/*
* Copyright 2018 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/slab.h>
#include "hwmgr.h"
#include "amd_powerplay.h"
#include "vega20_smumgr.h"
#include "hardwaremanager.h"
#include "ppatomfwctrl.h"
#include "atomfirmware.h"
#include "cgs_common.h"
#include "vega20_powertune.h"
#include "vega20_inc.h"
#include "pppcielanes.h"
#include "vega20_hwmgr.h"
#include "vega20_processpptables.h"
#include "vega20_pptable.h"
#include "vega20_thermal.h"
#include "vega20_ppsmc.h"
#include "pp_debug.h"
#include "amd_pcie_helpers.h"
#include "ppinterrupt.h"
#include "pp_overdriver.h"
#include "pp_thermal.h"
#include "soc15_common.h"
#include "vega20_baco.h"
#include "smuio/smuio_9_0_offset.h"
#include "smuio/smuio_9_0_sh_mask.h"
#include "nbio/nbio_7_4_sh_mask.h"
#define smnPCIE_LC_SPEED_CNTL 0x11140290
#define smnPCIE_LC_LINK_WIDTH_CNTL 0x11140288
#define LINK_WIDTH_MAX 6
#define LINK_SPEED_MAX 3
static const int link_width[] = {0, 1, 2, 4, 8, 12, 16};
static const int link_speed[] = {25, 50, 80, 160};
static void vega20_set_default_registry_data(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
data->gfxclk_average_alpha = PPVEGA20_VEGA20GFXCLKAVERAGEALPHA_DFLT;
data->socclk_average_alpha = PPVEGA20_VEGA20SOCCLKAVERAGEALPHA_DFLT;
data->uclk_average_alpha = PPVEGA20_VEGA20UCLKCLKAVERAGEALPHA_DFLT;
data->gfx_activity_average_alpha = PPVEGA20_VEGA20GFXACTIVITYAVERAGEALPHA_DFLT;
data->lowest_uclk_reserved_for_ulv = PPVEGA20_VEGA20LOWESTUCLKRESERVEDFORULV_DFLT;
data->display_voltage_mode = PPVEGA20_VEGA20DISPLAYVOLTAGEMODE_DFLT;
data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
data->disp_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
data->disp_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
data->disp_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
data->phy_clk_quad_eqn_a = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
data->phy_clk_quad_eqn_b = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
data->phy_clk_quad_eqn_c = PPREGKEY_VEGA20QUADRATICEQUATION_DFLT;
/*
* Disable the following features for now:
* GFXCLK DS
* SOCLK DS
* LCLK DS
* DCEFCLK DS
* FCLK DS
* MP1CLK DS
* MP0CLK DS
*/
data->registry_data.disallowed_features = 0xE0041C00;
/* ECC feature should be disabled on old SMUs */
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetSmuVersion, &hwmgr->smu_version);
if (hwmgr->smu_version < 0x282100)
data->registry_data.disallowed_features |= FEATURE_ECC_MASK;
if (!(hwmgr->feature_mask & PP_PCIE_DPM_MASK))
data->registry_data.disallowed_features |= FEATURE_DPM_LINK_MASK;
if (!(hwmgr->feature_mask & PP_SCLK_DPM_MASK))
data->registry_data.disallowed_features |= FEATURE_DPM_GFXCLK_MASK;
if (!(hwmgr->feature_mask & PP_SOCCLK_DPM_MASK))
data->registry_data.disallowed_features |= FEATURE_DPM_SOCCLK_MASK;
if (!(hwmgr->feature_mask & PP_MCLK_DPM_MASK))
data->registry_data.disallowed_features |= FEATURE_DPM_UCLK_MASK;
if (!(hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK))
data->registry_data.disallowed_features |= FEATURE_DPM_DCEFCLK_MASK;
if (!(hwmgr->feature_mask & PP_ULV_MASK))
data->registry_data.disallowed_features |= FEATURE_ULV_MASK;
if (!(hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK))
data->registry_data.disallowed_features |= FEATURE_DS_GFXCLK_MASK;
data->registry_data.od_state_in_dc_support = 0;
data->registry_data.thermal_support = 1;
data->registry_data.skip_baco_hardware = 0;
data->registry_data.log_avfs_param = 0;
data->registry_data.sclk_throttle_low_notification = 1;
data->registry_data.force_dpm_high = 0;
data->registry_data.stable_pstate_sclk_dpm_percentage = 75;
data->registry_data.didt_support = 0;
if (data->registry_data.didt_support) {
data->registry_data.didt_mode = 6;
data->registry_data.sq_ramping_support = 1;
data->registry_data.db_ramping_support = 0;
data->registry_data.td_ramping_support = 0;
data->registry_data.tcp_ramping_support = 0;
data->registry_data.dbr_ramping_support = 0;
data->registry_data.edc_didt_support = 1;
data->registry_data.gc_didt_support = 0;
data->registry_data.psm_didt_support = 0;
}
data->registry_data.pcie_lane_override = 0xff;
data->registry_data.pcie_speed_override = 0xff;
data->registry_data.pcie_clock_override = 0xffffffff;
data->registry_data.regulator_hot_gpio_support = 1;
data->registry_data.ac_dc_switch_gpio_support = 0;
data->registry_data.quick_transition_support = 0;
data->registry_data.zrpm_start_temp = 0xffff;
data->registry_data.zrpm_stop_temp = 0xffff;
data->registry_data.od8_feature_enable = 1;
data->registry_data.disable_water_mark = 0;
data->registry_data.disable_pp_tuning = 0;
data->registry_data.disable_xlpp_tuning = 0;
data->registry_data.disable_workload_policy = 0;
data->registry_data.perf_ui_tuning_profile_turbo = 0x19190F0F;
data->registry_data.perf_ui_tuning_profile_powerSave = 0x19191919;
data->registry_data.perf_ui_tuning_profile_xl = 0x00000F0A;
data->registry_data.force_workload_policy_mask = 0;
data->registry_data.disable_3d_fs_detection = 0;
data->registry_data.fps_support = 1;
data->registry_data.disable_auto_wattman = 1;
data->registry_data.auto_wattman_debug = 0;
data->registry_data.auto_wattman_sample_period = 100;
data->registry_data.fclk_gfxclk_ratio = 0;
data->registry_data.auto_wattman_threshold = 50;
data->registry_data.gfxoff_controlled_by_driver = 1;
data->gfxoff_allowed = false;
data->counter_gfxoff = 0;
data->registry_data.pcie_dpm_key_disabled = !(hwmgr->feature_mask & PP_PCIE_DPM_MASK);
}
static int vega20_set_features_platform_caps(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
struct amdgpu_device *adev = hwmgr->adev;
if (data->vddci_control == VEGA20_VOLTAGE_CONTROL_NONE)
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ControlVDDCI);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_TablelessHardwareInterface);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_BACO);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EnableSMU7ThermalManagement);
if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDPowerGating);
if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_VCEPowerGating);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UnTabledHardwareInterface);
if (data->registry_data.od8_feature_enable)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_OD8inACSupport);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ActivityReporting);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_FanSpeedInTableIsRPM);
if (data->registry_data.od_state_in_dc_support) {
if (data->registry_data.od8_feature_enable)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_OD8inDCSupport);
}
if (data->registry_data.thermal_support &&
data->registry_data.fuzzy_fan_control_support &&
hwmgr->thermal_controller.advanceFanControlParameters.usTMax)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ODFuzzyFanControlSupport);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicPowerManagement);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SMC);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ThermalPolicyDelay);
if (data->registry_data.force_dpm_high)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ExclusiveModeAlwaysHigh);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicUVDState);
if (data->registry_data.sclk_throttle_low_notification)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkThrottleLowNotification);
/* power tune caps */
/* assume disabled */
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PowerContainment);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DiDtSupport);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SQRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DBRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_TDRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_TCPRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DBRRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DiDtEDCEnable);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_GCEDC);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PSM);
if (data->registry_data.didt_support) {
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DiDtSupport);
if (data->registry_data.sq_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SQRamping);
if (data->registry_data.db_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DBRamping);
if (data->registry_data.td_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_TDRamping);
if (data->registry_data.tcp_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_TCPRamping);
if (data->registry_data.dbr_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DBRRamping);
if (data->registry_data.edc_didt_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DiDtEDCEnable);
if (data->registry_data.gc_didt_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_GCEDC);
if (data->registry_data.psm_didt_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PSM);
}
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot);
if (data->registry_data.ac_dc_switch_gpio_support) {
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
}
if (data->registry_data.quick_transition_support) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_Falcon_QuickTransition);
}
if (data->lowest_uclk_reserved_for_ulv != PPVEGA20_VEGA20LOWESTUCLKRESERVEDFORULV_DFLT) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_LowestUclkReservedForUlv);
if (data->lowest_uclk_reserved_for_ulv == 1)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_LowestUclkReservedForUlv);
}
if (data->registry_data.custom_fan_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_CustomFanControlSupport);
return 0;
}
static int vega20_init_dpm_defaults(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
struct amdgpu_device *adev = hwmgr->adev;
uint32_t top32, bottom32;
int i, ret;
data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id =
FEATURE_DPM_PREFETCHER_BIT;
data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id =
FEATURE_DPM_GFXCLK_BIT;
data->smu_features[GNLD_DPM_UCLK].smu_feature_id =
FEATURE_DPM_UCLK_BIT;
data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id =
FEATURE_DPM_SOCCLK_BIT;
data->smu_features[GNLD_DPM_UVD].smu_feature_id =
FEATURE_DPM_UVD_BIT;
data->smu_features[GNLD_DPM_VCE].smu_feature_id =
FEATURE_DPM_VCE_BIT;
data->smu_features[GNLD_ULV].smu_feature_id =
FEATURE_ULV_BIT;
data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id =
FEATURE_DPM_MP0CLK_BIT;
data->smu_features[GNLD_DPM_LINK].smu_feature_id =
FEATURE_DPM_LINK_BIT;
data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id =
FEATURE_DPM_DCEFCLK_BIT;
data->smu_features[GNLD_DS_GFXCLK].smu_feature_id =
FEATURE_DS_GFXCLK_BIT;
data->smu_features[GNLD_DS_SOCCLK].smu_feature_id =
FEATURE_DS_SOCCLK_BIT;
data->smu_features[GNLD_DS_LCLK].smu_feature_id =
FEATURE_DS_LCLK_BIT;
data->smu_features[GNLD_PPT].smu_feature_id =
FEATURE_PPT_BIT;
data->smu_features[GNLD_TDC].smu_feature_id =
FEATURE_TDC_BIT;
data->smu_features[GNLD_THERMAL].smu_feature_id =
FEATURE_THERMAL_BIT;
data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id =
FEATURE_GFX_PER_CU_CG_BIT;
data->smu_features[GNLD_RM].smu_feature_id =
FEATURE_RM_BIT;
data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id =
FEATURE_DS_DCEFCLK_BIT;
data->smu_features[GNLD_ACDC].smu_feature_id =
FEATURE_ACDC_BIT;
data->smu_features[GNLD_VR0HOT].smu_feature_id =
FEATURE_VR0HOT_BIT;
data->smu_features[GNLD_VR1HOT].smu_feature_id =
FEATURE_VR1HOT_BIT;
data->smu_features[GNLD_FW_CTF].smu_feature_id =
FEATURE_FW_CTF_BIT;
data->smu_features[GNLD_LED_DISPLAY].smu_feature_id =
FEATURE_LED_DISPLAY_BIT;
data->smu_features[GNLD_FAN_CONTROL].smu_feature_id =
FEATURE_FAN_CONTROL_BIT;
data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT;
data->smu_features[GNLD_GFXOFF].smu_feature_id = FEATURE_GFXOFF_BIT;
data->smu_features[GNLD_CG].smu_feature_id = FEATURE_CG_BIT;
data->smu_features[GNLD_DPM_FCLK].smu_feature_id = FEATURE_DPM_FCLK_BIT;
data->smu_features[GNLD_DS_FCLK].smu_feature_id = FEATURE_DS_FCLK_BIT;
data->smu_features[GNLD_DS_MP1CLK].smu_feature_id = FEATURE_DS_MP1CLK_BIT;
data->smu_features[GNLD_DS_MP0CLK].smu_feature_id = FEATURE_DS_MP0CLK_BIT;
data->smu_features[GNLD_XGMI].smu_feature_id = FEATURE_XGMI_BIT;
data->smu_features[GNLD_ECC].smu_feature_id = FEATURE_ECC_BIT;
for (i = 0; i < GNLD_FEATURES_MAX; i++) {
data->smu_features[i].smu_feature_bitmap =
(uint64_t)(1ULL << data->smu_features[i].smu_feature_id);
data->smu_features[i].allowed =
((data->registry_data.disallowed_features >> i) & 1) ?
false : true;
}
/* Get the SN to turn into a Unique ID */
ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32);
if (ret)
return ret;
ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32);
if (ret)
return ret;
adev->unique_id = ((uint64_t)bottom32 << 32) | top32;
return 0;
}
static int vega20_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
{
return 0;
}
static int vega20_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
{
kfree(hwmgr->backend);
hwmgr->backend = NULL;
return 0;
}
static int vega20_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data;
struct amdgpu_device *adev = hwmgr->adev;
int result;
data = kzalloc(sizeof(struct vega20_hwmgr), GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
hwmgr->backend = data;
hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
vega20_set_default_registry_data(hwmgr);
data->disable_dpm_mask = 0xff;
/* need to set voltage control types before EVV patching */
data->vddc_control = VEGA20_VOLTAGE_CONTROL_NONE;
data->mvdd_control = VEGA20_VOLTAGE_CONTROL_NONE;
data->vddci_control = VEGA20_VOLTAGE_CONTROL_NONE;
data->water_marks_bitmap = 0;
data->avfs_exist = false;
vega20_set_features_platform_caps(hwmgr);
result = vega20_init_dpm_defaults(hwmgr);
if (result) {
pr_err("%s failed\n", __func__);
return result;
}
/* Parse pptable data read from VBIOS */
vega20_set_private_data_based_on_pptable(hwmgr);
data->is_tlu_enabled = false;
hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
VEGA20_MAX_HARDWARE_POWERLEVELS;
hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
hwmgr->platform_descriptor.clockStep.engineClock = 500;
hwmgr->platform_descriptor.clockStep.memoryClock = 500;
data->total_active_cus = adev->gfx.cu_info.number;
data->is_custom_profile_set = false;
return 0;
}
static int vega20_init_sclk_threshold(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
data->low_sclk_interrupt_threshold = 0;
return 0;
}
static int vega20_setup_asic_task(struct pp_hwmgr *hwmgr)
{
struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
int ret = 0;
bool use_baco = (amdgpu_in_reset(adev) &&
(amdgpu_asic_reset_method(adev) == AMD_RESET_METHOD_BACO)) ||
(adev->in_runpm && amdgpu_asic_supports_baco(adev));
ret = vega20_init_sclk_threshold(hwmgr);
PP_ASSERT_WITH_CODE(!ret,
"Failed to init sclk threshold!",
return ret);
if (use_baco) {
ret = vega20_baco_apply_vdci_flush_workaround(hwmgr);
if (ret)
pr_err("Failed to apply vega20 baco workaround!\n");
}
return ret;
}
/*
* @fn vega20_init_dpm_state
* @brief Function to initialize all Soft Min/Max and Hard Min/Max to 0xff.
*
* @param dpm_state - the address of the DPM Table to initiailize.
* @return None.
*/
static void vega20_init_dpm_state(struct vega20_dpm_state *dpm_state)
{
dpm_state->soft_min_level = 0x0;
dpm_state->soft_max_level = VG20_CLOCK_MAX_DEFAULT;
dpm_state->hard_min_level = 0x0;
dpm_state->hard_max_level = VG20_CLOCK_MAX_DEFAULT;
}
static int vega20_get_number_of_dpm_level(struct pp_hwmgr *hwmgr,
PPCLK_e clk_id, uint32_t *num_of_levels)
{
int ret = 0;
ret = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_GetDpmFreqByIndex,
(clk_id << 16 | 0xFF),
num_of_levels);
PP_ASSERT_WITH_CODE(!ret,
"[GetNumOfDpmLevel] failed to get dpm levels!",
return ret);
return ret;
}
static int vega20_get_dpm_frequency_by_index(struct pp_hwmgr *hwmgr,
PPCLK_e clk_id, uint32_t index, uint32_t *clk)
{
int ret = 0;
ret = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_GetDpmFreqByIndex,
(clk_id << 16 | index),
clk);
PP_ASSERT_WITH_CODE(!ret,
"[GetDpmFreqByIndex] failed to get dpm freq by index!",
return ret);
return ret;
}
static int vega20_setup_single_dpm_table(struct pp_hwmgr *hwmgr,
struct vega20_single_dpm_table *dpm_table, PPCLK_e clk_id)
{
int ret = 0;
uint32_t i, num_of_levels, clk;
ret = vega20_get_number_of_dpm_level(hwmgr, clk_id, &num_of_levels);
PP_ASSERT_WITH_CODE(!ret,
"[SetupSingleDpmTable] failed to get clk levels!",
return ret);
dpm_table->count = num_of_levels;
for (i = 0; i < num_of_levels; i++) {
ret = vega20_get_dpm_frequency_by_index(hwmgr, clk_id, i, &clk);
PP_ASSERT_WITH_CODE(!ret,
"[SetupSingleDpmTable] failed to get clk of specific level!",
return ret);
dpm_table->dpm_levels[i].value = clk;
dpm_table->dpm_levels[i].enabled = true;
}
return ret;
}
static int vega20_setup_gfxclk_dpm_table(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
struct vega20_single_dpm_table *dpm_table;
int ret = 0;
dpm_table = &(data->dpm_table.gfx_table);
if (data->smu_features[GNLD_DPM_GFXCLK].enabled) {
ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_GFXCLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get gfxclk dpm levels!",
return ret);
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = data->vbios_boot_state.gfx_clock / 100;
}
return ret;
}
static int vega20_setup_memclk_dpm_table(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
struct vega20_single_dpm_table *dpm_table;
int ret = 0;
dpm_table = &(data->dpm_table.mem_table);
if (data->smu_features[GNLD_DPM_UCLK].enabled) {
ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_UCLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get memclk dpm levels!",
return ret);
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = data->vbios_boot_state.mem_clock / 100;
}
return ret;
}
/*
* This function is to initialize all DPM state tables
* for SMU based on the dependency table.
* Dynamic state patching function will then trim these
* state tables to the allowed range based
* on the power policy or external client requests,
* such as UVD request, etc.
*/
static int vega20_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
struct vega20_single_dpm_table *dpm_table;
int ret = 0;
memset(&data->dpm_table, 0, sizeof(data->dpm_table));
/* socclk */
dpm_table = &(data->dpm_table.soc_table);
if (data->smu_features[GNLD_DPM_SOCCLK].enabled) {
ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_SOCCLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get socclk dpm levels!",
return ret);
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = data->vbios_boot_state.soc_clock / 100;
}
vega20_init_dpm_state(&(dpm_table->dpm_state));
/* gfxclk */
dpm_table = &(data->dpm_table.gfx_table);
ret = vega20_setup_gfxclk_dpm_table(hwmgr);
if (ret)
return ret;
vega20_init_dpm_state(&(dpm_table->dpm_state));
/* memclk */
dpm_table = &(data->dpm_table.mem_table);
ret = vega20_setup_memclk_dpm_table(hwmgr);
if (ret)
return ret;
vega20_init_dpm_state(&(dpm_table->dpm_state));
/* eclk */
dpm_table = &(data->dpm_table.eclk_table);
if (data->smu_features[GNLD_DPM_VCE].enabled) {
ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_ECLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get eclk dpm levels!",
return ret);
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = data->vbios_boot_state.eclock / 100;
}
vega20_init_dpm_state(&(dpm_table->dpm_state));
/* vclk */
dpm_table = &(data->dpm_table.vclk_table);
if (data->smu_features[GNLD_DPM_UVD].enabled) {
ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_VCLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get vclk dpm levels!",
return ret);
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = data->vbios_boot_state.vclock / 100;
}
vega20_init_dpm_state(&(dpm_table->dpm_state));
/* dclk */
dpm_table = &(data->dpm_table.dclk_table);
if (data->smu_features[GNLD_DPM_UVD].enabled) {
ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DCLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get dclk dpm levels!",
return ret);
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = data->vbios_boot_state.dclock / 100;
}
vega20_init_dpm_state(&(dpm_table->dpm_state));
/* dcefclk */
dpm_table = &(data->dpm_table.dcef_table);
if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) {
ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DCEFCLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get dcefclk dpm levels!",
return ret);
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = data->vbios_boot_state.dcef_clock / 100;
}
vega20_init_dpm_state(&(dpm_table->dpm_state));
/* pixclk */
dpm_table = &(data->dpm_table.pixel_table);
if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) {
ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_PIXCLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get pixclk dpm levels!",
return ret);
} else
dpm_table->count = 0;
vega20_init_dpm_state(&(dpm_table->dpm_state));
/* dispclk */
dpm_table = &(data->dpm_table.display_table);
if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) {
ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DISPCLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get dispclk dpm levels!",
return ret);
} else
dpm_table->count = 0;
vega20_init_dpm_state(&(dpm_table->dpm_state));
/* phyclk */
dpm_table = &(data->dpm_table.phy_table);
if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) {
ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_PHYCLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get phyclk dpm levels!",
return ret);
} else
dpm_table->count = 0;
vega20_init_dpm_state(&(dpm_table->dpm_state));
/* fclk */
dpm_table = &(data->dpm_table.fclk_table);
if (data->smu_features[GNLD_DPM_FCLK].enabled) {
ret = vega20_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_FCLK);
PP_ASSERT_WITH_CODE(!ret,
"[SetupDefaultDpmTable] failed to get fclk dpm levels!",
return ret);
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = data->vbios_boot_state.fclock / 100;
}
vega20_init_dpm_state(&(dpm_table->dpm_state));
/* save a copy of the default DPM table */
memcpy(&(data->golden_dpm_table), &(data->dpm_table),
sizeof(struct vega20_dpm_table));
return 0;
}
/**
* vega20_init_smc_table - Initializes the SMC table and uploads it
*
* @hwmgr: the address of the powerplay hardware manager.
* return: always 0
*/
static int vega20_init_smc_table(struct pp_hwmgr *hwmgr)
{
int result;
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
struct pp_atomfwctrl_bios_boot_up_values boot_up_values;
struct phm_ppt_v3_information *pptable_information =
(struct phm_ppt_v3_information *)hwmgr->pptable;
result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values);
PP_ASSERT_WITH_CODE(!result,
"[InitSMCTable] Failed to get vbios bootup values!",
return result);
data->vbios_boot_state.vddc = boot_up_values.usVddc;
data->vbios_boot_state.vddci = boot_up_values.usVddci;
data->vbios_boot_state.mvddc = boot_up_values.usMvddc;
data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk;
data->vbios_boot_state.mem_clock = boot_up_values.ulUClk;
data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk;
data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk;
data->vbios_boot_state.eclock = boot_up_values.ulEClk;
data->vbios_boot_state.vclock = boot_up_values.ulVClk;
data->vbios_boot_state.dclock = boot_up_values.ulDClk;
data->vbios_boot_state.fclock = boot_up_values.ulFClk;
data->vbios_boot_state.uc_cooling_id = boot_up_values.ucCoolingID;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetMinDeepSleepDcefclk,
(uint32_t)(data->vbios_boot_state.dcef_clock / 100),
NULL);
memcpy(pp_table, pptable_information->smc_pptable, sizeof(PPTable_t));
result = smum_smc_table_manager(hwmgr,
(uint8_t *)pp_table, TABLE_PPTABLE, false);
PP_ASSERT_WITH_CODE(!result,
"[InitSMCTable] Failed to upload PPtable!",
return result);
return 0;
}
/*
* Override PCIe link speed and link width for DPM Level 1. PPTable entries
* reflect the ASIC capabilities and not the system capabilities. For e.g.
* Vega20 board in a PCI Gen3 system. In this case, when SMU's tries to switch
* to DPM1, it fails as system doesn't support Gen4.
*/
static int vega20_override_pcie_parameters(struct pp_hwmgr *hwmgr)
{
struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
uint32_t pcie_gen = 0, pcie_width = 0, smu_pcie_arg, pcie_gen_arg, pcie_width_arg;
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
int i;
int ret;
if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
pcie_gen = 3;
else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
pcie_gen = 2;
else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
pcie_gen = 1;
else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
pcie_gen = 0;
if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
pcie_width = 6;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
pcie_width = 5;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
pcie_width = 4;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
pcie_width = 3;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
pcie_width = 2;
else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
pcie_width = 1;
/* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1
* Bit 15:8: PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4
* Bit 7:0: PCIE lane width, 1 to 7 corresponds is x1 to x32
*/
for (i = 0; i < NUM_LINK_LEVELS; i++) {
pcie_gen_arg = (pp_table->PcieGenSpeed[i] > pcie_gen) ? pcie_gen :
pp_table->PcieGenSpeed[i];
pcie_width_arg = (pp_table->PcieLaneCount[i] > pcie_width) ? pcie_width :
pp_table->PcieLaneCount[i];
if (pcie_gen_arg != pp_table->PcieGenSpeed[i] || pcie_width_arg !=
pp_table->PcieLaneCount[i]) {
smu_pcie_arg = (i << 16) | (pcie_gen_arg << 8) | pcie_width_arg;
ret = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_OverridePcieParameters, smu_pcie_arg,
NULL);
PP_ASSERT_WITH_CODE(!ret,
"[OverridePcieParameters] Attempt to override pcie params failed!",
return ret);
}
/* update the pptable */
pp_table->PcieGenSpeed[i] = pcie_gen_arg;
pp_table->PcieLaneCount[i] = pcie_width_arg;
}
/* override to the highest if it's disabled from ppfeaturmask */
if (data->registry_data.pcie_dpm_key_disabled) {
for (i = 0; i < NUM_LINK_LEVELS; i++) {
smu_pcie_arg = (i << 16) | (pcie_gen << 8) | pcie_width;
ret = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_OverridePcieParameters, smu_pcie_arg,
NULL);
PP_ASSERT_WITH_CODE(!ret,
"[OverridePcieParameters] Attempt to override pcie params failed!",
return ret);
pp_table->PcieGenSpeed[i] = pcie_gen;
pp_table->PcieLaneCount[i] = pcie_width;
}
ret = vega20_enable_smc_features(hwmgr,
false,
data->smu_features[GNLD_DPM_LINK].smu_feature_bitmap);
PP_ASSERT_WITH_CODE(!ret,
"Attempt to Disable DPM LINK Failed!",
return ret);
data->smu_features[GNLD_DPM_LINK].enabled = false;
data->smu_features[GNLD_DPM_LINK].supported = false;
}
return 0;
}
static int vega20_set_allowed_featuresmask(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
uint32_t allowed_features_low = 0, allowed_features_high = 0;
int i;
int ret = 0;
for (i = 0; i < GNLD_FEATURES_MAX; i++)
if (data->smu_features[i].allowed)
data->smu_features[i].smu_feature_id > 31 ?
(allowed_features_high |=
((data->smu_features[i].smu_feature_bitmap >> SMU_FEATURES_HIGH_SHIFT)
& 0xFFFFFFFF)) :
(allowed_features_low |=
((data->smu_features[i].smu_feature_bitmap >> SMU_FEATURES_LOW_SHIFT)
& 0xFFFFFFFF));
ret = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetAllowedFeaturesMaskHigh, allowed_features_high, NULL);
PP_ASSERT_WITH_CODE(!ret,
"[SetAllowedFeaturesMask] Attempt to set allowed features mask(high) failed!",
return ret);
ret = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetAllowedFeaturesMaskLow, allowed_features_low, NULL);
PP_ASSERT_WITH_CODE(!ret,
"[SetAllowedFeaturesMask] Attempt to set allowed features mask (low) failed!",
return ret);
return 0;
}
static int vega20_run_btc(struct pp_hwmgr *hwmgr)
{
return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunBtc, NULL);
}
static int vega20_run_btc_afll(struct pp_hwmgr *hwmgr)
{
return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAfllBtc, NULL);
}
static int vega20_enable_all_smu_features(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
uint64_t features_enabled;
int i;
bool enabled;
int ret = 0;
PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_EnableAllSmuFeatures,
NULL)) == 0,
"[EnableAllSMUFeatures] Failed to enable all smu features!",
return ret);
ret = vega20_get_enabled_smc_features(hwmgr, &features_enabled);
PP_ASSERT_WITH_CODE(!ret,
"[EnableAllSmuFeatures] Failed to get enabled smc features!",
return ret);
for (i = 0; i < GNLD_FEATURES_MAX; i++) {
enabled = (features_enabled & data->smu_features[i].smu_feature_bitmap) ?
true : false;
data->smu_features[i].enabled = enabled;
data->smu_features[i].supported = enabled;
#if 0
if (data->smu_features[i].allowed && !enabled)
pr_info("[EnableAllSMUFeatures] feature %d is expected enabled!", i);
else if (!data->smu_features[i].allowed && enabled)
pr_info("[EnableAllSMUFeatures] feature %d is expected disabled!", i);
#endif
}
return 0;
}
static int vega20_notify_smc_display_change(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
if (data->smu_features[GNLD_DPM_UCLK].enabled)
return smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetUclkFastSwitch,
1,
NULL);
return 0;
}
static int vega20_send_clock_ratio(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
return smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetFclkGfxClkRatio,
data->registry_data.fclk_gfxclk_ratio,
NULL);
}
static int vega20_disable_all_smu_features(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
int i, ret = 0;
PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_DisableAllSmuFeatures,
NULL)) == 0,
"[DisableAllSMUFeatures] Failed to disable all smu features!",
return ret);
for (i = 0; i < GNLD_FEATURES_MAX; i++)
data->smu_features[i].enabled = 0;
return 0;
}
static int vega20_od8_set_feature_capabilities(
struct pp_hwmgr *hwmgr)
{
struct phm_ppt_v3_information *pptable_information =
(struct phm_ppt_v3_information *)hwmgr->pptable;
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
struct vega20_od8_settings *od_settings = &(data->od8_settings);
od_settings->overdrive8_capabilities = 0;
if (data->smu_features[GNLD_DPM_GFXCLK].enabled) {
if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_LIMITS] &&
pptable_information->od_settings_max[OD8_SETTING_GFXCLK_FMAX] > 0 &&
pptable_information->od_settings_min[OD8_SETTING_GFXCLK_FMIN] > 0 &&
(pptable_information->od_settings_max[OD8_SETTING_GFXCLK_FMAX] >=
pptable_information->od_settings_min[OD8_SETTING_GFXCLK_FMIN]))
od_settings->overdrive8_capabilities |= OD8_GFXCLK_LIMITS;
if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_GFXCLK_CURVE] &&
(pptable_information->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1] >=
pp_table->MinVoltageGfx / VOLTAGE_SCALE) &&
(pptable_information->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3] <=
pp_table->MaxVoltageGfx / VOLTAGE_SCALE) &&
(pptable_information->od_settings_max[OD8_SETTING_GFXCLK_VOLTAGE3] >=
pptable_information->od_settings_min[OD8_SETTING_GFXCLK_VOLTAGE1]))
od_settings->overdrive8_capabilities |= OD8_GFXCLK_CURVE;
}
if (data->smu_features[GNLD_DPM_UCLK].enabled) {
pptable_information->od_settings_min[OD8_SETTING_UCLK_FMAX] =
data->dpm_table.mem_table.dpm_levels[data->dpm_table.mem_table.count - 2].value;
if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_UCLK_MAX] &&
pptable_information->od_settings_min[OD8_SETTING_UCLK_FMAX] > 0 &&
pptable_information->od_settings_max[OD8_SETTING_UCLK_FMAX] > 0 &&
(pptable_information->od_settings_max[OD8_SETTING_UCLK_FMAX] >=
pptable_information->od_settings_min[OD8_SETTING_UCLK_FMAX]))
od_settings->overdrive8_capabilities |= OD8_UCLK_MAX;
}
if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_POWER_LIMIT] &&
pptable_information->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] > 0 &&
pptable_information->od_settings_max[OD8_SETTING_POWER_PERCENTAGE] <= 100 &&
pptable_information->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] > 0 &&
pptable_information->od_settings_min[OD8_SETTING_POWER_PERCENTAGE] <= 100)
od_settings->overdrive8_capabilities |= OD8_POWER_LIMIT;
if (data->smu_features[GNLD_FAN_CONTROL].enabled) {
if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_ACOUSTIC_LIMIT] &&
pptable_information->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 &&
pptable_information->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] > 0 &&
(pptable_information->od_settings_max[OD8_SETTING_FAN_ACOUSTIC_LIMIT] >=
pptable_information->od_settings_min[OD8_SETTING_FAN_ACOUSTIC_LIMIT]))
od_settings->overdrive8_capabilities |= OD8_ACOUSTIC_LIMIT_SCLK;
if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_SPEED_MIN] &&
(pptable_information->od_settings_min[OD8_SETTING_FAN_MIN_SPEED] >=
(pp_table->FanPwmMin * pp_table->FanMaximumRpm / 100)) &&
pptable_information->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] > 0 &&
(pptable_information->od_settings_max[OD8_SETTING_FAN_MIN_SPEED] >=
pptable_information->od_settings_min[OD8_SETTING_FAN_MIN_SPEED]))
od_settings->overdrive8_capabilities |= OD8_FAN_SPEED_MIN;
}
if (data->smu_features[GNLD_THERMAL].enabled) {
if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_FAN] &&
pptable_information->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] > 0 &&
pptable_information->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP] > 0 &&
(pptable_information->od_settings_max[OD8_SETTING_FAN_TARGET_TEMP] >=
pptable_information->od_settings_min[OD8_SETTING_FAN_TARGET_TEMP]))
od_settings->overdrive8_capabilities |= OD8_TEMPERATURE_FAN;
if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_TEMPERATURE_SYSTEM] &&
pptable_information->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] > 0 &&
pptable_information->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX] > 0 &&
(pptable_information->od_settings_max[OD8_SETTING_OPERATING_TEMP_MAX] >=
pptable_information->od_settings_min[OD8_SETTING_OPERATING_TEMP_MAX]))
od_settings->overdrive8_capabilities |= OD8_TEMPERATURE_SYSTEM;
}
if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_MEMORY_TIMING_TUNE])
od_settings->overdrive8_capabilities |= OD8_MEMORY_TIMING_TUNE;
if (pptable_information->od_feature_capabilities[ATOM_VEGA20_ODFEATURE_FAN_ZERO_RPM_CONTROL] &&
pp_table->FanZeroRpmEnable)
od_settings->overdrive8_capabilities |= OD8_FAN_ZERO_RPM_CONTROL;
if (!od_settings->overdrive8_capabilities)
hwmgr->od_enabled = false;
return 0;
}
static int vega20_od8_set_feature_id(
struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
struct vega20_od8_settings *od_settings = &(data->od8_settings);
if (od_settings->overdrive8_capabilities & OD8_GFXCLK_LIMITS) {
od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id =
OD8_GFXCLK_LIMITS;
od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id =
OD8_GFXCLK_LIMITS;
} else {
od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].feature_id =
0;
od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].feature_id =
0;
}
if (od_settings->overdrive8_capabilities & OD8_GFXCLK_CURVE) {
od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id =
OD8_GFXCLK_CURVE;
od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id =
OD8_GFXCLK_CURVE;
od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id =
OD8_GFXCLK_CURVE;
od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id =
OD8_GFXCLK_CURVE;
od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id =
OD8_GFXCLK_CURVE;
od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id =
OD8_GFXCLK_CURVE;
} else {
od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].feature_id =
0;
od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id =
0;
od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].feature_id =
0;
od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id =
0;
od_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].feature_id =
0;
od_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id =
0;
}
if (od_settings->overdrive8_capabilities & OD8_UCLK_MAX)
od_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id = OD8_UCLK_MAX;
else
od_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].feature_id = 0;
if (od_settings->overdrive8_capabilities & OD8_POWER_LIMIT)
od_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].feature_id = OD8_POWER_LIMIT;
else
od_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].feature_id = 0;
if (od_settings->overdrive8_capabilities & OD8_ACOUSTIC_LIMIT_SCLK)
od_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].feature_id =
OD8_ACOUSTIC_LIMIT_SCLK;
else
od_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].feature_id =
0;
if (od_settings->overdrive8_capabilities & OD8_FAN_SPEED_MIN)
od_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].feature_id =
OD8_FAN_SPEED_MIN;
else
od_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].feature_id =
0;
if (od_settings->overdrive8_capabilities & OD8_TEMPERATURE_FAN)
od_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].feature_id =
OD8_TEMPERATURE_FAN;
else
od_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].feature_id =
0;
if (od_settings->overdrive8_capabilities & OD8_TEMPERATURE_SYSTEM)
od_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].feature_id =
OD8_TEMPERATURE_SYSTEM;
else
od_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].feature_id =
0;
return 0;
}
static int vega20_od8_get_gfx_clock_base_voltage(
struct pp_hwmgr *hwmgr,
uint32_t *voltage,
uint32_t freq)
{
int ret = 0;
ret = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_GetAVFSVoltageByDpm,
((AVFS_CURVE << 24) | (OD8_HOTCURVE_TEMPERATURE << 16) | freq),
voltage);
PP_ASSERT_WITH_CODE(!ret,
"[GetBaseVoltage] failed to get GFXCLK AVFS voltage from SMU!",
return ret);
*voltage = *voltage / VOLTAGE_SCALE;
return 0;
}
static int vega20_od8_initialize_default_settings(
struct pp_hwmgr *hwmgr)
{
struct phm_ppt_v3_information *pptable_information =
(struct phm_ppt_v3_information *)hwmgr->pptable;
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
struct vega20_od8_settings *od8_settings = &(data->od8_settings);
OverDriveTable_t *od_table = &(data->smc_state_table.overdrive_table);
int i, ret = 0;
/* Set Feature Capabilities */
vega20_od8_set_feature_capabilities(hwmgr);
/* Map FeatureID to individual settings */
vega20_od8_set_feature_id(hwmgr);
/* Set default values */
ret = smum_smc_table_manager(hwmgr, (uint8_t *)od_table, TABLE_OVERDRIVE, true);
PP_ASSERT_WITH_CODE(!ret,
"Failed to export over drive table!",
return ret);
if (od8_settings->overdrive8_capabilities & OD8_GFXCLK_LIMITS) {
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].default_value =
od_table->GfxclkFmin;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].default_value =
od_table->GfxclkFmax;
} else {
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMIN].default_value =
0;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FMAX].default_value =
0;
}
if (od8_settings->overdrive8_capabilities & OD8_GFXCLK_CURVE) {
od_table->GfxclkFreq1 = od_table->GfxclkFmin;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].default_value =
od_table->GfxclkFreq1;
od_table->GfxclkFreq3 = od_table->GfxclkFmax;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].default_value =
od_table->GfxclkFreq3;
od_table->GfxclkFreq2 = (od_table->GfxclkFreq1 + od_table->GfxclkFreq3) / 2;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].default_value =
od_table->GfxclkFreq2;
PP_ASSERT_WITH_CODE(!vega20_od8_get_gfx_clock_base_voltage(hwmgr,
&(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value),
od_table->GfxclkFreq1),
"[PhwVega20_OD8_InitializeDefaultSettings] Failed to get Base clock voltage from SMU!",
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value = 0);
od_table->GfxclkVolt1 = od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value
* VOLTAGE_SCALE;
PP_ASSERT_WITH_CODE(!vega20_od8_get_gfx_clock_base_voltage(hwmgr,
&(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value),
od_table->GfxclkFreq2),
"[PhwVega20_OD8_InitializeDefaultSettings] Failed to get Base clock voltage from SMU!",
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value = 0);
od_table->GfxclkVolt2 = od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value
* VOLTAGE_SCALE;
PP_ASSERT_WITH_CODE(!vega20_od8_get_gfx_clock_base_voltage(hwmgr,
&(od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value),
od_table->GfxclkFreq3),
"[PhwVega20_OD8_InitializeDefaultSettings] Failed to get Base clock voltage from SMU!",
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value = 0);
od_table->GfxclkVolt3 = od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value
* VOLTAGE_SCALE;
} else {
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ1].default_value =
0;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE1].default_value =
0;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ2].default_value =
0;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE2].default_value =
0;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_FREQ3].default_value =
0;
od8_settings->od8_settings_array[OD8_SETTING_GFXCLK_VOLTAGE3].default_value =
0;
}
if (od8_settings->overdrive8_capabilities & OD8_UCLK_MAX)
od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].default_value =
od_table->UclkFmax;
else
od8_settings->od8_settings_array[OD8_SETTING_UCLK_FMAX].default_value =
0;
if (od8_settings->overdrive8_capabilities & OD8_POWER_LIMIT)
od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].default_value =
od_table->OverDrivePct;
else
od8_settings->od8_settings_array[OD8_SETTING_POWER_PERCENTAGE].default_value =
0;
if (od8_settings->overdrive8_capabilities & OD8_ACOUSTIC_LIMIT_SCLK)
od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].default_value =
od_table->FanMaximumRpm;
else
od8_settings->od8_settings_array[OD8_SETTING_FAN_ACOUSTIC_LIMIT].default_value =
0;
if (od8_settings->overdrive8_capabilities & OD8_FAN_SPEED_MIN)
od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].default_value =
od_table->FanMinimumPwm * data->smc_state_table.pp_table.FanMaximumRpm / 100;
else
od8_settings->od8_settings_array[OD8_SETTING_FAN_MIN_SPEED].default_value =
0;
if (od8_settings->overdrive8_capabilities & OD8_TEMPERATURE_FAN)
od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].default_value =
od_table->FanTargetTemperature;
else
od8_settings->od8_settings_array[OD8_SETTING_FAN_TARGET_TEMP].default_value =
0;
if (od8_settings->overdrive8_capabilities & OD8_TEMPERATURE_SYSTEM)
od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].default_value =
od_table->MaxOpTemp;
else
od8_settings->od8_settings_array[OD8_SETTING_OPERATING_TEMP_MAX].default_value =
0;
for (i = 0; i < OD8_SETTING_COUNT; i++) {
if (od8_settings->od8_settings_array[i].feature_id) {
od8_settings->od8_settings_array[i].min_value =
pptable_information->od_settings_min[i];
od8_settings->od8_settings_array[i].max_value =
pptable_information->od_settings_max[i];
od8_settings->od8_settings_array[i].current_value =
od8_settings->od8_settings_array[i].default_value;
} else {
od8_settings->od8_settings_array[i].min_value =
0;
od8_settings->od8_settings_array[i].max_value =
0;
od8_settings->od8_settings_array[i].current_value =
0;
}
}
ret = smum_smc_table_manager(hwmgr, (uint8_t *)od_table, TABLE_OVERDRIVE, false);
PP_ASSERT_WITH_CODE(!ret,
"Failed to import over drive table!",
return ret);
return 0;
}
static int vega20_od8_set_settings(
struct pp_hwmgr *hwmgr,
uint32_t index,
uint32_t value)
{
OverDriveTable_t od_table;
int ret = 0;
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
struct vega20_od8_single_setting *od8_settings =
data->od8_settings.od8_settings_array;
ret = smum_smc_table_manager(hwmgr, (uint8_t *)(&od_table), TABLE_OVERDRIVE, true);
PP_ASSERT_WITH_CODE(!ret,
"Failed to export over drive table!",
return ret);
switch (index) {
case OD8_SETTING_GFXCLK_FMIN:
od_table.GfxclkFmin = (uint16_t)value;
break;
case OD8_SETTING_GFXCLK_FMAX:
if (value < od8_settings[OD8_SETTING_GFXCLK_FMAX].min_value ||
value > od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value)
return -EINVAL;
od_table.GfxclkFmax = (uint16_t)value;
break;
case OD8_SETTING_GFXCLK_FREQ1:
od_table.GfxclkFreq1 = (uint16_t)value;
break;
case OD8_SETTING_GFXCLK_VOLTAGE1:
od_table.GfxclkVolt1 = (uint16_t)value;
break;
case OD8_SETTING_GFXCLK_FREQ2:
od_table.GfxclkFreq2 = (uint16_t)value;
break;
case OD8_SETTING_GFXCLK_VOLTAGE2:
od_table.GfxclkVolt2 = (uint16_t)value;
break;
case OD8_SETTING_GFXCLK_FREQ3:
od_table.GfxclkFreq3 = (uint16_t)value;
break;
case OD8_SETTING_GFXCLK_VOLTAGE3:
od_table.GfxclkVolt3 = (uint16_t)value;
break;
case OD8_SETTING_UCLK_FMAX:
if (value < od8_settings[OD8_SETTING_UCLK_FMAX].min_value ||
value > od8_settings[OD8_SETTING_UCLK_FMAX].max_value)
return -EINVAL;
od_table.UclkFmax = (uint16_t)value;
break;
case OD8_SETTING_POWER_PERCENTAGE:
od_table.OverDrivePct = (int16_t)value;
break;
case OD8_SETTING_FAN_ACOUSTIC_LIMIT:
od_table.FanMaximumRpm = (uint16_t)value;
break;
case OD8_SETTING_FAN_MIN_SPEED:
od_table.FanMinimumPwm = (uint16_t)value;
break;
case OD8_SETTING_FAN_TARGET_TEMP:
od_table.FanTargetTemperature = (uint16_t)value;
break;
case OD8_SETTING_OPERATING_TEMP_MAX:
od_table.MaxOpTemp = (uint16_t)value;
break;
}
ret = smum_smc_table_manager(hwmgr, (uint8_t *)(&od_table), TABLE_OVERDRIVE, false);
PP_ASSERT_WITH_CODE(!ret,
"Failed to import over drive table!",
return ret);
return 0;
}
static int vega20_get_sclk_od(
struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data = hwmgr->backend;
struct vega20_single_dpm_table *sclk_table =
&(data->dpm_table.gfx_table);
struct vega20_single_dpm_table *golden_sclk_table =
&(data->golden_dpm_table.gfx_table);
int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
int golden_value = golden_sclk_table->dpm_levels
[golden_sclk_table->count - 1].value;
/* od percentage */
value -= golden_value;
value = DIV_ROUND_UP(value * 100, golden_value);
return value;
}
static int vega20_set_sclk_od(
struct pp_hwmgr *hwmgr, uint32_t value)
{
struct vega20_hwmgr *data = hwmgr->backend;
struct vega20_single_dpm_table *golden_sclk_table =
&(data->golden_dpm_table.gfx_table);
uint32_t od_sclk;
int ret = 0;
od_sclk = golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value * value;
od_sclk /= 100;
od_sclk += golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
ret = vega20_od8_set_settings(hwmgr, OD8_SETTING_GFXCLK_FMAX, od_sclk);
PP_ASSERT_WITH_CODE(!ret,
"[SetSclkOD] failed to set od gfxclk!",
return ret);
/* retrieve updated gfxclk table */
ret = vega20_setup_gfxclk_dpm_table(hwmgr);
PP_ASSERT_WITH_CODE(!ret,
"[SetSclkOD] failed to refresh gfxclk table!",
return ret);
return 0;
}
static int vega20_get_mclk_od(
struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data = hwmgr->backend;
struct vega20_single_dpm_table *mclk_table =
&(data->dpm_table.mem_table);
struct vega20_single_dpm_table *golden_mclk_table =
&(data->golden_dpm_table.mem_table);
int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
int golden_value = golden_mclk_table->dpm_levels
[golden_mclk_table->count - 1].value;
/* od percentage */
value -= golden_value;
value = DIV_ROUND_UP(value * 100, golden_value);
return value;
}
static int vega20_set_mclk_od(
struct pp_hwmgr *hwmgr, uint32_t value)
{
struct vega20_hwmgr *data = hwmgr->backend;
struct vega20_single_dpm_table *golden_mclk_table =
&(data->golden_dpm_table.mem_table);
uint32_t od_mclk;
int ret = 0;
od_mclk = golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value * value;
od_mclk /= 100;
od_mclk += golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
ret = vega20_od8_set_settings(hwmgr, OD8_SETTING_UCLK_FMAX, od_mclk);
PP_ASSERT_WITH_CODE(!ret,
"[SetMclkOD] failed to set od memclk!",
return ret);
/* retrieve updated memclk table */
ret = vega20_setup_memclk_dpm_table(hwmgr);
PP_ASSERT_WITH_CODE(!ret,
"[SetMclkOD] failed to refresh memclk table!",
return ret);
return 0;
}
static void vega20_populate_umdpstate_clocks(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
struct vega20_single_dpm_table *gfx_table = &(data->dpm_table.gfx_table);
struct vega20_single_dpm_table *mem_table = &(data->dpm_table.mem_table);
if (gfx_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL &&
mem_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL) {
hwmgr->pstate_sclk = gfx_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value;
hwmgr->pstate_mclk = mem_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value;
} else {
hwmgr->pstate_sclk = gfx_table->dpm_levels[0].value;
hwmgr->pstate_mclk = mem_table->dpm_levels[0].value;
}
hwmgr->pstate_sclk_peak = gfx_table->dpm_levels[gfx_table->count - 1].value;
hwmgr->pstate_mclk_peak = mem_table->dpm_levels[mem_table->count - 1].value;
}
static int vega20_get_max_sustainable_clock(struct pp_hwmgr *hwmgr,
PP_Clock *clock, PPCLK_e clock_select)
{
int ret = 0;
PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_GetDcModeMaxDpmFreq,
(clock_select << 16),
clock)) == 0,
"[GetMaxSustainableClock] Failed to get max DC clock from SMC!",
return ret);
/* if DC limit is zero, return AC limit */
if (*clock == 0) {
PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_GetMaxDpmFreq,
(clock_select << 16),
clock)) == 0,
"[GetMaxSustainableClock] failed to get max AC clock from SMC!",
return ret);
}
return 0;
}
static int vega20_init_max_sustainable_clocks(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
struct vega20_max_sustainable_clocks *max_sustainable_clocks =
&(data->max_sustainable_clocks);
int ret = 0;
max_sustainable_clocks->uclock = data->vbios_boot_state.mem_clock / 100;
max_sustainable_clocks->soc_clock = data->vbios_boot_state.soc_clock / 100;
max_sustainable_clocks->dcef_clock = data->vbios_boot_state.dcef_clock / 100;
max_sustainable_clocks->display_clock = 0xFFFFFFFF;
max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;
if (data->smu_features[GNLD_DPM_UCLK].enabled)
PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr,
&(max_sustainable_clocks->uclock),
PPCLK_UCLK)) == 0,
"[InitMaxSustainableClocks] failed to get max UCLK from SMC!",
return ret);
if (data->smu_features[GNLD_DPM_SOCCLK].enabled)
PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr,
&(max_sustainable_clocks->soc_clock),
PPCLK_SOCCLK)) == 0,
"[InitMaxSustainableClocks] failed to get max SOCCLK from SMC!",
return ret);
if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) {
PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr,
&(max_sustainable_clocks->dcef_clock),
PPCLK_DCEFCLK)) == 0,
"[InitMaxSustainableClocks] failed to get max DCEFCLK from SMC!",
return ret);
PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr,
&(max_sustainable_clocks->display_clock),
PPCLK_DISPCLK)) == 0,
"[InitMaxSustainableClocks] failed to get max DISPCLK from SMC!",
return ret);
PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr,
&(max_sustainable_clocks->phy_clock),
PPCLK_PHYCLK)) == 0,
"[InitMaxSustainableClocks] failed to get max PHYCLK from SMC!",
return ret);
PP_ASSERT_WITH_CODE((ret = vega20_get_max_sustainable_clock(hwmgr,
&(max_sustainable_clocks->pixel_clock),
PPCLK_PIXCLK)) == 0,
"[InitMaxSustainableClocks] failed to get max PIXCLK from SMC!",
return ret);
}
if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;
return 0;
}
static int vega20_enable_mgpu_fan_boost(struct pp_hwmgr *hwmgr)
{
int result;
result = smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_SetMGpuFanBoostLimitRpm,
NULL);
PP_ASSERT_WITH_CODE(!result,
"[EnableMgpuFan] Failed to enable mgpu fan boost!",
return result);
return 0;
}
static void vega20_init_powergate_state(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
data->uvd_power_gated = true;
data->vce_power_gated = true;
}
static int vega20_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
int result = 0;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_NumOfDisplays, 0, NULL);
result = vega20_set_allowed_featuresmask(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"[EnableDPMTasks] Failed to set allowed featuresmask!\n",
return result);
result = vega20_init_smc_table(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"[EnableDPMTasks] Failed to initialize SMC table!",
return result);
result = vega20_run_btc(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"[EnableDPMTasks] Failed to run btc!",
return result);
result = vega20_run_btc_afll(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"[EnableDPMTasks] Failed to run btc afll!",
return result);
result = vega20_enable_all_smu_features(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"[EnableDPMTasks] Failed to enable all smu features!",
return result);
result = vega20_override_pcie_parameters(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"[EnableDPMTasks] Failed to override pcie parameters!",
return result);
result = vega20_notify_smc_display_change(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"[EnableDPMTasks] Failed to notify smc display change!",
return result);
result = vega20_send_clock_ratio(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"[EnableDPMTasks] Failed to send clock ratio!",
return result);
/* Initialize UVD/VCE powergating state */
vega20_init_powergate_state(hwmgr);
result = vega20_setup_default_dpm_tables(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"[EnableDPMTasks] Failed to setup default DPM tables!",
return result);
result = vega20_init_max_sustainable_clocks(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"[EnableDPMTasks] Failed to get maximum sustainable clocks!",
return result);
result = vega20_power_control_set_level(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"[EnableDPMTasks] Failed to power control set level!",
return result);
result = vega20_od8_initialize_default_settings(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"[EnableDPMTasks] Failed to initialize odn settings!",
return result);
vega20_populate_umdpstate_clocks(hwmgr);
result = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetPptLimit,
POWER_SOURCE_AC << 16, &hwmgr->default_power_limit);
PP_ASSERT_WITH_CODE(!result,
"[GetPptLimit] get default PPT limit failed!",
return result);
hwmgr->power_limit =
hwmgr->default_power_limit;
return 0;
}
static uint32_t vega20_find_lowest_dpm_level(
struct vega20_single_dpm_table *table)
{
uint32_t i;
for (i = 0; i < table->count; i++) {
if (table->dpm_levels[i].enabled)
break;
}
if (i >= table->count) {
i = 0;
table->dpm_levels[i].enabled = true;
}
return i;
}
static uint32_t vega20_find_highest_dpm_level(
struct vega20_single_dpm_table *table)
{
int i = 0;
PP_ASSERT_WITH_CODE(table != NULL,
"[FindHighestDPMLevel] DPM Table does not exist!",
return 0);
PP_ASSERT_WITH_CODE(table->count > 0,
"[FindHighestDPMLevel] DPM Table has no entry!",
return 0);
PP_ASSERT_WITH_CODE(table->count <= MAX_REGULAR_DPM_NUMBER,
"[FindHighestDPMLevel] DPM Table has too many entries!",
return MAX_REGULAR_DPM_NUMBER - 1);
for (i = table->count - 1; i >= 0; i--) {
if (table->dpm_levels[i].enabled)
break;
}
if (i < 0) {
i = 0;
table->dpm_levels[i].enabled = true;
}
return i;
}
static int vega20_upload_dpm_min_level(struct pp_hwmgr *hwmgr, uint32_t feature_mask)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
uint32_t min_freq;
int ret = 0;
if (data->smu_features[GNLD_DPM_GFXCLK].enabled &&
(feature_mask & FEATURE_DPM_GFXCLK_MASK)) {
min_freq = data->dpm_table.gfx_table.dpm_state.soft_min_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMinByFreq,
(PPCLK_GFXCLK << 16) | (min_freq & 0xffff),
NULL)),
"Failed to set soft min gfxclk !",
return ret);
}
if (data->smu_features[GNLD_DPM_UCLK].enabled &&
(feature_mask & FEATURE_DPM_UCLK_MASK)) {
min_freq = data->dpm_table.mem_table.dpm_state.soft_min_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMinByFreq,
(PPCLK_UCLK << 16) | (min_freq & 0xffff),
NULL)),
"Failed to set soft min memclk !",
return ret);
}
if (data->smu_features[GNLD_DPM_UVD].enabled &&
(feature_mask & FEATURE_DPM_UVD_MASK)) {
min_freq = data->dpm_table.vclk_table.dpm_state.soft_min_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMinByFreq,
(PPCLK_VCLK << 16) | (min_freq & 0xffff),
NULL)),
"Failed to set soft min vclk!",
return ret);
min_freq = data->dpm_table.dclk_table.dpm_state.soft_min_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMinByFreq,
(PPCLK_DCLK << 16) | (min_freq & 0xffff),
NULL)),
"Failed to set soft min dclk!",
return ret);
}
if (data->smu_features[GNLD_DPM_VCE].enabled &&
(feature_mask & FEATURE_DPM_VCE_MASK)) {
min_freq = data->dpm_table.eclk_table.dpm_state.soft_min_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMinByFreq,
(PPCLK_ECLK << 16) | (min_freq & 0xffff),
NULL)),
"Failed to set soft min eclk!",
return ret);
}
if (data->smu_features[GNLD_DPM_SOCCLK].enabled &&
(feature_mask & FEATURE_DPM_SOCCLK_MASK)) {
min_freq = data->dpm_table.soc_table.dpm_state.soft_min_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMinByFreq,
(PPCLK_SOCCLK << 16) | (min_freq & 0xffff),
NULL)),
"Failed to set soft min socclk!",
return ret);
}
if (data->smu_features[GNLD_DPM_FCLK].enabled &&
(feature_mask & FEATURE_DPM_FCLK_MASK)) {
min_freq = data->dpm_table.fclk_table.dpm_state.soft_min_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMinByFreq,
(PPCLK_FCLK << 16) | (min_freq & 0xffff),
NULL)),
"Failed to set soft min fclk!",
return ret);
}
if (data->smu_features[GNLD_DPM_DCEFCLK].enabled &&
(feature_mask & FEATURE_DPM_DCEFCLK_MASK)) {
min_freq = data->dpm_table.dcef_table.dpm_state.hard_min_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetHardMinByFreq,
(PPCLK_DCEFCLK << 16) | (min_freq & 0xffff),
NULL)),
"Failed to set hard min dcefclk!",
return ret);
}
return ret;
}
static int vega20_upload_dpm_max_level(struct pp_hwmgr *hwmgr, uint32_t feature_mask)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
uint32_t max_freq;
int ret = 0;
if (data->smu_features[GNLD_DPM_GFXCLK].enabled &&
(feature_mask & FEATURE_DPM_GFXCLK_MASK)) {
max_freq = data->dpm_table.gfx_table.dpm_state.soft_max_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMaxByFreq,
(PPCLK_GFXCLK << 16) | (max_freq & 0xffff),
NULL)),
"Failed to set soft max gfxclk!",
return ret);
}
if (data->smu_features[GNLD_DPM_UCLK].enabled &&
(feature_mask & FEATURE_DPM_UCLK_MASK)) {
max_freq = data->dpm_table.mem_table.dpm_state.soft_max_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMaxByFreq,
(PPCLK_UCLK << 16) | (max_freq & 0xffff),
NULL)),
"Failed to set soft max memclk!",
return ret);
}
if (data->smu_features[GNLD_DPM_UVD].enabled &&
(feature_mask & FEATURE_DPM_UVD_MASK)) {
max_freq = data->dpm_table.vclk_table.dpm_state.soft_max_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMaxByFreq,
(PPCLK_VCLK << 16) | (max_freq & 0xffff),
NULL)),
"Failed to set soft max vclk!",
return ret);
max_freq = data->dpm_table.dclk_table.dpm_state.soft_max_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMaxByFreq,
(PPCLK_DCLK << 16) | (max_freq & 0xffff),
NULL)),
"Failed to set soft max dclk!",
return ret);
}
if (data->smu_features[GNLD_DPM_VCE].enabled &&
(feature_mask & FEATURE_DPM_VCE_MASK)) {
max_freq = data->dpm_table.eclk_table.dpm_state.soft_max_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMaxByFreq,
(PPCLK_ECLK << 16) | (max_freq & 0xffff),
NULL)),
"Failed to set soft max eclk!",
return ret);
}
if (data->smu_features[GNLD_DPM_SOCCLK].enabled &&
(feature_mask & FEATURE_DPM_SOCCLK_MASK)) {
max_freq = data->dpm_table.soc_table.dpm_state.soft_max_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMaxByFreq,
(PPCLK_SOCCLK << 16) | (max_freq & 0xffff),
NULL)),
"Failed to set soft max socclk!",
return ret);
}
if (data->smu_features[GNLD_DPM_FCLK].enabled &&
(feature_mask & FEATURE_DPM_FCLK_MASK)) {
max_freq = data->dpm_table.fclk_table.dpm_state.soft_max_level;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetSoftMaxByFreq,
(PPCLK_FCLK << 16) | (max_freq & 0xffff),
NULL)),
"Failed to set soft max fclk!",
return ret);
}
return ret;
}
static int vega20_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
int ret = 0;
if (data->smu_features[GNLD_DPM_VCE].supported) {
if (data->smu_features[GNLD_DPM_VCE].enabled == enable) {
if (enable)
PP_DBG_LOG("[EnableDisableVCEDPM] feature VCE DPM already enabled!\n");
else
PP_DBG_LOG("[EnableDisableVCEDPM] feature VCE DPM already disabled!\n");
}
ret = vega20_enable_smc_features(hwmgr,
enable,
data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap);
PP_ASSERT_WITH_CODE(!ret,
"Attempt to Enable/Disable DPM VCE Failed!",
return ret);
data->smu_features[GNLD_DPM_VCE].enabled = enable;
}
return 0;
}
static int vega20_get_clock_ranges(struct pp_hwmgr *hwmgr,
uint32_t *clock,
PPCLK_e clock_select,
bool max)
{
int ret;
*clock = 0;
if (max) {
PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_GetMaxDpmFreq, (clock_select << 16),
clock)) == 0,
"[GetClockRanges] Failed to get max clock from SMC!",
return ret);
} else {
PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_GetMinDpmFreq,
(clock_select << 16),
clock)) == 0,
"[GetClockRanges] Failed to get min clock from SMC!",
return ret);
}
return 0;
}
static uint32_t vega20_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
uint32_t gfx_clk;
int ret = 0;
PP_ASSERT_WITH_CODE(data->smu_features[GNLD_DPM_GFXCLK].enabled,
"[GetSclks]: gfxclk dpm not enabled!\n",
return -EPERM);
if (low) {
ret = vega20_get_clock_ranges(hwmgr, &gfx_clk, PPCLK_GFXCLK, false);
PP_ASSERT_WITH_CODE(!ret,
"[GetSclks]: fail to get min PPCLK_GFXCLK\n",
return ret);
} else {
ret = vega20_get_clock_ranges(hwmgr, &gfx_clk, PPCLK_GFXCLK, true);
PP_ASSERT_WITH_CODE(!ret,
"[GetSclks]: fail to get max PPCLK_GFXCLK\n",
return ret);
}
return (gfx_clk * 100);
}
static uint32_t vega20_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
uint32_t mem_clk;
int ret = 0;
PP_ASSERT_WITH_CODE(data->smu_features[GNLD_DPM_UCLK].enabled,
"[MemMclks]: memclk dpm not enabled!\n",
return -EPERM);
if (low) {
ret = vega20_get_clock_ranges(hwmgr, &mem_clk, PPCLK_UCLK, false);
PP_ASSERT_WITH_CODE(!ret,
"[GetMclks]: fail to get min PPCLK_UCLK\n",
return ret);
} else {
ret = vega20_get_clock_ranges(hwmgr, &mem_clk, PPCLK_UCLK, true);
PP_ASSERT_WITH_CODE(!ret,
"[GetMclks]: fail to get max PPCLK_UCLK\n",
return ret);
}
return (mem_clk * 100);
}
static int vega20_get_metrics_table(struct pp_hwmgr *hwmgr,
SmuMetrics_t *metrics_table,
bool bypass_cache)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
int ret = 0;
if (bypass_cache ||
!data->metrics_time ||
time_after(jiffies, data->metrics_time + msecs_to_jiffies(1))) {
ret = smum_smc_table_manager(hwmgr,
(uint8_t *)(&data->metrics_table),
TABLE_SMU_METRICS,
true);
if (ret) {
pr_info("Failed to export SMU metrics table!\n");
return ret;
}
data->metrics_time = jiffies;
}
if (metrics_table)
memcpy(metrics_table, &data->metrics_table, sizeof(SmuMetrics_t));
return ret;
}
static int vega20_get_gpu_power(struct pp_hwmgr *hwmgr, int idx,
uint32_t *query)
{
int ret = 0;
SmuMetrics_t metrics_table;
ret = vega20_get_metrics_table(hwmgr, &metrics_table, false);
if (ret)
return ret;
/* For the 40.46 release, they changed the value name */
switch (idx) {
case AMDGPU_PP_SENSOR_GPU_AVG_POWER:
if (hwmgr->smu_version == 0x282e00)
*query = metrics_table.AverageSocketPower << 8;
else
ret = -EOPNOTSUPP;
break;
case AMDGPU_PP_SENSOR_GPU_INPUT_POWER:
*query = metrics_table.CurrSocketPower << 8;
break;
}
return ret;
}
static int vega20_get_current_clk_freq(struct pp_hwmgr *hwmgr,
PPCLK_e clk_id, uint32_t *clk_freq)
{
int ret = 0;
*clk_freq = 0;
PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_GetDpmClockFreq, (clk_id << 16),
clk_freq)) == 0,
"[GetCurrentClkFreq] Attempt to get Current Frequency Failed!",
return ret);
*clk_freq = *clk_freq * 100;
return 0;
}
static int vega20_get_current_activity_percent(struct pp_hwmgr *hwmgr,
int idx,
uint32_t *activity_percent)
{
int ret = 0;
SmuMetrics_t metrics_table;
ret = vega20_get_metrics_table(hwmgr, &metrics_table, false);
if (ret)
return ret;
switch (idx) {
case AMDGPU_PP_SENSOR_GPU_LOAD:
*activity_percent = metrics_table.AverageGfxActivity;
break;
case AMDGPU_PP_SENSOR_MEM_LOAD:
*activity_percent = metrics_table.AverageUclkActivity;
break;
default:
pr_err("Invalid index for retrieving clock activity\n");
return -EINVAL;
}
return ret;
}
static int vega20_read_sensor(struct pp_hwmgr *hwmgr, int idx,
void *value, int *size)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
struct amdgpu_device *adev = hwmgr->adev;
SmuMetrics_t metrics_table;
uint32_t val_vid;
int ret = 0;
switch (idx) {
case AMDGPU_PP_SENSOR_GFX_SCLK:
ret = vega20_get_metrics_table(hwmgr, &metrics_table, false);
if (ret)
return ret;
*((uint32_t *)value) = metrics_table.AverageGfxclkFrequency * 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_MCLK:
ret = vega20_get_current_clk_freq(hwmgr,
PPCLK_UCLK,
(uint32_t *)value);
if (!ret)
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_LOAD:
case AMDGPU_PP_SENSOR_MEM_LOAD:
ret = vega20_get_current_activity_percent(hwmgr, idx, (uint32_t *)value);
if (!ret)
*size = 4;
break;
case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
*((uint32_t *)value) = vega20_thermal_get_temperature(hwmgr);
*size = 4;
break;
case AMDGPU_PP_SENSOR_EDGE_TEMP:
ret = vega20_get_metrics_table(hwmgr, &metrics_table, false);
if (ret)
return ret;
*((uint32_t *)value) = metrics_table.TemperatureEdge *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
*size = 4;
break;
case AMDGPU_PP_SENSOR_MEM_TEMP:
ret = vega20_get_metrics_table(hwmgr, &metrics_table, false);
if (ret)
return ret;
*((uint32_t *)value) = metrics_table.TemperatureHBM *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
*size = 4;
break;
case AMDGPU_PP_SENSOR_UVD_POWER:
*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
*size = 4;
break;
case AMDGPU_PP_SENSOR_VCE_POWER:
*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_AVG_POWER:
case AMDGPU_PP_SENSOR_GPU_INPUT_POWER:
*size = 16;
ret = vega20_get_gpu_power(hwmgr, idx, (uint32_t *)value);
break;
case AMDGPU_PP_SENSOR_VDDGFX:
val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;
*((uint32_t *)value) =
(uint32_t)convert_to_vddc((uint8_t)val_vid);
break;
case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
ret = vega20_get_enabled_smc_features(hwmgr, (uint64_t *)value);
if (!ret)
*size = 8;
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
static int vega20_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
struct pp_display_clock_request *clock_req)
{
int result = 0;
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
enum amd_pp_clock_type clk_type = clock_req->clock_type;
uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
PPCLK_e clk_select = 0;
uint32_t clk_request = 0;
if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) {
switch (clk_type) {
case amd_pp_dcef_clock:
clk_select = PPCLK_DCEFCLK;
break;
case amd_pp_disp_clock:
clk_select = PPCLK_DISPCLK;
break;
case amd_pp_pixel_clock:
clk_select = PPCLK_PIXCLK;
break;
case amd_pp_phy_clock:
clk_select = PPCLK_PHYCLK;
break;
default:
pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
result = -EINVAL;
break;
}
if (!result) {
clk_request = (clk_select << 16) | clk_freq;
result = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinByFreq,
clk_request,
NULL);
}
}
return result;
}
static int vega20_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
PHM_PerformanceLevelDesignation designation, uint32_t index,
PHM_PerformanceLevel *level)
{
return 0;
}
static int vega20_notify_smc_display_config_after_ps_adjustment(
struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
struct vega20_single_dpm_table *dpm_table =
&data->dpm_table.mem_table;
struct PP_Clocks min_clocks = {0};
struct pp_display_clock_request clock_req;
int ret = 0;
min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk;
min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk;
min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
if (data->smu_features[GNLD_DPM_DCEFCLK].supported) {
clock_req.clock_type = amd_pp_dcef_clock;
clock_req.clock_freq_in_khz = min_clocks.dcefClock * 10;
if (!vega20_display_clock_voltage_request(hwmgr, &clock_req)) {
if (data->smu_features[GNLD_DS_DCEFCLK].supported)
PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk,
min_clocks.dcefClockInSR / 100,
NULL)) == 0,
"Attempt to set divider for DCEFCLK Failed!",
return ret);
} else {
pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
}
}
if (data->smu_features[GNLD_DPM_UCLK].enabled) {
dpm_table->dpm_state.hard_min_level = min_clocks.memoryClock / 100;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinByFreq,
(PPCLK_UCLK << 16) | dpm_table->dpm_state.hard_min_level,
NULL)),
"[SetHardMinFreq] Set hard min uclk failed!",
return ret);
}
return 0;
}
static int vega20_force_dpm_highest(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
uint32_t soft_level;
int ret = 0;
soft_level = vega20_find_highest_dpm_level(&(data->dpm_table.gfx_table));
data->dpm_table.gfx_table.dpm_state.soft_min_level =
data->dpm_table.gfx_table.dpm_state.soft_max_level =
data->dpm_table.gfx_table.dpm_levels[soft_level].value;
soft_level = vega20_find_highest_dpm_level(&(data->dpm_table.mem_table));
data->dpm_table.mem_table.dpm_state.soft_min_level =
data->dpm_table.mem_table.dpm_state.soft_max_level =
data->dpm_table.mem_table.dpm_levels[soft_level].value;
soft_level = vega20_find_highest_dpm_level(&(data->dpm_table.soc_table));
data->dpm_table.soc_table.dpm_state.soft_min_level =
data->dpm_table.soc_table.dpm_state.soft_max_level =
data->dpm_table.soc_table.dpm_levels[soft_level].value;
ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_GFXCLK_MASK |
FEATURE_DPM_UCLK_MASK |
FEATURE_DPM_SOCCLK_MASK);
PP_ASSERT_WITH_CODE(!ret,
"Failed to upload boot level to highest!",
return ret);
ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_GFXCLK_MASK |
FEATURE_DPM_UCLK_MASK |
FEATURE_DPM_SOCCLK_MASK);
PP_ASSERT_WITH_CODE(!ret,
"Failed to upload dpm max level to highest!",
return ret);
return 0;
}
static int vega20_force_dpm_lowest(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
uint32_t soft_level;
int ret = 0;
soft_level = vega20_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
data->dpm_table.gfx_table.dpm_state.soft_min_level =
data->dpm_table.gfx_table.dpm_state.soft_max_level =
data->dpm_table.gfx_table.dpm_levels[soft_level].value;
soft_level = vega20_find_lowest_dpm_level(&(data->dpm_table.mem_table));
data->dpm_table.mem_table.dpm_state.soft_min_level =
data->dpm_table.mem_table.dpm_state.soft_max_level =
data->dpm_table.mem_table.dpm_levels[soft_level].value;
soft_level = vega20_find_lowest_dpm_level(&(data->dpm_table.soc_table));
data->dpm_table.soc_table.dpm_state.soft_min_level =
data->dpm_table.soc_table.dpm_state.soft_max_level =
data->dpm_table.soc_table.dpm_levels[soft_level].value;
ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_GFXCLK_MASK |
FEATURE_DPM_UCLK_MASK |
FEATURE_DPM_SOCCLK_MASK);
PP_ASSERT_WITH_CODE(!ret,
"Failed to upload boot level to highest!",
return ret);
ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_GFXCLK_MASK |
FEATURE_DPM_UCLK_MASK |
FEATURE_DPM_SOCCLK_MASK);
PP_ASSERT_WITH_CODE(!ret,
"Failed to upload dpm max level to highest!",
return ret);
return 0;
}
static int vega20_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
uint32_t soft_min_level, soft_max_level;
int ret = 0;
/* gfxclk soft min/max settings */
soft_min_level =
vega20_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
soft_max_level =
vega20_find_highest_dpm_level(&(data->dpm_table.gfx_table));
data->dpm_table.gfx_table.dpm_state.soft_min_level =
data->dpm_table.gfx_table.dpm_levels[soft_min_level].value;
data->dpm_table.gfx_table.dpm_state.soft_max_level =
data->dpm_table.gfx_table.dpm_levels[soft_max_level].value;
/* uclk soft min/max settings */
soft_min_level =
vega20_find_lowest_dpm_level(&(data->dpm_table.mem_table));
soft_max_level =
vega20_find_highest_dpm_level(&(data->dpm_table.mem_table));
data->dpm_table.mem_table.dpm_state.soft_min_level =
data->dpm_table.mem_table.dpm_levels[soft_min_level].value;
data->dpm_table.mem_table.dpm_state.soft_max_level =
data->dpm_table.mem_table.dpm_levels[soft_max_level].value;
/* socclk soft min/max settings */
soft_min_level =
vega20_find_lowest_dpm_level(&(data->dpm_table.soc_table));
soft_max_level =
vega20_find_highest_dpm_level(&(data->dpm_table.soc_table));
data->dpm_table.soc_table.dpm_state.soft_min_level =
data->dpm_table.soc_table.dpm_levels[soft_min_level].value;
data->dpm_table.soc_table.dpm_state.soft_max_level =
data->dpm_table.soc_table.dpm_levels[soft_max_level].value;
ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_GFXCLK_MASK |
FEATURE_DPM_UCLK_MASK |
FEATURE_DPM_SOCCLK_MASK);
PP_ASSERT_WITH_CODE(!ret,
"Failed to upload DPM Bootup Levels!",
return ret);
ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_GFXCLK_MASK |
FEATURE_DPM_UCLK_MASK |
FEATURE_DPM_SOCCLK_MASK);
PP_ASSERT_WITH_CODE(!ret,
"Failed to upload DPM Max Levels!",
return ret);
return 0;
}
static int vega20_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
struct vega20_single_dpm_table *gfx_dpm_table = &(data->dpm_table.gfx_table);
struct vega20_single_dpm_table *mem_dpm_table = &(data->dpm_table.mem_table);
struct vega20_single_dpm_table *soc_dpm_table = &(data->dpm_table.soc_table);
*sclk_mask = 0;
*mclk_mask = 0;
*soc_mask = 0;
if (gfx_dpm_table->count > VEGA20_UMD_PSTATE_GFXCLK_LEVEL &&
mem_dpm_table->count > VEGA20_UMD_PSTATE_MCLK_LEVEL &&
soc_dpm_table->count > VEGA20_UMD_PSTATE_SOCCLK_LEVEL) {
*sclk_mask = VEGA20_UMD_PSTATE_GFXCLK_LEVEL;
*mclk_mask = VEGA20_UMD_PSTATE_MCLK_LEVEL;
*soc_mask = VEGA20_UMD_PSTATE_SOCCLK_LEVEL;
}
if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
*sclk_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
*mclk_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
*sclk_mask = gfx_dpm_table->count - 1;
*mclk_mask = mem_dpm_table->count - 1;
*soc_mask = soc_dpm_table->count - 1;
}
return 0;
}
static int vega20_force_clock_level(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, uint32_t mask)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
uint32_t soft_min_level, soft_max_level, hard_min_level;
int ret = 0;
switch (type) {
case PP_SCLK:
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
if (soft_max_level >= data->dpm_table.gfx_table.count) {
pr_err("Clock level specified %d is over max allowed %d\n",
soft_max_level,
data->dpm_table.gfx_table.count - 1);
return -EINVAL;
}
data->dpm_table.gfx_table.dpm_state.soft_min_level =
data->dpm_table.gfx_table.dpm_levels[soft_min_level].value;
data->dpm_table.gfx_table.dpm_state.soft_max_level =
data->dpm_table.gfx_table.dpm_levels[soft_max_level].value;
ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_GFXCLK_MASK);
PP_ASSERT_WITH_CODE(!ret,
"Failed to upload boot level to lowest!",
return ret);
ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_GFXCLK_MASK);
PP_ASSERT_WITH_CODE(!ret,
"Failed to upload dpm max level to highest!",
return ret);
break;
case PP_MCLK:
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
if (soft_max_level >= data->dpm_table.mem_table.count) {
pr_err("Clock level specified %d is over max allowed %d\n",
soft_max_level,
data->dpm_table.mem_table.count - 1);
return -EINVAL;
}
data->dpm_table.mem_table.dpm_state.soft_min_level =
data->dpm_table.mem_table.dpm_levels[soft_min_level].value;
data->dpm_table.mem_table.dpm_state.soft_max_level =
data->dpm_table.mem_table.dpm_levels[soft_max_level].value;
ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_UCLK_MASK);
PP_ASSERT_WITH_CODE(!ret,
"Failed to upload boot level to lowest!",
return ret);
ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_UCLK_MASK);
PP_ASSERT_WITH_CODE(!ret,
"Failed to upload dpm max level to highest!",
return ret);
break;
case PP_SOCCLK:
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
if (soft_max_level >= data->dpm_table.soc_table.count) {
pr_err("Clock level specified %d is over max allowed %d\n",
soft_max_level,
data->dpm_table.soc_table.count - 1);
return -EINVAL;
}
data->dpm_table.soc_table.dpm_state.soft_min_level =
data->dpm_table.soc_table.dpm_levels[soft_min_level].value;
data->dpm_table.soc_table.dpm_state.soft_max_level =
data->dpm_table.soc_table.dpm_levels[soft_max_level].value;
ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_SOCCLK_MASK);
PP_ASSERT_WITH_CODE(!ret,
"Failed to upload boot level to lowest!",
return ret);
ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_SOCCLK_MASK);
PP_ASSERT_WITH_CODE(!ret,
"Failed to upload dpm max level to highest!",
return ret);
break;
case PP_FCLK:
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
if (soft_max_level >= data->dpm_table.fclk_table.count) {
pr_err("Clock level specified %d is over max allowed %d\n",
soft_max_level,
data->dpm_table.fclk_table.count - 1);
return -EINVAL;
}
data->dpm_table.fclk_table.dpm_state.soft_min_level =
data->dpm_table.fclk_table.dpm_levels[soft_min_level].value;
data->dpm_table.fclk_table.dpm_state.soft_max_level =
data->dpm_table.fclk_table.dpm_levels[soft_max_level].value;
ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_FCLK_MASK);
PP_ASSERT_WITH_CODE(!ret,
"Failed to upload boot level to lowest!",
return ret);
ret = vega20_upload_dpm_max_level(hwmgr, FEATURE_DPM_FCLK_MASK);
PP_ASSERT_WITH_CODE(!ret,
"Failed to upload dpm max level to highest!",
return ret);
break;
case PP_DCEFCLK:
hard_min_level = mask ? (ffs(mask) - 1) : 0;
if (hard_min_level >= data->dpm_table.dcef_table.count) {
pr_err("Clock level specified %d is over max allowed %d\n",
hard_min_level,
data->dpm_table.dcef_table.count - 1);
return -EINVAL;
}
data->dpm_table.dcef_table.dpm_state.hard_min_level =
data->dpm_table.dcef_table.dpm_levels[hard_min_level].value;
ret = vega20_upload_dpm_min_level(hwmgr, FEATURE_DPM_DCEFCLK_MASK);
PP_ASSERT_WITH_CODE(!ret,
"Failed to upload boot level to lowest!",
return ret);
//TODO: Setting DCEFCLK max dpm level is not supported
break;
case PP_PCIE:
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
if (soft_min_level >= NUM_LINK_LEVELS ||
soft_max_level >= NUM_LINK_LEVELS)
return -EINVAL;
ret = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetMinLinkDpmByIndex, soft_min_level,
NULL);
PP_ASSERT_WITH_CODE(!ret,
"Failed to set min link dpm level!",
return ret);
break;
default:
break;
}
return 0;
}
static int vega20_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
enum amd_dpm_forced_level level)
{
int ret = 0;
uint32_t sclk_mask, mclk_mask, soc_mask;
switch (level) {
case AMD_DPM_FORCED_LEVEL_HIGH:
ret = vega20_force_dpm_highest(hwmgr);
break;
case AMD_DPM_FORCED_LEVEL_LOW:
ret = vega20_force_dpm_lowest(hwmgr);
break;
case AMD_DPM_FORCED_LEVEL_AUTO:
ret = vega20_unforce_dpm_levels(hwmgr);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
ret = vega20_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
if (ret)
return ret;
vega20_force_clock_level(hwmgr, PP_SCLK, 1 << sclk_mask);
vega20_force_clock_level(hwmgr, PP_MCLK, 1 << mclk_mask);
vega20_force_clock_level(hwmgr, PP_SOCCLK, 1 << soc_mask);
break;
case AMD_DPM_FORCED_LEVEL_MANUAL:
case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
default:
break;
}
return ret;
}
static uint32_t vega20_get_fan_control_mode(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
if (data->smu_features[GNLD_FAN_CONTROL].enabled == false)
return AMD_FAN_CTRL_MANUAL;
else
return AMD_FAN_CTRL_AUTO;
}
static void vega20_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
{
switch (mode) {
case AMD_FAN_CTRL_NONE:
vega20_fan_ctrl_set_fan_speed_pwm(hwmgr, 255);
break;
case AMD_FAN_CTRL_MANUAL:
if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
vega20_fan_ctrl_stop_smc_fan_control(hwmgr);
break;
case AMD_FAN_CTRL_AUTO:
if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
vega20_fan_ctrl_start_smc_fan_control(hwmgr);
break;
default:
break;
}
}
static int vega20_get_dal_power_level(struct pp_hwmgr *hwmgr,
struct amd_pp_simple_clock_info *info)
{
#if 0
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)hwmgr->pptable;
struct phm_clock_and_voltage_limits *max_limits =
&table_info->max_clock_voltage_on_ac;
info->engine_max_clock = max_limits->sclk;
info->memory_max_clock = max_limits->mclk;
#endif
return 0;
}
static int vega20_get_sclks(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table);
int i, count;
if (!data->smu_features[GNLD_DPM_GFXCLK].enabled)
return -1;
count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count;
clocks->num_levels = count;
for (i = 0; i < count; i++) {
clocks->data[i].clocks_in_khz =
dpm_table->dpm_levels[i].value * 1000;
clocks->data[i].latency_in_us = 0;
}
return 0;
}
static uint32_t vega20_get_mem_latency(struct pp_hwmgr *hwmgr,
uint32_t clock)
{
return 25;
}
static int vega20_get_memclocks(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.mem_table);
int i, count;
if (!data->smu_features[GNLD_DPM_UCLK].enabled)
return -1;
count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count;
clocks->num_levels = data->mclk_latency_table.count = count;
for (i = 0; i < count; i++) {
clocks->data[i].clocks_in_khz =
data->mclk_latency_table.entries[i].frequency =
dpm_table->dpm_levels[i].value * 1000;
clocks->data[i].latency_in_us =
data->mclk_latency_table.entries[i].latency =
vega20_get_mem_latency(hwmgr, dpm_table->dpm_levels[i].value);
}
return 0;
}
static int vega20_get_dcefclocks(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.dcef_table);
int i, count;
if (!data->smu_features[GNLD_DPM_DCEFCLK].enabled)
return -1;
count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count;
clocks->num_levels = count;
for (i = 0; i < count; i++) {
clocks->data[i].clocks_in_khz =
dpm_table->dpm_levels[i].value * 1000;
clocks->data[i].latency_in_us = 0;
}
return 0;
}
static int vega20_get_socclocks(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.soc_table);
int i, count;
if (!data->smu_features[GNLD_DPM_SOCCLK].enabled)
return -1;
count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count;
clocks->num_levels = count;
for (i = 0; i < count; i++) {
clocks->data[i].clocks_in_khz =
dpm_table->dpm_levels[i].value * 1000;
clocks->data[i].latency_in_us = 0;
}
return 0;
}
static int vega20_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
enum amd_pp_clock_type type,
struct pp_clock_levels_with_latency *clocks)
{
int ret;
switch (type) {
case amd_pp_sys_clock:
ret = vega20_get_sclks(hwmgr, clocks);
break;
case amd_pp_mem_clock:
ret = vega20_get_memclocks(hwmgr, clocks);
break;
case amd_pp_dcef_clock:
ret = vega20_get_dcefclocks(hwmgr, clocks);
break;
case amd_pp_soc_clock:
ret = vega20_get_socclocks(hwmgr, clocks);
break;
default:
return -EINVAL;
}
return ret;
}
static int vega20_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
enum amd_pp_clock_type type,
struct pp_clock_levels_with_voltage *clocks)
{
clocks->num_levels = 0;
return 0;
}
static int vega20_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
void *clock_ranges)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
Watermarks_t *table = &(data->smc_state_table.water_marks_table);
struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_ranges;
if (!data->registry_data.disable_water_mark &&
data->smu_features[GNLD_DPM_DCEFCLK].supported &&
data->smu_features[GNLD_DPM_SOCCLK].supported) {
smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges);
data->water_marks_bitmap |= WaterMarksExist;
data->water_marks_bitmap &= ~WaterMarksLoaded;
}
return 0;
}
static int vega20_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
enum PP_OD_DPM_TABLE_COMMAND type,
long *input, uint32_t size)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
struct vega20_od8_single_setting *od8_settings =
data->od8_settings.od8_settings_array;
OverDriveTable_t *od_table =
&(data->smc_state_table.overdrive_table);
int32_t input_clk, input_vol, i;
uint32_t input_index;
int od8_id;
int ret;
PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
return -EINVAL);
switch (type) {
case PP_OD_EDIT_SCLK_VDDC_TABLE:
if (!(od8_settings[OD8_SETTING_GFXCLK_FMIN].feature_id &&
od8_settings[OD8_SETTING_GFXCLK_FMAX].feature_id)) {
pr_info("Sclk min/max frequency overdrive not supported\n");
return -EOPNOTSUPP;
}
for (i = 0; i < size; i += 2) {
if (i + 2 > size) {
pr_info("invalid number of input parameters %d\n",
size);
return -EINVAL;
}
input_index = input[i];
input_clk = input[i + 1];
if (input_index != 0 && input_index != 1) {
pr_info("Invalid index %d\n", input_index);
pr_info("Support min/max sclk frequency setting only which index by 0/1\n");
return -EINVAL;
}
if (input_clk < od8_settings[OD8_SETTING_GFXCLK_FMIN].min_value ||
input_clk > od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value) {
pr_info("clock freq %d is not within allowed range [%d - %d]\n",
input_clk,
od8_settings[OD8_SETTING_GFXCLK_FMIN].min_value,
od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value);
return -EINVAL;
}
if ((input_index == 0 && od_table->GfxclkFmin != input_clk) ||
(input_index == 1 && od_table->GfxclkFmax != input_clk))
data->gfxclk_overdrive = true;
if (input_index == 0)
od_table->GfxclkFmin = input_clk;
else
od_table->GfxclkFmax = input_clk;
}
break;
case PP_OD_EDIT_MCLK_VDDC_TABLE:
if (!od8_settings[OD8_SETTING_UCLK_FMAX].feature_id) {
pr_info("Mclk max frequency overdrive not supported\n");
return -EOPNOTSUPP;
}
for (i = 0; i < size; i += 2) {
if (i + 2 > size) {
pr_info("invalid number of input parameters %d\n",
size);
return -EINVAL;
}
input_index = input[i];
input_clk = input[i + 1];
if (input_index != 1) {
pr_info("Invalid index %d\n", input_index);
pr_info("Support max Mclk frequency setting only which index by 1\n");
return -EINVAL;
}
if (input_clk < od8_settings[OD8_SETTING_UCLK_FMAX].min_value ||
input_clk > od8_settings[OD8_SETTING_UCLK_FMAX].max_value) {
pr_info("clock freq %d is not within allowed range [%d - %d]\n",
input_clk,
od8_settings[OD8_SETTING_UCLK_FMAX].min_value,
od8_settings[OD8_SETTING_UCLK_FMAX].max_value);
return -EINVAL;
}
if (input_index == 1 && od_table->UclkFmax != input_clk)
data->memclk_overdrive = true;
od_table->UclkFmax = input_clk;
}
break;
case PP_OD_EDIT_VDDC_CURVE:
if (!(od8_settings[OD8_SETTING_GFXCLK_FREQ1].feature_id &&
od8_settings[OD8_SETTING_GFXCLK_FREQ2].feature_id &&
od8_settings[OD8_SETTING_GFXCLK_FREQ3].feature_id &&
od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id &&
od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id &&
od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id)) {
pr_info("Voltage curve calibrate not supported\n");
return -EOPNOTSUPP;
}
for (i = 0; i < size; i += 3) {
if (i + 3 > size) {
pr_info("invalid number of input parameters %d\n",
size);
return -EINVAL;
}
input_index = input[i];
input_clk = input[i + 1];
input_vol = input[i + 2];
if (input_index > 2) {
pr_info("Setting for point %d is not supported\n",
input_index + 1);
pr_info("Three supported points index by 0, 1, 2\n");
return -EINVAL;
}
od8_id = OD8_SETTING_GFXCLK_FREQ1 + 2 * input_index;
if (input_clk < od8_settings[od8_id].min_value ||
input_clk > od8_settings[od8_id].max_value) {
pr_info("clock freq %d is not within allowed range [%d - %d]\n",
input_clk,
od8_settings[od8_id].min_value,
od8_settings[od8_id].max_value);
return -EINVAL;
}
od8_id = OD8_SETTING_GFXCLK_VOLTAGE1 + 2 * input_index;
if (input_vol < od8_settings[od8_id].min_value ||
input_vol > od8_settings[od8_id].max_value) {
pr_info("clock voltage %d is not within allowed range [%d - %d]\n",
input_vol,
od8_settings[od8_id].min_value,
od8_settings[od8_id].max_value);
return -EINVAL;
}
switch (input_index) {
case 0:
od_table->GfxclkFreq1 = input_clk;
od_table->GfxclkVolt1 = input_vol * VOLTAGE_SCALE;
break;
case 1:
od_table->GfxclkFreq2 = input_clk;
od_table->GfxclkVolt2 = input_vol * VOLTAGE_SCALE;
break;
case 2:
od_table->GfxclkFreq3 = input_clk;
od_table->GfxclkVolt3 = input_vol * VOLTAGE_SCALE;
break;
}
}
break;
case PP_OD_RESTORE_DEFAULT_TABLE:
data->gfxclk_overdrive = false;
data->memclk_overdrive = false;
ret = smum_smc_table_manager(hwmgr,
(uint8_t *)od_table,
TABLE_OVERDRIVE, true);
PP_ASSERT_WITH_CODE(!ret,
"Failed to export overdrive table!",
return ret);
break;
case PP_OD_COMMIT_DPM_TABLE:
ret = smum_smc_table_manager(hwmgr,
(uint8_t *)od_table,
TABLE_OVERDRIVE, false);
PP_ASSERT_WITH_CODE(!ret,
"Failed to import overdrive table!",
return ret);
/* retrieve updated gfxclk table */
if (data->gfxclk_overdrive) {
data->gfxclk_overdrive = false;
ret = vega20_setup_gfxclk_dpm_table(hwmgr);
if (ret)
return ret;
}
/* retrieve updated memclk table */
if (data->memclk_overdrive) {
data->memclk_overdrive = false;
ret = vega20_setup_memclk_dpm_table(hwmgr);
if (ret)
return ret;
}
break;
default:
return -EINVAL;
}
return 0;
}
static int vega20_set_mp1_state(struct pp_hwmgr *hwmgr,
enum pp_mp1_state mp1_state)
{
uint16_t msg;
int ret;
switch (mp1_state) {
case PP_MP1_STATE_SHUTDOWN:
msg = PPSMC_MSG_PrepareMp1ForShutdown;
break;
case PP_MP1_STATE_UNLOAD:
msg = PPSMC_MSG_PrepareMp1ForUnload;
break;
case PP_MP1_STATE_RESET:
msg = PPSMC_MSG_PrepareMp1ForReset;
break;
case PP_MP1_STATE_NONE:
default:
return 0;
}
PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg, NULL)) == 0,
"[PrepareMp1] Failed!",
return ret);
return 0;
}
static int vega20_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf)
{
static const char *ppfeature_name[] = {
"DPM_PREFETCHER",
"GFXCLK_DPM",
"UCLK_DPM",
"SOCCLK_DPM",
"UVD_DPM",
"VCE_DPM",
"ULV",
"MP0CLK_DPM",
"LINK_DPM",
"DCEFCLK_DPM",
"GFXCLK_DS",
"SOCCLK_DS",
"LCLK_DS",
"PPT",
"TDC",
"THERMAL",
"GFX_PER_CU_CG",
"RM",
"DCEFCLK_DS",
"ACDC",
"VR0HOT",
"VR1HOT",
"FW_CTF",
"LED_DISPLAY",
"FAN_CONTROL",
"GFX_EDC",
"GFXOFF",
"CG",
"FCLK_DPM",
"FCLK_DS",
"MP1CLK_DS",
"MP0CLK_DS",
"XGMI",
"ECC"};
static const char *output_title[] = {
"FEATURES",
"BITMASK",
"ENABLEMENT"};
uint64_t features_enabled;
int i;
int ret = 0;
int size = 0;
phm_get_sysfs_buf(&buf, &size);
ret = vega20_get_enabled_smc_features(hwmgr, &features_enabled);
PP_ASSERT_WITH_CODE(!ret,
"[EnableAllSmuFeatures] Failed to get enabled smc features!",
return ret);
size += sysfs_emit_at(buf, size, "Current ppfeatures: 0x%016llx\n", features_enabled);
size += sysfs_emit_at(buf, size, "%-19s %-22s %s\n",
output_title[0],
output_title[1],
output_title[2]);
for (i = 0; i < GNLD_FEATURES_MAX; i++) {
size += sysfs_emit_at(buf, size, "%-19s 0x%016llx %6s\n",
ppfeature_name[i],
1ULL << i,
(features_enabled & (1ULL << i)) ? "Y" : "N");
}
return size;
}
static int vega20_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
uint64_t features_enabled, features_to_enable, features_to_disable;
int i, ret = 0;
bool enabled;
if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX))
return -EINVAL;
ret = vega20_get_enabled_smc_features(hwmgr, &features_enabled);
if (ret)
return ret;
features_to_disable =
features_enabled & ~new_ppfeature_masks;
features_to_enable =
~features_enabled & new_ppfeature_masks;
pr_debug("features_to_disable 0x%llx\n", features_to_disable);
pr_debug("features_to_enable 0x%llx\n", features_to_enable);
if (features_to_disable) {
ret = vega20_enable_smc_features(hwmgr, false, features_to_disable);
if (ret)
return ret;
}
if (features_to_enable) {
ret = vega20_enable_smc_features(hwmgr, true, features_to_enable);
if (ret)
return ret;
}
/* Update the cached feature enablement state */
ret = vega20_get_enabled_smc_features(hwmgr, &features_enabled);
if (ret)
return ret;
for (i = 0; i < GNLD_FEATURES_MAX; i++) {
enabled = (features_enabled & data->smu_features[i].smu_feature_bitmap) ?
true : false;
data->smu_features[i].enabled = enabled;
}
return 0;
}
static int vega20_get_current_pcie_link_width_level(struct pp_hwmgr *hwmgr)
{
struct amdgpu_device *adev = hwmgr->adev;
return (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) &
PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK)
>> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT;
}
static int vega20_get_current_pcie_link_width(struct pp_hwmgr *hwmgr)
{
uint32_t width_level;
width_level = vega20_get_current_pcie_link_width_level(hwmgr);
if (width_level > LINK_WIDTH_MAX)
width_level = 0;
return link_width[width_level];
}
static int vega20_get_current_pcie_link_speed_level(struct pp_hwmgr *hwmgr)
{
struct amdgpu_device *adev = hwmgr->adev;
return (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) &
PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK)
>> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT;
}
static int vega20_get_current_pcie_link_speed(struct pp_hwmgr *hwmgr)
{
uint32_t speed_level;
speed_level = vega20_get_current_pcie_link_speed_level(hwmgr);
if (speed_level > LINK_SPEED_MAX)
speed_level = 0;
return link_speed[speed_level];
}
static int vega20_print_clock_levels(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, char *buf)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
struct vega20_od8_single_setting *od8_settings =
data->od8_settings.od8_settings_array;
OverDriveTable_t *od_table =
&(data->smc_state_table.overdrive_table);
PPTable_t *pptable = &(data->smc_state_table.pp_table);
struct pp_clock_levels_with_latency clocks;
struct vega20_single_dpm_table *fclk_dpm_table =
&(data->dpm_table.fclk_table);
int i, now, size = 0;
int ret = 0;
uint32_t gen_speed, lane_width, current_gen_speed, current_lane_width;
switch (type) {
case PP_SCLK:
ret = vega20_get_current_clk_freq(hwmgr, PPCLK_GFXCLK, &now);
PP_ASSERT_WITH_CODE(!ret,
"Attempt to get current gfx clk Failed!",
return ret);
if (vega20_get_sclks(hwmgr, &clocks)) {
size += sprintf(buf + size, "0: %uMhz * (DPM disabled)\n",
now / 100);
break;
}
for (i = 0; i < clocks.num_levels; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, clocks.data[i].clocks_in_khz / 1000,
(clocks.data[i].clocks_in_khz == now * 10) ? "*" : "");
break;
case PP_MCLK:
ret = vega20_get_current_clk_freq(hwmgr, PPCLK_UCLK, &now);
PP_ASSERT_WITH_CODE(!ret,
"Attempt to get current mclk freq Failed!",
return ret);
if (vega20_get_memclocks(hwmgr, &clocks)) {
size += sprintf(buf + size, "0: %uMhz * (DPM disabled)\n",
now / 100);
break;
}
for (i = 0; i < clocks.num_levels; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, clocks.data[i].clocks_in_khz / 1000,
(clocks.data[i].clocks_in_khz == now * 10) ? "*" : "");
break;
case PP_SOCCLK:
ret = vega20_get_current_clk_freq(hwmgr, PPCLK_SOCCLK, &now);
PP_ASSERT_WITH_CODE(!ret,
"Attempt to get current socclk freq Failed!",
return ret);
if (vega20_get_socclocks(hwmgr, &clocks)) {
size += sprintf(buf + size, "0: %uMhz * (DPM disabled)\n",
now / 100);
break;
}
for (i = 0; i < clocks.num_levels; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, clocks.data[i].clocks_in_khz / 1000,
(clocks.data[i].clocks_in_khz == now * 10) ? "*" : "");
break;
case PP_FCLK:
ret = vega20_get_current_clk_freq(hwmgr, PPCLK_FCLK, &now);
PP_ASSERT_WITH_CODE(!ret,
"Attempt to get current fclk freq Failed!",
return ret);
for (i = 0; i < fclk_dpm_table->count; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, fclk_dpm_table->dpm_levels[i].value,
fclk_dpm_table->dpm_levels[i].value == (now / 100) ? "*" : "");
break;
case PP_DCEFCLK:
ret = vega20_get_current_clk_freq(hwmgr, PPCLK_DCEFCLK, &now);
PP_ASSERT_WITH_CODE(!ret,
"Attempt to get current dcefclk freq Failed!",
return ret);
if (vega20_get_dcefclocks(hwmgr, &clocks)) {
size += sprintf(buf + size, "0: %uMhz * (DPM disabled)\n",
now / 100);
break;
}
for (i = 0; i < clocks.num_levels; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, clocks.data[i].clocks_in_khz / 1000,
(clocks.data[i].clocks_in_khz == now * 10) ? "*" : "");
break;
case PP_PCIE:
current_gen_speed =
vega20_get_current_pcie_link_speed_level(hwmgr);
current_lane_width =
vega20_get_current_pcie_link_width_level(hwmgr);
for (i = 0; i < NUM_LINK_LEVELS; i++) {
gen_speed = pptable->PcieGenSpeed[i];
lane_width = pptable->PcieLaneCount[i];
size += sprintf(buf + size, "%d: %s %s %dMhz %s\n", i,
(gen_speed == 0) ? "2.5GT/s," :
(gen_speed == 1) ? "5.0GT/s," :
(gen_speed == 2) ? "8.0GT/s," :
(gen_speed == 3) ? "16.0GT/s," : "",
(lane_width == 1) ? "x1" :
(lane_width == 2) ? "x2" :
(lane_width == 3) ? "x4" :
(lane_width == 4) ? "x8" :
(lane_width == 5) ? "x12" :
(lane_width == 6) ? "x16" : "",
pptable->LclkFreq[i],
(current_gen_speed == gen_speed) &&
(current_lane_width == lane_width) ?
"*" : "");
}
break;
case OD_SCLK:
if (od8_settings[OD8_SETTING_GFXCLK_FMIN].feature_id &&
od8_settings[OD8_SETTING_GFXCLK_FMAX].feature_id) {
size += sprintf(buf + size, "%s:\n", "OD_SCLK");
size += sprintf(buf + size, "0: %10uMhz\n",
od_table->GfxclkFmin);
size += sprintf(buf + size, "1: %10uMhz\n",
od_table->GfxclkFmax);
}
break;
case OD_MCLK:
if (od8_settings[OD8_SETTING_UCLK_FMAX].feature_id) {
size += sprintf(buf + size, "%s:\n", "OD_MCLK");
size += sprintf(buf + size, "1: %10uMhz\n",
od_table->UclkFmax);
}
break;
case OD_VDDC_CURVE:
if (od8_settings[OD8_SETTING_GFXCLK_FREQ1].feature_id &&
od8_settings[OD8_SETTING_GFXCLK_FREQ2].feature_id &&
od8_settings[OD8_SETTING_GFXCLK_FREQ3].feature_id &&
od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id &&
od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id &&
od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) {
size += sprintf(buf + size, "%s:\n", "OD_VDDC_CURVE");
size += sprintf(buf + size, "0: %10uMhz %10dmV\n",
od_table->GfxclkFreq1,
od_table->GfxclkVolt1 / VOLTAGE_SCALE);
size += sprintf(buf + size, "1: %10uMhz %10dmV\n",
od_table->GfxclkFreq2,
od_table->GfxclkVolt2 / VOLTAGE_SCALE);
size += sprintf(buf + size, "2: %10uMhz %10dmV\n",
od_table->GfxclkFreq3,
od_table->GfxclkVolt3 / VOLTAGE_SCALE);
}
break;
case OD_RANGE:
size += sprintf(buf + size, "%s:\n", "OD_RANGE");
if (od8_settings[OD8_SETTING_GFXCLK_FMIN].feature_id &&
od8_settings[OD8_SETTING_GFXCLK_FMAX].feature_id) {
size += sprintf(buf + size, "SCLK: %7uMhz %10uMhz\n",
od8_settings[OD8_SETTING_GFXCLK_FMIN].min_value,
od8_settings[OD8_SETTING_GFXCLK_FMAX].max_value);
}
if (od8_settings[OD8_SETTING_UCLK_FMAX].feature_id) {
size += sprintf(buf + size, "MCLK: %7uMhz %10uMhz\n",
od8_settings[OD8_SETTING_UCLK_FMAX].min_value,
od8_settings[OD8_SETTING_UCLK_FMAX].max_value);
}
if (od8_settings[OD8_SETTING_GFXCLK_FREQ1].feature_id &&
od8_settings[OD8_SETTING_GFXCLK_FREQ2].feature_id &&
od8_settings[OD8_SETTING_GFXCLK_FREQ3].feature_id &&
od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].feature_id &&
od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].feature_id &&
od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].feature_id) {
size += sprintf(buf + size, "VDDC_CURVE_SCLK[0]: %7uMhz %10uMhz\n",
od8_settings[OD8_SETTING_GFXCLK_FREQ1].min_value,
od8_settings[OD8_SETTING_GFXCLK_FREQ1].max_value);
size += sprintf(buf + size, "VDDC_CURVE_VOLT[0]: %7dmV %11dmV\n",
od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].min_value,
od8_settings[OD8_SETTING_GFXCLK_VOLTAGE1].max_value);
size += sprintf(buf + size, "VDDC_CURVE_SCLK[1]: %7uMhz %10uMhz\n",
od8_settings[OD8_SETTING_GFXCLK_FREQ2].min_value,
od8_settings[OD8_SETTING_GFXCLK_FREQ2].max_value);
size += sprintf(buf + size, "VDDC_CURVE_VOLT[1]: %7dmV %11dmV\n",
od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].min_value,
od8_settings[OD8_SETTING_GFXCLK_VOLTAGE2].max_value);
size += sprintf(buf + size, "VDDC_CURVE_SCLK[2]: %7uMhz %10uMhz\n",
od8_settings[OD8_SETTING_GFXCLK_FREQ3].min_value,
od8_settings[OD8_SETTING_GFXCLK_FREQ3].max_value);
size += sprintf(buf + size, "VDDC_CURVE_VOLT[2]: %7dmV %11dmV\n",
od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].min_value,
od8_settings[OD8_SETTING_GFXCLK_VOLTAGE3].max_value);
}
break;
default:
break;
}
return size;
}
static int vega20_set_uclk_to_highest_dpm_level(struct pp_hwmgr *hwmgr,
struct vega20_single_dpm_table *dpm_table)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
int ret = 0;
if (data->smu_features[GNLD_DPM_UCLK].enabled) {
PP_ASSERT_WITH_CODE(dpm_table->count > 0,
"[SetUclkToHightestDpmLevel] Dpm table has no entry!",
return -EINVAL);
PP_ASSERT_WITH_CODE(dpm_table->count <= NUM_UCLK_DPM_LEVELS,
"[SetUclkToHightestDpmLevel] Dpm table has too many entries!",
return -EINVAL);
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetHardMinByFreq,
(PPCLK_UCLK << 16) | dpm_table->dpm_state.hard_min_level,
NULL)),
"[SetUclkToHightestDpmLevel] Set hard min uclk failed!",
return ret);
}
return ret;
}
static int vega20_set_fclk_to_highest_dpm_level(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
struct vega20_single_dpm_table *dpm_table = &(data->dpm_table.fclk_table);
int ret = 0;
if (data->smu_features[GNLD_DPM_FCLK].enabled) {
PP_ASSERT_WITH_CODE(dpm_table->count > 0,
"[SetFclkToHightestDpmLevel] Dpm table has no entry!",
return -EINVAL);
PP_ASSERT_WITH_CODE(dpm_table->count <= NUM_FCLK_DPM_LEVELS,
"[SetFclkToHightestDpmLevel] Dpm table has too many entries!",
return -EINVAL);
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMinByFreq,
(PPCLK_FCLK << 16) | dpm_table->dpm_state.soft_min_level,
NULL)),
"[SetFclkToHightestDpmLevel] Set soft min fclk failed!",
return ret);
}
return ret;
}
static int vega20_pre_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
int ret = 0;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_NumOfDisplays, 0, NULL);
ret = vega20_set_uclk_to_highest_dpm_level(hwmgr,
&data->dpm_table.mem_table);
if (ret)
return ret;
return vega20_set_fclk_to_highest_dpm_level(hwmgr);
}
static int vega20_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
int result = 0;
Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table);
if ((data->water_marks_bitmap & WaterMarksExist) &&
!(data->water_marks_bitmap & WaterMarksLoaded)) {
result = smum_smc_table_manager(hwmgr,
(uint8_t *)wm_table, TABLE_WATERMARKS, false);
PP_ASSERT_WITH_CODE(!result,
"Failed to update WMTABLE!",
return result);
data->water_marks_bitmap |= WaterMarksLoaded;
}
if ((data->water_marks_bitmap & WaterMarksExist) &&
data->smu_features[GNLD_DPM_DCEFCLK].supported &&
data->smu_features[GNLD_DPM_SOCCLK].supported) {
result = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_NumOfDisplays,
hwmgr->display_config->num_display,
NULL);
}
return result;
}
static int vega20_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
int ret = 0;
if (data->smu_features[GNLD_DPM_UVD].supported) {
if (data->smu_features[GNLD_DPM_UVD].enabled == enable) {
if (enable)
PP_DBG_LOG("[EnableDisableUVDDPM] feature DPM UVD already enabled!\n");
else
PP_DBG_LOG("[EnableDisableUVDDPM] feature DPM UVD already disabled!\n");
}
ret = vega20_enable_smc_features(hwmgr,
enable,
data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap);
PP_ASSERT_WITH_CODE(!ret,
"[EnableDisableUVDDPM] Attempt to Enable/Disable DPM UVD Failed!",
return ret);
data->smu_features[GNLD_DPM_UVD].enabled = enable;
}
return 0;
}
static void vega20_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
if (data->vce_power_gated == bgate)
return ;
data->vce_power_gated = bgate;
if (bgate) {
vega20_enable_disable_vce_dpm(hwmgr, !bgate);
amdgpu_device_ip_set_powergating_state(hwmgr->adev,
AMD_IP_BLOCK_TYPE_VCE,
AMD_PG_STATE_GATE);
} else {
amdgpu_device_ip_set_powergating_state(hwmgr->adev,
AMD_IP_BLOCK_TYPE_VCE,
AMD_PG_STATE_UNGATE);
vega20_enable_disable_vce_dpm(hwmgr, !bgate);
}
}
static void vega20_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
if (data->uvd_power_gated == bgate)
return ;
data->uvd_power_gated = bgate;
vega20_enable_disable_uvd_dpm(hwmgr, !bgate);
}
static int vega20_apply_clocks_adjust_rules(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
struct vega20_single_dpm_table *dpm_table;
bool vblank_too_short = false;
bool disable_mclk_switching;
bool disable_fclk_switching;
uint32_t i, latency;
disable_mclk_switching = ((1 < hwmgr->display_config->num_display) &&
!hwmgr->display_config->multi_monitor_in_sync) ||
vblank_too_short;
latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;
/* gfxclk */
dpm_table = &(data->dpm_table.gfx_table);
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT;
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT;
if (PP_CAP(PHM_PlatformCaps_UMDPState)) {
if (VEGA20_UMD_PSTATE_GFXCLK_LEVEL < dpm_table->count) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_GFXCLK_LEVEL].value;
}
if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value;
}
if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
}
}
/* memclk */
dpm_table = &(data->dpm_table.mem_table);
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT;
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT;
if (PP_CAP(PHM_PlatformCaps_UMDPState)) {
if (VEGA20_UMD_PSTATE_MCLK_LEVEL < dpm_table->count) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_MCLK_LEVEL].value;
}
if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value;
}
if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
}
}
/* honour DAL's UCLK Hardmin */
if (dpm_table->dpm_state.hard_min_level < (hwmgr->display_config->min_mem_set_clock / 100))
dpm_table->dpm_state.hard_min_level = hwmgr->display_config->min_mem_set_clock / 100;
/* Hardmin is dependent on displayconfig */
if (disable_mclk_switching) {
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
for (i = 0; i < data->mclk_latency_table.count - 1; i++) {
if (data->mclk_latency_table.entries[i].latency <= latency) {
if (dpm_table->dpm_levels[i].value >= (hwmgr->display_config->min_mem_set_clock / 100)) {
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[i].value;
break;
}
}
}
}
if (hwmgr->display_config->nb_pstate_switch_disable)
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
if ((disable_mclk_switching &&
(dpm_table->dpm_state.hard_min_level == dpm_table->dpm_levels[dpm_table->count - 1].value)) ||
hwmgr->display_config->min_mem_set_clock / 100 >= dpm_table->dpm_levels[dpm_table->count - 1].value)
disable_fclk_switching = true;
else
disable_fclk_switching = false;
/* fclk */
dpm_table = &(data->dpm_table.fclk_table);
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT;
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT;
if (hwmgr->display_config->nb_pstate_switch_disable || disable_fclk_switching)
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
/* vclk */
dpm_table = &(data->dpm_table.vclk_table);
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT;
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT;
if (PP_CAP(PHM_PlatformCaps_UMDPState)) {
if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
}
if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
}
}
/* dclk */
dpm_table = &(data->dpm_table.dclk_table);
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT;
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT;
if (PP_CAP(PHM_PlatformCaps_UMDPState)) {
if (VEGA20_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_UVDCLK_LEVEL].value;
}
if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
}
}
/* socclk */
dpm_table = &(data->dpm_table.soc_table);
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT;
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT;
if (PP_CAP(PHM_PlatformCaps_UMDPState)) {
if (VEGA20_UMD_PSTATE_SOCCLK_LEVEL < dpm_table->count) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_SOCCLK_LEVEL].value;
}
if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
}
}
/* eclk */
dpm_table = &(data->dpm_table.eclk_table);
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.soft_max_level = VG20_CLOCK_MAX_DEFAULT;
dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value;
dpm_table->dpm_state.hard_max_level = VG20_CLOCK_MAX_DEFAULT;
if (PP_CAP(PHM_PlatformCaps_UMDPState)) {
if (VEGA20_UMD_PSTATE_VCEMCLK_LEVEL < dpm_table->count) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA20_UMD_PSTATE_VCEMCLK_LEVEL].value;
}
if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value;
}
}
return 0;
}
static bool
vega20_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
bool is_update_required = false;
if (data->display_timing.num_existing_displays !=
hwmgr->display_config->num_display)
is_update_required = true;
if (data->registry_data.gfx_clk_deep_sleep_support &&
(data->display_timing.min_clock_in_sr !=
hwmgr->display_config->min_core_set_clock_in_sr))
is_update_required = true;
return is_update_required;
}
static int vega20_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
int ret = 0;
ret = vega20_disable_all_smu_features(hwmgr);
PP_ASSERT_WITH_CODE(!ret,
"[DisableDpmTasks] Failed to disable all smu features!",
return ret);
return 0;
}
static int vega20_power_off_asic(struct pp_hwmgr *hwmgr)
{
struct vega20_hwmgr *data = (struct vega20_hwmgr *)(hwmgr->backend);
int result;
result = vega20_disable_dpm_tasks(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
"[PowerOffAsic] Failed to disable DPM!",
);
data->water_marks_bitmap &= ~(WaterMarksLoaded);
return result;
}
static int conv_power_profile_to_pplib_workload(int power_profile)
{
int pplib_workload = 0;
switch (power_profile) {
case PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT:
pplib_workload = WORKLOAD_DEFAULT_BIT;
break;
case PP_SMC_POWER_PROFILE_FULLSCREEN3D:
pplib_workload = WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT;
break;
case PP_SMC_POWER_PROFILE_POWERSAVING:
pplib_workload = WORKLOAD_PPLIB_POWER_SAVING_BIT;
break;
case PP_SMC_POWER_PROFILE_VIDEO:
pplib_workload = WORKLOAD_PPLIB_VIDEO_BIT;
break;
case PP_SMC_POWER_PROFILE_VR:
pplib_workload = WORKLOAD_PPLIB_VR_BIT;
break;
case PP_SMC_POWER_PROFILE_COMPUTE:
pplib_workload = WORKLOAD_PPLIB_COMPUTE_BIT;
break;
case PP_SMC_POWER_PROFILE_CUSTOM:
pplib_workload = WORKLOAD_PPLIB_CUSTOM_BIT;
break;
}
return pplib_workload;
}
static int vega20_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
{
DpmActivityMonitorCoeffInt_t activity_monitor;
uint32_t i, size = 0;
uint16_t workload_type = 0;
static const char *title[] = {
"PROFILE_INDEX(NAME)",
"CLOCK_TYPE(NAME)",
"FPS",
"UseRlcBusy",
"MinActiveFreqType",
"MinActiveFreq",
"BoosterFreqType",
"BoosterFreq",
"PD_Data_limit_c",
"PD_Data_error_coeff",
"PD_Data_error_rate_coeff"};
int result = 0;
if (!buf)
return -EINVAL;
phm_get_sysfs_buf(&buf, &size);
size += sysfs_emit_at(buf, size, "%16s %s %s %s %s %s %s %s %s %s %s\n",
title[0], title[1], title[2], title[3], title[4], title[5],
title[6], title[7], title[8], title[9], title[10]);
for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) {
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type = conv_power_profile_to_pplib_workload(i);
result = vega20_get_activity_monitor_coeff(hwmgr,
(uint8_t *)(&activity_monitor), workload_type);
PP_ASSERT_WITH_CODE(!result,
"[GetPowerProfile] Failed to get activity monitor!",
return result);
size += sysfs_emit_at(buf, size, "%2d %14s%s:\n",
i, amdgpu_pp_profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ");
size += sysfs_emit_at(buf, size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
0,
"GFXCLK",
activity_monitor.Gfx_FPS,
activity_monitor.Gfx_UseRlcBusy,
activity_monitor.Gfx_MinActiveFreqType,
activity_monitor.Gfx_MinActiveFreq,
activity_monitor.Gfx_BoosterFreqType,
activity_monitor.Gfx_BoosterFreq,
activity_monitor.Gfx_PD_Data_limit_c,
activity_monitor.Gfx_PD_Data_error_coeff,
activity_monitor.Gfx_PD_Data_error_rate_coeff);
size += sysfs_emit_at(buf, size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
1,
"SOCCLK",
activity_monitor.Soc_FPS,
activity_monitor.Soc_UseRlcBusy,
activity_monitor.Soc_MinActiveFreqType,
activity_monitor.Soc_MinActiveFreq,
activity_monitor.Soc_BoosterFreqType,
activity_monitor.Soc_BoosterFreq,
activity_monitor.Soc_PD_Data_limit_c,
activity_monitor.Soc_PD_Data_error_coeff,
activity_monitor.Soc_PD_Data_error_rate_coeff);
size += sysfs_emit_at(buf, size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
2,
"UCLK",
activity_monitor.Mem_FPS,
activity_monitor.Mem_UseRlcBusy,
activity_monitor.Mem_MinActiveFreqType,
activity_monitor.Mem_MinActiveFreq,
activity_monitor.Mem_BoosterFreqType,
activity_monitor.Mem_BoosterFreq,
activity_monitor.Mem_PD_Data_limit_c,
activity_monitor.Mem_PD_Data_error_coeff,
activity_monitor.Mem_PD_Data_error_rate_coeff);
size += sysfs_emit_at(buf, size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
3,
"FCLK",
activity_monitor.Fclk_FPS,
activity_monitor.Fclk_UseRlcBusy,
activity_monitor.Fclk_MinActiveFreqType,
activity_monitor.Fclk_MinActiveFreq,
activity_monitor.Fclk_BoosterFreqType,
activity_monitor.Fclk_BoosterFreq,
activity_monitor.Fclk_PD_Data_limit_c,
activity_monitor.Fclk_PD_Data_error_coeff,
activity_monitor.Fclk_PD_Data_error_rate_coeff);
}
return size;
}
static int vega20_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
{
DpmActivityMonitorCoeffInt_t activity_monitor;
int workload_type, result = 0;
uint32_t power_profile_mode = input[size];
if (power_profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) {
pr_err("Invalid power profile mode %d\n", power_profile_mode);
return -EINVAL;
}
if (power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
if (size != 10 && size != 0)
return -EINVAL;
if (size == 0 && !data->is_custom_profile_set)
return -EINVAL;
result = vega20_get_activity_monitor_coeff(hwmgr,
(uint8_t *)(&activity_monitor),
WORKLOAD_PPLIB_CUSTOM_BIT);
PP_ASSERT_WITH_CODE(!result,
"[SetPowerProfile] Failed to get activity monitor!",
return result);
/* If size==0, then we want to apply the already-configured
* CUSTOM profile again. Just apply it, since we checked its
* validity above
*/
if (size == 0)
goto out;
switch (input[0]) {
case 0: /* Gfxclk */
activity_monitor.Gfx_FPS = input[1];
activity_monitor.Gfx_UseRlcBusy = input[2];
activity_monitor.Gfx_MinActiveFreqType = input[3];
activity_monitor.Gfx_MinActiveFreq = input[4];
activity_monitor.Gfx_BoosterFreqType = input[5];
activity_monitor.Gfx_BoosterFreq = input[6];
activity_monitor.Gfx_PD_Data_limit_c = input[7];
activity_monitor.Gfx_PD_Data_error_coeff = input[8];
activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9];
break;
case 1: /* Socclk */
activity_monitor.Soc_FPS = input[1];
activity_monitor.Soc_UseRlcBusy = input[2];
activity_monitor.Soc_MinActiveFreqType = input[3];
activity_monitor.Soc_MinActiveFreq = input[4];
activity_monitor.Soc_BoosterFreqType = input[5];
activity_monitor.Soc_BoosterFreq = input[6];
activity_monitor.Soc_PD_Data_limit_c = input[7];
activity_monitor.Soc_PD_Data_error_coeff = input[8];
activity_monitor.Soc_PD_Data_error_rate_coeff = input[9];
break;
case 2: /* Uclk */
activity_monitor.Mem_FPS = input[1];
activity_monitor.Mem_UseRlcBusy = input[2];
activity_monitor.Mem_MinActiveFreqType = input[3];
activity_monitor.Mem_MinActiveFreq = input[4];
activity_monitor.Mem_BoosterFreqType = input[5];
activity_monitor.Mem_BoosterFreq = input[6];
activity_monitor.Mem_PD_Data_limit_c = input[7];
activity_monitor.Mem_PD_Data_error_coeff = input[8];
activity_monitor.Mem_PD_Data_error_rate_coeff = input[9];
break;
case 3: /* Fclk */
activity_monitor.Fclk_FPS = input[1];
activity_monitor.Fclk_UseRlcBusy = input[2];
activity_monitor.Fclk_MinActiveFreqType = input[3];
activity_monitor.Fclk_MinActiveFreq = input[4];
activity_monitor.Fclk_BoosterFreqType = input[5];
activity_monitor.Fclk_BoosterFreq = input[6];
activity_monitor.Fclk_PD_Data_limit_c = input[7];
activity_monitor.Fclk_PD_Data_error_coeff = input[8];
activity_monitor.Fclk_PD_Data_error_rate_coeff = input[9];
break;
default:
return -EINVAL;
}
result = vega20_set_activity_monitor_coeff(hwmgr,
(uint8_t *)(&activity_monitor),
WORKLOAD_PPLIB_CUSTOM_BIT);
data->is_custom_profile_set = true;
PP_ASSERT_WITH_CODE(!result,
"[SetPowerProfile] Failed to set activity monitor!",
return result);
}
out:
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type =
conv_power_profile_to_pplib_workload(power_profile_mode);
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask,
1 << workload_type,
NULL);
hwmgr->power_profile_mode = power_profile_mode;
return 0;
}
static int vega20_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
uint32_t virtual_addr_low,
uint32_t virtual_addr_hi,
uint32_t mc_addr_low,
uint32_t mc_addr_hi,
uint32_t size)
{
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSystemVirtualDramAddrHigh,
virtual_addr_hi,
NULL);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSystemVirtualDramAddrLow,
virtual_addr_low,
NULL);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DramLogSetDramAddrHigh,
mc_addr_hi,
NULL);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DramLogSetDramAddrLow,
mc_addr_low,
NULL);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DramLogSetDramSize,
size,
NULL);
return 0;
}
static int vega20_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
struct PP_TemperatureRange *thermal_data)
{
struct phm_ppt_v3_information *pptable_information =
(struct phm_ppt_v3_information *)hwmgr->pptable;
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));
thermal_data->max = pp_table->TedgeLimit *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
thermal_data->hotspot_crit_max = pp_table->ThotspotLimit *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
thermal_data->mem_crit_max = pp_table->ThbmLimit *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)*
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
thermal_data->sw_ctf_threshold = pptable_information->us_software_shutdown_temp *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
return 0;
}
static int vega20_smu_i2c_bus_access(struct pp_hwmgr *hwmgr, bool acquire)
{
int res;
/* I2C bus access can happen very early, when SMU not loaded yet */
if (!vega20_is_smc_ram_running(hwmgr))
return 0;
res = smum_send_msg_to_smc_with_parameter(hwmgr,
(acquire ?
PPSMC_MSG_RequestI2CBus :
PPSMC_MSG_ReleaseI2CBus),
0,
NULL);
PP_ASSERT_WITH_CODE(!res, "[SmuI2CAccessBus] Failed to access bus!", return res);
return res;
}
static int vega20_set_df_cstate(struct pp_hwmgr *hwmgr,
enum pp_df_cstate state)
{
int ret;
/* PPSMC_MSG_DFCstateControl is supported with 40.50 and later fws */
if (hwmgr->smu_version < 0x283200) {
pr_err("Df cstate control is supported with 40.50 and later SMC fw!\n");
return -EINVAL;
}
ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DFCstateControl, state,
NULL);
if (ret)
pr_err("SetDfCstate failed!\n");
return ret;
}
static int vega20_set_xgmi_pstate(struct pp_hwmgr *hwmgr,
uint32_t pstate)
{
int ret;
ret = smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetXgmiMode,
pstate ? XGMI_MODE_PSTATE_D0 : XGMI_MODE_PSTATE_D3,
NULL);
if (ret)
pr_err("SetXgmiPstate failed!\n");
return ret;
}
static void vega20_init_gpu_metrics_v1_0(struct gpu_metrics_v1_0 *gpu_metrics)
{
memset(gpu_metrics, 0xFF, sizeof(struct gpu_metrics_v1_0));
gpu_metrics->common_header.structure_size =
sizeof(struct gpu_metrics_v1_0);
gpu_metrics->common_header.format_revision = 1;
gpu_metrics->common_header.content_revision = 0;
gpu_metrics->system_clock_counter = ktime_get_boottime_ns();
}
static ssize_t vega20_get_gpu_metrics(struct pp_hwmgr *hwmgr,
void **table)
{
struct vega20_hwmgr *data =
(struct vega20_hwmgr *)(hwmgr->backend);
struct gpu_metrics_v1_0 *gpu_metrics =
&data->gpu_metrics_table;
SmuMetrics_t metrics;
uint32_t fan_speed_rpm;
int ret;
ret = vega20_get_metrics_table(hwmgr, &metrics, true);
if (ret)
return ret;
vega20_init_gpu_metrics_v1_0(gpu_metrics);
gpu_metrics->temperature_edge = metrics.TemperatureEdge;
gpu_metrics->temperature_hotspot = metrics.TemperatureHotspot;
gpu_metrics->temperature_mem = metrics.TemperatureHBM;
gpu_metrics->temperature_vrgfx = metrics.TemperatureVrGfx;
gpu_metrics->temperature_vrsoc = metrics.TemperatureVrSoc;
gpu_metrics->temperature_vrmem = metrics.TemperatureVrMem0;
gpu_metrics->average_gfx_activity = metrics.AverageGfxActivity;
gpu_metrics->average_umc_activity = metrics.AverageUclkActivity;
gpu_metrics->average_socket_power = metrics.AverageSocketPower;
gpu_metrics->average_gfxclk_frequency = metrics.AverageGfxclkFrequency;
gpu_metrics->average_socclk_frequency = metrics.AverageSocclkFrequency;
gpu_metrics->average_uclk_frequency = metrics.AverageUclkFrequency;
gpu_metrics->current_gfxclk = metrics.CurrClock[PPCLK_GFXCLK];
gpu_metrics->current_socclk = metrics.CurrClock[PPCLK_SOCCLK];
gpu_metrics->current_uclk = metrics.CurrClock[PPCLK_UCLK];
gpu_metrics->current_vclk0 = metrics.CurrClock[PPCLK_VCLK];
gpu_metrics->current_dclk0 = metrics.CurrClock[PPCLK_DCLK];
gpu_metrics->throttle_status = metrics.ThrottlerStatus;
vega20_fan_ctrl_get_fan_speed_rpm(hwmgr, &fan_speed_rpm);
gpu_metrics->current_fan_speed = (uint16_t)fan_speed_rpm;
gpu_metrics->pcie_link_width =
vega20_get_current_pcie_link_width(hwmgr);
gpu_metrics->pcie_link_speed =
vega20_get_current_pcie_link_speed(hwmgr);
*table = (void *)gpu_metrics;
return sizeof(struct gpu_metrics_v1_0);
}
static const struct pp_hwmgr_func vega20_hwmgr_funcs = {
/* init/fini related */
.backend_init = vega20_hwmgr_backend_init,
.backend_fini = vega20_hwmgr_backend_fini,
.asic_setup = vega20_setup_asic_task,
.power_off_asic = vega20_power_off_asic,
.dynamic_state_management_enable = vega20_enable_dpm_tasks,
.dynamic_state_management_disable = vega20_disable_dpm_tasks,
/* power state related */
.apply_clocks_adjust_rules = vega20_apply_clocks_adjust_rules,
.pre_display_config_changed = vega20_pre_display_configuration_changed_task,
.display_config_changed = vega20_display_configuration_changed_task,
.check_smc_update_required_for_display_configuration =
vega20_check_smc_update_required_for_display_configuration,
.notify_smc_display_config_after_ps_adjustment =
vega20_notify_smc_display_config_after_ps_adjustment,
/* export to DAL */
.get_sclk = vega20_dpm_get_sclk,
.get_mclk = vega20_dpm_get_mclk,
.get_dal_power_level = vega20_get_dal_power_level,
.get_clock_by_type_with_latency = vega20_get_clock_by_type_with_latency,
.get_clock_by_type_with_voltage = vega20_get_clock_by_type_with_voltage,
.set_watermarks_for_clocks_ranges = vega20_set_watermarks_for_clocks_ranges,
.display_clock_voltage_request = vega20_display_clock_voltage_request,
.get_performance_level = vega20_get_performance_level,
/* UMD pstate, profile related */
.force_dpm_level = vega20_dpm_force_dpm_level,
.get_power_profile_mode = vega20_get_power_profile_mode,
.set_power_profile_mode = vega20_set_power_profile_mode,
/* od related */
.set_power_limit = vega20_set_power_limit,
.get_sclk_od = vega20_get_sclk_od,
.set_sclk_od = vega20_set_sclk_od,
.get_mclk_od = vega20_get_mclk_od,
.set_mclk_od = vega20_set_mclk_od,
.odn_edit_dpm_table = vega20_odn_edit_dpm_table,
/* for sysfs to retrive/set gfxclk/memclk */
.force_clock_level = vega20_force_clock_level,
.print_clock_levels = vega20_print_clock_levels,
.read_sensor = vega20_read_sensor,
.get_ppfeature_status = vega20_get_ppfeature_status,
.set_ppfeature_status = vega20_set_ppfeature_status,
/* powergate related */
.powergate_uvd = vega20_power_gate_uvd,
.powergate_vce = vega20_power_gate_vce,
/* thermal related */
.start_thermal_controller = vega20_start_thermal_controller,
.stop_thermal_controller = vega20_thermal_stop_thermal_controller,
.get_thermal_temperature_range = vega20_get_thermal_temperature_range,
.register_irq_handlers = smu9_register_irq_handlers,
.disable_smc_firmware_ctf = vega20_thermal_disable_alert,
/* fan control related */
.get_fan_speed_pwm = vega20_fan_ctrl_get_fan_speed_pwm,
.set_fan_speed_pwm = vega20_fan_ctrl_set_fan_speed_pwm,
.get_fan_speed_info = vega20_fan_ctrl_get_fan_speed_info,
.get_fan_speed_rpm = vega20_fan_ctrl_get_fan_speed_rpm,
.set_fan_speed_rpm = vega20_fan_ctrl_set_fan_speed_rpm,
.get_fan_control_mode = vega20_get_fan_control_mode,
.set_fan_control_mode = vega20_set_fan_control_mode,
/* smu memory related */
.notify_cac_buffer_info = vega20_notify_cac_buffer_info,
.enable_mgpu_fan_boost = vega20_enable_mgpu_fan_boost,
/* BACO related */
.get_bamaco_support = vega20_get_bamaco_support,
.get_asic_baco_state = vega20_baco_get_state,
.set_asic_baco_state = vega20_baco_set_state,
.set_mp1_state = vega20_set_mp1_state,
.smu_i2c_bus_access = vega20_smu_i2c_bus_access,
.set_df_cstate = vega20_set_df_cstate,
.set_xgmi_pstate = vega20_set_xgmi_pstate,
.get_gpu_metrics = vega20_get_gpu_metrics,
};
int vega20_hwmgr_init(struct pp_hwmgr *hwmgr)
{
hwmgr->hwmgr_func = &vega20_hwmgr_funcs;
hwmgr->pptable_func = &vega20_pptable_funcs;
return 0;
}