// SPDX-License-Identifier: GPL-2.0-only
/* Copyright(c) 2024 Intel Corporation */
#include <linux/anon_inodes.h>
#include <linux/container_of.h>
#include <linux/device.h>
#include <linux/file.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/sizes.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/vfio_pci_core.h>
#include <linux/qat/qat_mig_dev.h>
/*
* The migration data of each Intel QAT VF device is encapsulated into a
* 4096 bytes block. The data consists of two parts.
* The first is a pre-configured set of attributes of the VF being migrated,
* which are only set when it is created. This can be migrated during pre-copy
* stage and used for a device compatibility check.
* The second is the VF state. This includes the required MMIO regions and
* the shadow states maintained by the QAT PF driver. This part can only be
* saved when the VF is fully quiesced and be migrated during stop-copy stage.
* Both these 2 parts of data are saved in hierarchical structures including
* a preamble section and several raw state sections.
* When the pre-configured part of the migration data is fully retrieved from
* user space, the preamble section are used to validate the correctness of
* the data blocks and check the version compatibility. The raw state sections
* are then used to do a device compatibility check.
* When the device transits from RESUMING state, the VF states are extracted
* from the raw state sections of the VF state part of the migration data and
* then loaded into the device.
*/
struct qat_vf_migration_file {
struct file *filp;
/* protects migration region context */
struct mutex lock;
bool disabled;
struct qat_vf_core_device *qat_vdev;
ssize_t filled_size;
};
struct qat_vf_core_device {
struct vfio_pci_core_device core_device;
struct qat_mig_dev *mdev;
/* protects migration state */
struct mutex state_mutex;
enum vfio_device_mig_state mig_state;
struct qat_vf_migration_file *resuming_migf;
struct qat_vf_migration_file *saving_migf;
};
static int qat_vf_pci_open_device(struct vfio_device *core_vdev)
{
struct qat_vf_core_device *qat_vdev =
container_of(core_vdev, struct qat_vf_core_device,
core_device.vdev);
struct vfio_pci_core_device *vdev = &qat_vdev->core_device;
int ret;
ret = vfio_pci_core_enable(vdev);
if (ret)
return ret;
ret = qat_vfmig_open(qat_vdev->mdev);
if (ret) {
vfio_pci_core_disable(vdev);
return ret;
}
qat_vdev->mig_state = VFIO_DEVICE_STATE_RUNNING;
vfio_pci_core_finish_enable(vdev);
return 0;
}
static void qat_vf_disable_fd(struct qat_vf_migration_file *migf)
{
mutex_lock(&migf->lock);
migf->disabled = true;
migf->filp->f_pos = 0;
migf->filled_size = 0;
mutex_unlock(&migf->lock);
}
static void qat_vf_disable_fds(struct qat_vf_core_device *qat_vdev)
{
if (qat_vdev->resuming_migf) {
qat_vf_disable_fd(qat_vdev->resuming_migf);
fput(qat_vdev->resuming_migf->filp);
qat_vdev->resuming_migf = NULL;
}
if (qat_vdev->saving_migf) {
qat_vf_disable_fd(qat_vdev->saving_migf);
fput(qat_vdev->saving_migf->filp);
qat_vdev->saving_migf = NULL;
}
}
static void qat_vf_pci_close_device(struct vfio_device *core_vdev)
{
struct qat_vf_core_device *qat_vdev = container_of(core_vdev,
struct qat_vf_core_device, core_device.vdev);
qat_vfmig_close(qat_vdev->mdev);
qat_vf_disable_fds(qat_vdev);
vfio_pci_core_close_device(core_vdev);
}
static long qat_vf_precopy_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)
{
struct qat_vf_migration_file *migf = filp->private_data;
struct qat_vf_core_device *qat_vdev = migf->qat_vdev;
struct qat_mig_dev *mig_dev = qat_vdev->mdev;
struct vfio_precopy_info info;
loff_t *pos = &filp->f_pos;
unsigned long minsz;
int ret = 0;
if (cmd != VFIO_MIG_GET_PRECOPY_INFO)
return -ENOTTY;
minsz = offsetofend(struct vfio_precopy_info, dirty_bytes);
if (copy_from_user(&info, (void __user *)arg, minsz))
return -EFAULT;
if (info.argsz < minsz)
return -EINVAL;
mutex_lock(&qat_vdev->state_mutex);
if (qat_vdev->mig_state != VFIO_DEVICE_STATE_PRE_COPY &&
qat_vdev->mig_state != VFIO_DEVICE_STATE_PRE_COPY_P2P) {
mutex_unlock(&qat_vdev->state_mutex);
return -EINVAL;
}
mutex_lock(&migf->lock);
if (migf->disabled) {
ret = -ENODEV;
goto out;
}
if (*pos > mig_dev->setup_size) {
ret = -EINVAL;
goto out;
}
info.dirty_bytes = 0;
info.initial_bytes = mig_dev->setup_size - *pos;
out:
mutex_unlock(&migf->lock);
mutex_unlock(&qat_vdev->state_mutex);
if (ret)
return ret;
return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0;
}
static ssize_t qat_vf_save_read(struct file *filp, char __user *buf,
size_t len, loff_t *pos)
{
struct qat_vf_migration_file *migf = filp->private_data;
struct qat_mig_dev *mig_dev = migf->qat_vdev->mdev;
ssize_t done = 0;
loff_t *offs;
int ret;
if (pos)
return -ESPIPE;
offs = &filp->f_pos;
mutex_lock(&migf->lock);
if (*offs > migf->filled_size || *offs < 0) {
done = -EINVAL;
goto out_unlock;
}
if (migf->disabled) {
done = -ENODEV;
goto out_unlock;
}
len = min_t(size_t, migf->filled_size - *offs, len);
if (len) {
ret = copy_to_user(buf, mig_dev->state + *offs, len);
if (ret) {
done = -EFAULT;
goto out_unlock;
}
*offs += len;
done = len;
}
out_unlock:
mutex_unlock(&migf->lock);
return done;
}
static int qat_vf_release_file(struct inode *inode, struct file *filp)
{
struct qat_vf_migration_file *migf = filp->private_data;
qat_vf_disable_fd(migf);
mutex_destroy(&migf->lock);
kfree(migf);
return 0;
}
static const struct file_operations qat_vf_save_fops = {
.owner = THIS_MODULE,
.read = qat_vf_save_read,
.unlocked_ioctl = qat_vf_precopy_ioctl,
.compat_ioctl = compat_ptr_ioctl,
.release = qat_vf_release_file,
};
static int qat_vf_save_state(struct qat_vf_core_device *qat_vdev,
struct qat_vf_migration_file *migf)
{
int ret;
ret = qat_vfmig_save_state(qat_vdev->mdev);
if (ret)
return ret;
migf->filled_size = qat_vdev->mdev->state_size;
return 0;
}
static int qat_vf_save_setup(struct qat_vf_core_device *qat_vdev,
struct qat_vf_migration_file *migf)
{
int ret;
ret = qat_vfmig_save_setup(qat_vdev->mdev);
if (ret)
return ret;
migf->filled_size = qat_vdev->mdev->setup_size;
return 0;
}
/*
* Allocate a file handler for user space and then save the migration data for
* the device being migrated. If this is called in the pre-copy stage, save the
* pre-configured device data. Otherwise, if this is called in the stop-copy
* stage, save the device state. In both cases, update the data size which can
* then be read from user space.
*/
static struct qat_vf_migration_file *
qat_vf_save_device_data(struct qat_vf_core_device *qat_vdev, bool pre_copy)
{
struct qat_vf_migration_file *migf;
int ret;
migf = kzalloc(sizeof(*migf), GFP_KERNEL);
if (!migf)
return ERR_PTR(-ENOMEM);
migf->filp = anon_inode_getfile("qat_vf_mig", &qat_vf_save_fops,
migf, O_RDONLY);
ret = PTR_ERR_OR_ZERO(migf->filp);
if (ret) {
kfree(migf);
return ERR_PTR(ret);
}
stream_open(migf->filp->f_inode, migf->filp);
mutex_init(&migf->lock);
if (pre_copy)
ret = qat_vf_save_setup(qat_vdev, migf);
else
ret = qat_vf_save_state(qat_vdev, migf);
if (ret) {
fput(migf->filp);
return ERR_PTR(ret);
}
migf->qat_vdev = qat_vdev;
return migf;
}
static ssize_t qat_vf_resume_write(struct file *filp, const char __user *buf,
size_t len, loff_t *pos)
{
struct qat_vf_migration_file *migf = filp->private_data;
struct qat_mig_dev *mig_dev = migf->qat_vdev->mdev;
loff_t end, *offs;
ssize_t done = 0;
int ret;
if (pos)
return -ESPIPE;
offs = &filp->f_pos;
if (*offs < 0 ||
check_add_overflow((loff_t)len, *offs, &end))
return -EOVERFLOW;
if (end > mig_dev->state_size)
return -ENOMEM;
mutex_lock(&migf->lock);
if (migf->disabled) {
done = -ENODEV;
goto out_unlock;
}
ret = copy_from_user(mig_dev->state + *offs, buf, len);
if (ret) {
done = -EFAULT;
goto out_unlock;
}
*offs += len;
migf->filled_size += len;
/*
* Load the pre-configured device data first to check if the target
* device is compatible with the source device.
*/
ret = qat_vfmig_load_setup(mig_dev, migf->filled_size);
if (ret && ret != -EAGAIN) {
done = ret;
goto out_unlock;
}
done = len;
out_unlock:
mutex_unlock(&migf->lock);
return done;
}
static const struct file_operations qat_vf_resume_fops = {
.owner = THIS_MODULE,
.write = qat_vf_resume_write,
.release = qat_vf_release_file,
};
static struct qat_vf_migration_file *
qat_vf_resume_device_data(struct qat_vf_core_device *qat_vdev)
{
struct qat_vf_migration_file *migf;
int ret;
migf = kzalloc(sizeof(*migf), GFP_KERNEL);
if (!migf)
return ERR_PTR(-ENOMEM);
migf->filp = anon_inode_getfile("qat_vf_mig", &qat_vf_resume_fops, migf, O_WRONLY);
ret = PTR_ERR_OR_ZERO(migf->filp);
if (ret) {
kfree(migf);
return ERR_PTR(ret);
}
migf->qat_vdev = qat_vdev;
migf->filled_size = 0;
stream_open(migf->filp->f_inode, migf->filp);
mutex_init(&migf->lock);
return migf;
}
static int qat_vf_load_device_data(struct qat_vf_core_device *qat_vdev)
{
return qat_vfmig_load_state(qat_vdev->mdev);
}
static struct file *qat_vf_pci_step_device_state(struct qat_vf_core_device *qat_vdev, u32 new)
{
u32 cur = qat_vdev->mig_state;
int ret;
/*
* As the device is not capable of just stopping P2P DMAs, suspend the
* device completely once any of the P2P states are reached.
* When it is suspended, all its MMIO registers can still be operated
* correctly, jobs submitted through ring are queued while no jobs are
* processed by the device. The MMIO states can be safely migrated to
* the target VF during stop-copy stage and restored correctly in the
* target VF. All queued jobs can be resumed then.
*/
if ((cur == VFIO_DEVICE_STATE_RUNNING && new == VFIO_DEVICE_STATE_RUNNING_P2P) ||
(cur == VFIO_DEVICE_STATE_PRE_COPY && new == VFIO_DEVICE_STATE_PRE_COPY_P2P)) {
ret = qat_vfmig_suspend(qat_vdev->mdev);
if (ret)
return ERR_PTR(ret);
return NULL;
}
if ((cur == VFIO_DEVICE_STATE_RUNNING_P2P && new == VFIO_DEVICE_STATE_RUNNING) ||
(cur == VFIO_DEVICE_STATE_PRE_COPY_P2P && new == VFIO_DEVICE_STATE_PRE_COPY)) {
qat_vfmig_resume(qat_vdev->mdev);
return NULL;
}
if ((cur == VFIO_DEVICE_STATE_RUNNING_P2P && new == VFIO_DEVICE_STATE_STOP) ||
(cur == VFIO_DEVICE_STATE_STOP && new == VFIO_DEVICE_STATE_RUNNING_P2P))
return NULL;
if (cur == VFIO_DEVICE_STATE_STOP && new == VFIO_DEVICE_STATE_STOP_COPY) {
struct qat_vf_migration_file *migf;
migf = qat_vf_save_device_data(qat_vdev, false);
if (IS_ERR(migf))
return ERR_CAST(migf);
get_file(migf->filp);
qat_vdev->saving_migf = migf;
return migf->filp;
}
if (cur == VFIO_DEVICE_STATE_STOP && new == VFIO_DEVICE_STATE_RESUMING) {
struct qat_vf_migration_file *migf;
migf = qat_vf_resume_device_data(qat_vdev);
if (IS_ERR(migf))
return ERR_CAST(migf);
get_file(migf->filp);
qat_vdev->resuming_migf = migf;
return migf->filp;
}
if ((cur == VFIO_DEVICE_STATE_STOP_COPY && new == VFIO_DEVICE_STATE_STOP) ||
(cur == VFIO_DEVICE_STATE_PRE_COPY && new == VFIO_DEVICE_STATE_RUNNING) ||
(cur == VFIO_DEVICE_STATE_PRE_COPY_P2P && new == VFIO_DEVICE_STATE_RUNNING_P2P)) {
qat_vf_disable_fds(qat_vdev);
return NULL;
}
if ((cur == VFIO_DEVICE_STATE_RUNNING && new == VFIO_DEVICE_STATE_PRE_COPY) ||
(cur == VFIO_DEVICE_STATE_RUNNING_P2P && new == VFIO_DEVICE_STATE_PRE_COPY_P2P)) {
struct qat_vf_migration_file *migf;
migf = qat_vf_save_device_data(qat_vdev, true);
if (IS_ERR(migf))
return ERR_CAST(migf);
get_file(migf->filp);
qat_vdev->saving_migf = migf;
return migf->filp;
}
if (cur == VFIO_DEVICE_STATE_PRE_COPY_P2P && new == VFIO_DEVICE_STATE_STOP_COPY) {
struct qat_vf_migration_file *migf = qat_vdev->saving_migf;
if (!migf)
return ERR_PTR(-EINVAL);
ret = qat_vf_save_state(qat_vdev, migf);
if (ret)
return ERR_PTR(ret);
return NULL;
}
if (cur == VFIO_DEVICE_STATE_RESUMING && new == VFIO_DEVICE_STATE_STOP) {
ret = qat_vf_load_device_data(qat_vdev);
if (ret)
return ERR_PTR(ret);
qat_vf_disable_fds(qat_vdev);
return NULL;
}
/* vfio_mig_get_next_state() does not use arcs other than the above */
WARN_ON(true);
return ERR_PTR(-EINVAL);
}
static void qat_vf_reset_done(struct qat_vf_core_device *qat_vdev)
{
qat_vdev->mig_state = VFIO_DEVICE_STATE_RUNNING;
qat_vfmig_reset(qat_vdev->mdev);
qat_vf_disable_fds(qat_vdev);
}
static struct file *qat_vf_pci_set_device_state(struct vfio_device *vdev,
enum vfio_device_mig_state new_state)
{
struct qat_vf_core_device *qat_vdev = container_of(vdev,
struct qat_vf_core_device, core_device.vdev);
enum vfio_device_mig_state next_state;
struct file *res = NULL;
int ret;
mutex_lock(&qat_vdev->state_mutex);
while (new_state != qat_vdev->mig_state) {
ret = vfio_mig_get_next_state(vdev, qat_vdev->mig_state,
new_state, &next_state);
if (ret) {
res = ERR_PTR(ret);
break;
}
res = qat_vf_pci_step_device_state(qat_vdev, next_state);
if (IS_ERR(res))
break;
qat_vdev->mig_state = next_state;
if (WARN_ON(res && new_state != qat_vdev->mig_state)) {
fput(res);
res = ERR_PTR(-EINVAL);
break;
}
}
mutex_unlock(&qat_vdev->state_mutex);
return res;
}
static int qat_vf_pci_get_device_state(struct vfio_device *vdev,
enum vfio_device_mig_state *curr_state)
{
struct qat_vf_core_device *qat_vdev = container_of(vdev,
struct qat_vf_core_device, core_device.vdev);
mutex_lock(&qat_vdev->state_mutex);
*curr_state = qat_vdev->mig_state;
mutex_unlock(&qat_vdev->state_mutex);
return 0;
}
static int qat_vf_pci_get_data_size(struct vfio_device *vdev,
unsigned long *stop_copy_length)
{
struct qat_vf_core_device *qat_vdev = container_of(vdev,
struct qat_vf_core_device, core_device.vdev);
mutex_lock(&qat_vdev->state_mutex);
*stop_copy_length = qat_vdev->mdev->state_size;
mutex_unlock(&qat_vdev->state_mutex);
return 0;
}
static const struct vfio_migration_ops qat_vf_pci_mig_ops = {
.migration_set_state = qat_vf_pci_set_device_state,
.migration_get_state = qat_vf_pci_get_device_state,
.migration_get_data_size = qat_vf_pci_get_data_size,
};
static void qat_vf_pci_release_dev(struct vfio_device *core_vdev)
{
struct qat_vf_core_device *qat_vdev = container_of(core_vdev,
struct qat_vf_core_device, core_device.vdev);
qat_vfmig_cleanup(qat_vdev->mdev);
qat_vfmig_destroy(qat_vdev->mdev);
mutex_destroy(&qat_vdev->state_mutex);
vfio_pci_core_release_dev(core_vdev);
}
static int qat_vf_pci_init_dev(struct vfio_device *core_vdev)
{
struct qat_vf_core_device *qat_vdev = container_of(core_vdev,
struct qat_vf_core_device, core_device.vdev);
struct qat_mig_dev *mdev;
struct pci_dev *parent;
int ret, vf_id;
core_vdev->migration_flags = VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P |
VFIO_MIGRATION_PRE_COPY;
core_vdev->mig_ops = &qat_vf_pci_mig_ops;
ret = vfio_pci_core_init_dev(core_vdev);
if (ret)
return ret;
mutex_init(&qat_vdev->state_mutex);
parent = pci_physfn(qat_vdev->core_device.pdev);
vf_id = pci_iov_vf_id(qat_vdev->core_device.pdev);
if (vf_id < 0) {
ret = -ENODEV;
goto err_rel;
}
mdev = qat_vfmig_create(parent, vf_id);
if (IS_ERR(mdev)) {
ret = PTR_ERR(mdev);
goto err_rel;
}
ret = qat_vfmig_init(mdev);
if (ret)
goto err_destroy;
qat_vdev->mdev = mdev;
return 0;
err_destroy:
qat_vfmig_destroy(mdev);
err_rel:
vfio_pci_core_release_dev(core_vdev);
return ret;
}
static const struct vfio_device_ops qat_vf_pci_ops = {
.name = "qat-vf-vfio-pci",
.init = qat_vf_pci_init_dev,
.release = qat_vf_pci_release_dev,
.open_device = qat_vf_pci_open_device,
.close_device = qat_vf_pci_close_device,
.ioctl = vfio_pci_core_ioctl,
.read = vfio_pci_core_read,
.write = vfio_pci_core_write,
.mmap = vfio_pci_core_mmap,
.request = vfio_pci_core_request,
.match = vfio_pci_core_match,
.bind_iommufd = vfio_iommufd_physical_bind,
.unbind_iommufd = vfio_iommufd_physical_unbind,
.attach_ioas = vfio_iommufd_physical_attach_ioas,
.detach_ioas = vfio_iommufd_physical_detach_ioas,
};
static struct qat_vf_core_device *qat_vf_drvdata(struct pci_dev *pdev)
{
struct vfio_pci_core_device *core_device = pci_get_drvdata(pdev);
return container_of(core_device, struct qat_vf_core_device, core_device);
}
static void qat_vf_pci_aer_reset_done(struct pci_dev *pdev)
{
struct qat_vf_core_device *qat_vdev = qat_vf_drvdata(pdev);
if (!qat_vdev->mdev)
return;
mutex_lock(&qat_vdev->state_mutex);
qat_vf_reset_done(qat_vdev);
mutex_unlock(&qat_vdev->state_mutex);
}
static int
qat_vf_vfio_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct device *dev = &pdev->dev;
struct qat_vf_core_device *qat_vdev;
int ret;
qat_vdev = vfio_alloc_device(qat_vf_core_device, core_device.vdev, dev, &qat_vf_pci_ops);
if (IS_ERR(qat_vdev))
return PTR_ERR(qat_vdev);
pci_set_drvdata(pdev, &qat_vdev->core_device);
ret = vfio_pci_core_register_device(&qat_vdev->core_device);
if (ret)
goto out_put_device;
return 0;
out_put_device:
vfio_put_device(&qat_vdev->core_device.vdev);
return ret;
}
static void qat_vf_vfio_pci_remove(struct pci_dev *pdev)
{
struct qat_vf_core_device *qat_vdev = qat_vf_drvdata(pdev);
vfio_pci_core_unregister_device(&qat_vdev->core_device);
vfio_put_device(&qat_vdev->core_device.vdev);
}
static const struct pci_device_id qat_vf_vfio_pci_table[] = {
/* Intel QAT GEN4 4xxx VF device */
{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_INTEL, 0x4941) },
{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_INTEL, 0x4943) },
{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_INTEL, 0x4945) },
{}
};
MODULE_DEVICE_TABLE(pci, qat_vf_vfio_pci_table);
static const struct pci_error_handlers qat_vf_err_handlers = {
.reset_done = qat_vf_pci_aer_reset_done,
.error_detected = vfio_pci_core_aer_err_detected,
};
static struct pci_driver qat_vf_vfio_pci_driver = {
.name = "qat_vfio_pci",
.id_table = qat_vf_vfio_pci_table,
.probe = qat_vf_vfio_pci_probe,
.remove = qat_vf_vfio_pci_remove,
.err_handler = &qat_vf_err_handlers,
.driver_managed_dma = true,
};
module_pci_driver(qat_vf_vfio_pci_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Xin Zeng <[email protected]>");
MODULE_DESCRIPTION("QAT VFIO PCI - VFIO PCI driver with live migration support for Intel(R) QAT GEN4 device family");
MODULE_IMPORT_NS(CRYPTO_QAT);