(control);
}
return res;
}
static void smu_v14_0_2_i2c_control_fini(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
int i;
for (i = 0; i < MAX_SMU_I2C_BUSES; i++) {
struct amdgpu_smu_i2c_bus *smu_i2c = &adev->pm.smu_i2c[i];
struct i2c_adapter *control = &smu_i2c->adapter;
i2c_del_adapter(control);
}
adev->pm.ras_eeprom_i2c_bus = NULL;
adev->pm.fru_eeprom_i2c_bus = NULL;
}
static int smu_v14_0_2_set_mp1_state(struct smu_context *smu,
enum pp_mp1_state mp1_state)
{
int ret;
switch (mp1_state) {
case PP_MP1_STATE_UNLOAD:
ret = smu_cmn_set_mp1_state(smu, mp1_state);
break;
default:
/* Ignore others */
ret = 0;
}
return ret;
}
static int smu_v14_0_2_set_df_cstate(struct smu_context *smu,
enum pp_df_cstate state)
{
return smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_DFCstateControl,
state,
NULL);
}
static int smu_v14_0_2_mode1_reset(struct smu_context *smu)
{
int ret = 0;
ret = smu_cmn_send_debug_smc_msg(smu, DEBUGSMC_MSG_Mode1Reset);
if (!ret) {
if (amdgpu_emu_mode == 1)
msleep(50000);
else
msleep(1000);
}
return ret;
}
static int smu_v14_0_2_mode2_reset(struct smu_context *smu)
{
int ret = 0;
// TODO
return ret;
}
static int smu_v14_0_2_enable_gfx_features(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
if (adev->ip_versions[MP1_HWIP][0] == IP_VERSION(14, 0, 2))
return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_EnableAllSmuFeatures,
FEATURE_PWR_GFX, NULL);
else
return -EOPNOTSUPP;
}
static void smu_v14_0_2_set_smu_mailbox_registers(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
smu->param_reg = SOC15_REG_OFFSET(MP1, 0, regMP1_SMN_C2PMSG_82);
smu->msg_reg = SOC15_REG_OFFSET(MP1, 0, regMP1_SMN_C2PMSG_66);
smu->resp_reg = SOC15_REG_OFFSET(MP1, 0, regMP1_SMN_C2PMSG_90);
smu->debug_param_reg = SOC15_REG_OFFSET(MP1, 0, regMP1_SMN_C2PMSG_53);
smu->debug_msg_reg = SOC15_REG_OFFSET(MP1, 0, regMP1_SMN_C2PMSG_75);
smu->debug_resp_reg = SOC15_REG_OFFSET(MP1, 0, regMP1_SMN_C2PMSG_54);
}
static ssize_t smu_v14_0_2_get_gpu_metrics(struct smu_context *smu,
void **table)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct gpu_metrics_v1_3 *gpu_metrics =
(struct gpu_metrics_v1_3 *)smu_table->gpu_metrics_table;
SmuMetricsExternal_t metrics_ext;
SmuMetrics_t *metrics = &metrics_ext.SmuMetrics;
int ret = 0;
ret = smu_cmn_get_metrics_table(smu,
&metrics_ext,
true);
if (ret)
return ret;
smu_cmn_init_soft_gpu_metrics(gpu_metrics, 1, 3);
gpu_metrics->temperature_edge = metrics->AvgTemperature[TEMP_EDGE];
gpu_metrics->temperature_hotspot = metrics->AvgTemperature[TEMP_HOTSPOT];
gpu_metrics->temperature_mem = metrics->AvgTemperature[TEMP_MEM];
gpu_metrics->temperature_vrgfx = metrics->AvgTemperature[TEMP_VR_GFX];
gpu_metrics->temperature_vrsoc = metrics->AvgTemperature[TEMP_VR_SOC];
gpu_metrics->temperature_vrmem = max(metrics->AvgTemperature[TEMP_VR_MEM0],
metrics->AvgTemperature[TEMP_VR_MEM1]);
gpu_metrics->average_gfx_activity = metrics->AverageGfxActivity;
gpu_metrics->average_umc_activity = metrics->AverageUclkActivity;
gpu_metrics->average_mm_activity = max(metrics->Vcn0ActivityPercentage,
metrics->Vcn1ActivityPercentage);
gpu_metrics->average_socket_power = metrics->AverageSocketPower;
gpu_metrics->energy_accumulator = metrics->EnergyAccumulator;
if (metrics->AverageGfxActivity <= SMU_14_0_2_BUSY_THRESHOLD)
gpu_metrics->average_gfxclk_frequency = metrics->AverageGfxclkFrequencyPostDs;
else
gpu_metrics->average_gfxclk_frequency = metrics->AverageGfxclkFrequencyPreDs;
if (metrics->AverageUclkActivity <= SMU_14_0_2_BUSY_THRESHOLD)
gpu_metrics->average_uclk_frequency = metrics->AverageMemclkFrequencyPostDs;
else
gpu_metrics->average_uclk_frequency = metrics->AverageMemclkFrequencyPreDs;
gpu_metrics->average_vclk0_frequency = metrics->AverageVclk0Frequency;
gpu_metrics->average_dclk0_frequency = metrics->AverageDclk0Frequency;
gpu_metrics->average_vclk1_frequency = metrics->AverageVclk1Frequency;
gpu_metrics->average_dclk1_frequency = metrics->AverageDclk1Frequency;
gpu_metrics->current_gfxclk = gpu_metrics->average_gfxclk_frequency;
gpu_metrics->current_socclk = metrics->CurrClock[PPCLK_SOCCLK];
gpu_metrics->current_uclk = metrics->CurrClock[PPCLK_UCLK];
gpu_metrics->current_vclk0 = metrics->CurrClock[PPCLK_VCLK_0];
gpu_metrics->current_dclk0 = metrics->CurrClock[PPCLK_DCLK_0];
gpu_metrics->current_vclk1 = metrics->CurrClock[PPCLK_VCLK_0];
gpu_metrics->current_dclk1 = metrics->CurrClock[PPCLK_DCLK_0];
gpu_metrics->throttle_status =
smu_v14_0_2_get_throttler_status(metrics);
gpu_metrics->indep_throttle_status =
smu_cmn_get_indep_throttler_status(gpu_metrics->throttle_status,
smu_v14_0_2_throttler_map);
gpu_metrics->current_fan_speed = metrics->AvgFanRpm;
gpu_metrics->pcie_link_width = metrics->PcieWidth;
if ((metrics->PcieRate - 1) > LINK_SPEED_MAX)
gpu_metrics->pcie_link_speed = pcie_gen_to_speed(1);
else
gpu_metrics->pcie_link_speed = pcie_gen_to_speed(metrics->PcieRate);
gpu_metrics->system_clock_counter = ktime_get_boottime_ns();
gpu_metrics->voltage_gfx = metrics->AvgVoltage[SVI_PLANE_VDD_GFX];
gpu_metrics->voltage_soc = metrics->AvgVoltage[SVI_PLANE_VDD_SOC];
gpu_metrics->voltage_mem = metrics->AvgVoltage[SVI_PLANE_VDDIO_MEM];
*table = (void *)gpu_metrics;
return sizeof(struct gpu_metrics_v1_3);
}
static void smu_v14_0_2_dump_od_table(struct smu_context *smu,
OverDriveTableExternal_t *od_table)
{
struct amdgpu_device *adev = smu->adev;
dev_dbg(adev->dev, "OD: Gfxclk: (%d, %d)\n", od_table->OverDriveTable.GfxclkFmin,
od_table->OverDriveTable.GfxclkFmax);
dev_dbg(adev->dev, "OD: Uclk: (%d, %d)\n", od_table->OverDriveTable.UclkFmin,
od_table->OverDriveTable.UclkFmax);
}
static int smu_v14_0_2_upload_overdrive_table(struct smu_context *smu,
OverDriveTableExternal_t *od_table)
{
int ret;
ret = smu_cmn_update_table(smu,
SMU_TABLE_OVERDRIVE,
0,
(void *)od_table,
true);
if (ret)
dev_err(smu->adev->dev, "Failed to upload overdrive table!\n");
return ret;
}
static void smu_v14_0_2_set_supported_od_feature_mask(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
if (smu_v14_0_2_is_od_feature_supported(smu,
PP_OD_FEATURE_FAN_CURVE_BIT))
adev->pm.od_feature_mask |= OD_OPS_SUPPORT_FAN_CURVE_RETRIEVE |
OD_OPS_SUPPORT_FAN_CURVE_SET |
OD_OPS_SUPPORT_ACOUSTIC_LIMIT_THRESHOLD_RETRIEVE |
OD_OPS_SUPPORT_ACOUSTIC_LIMIT_THRESHOLD_SET |
OD_OPS_SUPPORT_ACOUSTIC_TARGET_THRESHOLD_RETRIEVE |
OD_OPS_SUPPORT_ACOUSTIC_TARGET_THRESHOLD_SET |
OD_OPS_SUPPORT_FAN_TARGET_TEMPERATURE_RETRIEVE |
OD_OPS_SUPPORT_FAN_TARGET_TEMPERATURE_SET |
OD_OPS_SUPPORT_FAN_MINIMUM_PWM_RETRIEVE |
OD_OPS_SUPPORT_FAN_MINIMUM_PWM_SET;
}
static int smu_v14_0_2_get_overdrive_table(struct smu_context *smu,
OverDriveTableExternal_t *od_table)
{
int ret;
ret = smu_cmn_update_table(smu,
SMU_TABLE_OVERDRIVE,
0,
(void *)od_table,
false);
if (ret)
dev_err(smu->adev->dev, "Failed to get overdrive table!\n");
return ret;
}
static int smu_v14_0_2_set_default_od_settings(struct smu_context *smu)
{
OverDriveTableExternal_t *od_table =
(OverDriveTableExternal_t *)smu->smu_table.overdrive_table;
OverDriveTableExternal_t *boot_od_table =
(OverDriveTableExternal_t *)smu->smu_table.boot_overdrive_table;
OverDriveTableExternal_t *user_od_table =
(OverDriveTableExternal_t *)smu->smu_table.user_overdrive_table;
OverDriveTableExternal_t user_od_table_bak;
int ret;
int i;
ret = smu_v14_0_2_get_overdrive_table(smu, boot_od_table);
if (ret)
return ret;
smu_v14_0_2_dump_od_table(smu, boot_od_table);
memcpy(od_table,
boot_od_table,
sizeof(OverDriveTableExternal_t));
/*
* For S3/S4/Runpm resume, we need to setup those overdrive tables again,
* but we have to preserve user defined values in "user_od_table".
*/
if (!smu->adev->in_suspend) {
memcpy(user_od_table,
boot_od_table,
sizeof(OverDriveTableExternal_t));
smu->user_dpm_profile.user_od = false;
} else if (smu->user_dpm_profile.user_od) {
memcpy(&user_od_table_bak,
user_od_table,
sizeof(OverDriveTableExternal_t));
memcpy(user_od_table,
boot_od_table,
sizeof(OverDriveTableExternal_t));
user_od_table->OverDriveTable.GfxclkFmin =
user_od_table_bak.OverDriveTable.GfxclkFmin;
user_od_table->OverDriveTable.GfxclkFmax =
user_od_table_bak.OverDriveTable.GfxclkFmax;
user_od_table->OverDriveTable.UclkFmin =
user_od_table_bak.OverDriveTable.UclkFmin;
user_od_table->OverDriveTable.UclkFmax =
user_od_table_bak.OverDriveTable.UclkFmax;
for (i = 0; i < PP_NUM_OD_VF_CURVE_POINTS; i++)
user_od_table->OverDriveTable.VoltageOffsetPerZoneBoundary[i] =
user_od_table_bak.OverDriveTable.VoltageOffsetPerZoneBoundary[i];
for (i = 0; i < NUM_OD_FAN_MAX_POINTS - 1; i++) {
user_od_table->OverDriveTable.FanLinearTempPoints[i] =
user_od_table_bak.OverDriveTable.FanLinearTempPoints[i];
user_od_table->OverDriveTable.FanLinearPwmPoints[i] =
user_od_table_bak.OverDriveTable.FanLinearPwmPoints[i];
}
user_od_table->OverDriveTable.AcousticLimitRpmThreshold =
user_od_table_bak.OverDriveTable.AcousticLimitRpmThreshold;
user_od_table->OverDriveTable.AcousticTargetRpmThreshold =
user_od_table_bak.OverDriveTable.AcousticTargetRpmThreshold;
user_od_table->OverDriveTable.FanTargetTemperature =
user_od_table_bak.OverDriveTable.FanTargetTemperature;
user_od_table->OverDriveTable.FanMinimumPwm =
user_od_table_bak.OverDriveTable.FanMinimumPwm;
}
smu_v14_0_2_set_supported_od_feature_mask(smu);
return 0;
}
static int smu_v14_0_2_restore_user_od_settings(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
OverDriveTableExternal_t *od_table = table_context->overdrive_table;
OverDriveTableExternal_t *user_od_table = table_context->user_overdrive_table;
int res;
user_od_table->OverDriveTable.FeatureCtrlMask = BIT(PP_OD_FEATURE_GFXCLK_BIT) |
BIT(PP_OD_FEATURE_UCLK_BIT) |
BIT(PP_OD_FEATURE_GFX_VF_CURVE_BIT) |
BIT(PP_OD_FEATURE_FAN_CURVE_BIT);
res = smu_v14_0_2_upload_overdrive_table(smu, user_od_table);
user_od_table->OverDriveTable.FeatureCtrlMask = 0;
if (res == 0)
memcpy(od_table, user_od_table, sizeof(OverDriveTableExternal_t));
return res;
}
static int smu_v14_0_2_od_restore_table_single(struct smu_context *smu, long input)
{
struct smu_table_context *table_context = &smu->smu_table;
OverDriveTableExternal_t *boot_overdrive_table =
(OverDriveTableExternal_t *)table_context->boot_overdrive_table;
OverDriveTableExternal_t *od_table =
(OverDriveTableExternal_t *)table_context->overdrive_table;
struct amdgpu_device *adev = smu->adev;
int i;
switch (input) {
case PP_OD_EDIT_FAN_CURVE:
for (i = 0; i < NUM_OD_FAN_MAX_POINTS; i++) {
od_table->OverDriveTable.FanLinearTempPoints[i] =
boot_overdrive_table->OverDriveTable.FanLinearTempPoints[i];
od_table->OverDriveTable.FanLinearPwmPoints[i] =
boot_overdrive_table->OverDriveTable.FanLinearPwmPoints[i];
}
od_table->OverDriveTable.FanMode = FAN_MODE_AUTO;
od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT);
break;
case PP_OD_EDIT_ACOUSTIC_LIMIT:
od_table->OverDriveTable.AcousticLimitRpmThreshold =
boot_overdrive_table->OverDriveTable.AcousticLimitRpmThreshold;
od_table->OverDriveTable.FanMode = FAN_MODE_AUTO;
od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT);
break;
case PP_OD_EDIT_ACOUSTIC_TARGET:
od_table->OverDriveTable.AcousticTargetRpmThreshold =
boot_overdrive_table->OverDriveTable.AcousticTargetRpmThreshold;
od_table->OverDriveTable.FanMode = FAN_MODE_AUTO;
od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT);
break;
case PP_OD_EDIT_FAN_TARGET_TEMPERATURE:
od_table->OverDriveTable.FanTargetTemperature =
boot_overdrive_table->OverDriveTable.FanTargetTemperature;
od_table->OverDriveTable.FanMode = FAN_MODE_AUTO;
od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT);
break;
case PP_OD_EDIT_FAN_MINIMUM_PWM:
od_table->OverDriveTable.FanMinimumPwm =
boot_overdrive_table->OverDriveTable.FanMinimumPwm;
od_table->OverDriveTable.FanMode = FAN_MODE_AUTO;
od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT);
break;
default:
dev_info(adev->dev, "Invalid table index: %ld\n", input);
return -EINVAL;
}
return 0;
}
static int smu_v14_0_2_od_edit_dpm_table(struct smu_context *smu,
enum PP_OD_DPM_TABLE_COMMAND type,
long input[],
uint32_t size)
{
struct smu_table_context *table_context = &smu->smu_table;
OverDriveTableExternal_t *od_table =
(OverDriveTableExternal_t *)table_context->overdrive_table;
struct amdgpu_device *adev = smu->adev;
uint32_t offset_of_voltageoffset;
int32_t minimum, maximum;
uint32_t feature_ctrlmask;
int i, ret = 0;
switch (type) {
case PP_OD_EDIT_SCLK_VDDC_TABLE:
if (!smu_v14_0_2_is_od_feature_supported(smu, PP_OD_FEATURE_GFXCLK_BIT)) {
dev_warn(adev->dev, "GFXCLK_LIMITS setting not supported!\n");
return -ENOTSUPP;
}
for (i = 0; i < size; i += 2) {
if (i + 2 > size) {
dev_info(adev->dev, "invalid number of input parameters %d\n", size);
return -EINVAL;
}
switch (input[i]) {
case 0:
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_GFXCLK_FMIN,
&minimum,
&maximum);
if (input[i + 1] < minimum ||
input[i + 1] > maximum) {
dev_info(adev->dev, "GfxclkFmin (%ld) must be within [%u, %u]!\n",
input[i + 1], minimum, maximum);
return -EINVAL;
}
od_table->OverDriveTable.GfxclkFmin = input[i + 1];
od_table->OverDriveTable.FeatureCtrlMask |= 1U << PP_OD_FEATURE_GFXCLK_BIT;
break;
case 1:
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_GFXCLK_FMAX,
&minimum,
&maximum);
if (input[i + 1] < minimum ||
input[i + 1] > maximum) {
dev_info(adev->dev, "GfxclkFmax (%ld) must be within [%u, %u]!\n",
input[i + 1], minimum, maximum);
return -EINVAL;
}
od_table->OverDriveTable.GfxclkFmax = input[i + 1];
od_table->OverDriveTable.FeatureCtrlMask |= 1U << PP_OD_FEATURE_GFXCLK_BIT;
break;
default:
dev_info(adev->dev, "Invalid SCLK_VDDC_TABLE index: %ld\n", input[i]);
dev_info(adev->dev, "Supported indices: [0:min,1:max]\n");
return -EINVAL;
}
}
if (od_table->OverDriveTable.GfxclkFmin > od_table->OverDriveTable.GfxclkFmax) {
dev_err(adev->dev,
"Invalid setting: GfxclkFmin(%u) is bigger than GfxclkFmax(%u)\n",
(uint32_t)od_table->OverDriveTable.GfxclkFmin,
(uint32_t)od_table->OverDriveTable.GfxclkFmax);
return -EINVAL;
}
break;
case PP_OD_EDIT_MCLK_VDDC_TABLE:
if (!smu_v14_0_2_is_od_feature_supported(smu, PP_OD_FEATURE_UCLK_BIT)) {
dev_warn(adev->dev, "UCLK_LIMITS setting not supported!\n");
return -ENOTSUPP;
}
for (i = 0; i < size; i += 2) {
if (i + 2 > size) {
dev_info(adev->dev, "invalid number of input parameters %d\n", size);
return -EINVAL;
}
switch (input[i]) {
case 0:
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_UCLK_FMIN,
&minimum,
&maximum);
if (input[i + 1] < minimum ||
input[i + 1] > maximum) {
dev_info(adev->dev, "UclkFmin (%ld) must be within [%u, %u]!\n",
input[i + 1], minimum, maximum);
return -EINVAL;
}
od_table->OverDriveTable.UclkFmin = input[i + 1];
od_table->OverDriveTable.FeatureCtrlMask |= 1U << PP_OD_FEATURE_UCLK_BIT;
break;
case 1:
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_UCLK_FMAX,
&minimum,
&maximum);
if (input[i + 1] < minimum ||
input[i + 1] > maximum) {
dev_info(adev->dev, "UclkFmax (%ld) must be within [%u, %u]!\n",
input[i + 1], minimum, maximum);
return -EINVAL;
}
od_table->OverDriveTable.UclkFmax = input[i + 1];
od_table->OverDriveTable.FeatureCtrlMask |= 1U << PP_OD_FEATURE_UCLK_BIT;
break;
default:
dev_info(adev->dev, "Invalid MCLK_VDDC_TABLE index: %ld\n", input[i]);
dev_info(adev->dev, "Supported indices: [0:min,1:max]\n");
return -EINVAL;
}
}
if (od_table->OverDriveTable.UclkFmin > od_table->OverDriveTable.UclkFmax) {
dev_err(adev->dev,
"Invalid setting: UclkFmin(%u) is bigger than UclkFmax(%u)\n",
(uint32_t)od_table->OverDriveTable.UclkFmin,
(uint32_t)od_table->OverDriveTable.UclkFmax);
return -EINVAL;
}
break;
case PP_OD_EDIT_VDDGFX_OFFSET:
if (!smu_v14_0_2_is_od_feature_supported(smu, PP_OD_FEATURE_GFX_VF_CURVE_BIT)) {
dev_warn(adev->dev, "Gfx offset setting not supported!\n");
return -ENOTSUPP;
}
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_GFX_VF_CURVE,
&minimum,
&maximum);
if (input[0] < minimum ||
input[0] > maximum) {
dev_info(adev->dev, "Voltage offset (%ld) must be within [%d, %d]!\n",
input[0], minimum, maximum);
return -EINVAL;
}
for (i = 0; i < PP_NUM_OD_VF_CURVE_POINTS; i++)
od_table->OverDriveTable.VoltageOffsetPerZoneBoundary[i] = input[0];
od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_GFX_VF_CURVE_BIT);
break;
case PP_OD_EDIT_FAN_CURVE:
if (!smu_v14_0_2_is_od_feature_supported(smu, PP_OD_FEATURE_FAN_CURVE_BIT)) {
dev_warn(adev->dev, "Fan curve setting not supported!\n");
return -ENOTSUPP;
}
if (input[0] >= NUM_OD_FAN_MAX_POINTS - 1 ||
input[0] < 0)
return -EINVAL;
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_FAN_CURVE_TEMP,
&minimum,
&maximum);
if (input[1] < minimum ||
input[1] > maximum) {
dev_info(adev->dev, "Fan curve temp setting(%ld) must be within [%d, %d]!\n",
input[1], minimum, maximum);
return -EINVAL;
}
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_FAN_CURVE_PWM,
&minimum,
&maximum);
if (input[2] < minimum ||
input[2] > maximum) {
dev_info(adev->dev, "Fan curve pwm setting(%ld) must be within [%d, %d]!\n",
input[2], minimum, maximum);
return -EINVAL;
}
od_table->OverDriveTable.FanLinearTempPoints[input[0]] = input[1];
od_table->OverDriveTable.FanLinearPwmPoints[input[0]] = input[2];
od_table->OverDriveTable.FanMode = FAN_MODE_MANUAL_LINEAR;
od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT);
break;
case PP_OD_EDIT_ACOUSTIC_LIMIT:
if (!smu_v14_0_2_is_od_feature_supported(smu, PP_OD_FEATURE_FAN_CURVE_BIT)) {
dev_warn(adev->dev, "Fan curve setting not supported!\n");
return -ENOTSUPP;
}
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_FAN_ACOUSTIC_LIMIT,
&minimum,
&maximum);
if (input[0] < minimum ||
input[0] > maximum) {
dev_info(adev->dev, "acoustic limit threshold setting(%ld) must be within [%d, %d]!\n",
input[0], minimum, maximum);
return -EINVAL;
}
od_table->OverDriveTable.AcousticLimitRpmThreshold = input[0];
od_table->OverDriveTable.FanMode = FAN_MODE_AUTO;
od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT);
break;
case PP_OD_EDIT_ACOUSTIC_TARGET:
if (!smu_v14_0_2_is_od_feature_supported(smu, PP_OD_FEATURE_FAN_CURVE_BIT)) {
dev_warn(adev->dev, "Fan curve setting not supported!\n");
return -ENOTSUPP;
}
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_FAN_ACOUSTIC_TARGET,
&minimum,
&maximum);
if (input[0] < minimum ||
input[0] > maximum) {
dev_info(adev->dev, "acoustic target threshold setting(%ld) must be within [%d, %d]!\n",
input[0], minimum, maximum);
return -EINVAL;
}
od_table->OverDriveTable.AcousticTargetRpmThreshold = input[0];
od_table->OverDriveTable.FanMode = FAN_MODE_AUTO;
od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT);
break;
case PP_OD_EDIT_FAN_TARGET_TEMPERATURE:
if (!smu_v14_0_2_is_od_feature_supported(smu, PP_OD_FEATURE_FAN_CURVE_BIT)) {
dev_warn(adev->dev, "Fan curve setting not supported!\n");
return -ENOTSUPP;
}
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_FAN_TARGET_TEMPERATURE,
&minimum,
&maximum);
if (input[0] < minimum ||
input[0] > maximum) {
dev_info(adev->dev, "fan target temperature setting(%ld) must be within [%d, %d]!\n",
input[0], minimum, maximum);
return -EINVAL;
}
od_table->OverDriveTable.FanTargetTemperature = input[0];
od_table->OverDriveTable.FanMode = FAN_MODE_AUTO;
od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT);
break;
case PP_OD_EDIT_FAN_MINIMUM_PWM:
if (!smu_v14_0_2_is_od_feature_supported(smu, PP_OD_FEATURE_FAN_CURVE_BIT)) {
dev_warn(adev->dev, "Fan curve setting not supported!\n");
return -ENOTSUPP;
}
smu_v14_0_2_get_od_setting_limits(smu,
PP_OD_FEATURE_FAN_MINIMUM_PWM,
&minimum,
&maximum);
if (input[0] < minimum ||
input[0] > maximum) {
dev_info(adev->dev, "fan minimum pwm setting(%ld) must be within [%d, %d]!\n",
input[0], minimum, maximum);
return -EINVAL;
}
od_table->OverDriveTable.FanMinimumPwm = input[0];
od_table->OverDriveTable.FanMode = FAN_MODE_AUTO;
od_table->OverDriveTable.FeatureCtrlMask |= BIT(PP_OD_FEATURE_FAN_CURVE_BIT);
break;
case PP_OD_RESTORE_DEFAULT_TABLE:
if (size == 1) {
ret = smu_v14_0_2_od_restore_table_single(smu, input[0]);
if (ret)
return ret;
} else {
feature_ctrlmask = od_table->OverDriveTable.FeatureCtrlMask;
memcpy(od_table,
table_context->boot_overdrive_table,
sizeof(OverDriveTableExternal_t));
od_table->OverDriveTable.FeatureCtrlMask = feature_ctrlmask;
}
fallthrough;
case PP_OD_COMMIT_DPM_TABLE:
/*
* The member below instructs PMFW the settings focused in
* this single operation.
* `uint32_t FeatureCtrlMask;`
* It does not contain actual informations about user's custom
* settings. Thus we do not cache it.
*/
offset_of_voltageoffset = offsetof(OverDriveTable_t, VoltageOffsetPerZoneBoundary);
if (memcmp((u8 *)od_table + offset_of_voltageoffset,
table_context->user_overdrive_table + offset_of_voltageoffset,
sizeof(OverDriveTableExternal_t) - offset_of_voltageoffset)) {
smu_v14_0_2_dump_od_table(smu, od_table);
ret = smu_v14_0_2_upload_overdrive_table(smu, od_table);
if (ret) {
dev_err(adev->dev, "Failed to upload overdrive table!\n");
return ret;
}
od_table->OverDriveTable.FeatureCtrlMask = 0;
memcpy(table_context->user_overdrive_table + offset_of_voltageoffset,
(u8 *)od_table + offset_of_voltageoffset,
sizeof(OverDriveTableExternal_t) - offset_of_voltageoffset);
if (!memcmp(table_context->user_overdrive_table,
table_context->boot_overdrive_table,
sizeof(OverDriveTableExternal_t)))
smu->user_dpm_profile.user_od = false;
else
smu->user_dpm_profile.user_od = true;
}
break;
default:
return -ENOSYS;
}
return ret;
}
static int smu_v14_0_2_set_power_limit(struct smu_context *smu,
enum smu_ppt_limit_type limit_type,
uint32_t limit)
{
PPTable_t *pptable = smu->smu_table.driver_pptable;
uint32_t msg_limit = pptable->SkuTable.MsgLimits.Power[PPT_THROTTLER_PPT0][POWER_SOURCE_AC];
struct smu_table_context *table_context = &smu->smu_table;
OverDriveTableExternal_t *od_table =
(OverDriveTableExternal_t *)table_context->overdrive_table;
int ret = 0;
if (limit_type != SMU_DEFAULT_PPT_LIMIT)
return -EINVAL;
if (limit <= msg_limit) {
if (smu->current_power_limit > msg_limit) {
od_table->OverDriveTable.Ppt = 0;
od_table->OverDriveTable.FeatureCtrlMask |= 1U << PP_OD_FEATURE_PPT_BIT;
ret = smu_v14_0_2_upload_overdrive_table(smu, od_table);
if (ret) {
dev_err(smu->adev->dev, "Failed to upload overdrive table!\n");
return ret;
}
}
return smu_v14_0_set_power_limit(smu, limit_type, limit);
} else if (smu->od_enabled) {
ret = smu_v14_0_set_power_limit(smu, limit_type, msg_limit);
if (ret)
return ret;
od_table->OverDriveTable.Ppt = (limit * 100) / msg_limit - 100;
od_table->OverDriveTable.FeatureCtrlMask |= 1U << PP_OD_FEATURE_PPT_BIT;
ret = smu_v14_0_2_upload_overdrive_table(smu, od_table);
if (ret) {
dev_err(smu->adev->dev, "Failed to upload overdrive table!\n");
return ret;
}
smu->current_power_limit = limit;
} else {
return -EINVAL;
}
return 0;
}
static const struct pptable_funcs smu_v14_0_2_ppt_funcs = {
.get_allowed_feature_mask = smu_v14_0_2_get_allowed_feature_mask,
.set_default_dpm_table = smu_v14_0_2_set_default_dpm_table,
.i2c_init = smu_v14_0_2_i2c_control_init,
.i2c_fini = smu_v14_0_2_i2c_control_fini,
.is_dpm_running = smu_v14_0_2_is_dpm_running,
.dump_pptable = smu_v14_0_2_dump_pptable,
.init_microcode = smu_v14_0_init_microcode,
.load_microcode = smu_v14_0_load_microcode,
.fini_microcode = smu_v14_0_fini_microcode,
.init_smc_tables = smu_v14_0_2_init_smc_tables,
.fini_smc_tables = smu_v14_0_fini_smc_tables,
.init_power = smu_v14_0_init_power,
.fini_power = smu_v14_0_fini_power,
.check_fw_status = smu_v14_0_check_fw_status,
.setup_pptable = smu_v14_0_2_setup_pptable,
.check_fw_version = smu_v14_0_check_fw_version,
.write_pptable = smu_cmn_write_pptable,
.set_driver_table_location = smu_v14_0_set_driver_table_location,
.system_features_control = smu_v14_0_system_features_control,
.set_allowed_mask = smu_v14_0_set_allowed_mask,
.get_enabled_mask = smu_cmn_get_enabled_mask,
.dpm_set_vcn_enable = smu_v14_0_set_vcn_enable,
.dpm_set_jpeg_enable = smu_v14_0_set_jpeg_enable,
.get_dpm_ultimate_freq = smu_v14_0_2_get_dpm_ultimate_freq,
.get_vbios_bootup_values = smu_v14_0_get_vbios_bootup_values,
.read_sensor = smu_v14_0_2_read_sensor,
.feature_is_enabled = smu_cmn_feature_is_enabled,
.print_clk_levels = smu_v14_0_2_print_clk_levels,
.force_clk_levels = smu_v14_0_2_force_clk_levels,
.update_pcie_parameters = smu_v14_0_2_update_pcie_parameters,
.get_thermal_temperature_range = smu_v14_0_2_get_thermal_temperature_range,
.register_irq_handler = smu_v14_0_register_irq_handler,
.enable_thermal_alert = smu_v14_0_enable_thermal_alert,
.disable_thermal_alert = smu_v14_0_disable_thermal_alert,
.notify_memory_pool_location = smu_v14_0_notify_memory_pool_location,
.get_gpu_metrics = smu_v14_0_2_get_gpu_metrics,
.set_soft_freq_limited_range = smu_v14_0_set_soft_freq_limited_range,
.set_default_od_settings = smu_v14_0_2_set_default_od_settings,
.restore_user_od_settings = smu_v14_0_2_restore_user_od_settings,
.od_edit_dpm_table = smu_v14_0_2_od_edit_dpm_table,
.init_pptable_microcode = smu_v14_0_init_pptable_microcode,
.populate_umd_state_clk = smu_v14_0_2_populate_umd_state_clk,
.set_performance_level = smu_v14_0_set_performance_level,
.gfx_off_control = smu_v14_0_gfx_off_control,
.get_unique_id = smu_v14_0_2_get_unique_id,
.get_power_limit = smu_v14_0_2_get_power_limit,
.set_power_limit = smu_v14_0_2_set_power_limit,
.set_power_source = smu_v14_0_set_power_source,
.get_power_profile_mode = smu_v14_0_2_get_power_profile_mode,
.set_power_profile_mode = smu_v14_0_2_set_power_profile_mode,
.run_btc = smu_v14_0_run_btc,
.get_pp_feature_mask = smu_cmn_get_pp_feature_mask,
.set_pp_feature_mask = smu_cmn_set_pp_feature_mask,
.set_tool_table_location = smu_v14_0_set_tool_table_location,
.deep_sleep_control = smu_v14_0_deep_sleep_control,
.gfx_ulv_control = smu_v14_0_gfx_ulv_control,
.get_bamaco_support = smu_v14_0_get_bamaco_support,
.baco_get_state = smu_v14_0_baco_get_state,
.baco_set_state = smu_v14_0_baco_set_state,
.baco_enter = smu_v14_0_2_baco_enter,
.baco_exit = smu_v14_0_2_baco_exit,
.mode1_reset_is_support = smu_v14_0_2_is_mode1_reset_supported,
.mode1_reset = smu_v14_0_2_mode1_reset,
.mode2_reset = smu_v14_0_2_mode2_reset,
.enable_gfx_features = smu_v14_0_2_enable_gfx_features,
.set_mp1_state = smu_v14_0_2_set_mp1_state,
.set_df_cstate = smu_v14_0_2_set_df_cstate,
#if 0
.gpo_control = smu_v14_0_gpo_control,
#endif
};
void smu_v14_0_2_set_ppt_funcs(struct smu_context *smu)
{
smu->ppt_funcs = &smu_v14_0_2_ppt_funcs;
smu->message_map = smu_v14_0_2_message_map;
smu->clock_map = smu_v14_0_2_clk_map;
smu->feature_map = smu_v14_0_2_feature_mask_map;
smu->table_map = smu_v14_0_2_table_map;
smu->pwr_src_map = smu_v14_0_2_pwr_src_map;
smu->workload_map = smu_v14_0_2_workload_map;
smu_v14_0_2_set_smu_mailbox_registers(smu);
}