// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*/
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/completion.h>
#include <linux/bug.h>
#include <linux/list.h>
#include <crypto/hash.h>
#include "messages.h"
#include "ctree.h"
#include "discard.h"
#include "disk-io.h"
#include "send.h"
#include "transaction.h"
#include "sysfs.h"
#include "volumes.h"
#include "space-info.h"
#include "block-group.h"
#include "qgroup.h"
#include "misc.h"
#include "fs.h"
#include "accessors.h"
/*
* Structure name Path
* --------------------------------------------------------------------------
* btrfs_supported_static_feature_attrs /sys/fs/btrfs/features
* btrfs_supported_feature_attrs /sys/fs/btrfs/features and
* /sys/fs/btrfs/<uuid>/features
* btrfs_attrs /sys/fs/btrfs/<uuid>
* devid_attrs /sys/fs/btrfs/<uuid>/devinfo/<devid>
* allocation_attrs /sys/fs/btrfs/<uuid>/allocation
* qgroup_attrs /sys/fs/btrfs/<uuid>/qgroups/<level>_<qgroupid>
* space_info_attrs /sys/fs/btrfs/<uuid>/allocation/<bg-type>
* raid_attrs /sys/fs/btrfs/<uuid>/allocation/<bg-type>/<bg-profile>
* discard_attrs /sys/fs/btrfs/<uuid>/discard
*
* When built with BTRFS_CONFIG_DEBUG:
*
* btrfs_debug_feature_attrs /sys/fs/btrfs/debug
* btrfs_debug_mount_attrs /sys/fs/btrfs/<uuid>/debug
*/
struct btrfs_feature_attr {
struct kobj_attribute kobj_attr;
enum btrfs_feature_set feature_set;
u64 feature_bit;
};
/* For raid type sysfs entries */
struct raid_kobject {
u64 flags;
struct kobject kobj;
};
#define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \
{ \
.attr = { .name = __stringify(_name), .mode = _mode }, \
.show = _show, \
.store = _store, \
}
#define BTRFS_ATTR_W(_prefix, _name, _store) \
static struct kobj_attribute btrfs_attr_##_prefix##_##_name = \
__INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
#define BTRFS_ATTR_RW(_prefix, _name, _show, _store) \
static struct kobj_attribute btrfs_attr_##_prefix##_##_name = \
__INIT_KOBJ_ATTR(_name, 0644, _show, _store)
#define BTRFS_ATTR(_prefix, _name, _show) \
static struct kobj_attribute btrfs_attr_##_prefix##_##_name = \
__INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
#define BTRFS_ATTR_PTR(_prefix, _name) \
(&btrfs_attr_##_prefix##_##_name.attr)
#define BTRFS_FEAT_ATTR(_name, _feature_set, _feature_prefix, _feature_bit) \
static struct btrfs_feature_attr btrfs_attr_features_##_name = { \
.kobj_attr = __INIT_KOBJ_ATTR(_name, S_IRUGO, \
btrfs_feature_attr_show, \
btrfs_feature_attr_store), \
.feature_set = _feature_set, \
.feature_bit = _feature_prefix ##_## _feature_bit, \
}
#define BTRFS_FEAT_ATTR_PTR(_name) \
(&btrfs_attr_features_##_name.kobj_attr.attr)
#define BTRFS_FEAT_ATTR_COMPAT(name, feature) \
BTRFS_FEAT_ATTR(name, FEAT_COMPAT, BTRFS_FEATURE_COMPAT, feature)
#define BTRFS_FEAT_ATTR_COMPAT_RO(name, feature) \
BTRFS_FEAT_ATTR(name, FEAT_COMPAT_RO, BTRFS_FEATURE_COMPAT_RO, feature)
#define BTRFS_FEAT_ATTR_INCOMPAT(name, feature) \
BTRFS_FEAT_ATTR(name, FEAT_INCOMPAT, BTRFS_FEATURE_INCOMPAT, feature)
static inline struct btrfs_fs_info *to_fs_info(struct kobject *kobj);
static inline struct btrfs_fs_devices *to_fs_devs(struct kobject *kobj);
static struct kobject *get_btrfs_kobj(struct kobject *kobj);
static struct btrfs_feature_attr *to_btrfs_feature_attr(struct kobj_attribute *a)
{
return container_of(a, struct btrfs_feature_attr, kobj_attr);
}
static struct kobj_attribute *attr_to_btrfs_attr(struct attribute *attr)
{
return container_of(attr, struct kobj_attribute, attr);
}
static struct btrfs_feature_attr *attr_to_btrfs_feature_attr(
struct attribute *attr)
{
return to_btrfs_feature_attr(attr_to_btrfs_attr(attr));
}
static u64 get_features(struct btrfs_fs_info *fs_info,
enum btrfs_feature_set set)
{
struct btrfs_super_block *disk_super = fs_info->super_copy;
if (set == FEAT_COMPAT)
return btrfs_super_compat_flags(disk_super);
else if (set == FEAT_COMPAT_RO)
return btrfs_super_compat_ro_flags(disk_super);
else
return btrfs_super_incompat_flags(disk_super);
}
static void set_features(struct btrfs_fs_info *fs_info,
enum btrfs_feature_set set, u64 features)
{
struct btrfs_super_block *disk_super = fs_info->super_copy;
if (set == FEAT_COMPAT)
btrfs_set_super_compat_flags(disk_super, features);
else if (set == FEAT_COMPAT_RO)
btrfs_set_super_compat_ro_flags(disk_super, features);
else
btrfs_set_super_incompat_flags(disk_super, features);
}
static int can_modify_feature(struct btrfs_feature_attr *fa)
{
int val = 0;
u64 set, clear;
switch (fa->feature_set) {
case FEAT_COMPAT:
set = BTRFS_FEATURE_COMPAT_SAFE_SET;
clear = BTRFS_FEATURE_COMPAT_SAFE_CLEAR;
break;
case FEAT_COMPAT_RO:
set = BTRFS_FEATURE_COMPAT_RO_SAFE_SET;
clear = BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR;
break;
case FEAT_INCOMPAT:
set = BTRFS_FEATURE_INCOMPAT_SAFE_SET;
clear = BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR;
break;
default:
pr_warn("btrfs: sysfs: unknown feature set %d\n",
fa->feature_set);
return 0;
}
if (set & fa->feature_bit)
val |= 1;
if (clear & fa->feature_bit)
val |= 2;
return val;
}
static ssize_t btrfs_feature_attr_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
int val = 0;
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
struct btrfs_feature_attr *fa = to_btrfs_feature_attr(a);
if (fs_info) {
u64 features = get_features(fs_info, fa->feature_set);
if (features & fa->feature_bit)
val = 1;
} else
val = can_modify_feature(fa);
return sysfs_emit(buf, "%d\n", val);
}
static ssize_t btrfs_feature_attr_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t count)
{
struct btrfs_fs_info *fs_info;
struct btrfs_feature_attr *fa = to_btrfs_feature_attr(a);
u64 features, set, clear;
unsigned long val;
int ret;
fs_info = to_fs_info(kobj);
if (!fs_info)
return -EPERM;
if (sb_rdonly(fs_info->sb))
return -EROFS;
ret = kstrtoul(skip_spaces(buf), 0, &val);
if (ret)
return ret;
if (fa->feature_set == FEAT_COMPAT) {
set = BTRFS_FEATURE_COMPAT_SAFE_SET;
clear = BTRFS_FEATURE_COMPAT_SAFE_CLEAR;
} else if (fa->feature_set == FEAT_COMPAT_RO) {
set = BTRFS_FEATURE_COMPAT_RO_SAFE_SET;
clear = BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR;
} else {
set = BTRFS_FEATURE_INCOMPAT_SAFE_SET;
clear = BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR;
}
features = get_features(fs_info, fa->feature_set);
/* Nothing to do */
if ((val && (features & fa->feature_bit)) ||
(!val && !(features & fa->feature_bit)))
return count;
if ((val && !(set & fa->feature_bit)) ||
(!val && !(clear & fa->feature_bit))) {
btrfs_info(fs_info,
"%sabling feature %s on mounted fs is not supported.",
val ? "En" : "Dis", fa->kobj_attr.attr.name);
return -EPERM;
}
btrfs_info(fs_info, "%s %s feature flag",
val ? "Setting" : "Clearing", fa->kobj_attr.attr.name);
spin_lock(&fs_info->super_lock);
features = get_features(fs_info, fa->feature_set);
if (val)
features |= fa->feature_bit;
else
features &= ~fa->feature_bit;
set_features(fs_info, fa->feature_set, features);
spin_unlock(&fs_info->super_lock);
/*
* We don't want to do full transaction commit from inside sysfs
*/
set_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
wake_up_process(fs_info->transaction_kthread);
return count;
}
static umode_t btrfs_feature_visible(struct kobject *kobj,
struct attribute *attr, int unused)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
umode_t mode = attr->mode;
if (fs_info) {
struct btrfs_feature_attr *fa;
u64 features;
fa = attr_to_btrfs_feature_attr(attr);
features = get_features(fs_info, fa->feature_set);
if (can_modify_feature(fa))
mode |= S_IWUSR;
else if (!(features & fa->feature_bit))
mode = 0;
}
return mode;
}
BTRFS_FEAT_ATTR_INCOMPAT(default_subvol, DEFAULT_SUBVOL);
BTRFS_FEAT_ATTR_INCOMPAT(mixed_groups, MIXED_GROUPS);
BTRFS_FEAT_ATTR_INCOMPAT(compress_lzo, COMPRESS_LZO);
BTRFS_FEAT_ATTR_INCOMPAT(compress_zstd, COMPRESS_ZSTD);
BTRFS_FEAT_ATTR_INCOMPAT(extended_iref, EXTENDED_IREF);
BTRFS_FEAT_ATTR_INCOMPAT(raid56, RAID56);
BTRFS_FEAT_ATTR_INCOMPAT(skinny_metadata, SKINNY_METADATA);
BTRFS_FEAT_ATTR_INCOMPAT(no_holes, NO_HOLES);
BTRFS_FEAT_ATTR_INCOMPAT(metadata_uuid, METADATA_UUID);
BTRFS_FEAT_ATTR_COMPAT_RO(free_space_tree, FREE_SPACE_TREE);
BTRFS_FEAT_ATTR_COMPAT_RO(block_group_tree, BLOCK_GROUP_TREE);
BTRFS_FEAT_ATTR_INCOMPAT(raid1c34, RAID1C34);
BTRFS_FEAT_ATTR_INCOMPAT(simple_quota, SIMPLE_QUOTA);
#ifdef CONFIG_BLK_DEV_ZONED
BTRFS_FEAT_ATTR_INCOMPAT(zoned, ZONED);
#endif
#ifdef CONFIG_BTRFS_DEBUG
/* Remove once support for extent tree v2 is feature complete */
BTRFS_FEAT_ATTR_INCOMPAT(extent_tree_v2, EXTENT_TREE_V2);
/* Remove once support for raid stripe tree is feature complete. */
BTRFS_FEAT_ATTR_INCOMPAT(raid_stripe_tree, RAID_STRIPE_TREE);
#endif
#ifdef CONFIG_FS_VERITY
BTRFS_FEAT_ATTR_COMPAT_RO(verity, VERITY);
#endif
/*
* Features which depend on feature bits and may differ between each fs.
*
* /sys/fs/btrfs/features - all available features implemented by this version
* /sys/fs/btrfs/UUID/features - features of the fs which are enabled or
* can be changed on a mounted filesystem.
*/
static struct attribute *btrfs_supported_feature_attrs[] = {
BTRFS_FEAT_ATTR_PTR(default_subvol),
BTRFS_FEAT_ATTR_PTR(mixed_groups),
BTRFS_FEAT_ATTR_PTR(compress_lzo),
BTRFS_FEAT_ATTR_PTR(compress_zstd),
BTRFS_FEAT_ATTR_PTR(extended_iref),
BTRFS_FEAT_ATTR_PTR(raid56),
BTRFS_FEAT_ATTR_PTR(skinny_metadata),
BTRFS_FEAT_ATTR_PTR(no_holes),
BTRFS_FEAT_ATTR_PTR(metadata_uuid),
BTRFS_FEAT_ATTR_PTR(free_space_tree),
BTRFS_FEAT_ATTR_PTR(raid1c34),
BTRFS_FEAT_ATTR_PTR(block_group_tree),
BTRFS_FEAT_ATTR_PTR(simple_quota),
#ifdef CONFIG_BLK_DEV_ZONED
BTRFS_FEAT_ATTR_PTR(zoned),
#endif
#ifdef CONFIG_BTRFS_DEBUG
BTRFS_FEAT_ATTR_PTR(extent_tree_v2),
BTRFS_FEAT_ATTR_PTR(raid_stripe_tree),
#endif
#ifdef CONFIG_FS_VERITY
BTRFS_FEAT_ATTR_PTR(verity),
#endif
NULL
};
static const struct attribute_group btrfs_feature_attr_group = {
.name = "features",
.is_visible = btrfs_feature_visible,
.attrs = btrfs_supported_feature_attrs,
};
static ssize_t rmdir_subvol_show(struct kobject *kobj,
struct kobj_attribute *ka, char *buf)
{
return sysfs_emit(buf, "0\n");
}
BTRFS_ATTR(static_feature, rmdir_subvol, rmdir_subvol_show);
static ssize_t supported_checksums_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
ssize_t ret = 0;
int i;
for (i = 0; i < btrfs_get_num_csums(); i++) {
/*
* This "trick" only works as long as 'enum btrfs_csum_type' has
* no holes in it
*/
ret += sysfs_emit_at(buf, ret, "%s%s", (i == 0 ? "" : " "),
btrfs_super_csum_name(i));
}
ret += sysfs_emit_at(buf, ret, "\n");
return ret;
}
BTRFS_ATTR(static_feature, supported_checksums, supported_checksums_show);
static ssize_t send_stream_version_show(struct kobject *kobj,
struct kobj_attribute *ka, char *buf)
{
return sysfs_emit(buf, "%d\n", BTRFS_SEND_STREAM_VERSION);
}
BTRFS_ATTR(static_feature, send_stream_version, send_stream_version_show);
static const char *rescue_opts[] = {
"usebackuproot",
"nologreplay",
"ignorebadroots",
"ignoredatacsums",
"ignoremetacsums",
"ignoresuperflags",
"all",
};
static ssize_t supported_rescue_options_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
ssize_t ret = 0;
int i;
for (i = 0; i < ARRAY_SIZE(rescue_opts); i++)
ret += sysfs_emit_at(buf, ret, "%s%s", (i ? " " : ""), rescue_opts[i]);
ret += sysfs_emit_at(buf, ret, "\n");
return ret;
}
BTRFS_ATTR(static_feature, supported_rescue_options,
supported_rescue_options_show);
static ssize_t supported_sectorsizes_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
ssize_t ret = 0;
/* An artificial limit to only support 4K and PAGE_SIZE */
if (PAGE_SIZE > SZ_4K)
ret += sysfs_emit_at(buf, ret, "%u ", SZ_4K);
ret += sysfs_emit_at(buf, ret, "%lu\n", PAGE_SIZE);
return ret;
}
BTRFS_ATTR(static_feature, supported_sectorsizes,
supported_sectorsizes_show);
static ssize_t acl_show(struct kobject *kobj, struct kobj_attribute *a, char *buf)
{
return sysfs_emit(buf, "%d\n", IS_ENABLED(CONFIG_BTRFS_FS_POSIX_ACL));
}
BTRFS_ATTR(static_feature, acl, acl_show);
static ssize_t temp_fsid_supported_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
return sysfs_emit(buf, "0\n");
}
BTRFS_ATTR(static_feature, temp_fsid, temp_fsid_supported_show);
/*
* Features which only depend on kernel version.
*
* These are listed in /sys/fs/btrfs/features along with
* btrfs_supported_feature_attrs.
*/
static struct attribute *btrfs_supported_static_feature_attrs[] = {
BTRFS_ATTR_PTR(static_feature, acl),
BTRFS_ATTR_PTR(static_feature, rmdir_subvol),
BTRFS_ATTR_PTR(static_feature, supported_checksums),
BTRFS_ATTR_PTR(static_feature, send_stream_version),
BTRFS_ATTR_PTR(static_feature, supported_rescue_options),
BTRFS_ATTR_PTR(static_feature, supported_sectorsizes),
BTRFS_ATTR_PTR(static_feature, temp_fsid),
NULL
};
static const struct attribute_group btrfs_static_feature_attr_group = {
.name = "features",
.attrs = btrfs_supported_static_feature_attrs,
};
/*
* Discard statistics and tunables
*/
#define discard_to_fs_info(_kobj) to_fs_info(get_btrfs_kobj(_kobj))
static ssize_t btrfs_discardable_bytes_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
return sysfs_emit(buf, "%lld\n",
atomic64_read(&fs_info->discard_ctl.discardable_bytes));
}
BTRFS_ATTR(discard, discardable_bytes, btrfs_discardable_bytes_show);
static ssize_t btrfs_discardable_extents_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
return sysfs_emit(buf, "%d\n",
atomic_read(&fs_info->discard_ctl.discardable_extents));
}
BTRFS_ATTR(discard, discardable_extents, btrfs_discardable_extents_show);
static ssize_t btrfs_discard_bitmap_bytes_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
return sysfs_emit(buf, "%llu\n",
fs_info->discard_ctl.discard_bitmap_bytes);
}
BTRFS_ATTR(discard, discard_bitmap_bytes, btrfs_discard_bitmap_bytes_show);
static ssize_t btrfs_discard_bytes_saved_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
return sysfs_emit(buf, "%lld\n",
atomic64_read(&fs_info->discard_ctl.discard_bytes_saved));
}
BTRFS_ATTR(discard, discard_bytes_saved, btrfs_discard_bytes_saved_show);
static ssize_t btrfs_discard_extent_bytes_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
return sysfs_emit(buf, "%llu\n",
fs_info->discard_ctl.discard_extent_bytes);
}
BTRFS_ATTR(discard, discard_extent_bytes, btrfs_discard_extent_bytes_show);
static ssize_t btrfs_discard_iops_limit_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
return sysfs_emit(buf, "%u\n",
READ_ONCE(fs_info->discard_ctl.iops_limit));
}
static ssize_t btrfs_discard_iops_limit_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
u32 iops_limit;
int ret;
ret = kstrtou32(buf, 10, &iops_limit);
if (ret)
return -EINVAL;
WRITE_ONCE(discard_ctl->iops_limit, iops_limit);
btrfs_discard_calc_delay(discard_ctl);
btrfs_discard_schedule_work(discard_ctl, true);
return len;
}
BTRFS_ATTR_RW(discard, iops_limit, btrfs_discard_iops_limit_show,
btrfs_discard_iops_limit_store);
static ssize_t btrfs_discard_kbps_limit_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
return sysfs_emit(buf, "%u\n",
READ_ONCE(fs_info->discard_ctl.kbps_limit));
}
static ssize_t btrfs_discard_kbps_limit_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
u32 kbps_limit;
int ret;
ret = kstrtou32(buf, 10, &kbps_limit);
if (ret)
return -EINVAL;
WRITE_ONCE(discard_ctl->kbps_limit, kbps_limit);
btrfs_discard_schedule_work(discard_ctl, true);
return len;
}
BTRFS_ATTR_RW(discard, kbps_limit, btrfs_discard_kbps_limit_show,
btrfs_discard_kbps_limit_store);
static ssize_t btrfs_discard_max_discard_size_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
return sysfs_emit(buf, "%llu\n",
READ_ONCE(fs_info->discard_ctl.max_discard_size));
}
static ssize_t btrfs_discard_max_discard_size_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_fs_info *fs_info = discard_to_fs_info(kobj);
struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
u64 max_discard_size;
int ret;
ret = kstrtou64(buf, 10, &max_discard_size);
if (ret)
return -EINVAL;
WRITE_ONCE(discard_ctl->max_discard_size, max_discard_size);
return len;
}
BTRFS_ATTR_RW(discard, max_discard_size, btrfs_discard_max_discard_size_show,
btrfs_discard_max_discard_size_store);
/*
* Per-filesystem stats for discard (when mounted with discard=async).
*
* Path: /sys/fs/btrfs/<uuid>/discard/
*/
static const struct attribute *discard_attrs[] = {
BTRFS_ATTR_PTR(discard, discardable_bytes),
BTRFS_ATTR_PTR(discard, discardable_extents),
BTRFS_ATTR_PTR(discard, discard_bitmap_bytes),
BTRFS_ATTR_PTR(discard, discard_bytes_saved),
BTRFS_ATTR_PTR(discard, discard_extent_bytes),
BTRFS_ATTR_PTR(discard, iops_limit),
BTRFS_ATTR_PTR(discard, kbps_limit),
BTRFS_ATTR_PTR(discard, max_discard_size),
NULL,
};
#ifdef CONFIG_BTRFS_DEBUG
/*
* Per-filesystem runtime debugging exported via sysfs.
*
* Path: /sys/fs/btrfs/UUID/debug/
*/
static const struct attribute *btrfs_debug_mount_attrs[] = {
NULL,
};
/*
* Runtime debugging exported via sysfs, applies to all mounted filesystems.
*
* Path: /sys/fs/btrfs/debug
*/
static struct attribute *btrfs_debug_feature_attrs[] = {
NULL
};
static const struct attribute_group btrfs_debug_feature_attr_group = {
.name = "debug",
.attrs = btrfs_debug_feature_attrs,
};
#endif
static ssize_t btrfs_show_u64(u64 *value_ptr, spinlock_t *lock, char *buf)
{
u64 val;
if (lock)
spin_lock(lock);
val = *value_ptr;
if (lock)
spin_unlock(lock);
return sysfs_emit(buf, "%llu\n", val);
}
static ssize_t global_rsv_size_show(struct kobject *kobj,
struct kobj_attribute *ka, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj->parent);
struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
return btrfs_show_u64(&block_rsv->size, &block_rsv->lock, buf);
}
BTRFS_ATTR(allocation, global_rsv_size, global_rsv_size_show);
static ssize_t global_rsv_reserved_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj->parent);
struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
return btrfs_show_u64(&block_rsv->reserved, &block_rsv->lock, buf);
}
BTRFS_ATTR(allocation, global_rsv_reserved, global_rsv_reserved_show);
#define to_space_info(_kobj) container_of(_kobj, struct btrfs_space_info, kobj)
#define to_raid_kobj(_kobj) container_of(_kobj, struct raid_kobject, kobj)
static ssize_t raid_bytes_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf);
BTRFS_ATTR(raid, total_bytes, raid_bytes_show);
BTRFS_ATTR(raid, used_bytes, raid_bytes_show);
static ssize_t raid_bytes_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct btrfs_space_info *sinfo = to_space_info(kobj->parent);
struct btrfs_block_group *block_group;
int index = btrfs_bg_flags_to_raid_index(to_raid_kobj(kobj)->flags);
u64 val = 0;
down_read(&sinfo->groups_sem);
list_for_each_entry(block_group, &sinfo->block_groups[index], list) {
if (&attr->attr == BTRFS_ATTR_PTR(raid, total_bytes))
val += block_group->length;
else
val += block_group->used;
}
up_read(&sinfo->groups_sem);
return sysfs_emit(buf, "%llu\n", val);
}
/*
* Allocation information about block group profiles.
*
* Path: /sys/fs/btrfs/<uuid>/allocation/<bg-type>/<bg-profile>/
*/
static struct attribute *raid_attrs[] = {
BTRFS_ATTR_PTR(raid, total_bytes),
BTRFS_ATTR_PTR(raid, used_bytes),
NULL
};
ATTRIBUTE_GROUPS(raid);
static void release_raid_kobj(struct kobject *kobj)
{
kfree(to_raid_kobj(kobj));
}
static const struct kobj_type btrfs_raid_ktype = {
.sysfs_ops = &kobj_sysfs_ops,
.release = release_raid_kobj,
.default_groups = raid_groups,
};
#define SPACE_INFO_ATTR(field) \
static ssize_t btrfs_space_info_show_##field(struct kobject *kobj, \
struct kobj_attribute *a, \
char *buf) \
{ \
struct btrfs_space_info *sinfo = to_space_info(kobj); \
return btrfs_show_u64(&sinfo->field, &sinfo->lock, buf); \
} \
BTRFS_ATTR(space_info, field, btrfs_space_info_show_##field)
static ssize_t btrfs_chunk_size_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_space_info *sinfo = to_space_info(kobj);
return sysfs_emit(buf, "%llu\n", READ_ONCE(sinfo->chunk_size));
}
/*
* Store new chunk size in space info. Can be called on a read-only filesystem.
*
* If the new chunk size value is larger than 10% of free space it is reduced
* to match that limit. Alignment must be to 256M and the system chunk size
* cannot be set.
*/
static ssize_t btrfs_chunk_size_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_space_info *space_info = to_space_info(kobj);
struct btrfs_fs_info *fs_info = to_fs_info(get_btrfs_kobj(kobj));
char *retptr;
u64 val;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!fs_info->fs_devices)
return -EINVAL;
if (btrfs_is_zoned(fs_info))
return -EINVAL;
/* System block type must not be changed. */
if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
return -EPERM;
val = memparse(buf, &retptr);
/* There could be trailing '\n', also catch any typos after the value */
retptr = skip_spaces(retptr);
if (*retptr != 0 || val == 0)
return -EINVAL;
val = min(val, BTRFS_MAX_DATA_CHUNK_SIZE);
/* Limit stripe size to 10% of available space. */
val = min(mult_perc(fs_info->fs_devices->total_rw_bytes, 10), val);
/* Must be multiple of 256M. */
val &= ~((u64)SZ_256M - 1);
/* Must be at least 256M. */
if (val < SZ_256M)
return -EINVAL;
btrfs_update_space_info_chunk_size(space_info, val);
return len;
}
static ssize_t btrfs_size_classes_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_space_info *sinfo = to_space_info(kobj);
struct btrfs_block_group *bg;
u32 none = 0;
u32 small = 0;
u32 medium = 0;
u32 large = 0;
for (int i = 0; i < BTRFS_NR_RAID_TYPES; ++i) {
down_read(&sinfo->groups_sem);
list_for_each_entry(bg, &sinfo->block_groups[i], list) {
if (!btrfs_block_group_should_use_size_class(bg))
continue;
switch (bg->size_class) {
case BTRFS_BG_SZ_NONE:
none++;
break;
case BTRFS_BG_SZ_SMALL:
small++;
break;
case BTRFS_BG_SZ_MEDIUM:
medium++;
break;
case BTRFS_BG_SZ_LARGE:
large++;
break;
}
}
up_read(&sinfo->groups_sem);
}
return sysfs_emit(buf, "none %u\n"
"small %u\n"
"medium %u\n"
"large %u\n",
none, small, medium, large);
}
#ifdef CONFIG_BTRFS_DEBUG
/*
* Request chunk allocation with current chunk size.
*/
static ssize_t btrfs_force_chunk_alloc_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_space_info *space_info = to_space_info(kobj);
struct btrfs_fs_info *fs_info = to_fs_info(get_btrfs_kobj(kobj));
struct btrfs_trans_handle *trans;
bool val;
int ret;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (sb_rdonly(fs_info->sb))
return -EROFS;
ret = kstrtobool(buf, &val);
if (ret)
return ret;
if (!val)
return -EINVAL;
/*
* This is unsafe to be called from sysfs context and may cause
* unexpected problems.
*/
trans = btrfs_start_transaction(fs_info->tree_root, 0);
if (IS_ERR(trans))
return PTR_ERR(trans);
ret = btrfs_force_chunk_alloc(trans, space_info->flags);
btrfs_end_transaction(trans);
if (ret == 1)
return len;
return -ENOSPC;
}
BTRFS_ATTR_W(space_info, force_chunk_alloc, btrfs_force_chunk_alloc_store);
#endif
SPACE_INFO_ATTR(flags);
SPACE_INFO_ATTR(total_bytes);
SPACE_INFO_ATTR(bytes_used);
SPACE_INFO_ATTR(bytes_pinned);
SPACE_INFO_ATTR(bytes_reserved);
SPACE_INFO_ATTR(bytes_may_use);
SPACE_INFO_ATTR(bytes_readonly);
SPACE_INFO_ATTR(bytes_zone_unusable);
SPACE_INFO_ATTR(disk_used);
SPACE_INFO_ATTR(disk_total);
SPACE_INFO_ATTR(reclaim_count);
SPACE_INFO_ATTR(reclaim_bytes);
SPACE_INFO_ATTR(reclaim_errors);
BTRFS_ATTR_RW(space_info, chunk_size, btrfs_chunk_size_show, btrfs_chunk_size_store);
BTRFS_ATTR(space_info, size_classes, btrfs_size_classes_show);
static ssize_t btrfs_sinfo_bg_reclaim_threshold_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_space_info *space_info = to_space_info(kobj);
ssize_t ret;
spin_lock(&space_info->lock);
ret = sysfs_emit(buf, "%d\n", btrfs_calc_reclaim_threshold(space_info));
spin_unlock(&space_info->lock);
return ret;
}
static ssize_t btrfs_sinfo_bg_reclaim_threshold_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_space_info *space_info = to_space_info(kobj);
int thresh;
int ret;
if (READ_ONCE(space_info->dynamic_reclaim))
return -EINVAL;
ret = kstrtoint(buf, 10, &thresh);
if (ret)
return ret;
if (thresh < 0 || thresh > 100)
return -EINVAL;
WRITE_ONCE(space_info->bg_reclaim_threshold, thresh);
return len;
}
BTRFS_ATTR_RW(space_info, bg_reclaim_threshold,
btrfs_sinfo_bg_reclaim_threshold_show,
btrfs_sinfo_bg_reclaim_threshold_store);
static ssize_t btrfs_sinfo_dynamic_reclaim_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_space_info *space_info = to_space_info(kobj);
return sysfs_emit(buf, "%d\n", READ_ONCE(space_info->dynamic_reclaim));
}
static ssize_t btrfs_sinfo_dynamic_reclaim_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_space_info *space_info = to_space_info(kobj);
int dynamic_reclaim;
int ret;
ret = kstrtoint(buf, 10, &dynamic_reclaim);
if (ret)
return ret;
if (dynamic_reclaim < 0)
return -EINVAL;
WRITE_ONCE(space_info->dynamic_reclaim, dynamic_reclaim != 0);
return len;
}
BTRFS_ATTR_RW(space_info, dynamic_reclaim,
btrfs_sinfo_dynamic_reclaim_show,
btrfs_sinfo_dynamic_reclaim_store);
static ssize_t btrfs_sinfo_periodic_reclaim_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_space_info *space_info = to_space_info(kobj);
return sysfs_emit(buf, "%d\n", READ_ONCE(space_info->periodic_reclaim));
}
static ssize_t btrfs_sinfo_periodic_reclaim_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_space_info *space_info = to_space_info(kobj);
int periodic_reclaim;
int ret;
ret = kstrtoint(buf, 10, &periodic_reclaim);
if (ret)
return ret;
if (periodic_reclaim < 0)
return -EINVAL;
WRITE_ONCE(space_info->periodic_reclaim, periodic_reclaim != 0);
return len;
}
BTRFS_ATTR_RW(space_info, periodic_reclaim,
btrfs_sinfo_periodic_reclaim_show,
btrfs_sinfo_periodic_reclaim_store);
/*
* Allocation information about block group types.
*
* Path: /sys/fs/btrfs/<uuid>/allocation/<bg-type>/
*/
static struct attribute *space_info_attrs[] = {
BTRFS_ATTR_PTR(space_info, flags),
BTRFS_ATTR_PTR(space_info, total_bytes),
BTRFS_ATTR_PTR(space_info, bytes_used),
BTRFS_ATTR_PTR(space_info, bytes_pinned),
BTRFS_ATTR_PTR(space_info, bytes_reserved),
BTRFS_ATTR_PTR(space_info, bytes_may_use),
BTRFS_ATTR_PTR(space_info, bytes_readonly),
BTRFS_ATTR_PTR(space_info, bytes_zone_unusable),
BTRFS_ATTR_PTR(space_info, disk_used),
BTRFS_ATTR_PTR(space_info, disk_total),
BTRFS_ATTR_PTR(space_info, bg_reclaim_threshold),
BTRFS_ATTR_PTR(space_info, dynamic_reclaim),
BTRFS_ATTR_PTR(space_info, chunk_size),
BTRFS_ATTR_PTR(space_info, size_classes),
BTRFS_ATTR_PTR(space_info, reclaim_count),
BTRFS_ATTR_PTR(space_info, reclaim_bytes),
BTRFS_ATTR_PTR(space_info, reclaim_errors),
BTRFS_ATTR_PTR(space_info, periodic_reclaim),
#ifdef CONFIG_BTRFS_DEBUG
BTRFS_ATTR_PTR(space_info, force_chunk_alloc),
#endif
NULL,
};
ATTRIBUTE_GROUPS(space_info);
static void space_info_release(struct kobject *kobj)
{
struct btrfs_space_info *sinfo = to_space_info(kobj);
kfree(sinfo);
}
static const struct kobj_type space_info_ktype = {
.sysfs_ops = &kobj_sysfs_ops,
.release = space_info_release,
.default_groups = space_info_groups,
};
/*
* Allocation information about block groups.
*
* Path: /sys/fs/btrfs/<uuid>/allocation/
*/
static const struct attribute *allocation_attrs[] = {
BTRFS_ATTR_PTR(allocation, global_rsv_reserved),
BTRFS_ATTR_PTR(allocation, global_rsv_size),
NULL,
};
static ssize_t btrfs_label_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
char *label = fs_info->super_copy->label;
ssize_t ret;
spin_lock(&fs_info->super_lock);
ret = sysfs_emit(buf, label[0] ? "%s\n" : "%s", label);
spin_unlock(&fs_info->super_lock);
return ret;
}
static ssize_t btrfs_label_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
size_t p_len;
if (!fs_info)
return -EPERM;
if (sb_rdonly(fs_info->sb))
return -EROFS;
/*
* p_len is the len until the first occurrence of either
* '\n' or '\0'
*/
p_len = strcspn(buf, "\n");
if (p_len >= BTRFS_LABEL_SIZE)
return -EINVAL;
spin_lock(&fs_info->super_lock);
memset(fs_info->super_copy->label, 0, BTRFS_LABEL_SIZE);
memcpy(fs_info->super_copy->label, buf, p_len);
spin_unlock(&fs_info->super_lock);
/*
* We don't want to do full transaction commit from inside sysfs
*/
set_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
wake_up_process(fs_info->transaction_kthread);
return len;
}
BTRFS_ATTR_RW(, label, btrfs_label_show, btrfs_label_store);
static ssize_t btrfs_nodesize_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
return sysfs_emit(buf, "%u\n", fs_info->super_copy->nodesize);
}
BTRFS_ATTR(, nodesize, btrfs_nodesize_show);
static ssize_t btrfs_sectorsize_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
return sysfs_emit(buf, "%u\n", fs_info->super_copy->sectorsize);
}
BTRFS_ATTR(, sectorsize, btrfs_sectorsize_show);
static ssize_t btrfs_commit_stats_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
return sysfs_emit(buf,
"commits %llu\n"
"last_commit_ms %llu\n"
"max_commit_ms %llu\n"
"total_commit_ms %llu\n",
fs_info->commit_stats.commit_count,
div_u64(fs_info->commit_stats.last_commit_dur, NSEC_PER_MSEC),
div_u64(fs_info->commit_stats.max_commit_dur, NSEC_PER_MSEC),
div_u64(fs_info->commit_stats.total_commit_dur, NSEC_PER_MSEC));
}
static ssize_t btrfs_commit_stats_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
unsigned long val;
int ret;
if (!fs_info)
return -EPERM;
if (!capable(CAP_SYS_RESOURCE))
return -EPERM;
ret = kstrtoul(buf, 10, &val);
if (ret)
return ret;
if (val)
return -EINVAL;
WRITE_ONCE(fs_info->commit_stats.max_commit_dur, 0);
return len;
}
BTRFS_ATTR_RW(, commit_stats, btrfs_commit_stats_show, btrfs_commit_stats_store);
static ssize_t btrfs_clone_alignment_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
return sysfs_emit(buf, "%u\n", fs_info->super_copy->sectorsize);
}
BTRFS_ATTR(, clone_alignment, btrfs_clone_alignment_show);
static ssize_t quota_override_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
int quota_override;
quota_override = test_bit(BTRFS_FS_QUOTA_OVERRIDE, &fs_info->flags);
return sysfs_emit(buf, "%d\n", quota_override);
}
static ssize_t quota_override_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
unsigned long knob;
int err;
if (!fs_info)
return -EPERM;
if (!capable(CAP_SYS_RESOURCE))
return -EPERM;
err = kstrtoul(buf, 10, &knob);
if (err)
return err;
if (knob > 1)
return -EINVAL;
if (knob)
set_bit(BTRFS_FS_QUOTA_OVERRIDE, &fs_info->flags);
else
clear_bit(BTRFS_FS_QUOTA_OVERRIDE, &fs_info->flags);
return len;
}
BTRFS_ATTR_RW(, quota_override, quota_override_show, quota_override_store);
static ssize_t btrfs_metadata_uuid_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
return sysfs_emit(buf, "%pU\n", fs_info->fs_devices->metadata_uuid);
}
BTRFS_ATTR(, metadata_uuid, btrfs_metadata_uuid_show);
static ssize_t btrfs_checksum_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
u16 csum_type = btrfs_super_csum_type(fs_info->super_copy);
return sysfs_emit(buf, "%s (%s)\n",
btrfs_super_csum_name(csum_type),
crypto_shash_driver_name(fs_info->csum_shash));
}
BTRFS_ATTR(, checksum, btrfs_checksum_show);
static ssize_t btrfs_exclusive_operation_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
const char *str;
switch (READ_ONCE(fs_info->exclusive_operation)) {
case BTRFS_EXCLOP_NONE:
str = "none\n";
break;
case BTRFS_EXCLOP_BALANCE:
str = "balance\n";
break;
case BTRFS_EXCLOP_BALANCE_PAUSED:
str = "balance paused\n";
break;
case BTRFS_EXCLOP_DEV_ADD:
str = "device add\n";
break;
case BTRFS_EXCLOP_DEV_REMOVE:
str = "device remove\n";
break;
case BTRFS_EXCLOP_DEV_REPLACE:
str = "device replace\n";
break;
case BTRFS_EXCLOP_RESIZE:
str = "resize\n";
break;
case BTRFS_EXCLOP_SWAP_ACTIVATE:
str = "swap activate\n";
break;
default:
str = "UNKNOWN\n";
break;
}
return sysfs_emit(buf, "%s", str);
}
BTRFS_ATTR(, exclusive_operation, btrfs_exclusive_operation_show);
static ssize_t btrfs_generation_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
return sysfs_emit(buf, "%llu\n", btrfs_get_fs_generation(fs_info));
}
BTRFS_ATTR(, generation, btrfs_generation_show);
static ssize_t btrfs_temp_fsid_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
return sysfs_emit(buf, "%d\n", fs_info->fs_devices->temp_fsid);
}
BTRFS_ATTR(, temp_fsid, btrfs_temp_fsid_show);
static const char * const btrfs_read_policy_name[] = { "pid" };
static ssize_t btrfs_read_policy_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_devices *fs_devices = to_fs_devs(kobj);
const enum btrfs_read_policy policy = READ_ONCE(fs_devices->read_policy);
ssize_t ret = 0;
int i;
for (i = 0; i < BTRFS_NR_READ_POLICY; i++) {
if (policy == i)
ret += sysfs_emit_at(buf, ret, "%s[%s]",
(ret == 0 ? "" : " "),
btrfs_read_policy_name[i]);
else
ret += sysfs_emit_at(buf, ret, "%s%s",
(ret == 0 ? "" : " "),
btrfs_read_policy_name[i]);
}
ret += sysfs_emit_at(buf, ret, "\n");
return ret;
}
static ssize_t btrfs_read_policy_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_fs_devices *fs_devices = to_fs_devs(kobj);
int i;
for (i = 0; i < BTRFS_NR_READ_POLICY; i++) {
if (sysfs_streq(buf, btrfs_read_policy_name[i])) {
if (i != READ_ONCE(fs_devices->read_policy)) {
WRITE_ONCE(fs_devices->read_policy, i);
btrfs_info(fs_devices->fs_info,
"read policy set to '%s'",
btrfs_read_policy_name[i]);
}
return len;
}
}
return -EINVAL;
}
BTRFS_ATTR_RW(, read_policy, btrfs_read_policy_show, btrfs_read_policy_store);
static ssize_t btrfs_bg_reclaim_threshold_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
return sysfs_emit(buf, "%d\n", READ_ONCE(fs_info->bg_reclaim_threshold));
}
static ssize_t btrfs_bg_reclaim_threshold_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_fs_info *fs_info = to_fs_info(kobj);
int thresh;
int ret;
ret = kstrtoint(buf, 10, &thresh);
if (ret)
return ret;
#ifdef CONFIG_BTRFS_DEBUG
if (thresh != 0 && (thresh > 100))
return -EINVAL;
#else
if (thresh != 0 && (thresh <= 50 || thresh > 100))
return -EINVAL;
#endif
WRITE_ONCE(fs_info->bg_reclaim_threshold, thresh);
return len;
}
BTRFS_ATTR_RW(, bg_reclaim_threshold, btrfs_bg_reclaim_threshold_show,
btrfs_bg_reclaim_threshold_store);
#ifdef CONFIG_BTRFS_DEBUG
static ssize_t btrfs_offload_csum_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_fs_devices *fs_devices = to_fs_devs(kobj);
switch (READ_ONCE(fs_devices->offload_csum_mode)) {
case BTRFS_OFFLOAD_CSUM_AUTO:
return sysfs_emit(buf, "auto\n");
case BTRFS_OFFLOAD_CSUM_FORCE_ON:
return sysfs_emit(buf, "1\n");
case BTRFS_OFFLOAD_CSUM_FORCE_OFF:
return sysfs_emit(buf, "0\n");
default:
WARN_ON(1);
return -EINVAL;
}
}
static ssize_t btrfs_offload_csum_store(struct kobject *kobj,
struct kobj_attribute *a, const char *buf,
size_t len)
{
struct btrfs_fs_devices *fs_devices = to_fs_devs(kobj);
int ret;
bool val;
ret = kstrtobool(buf, &val);
if (ret == 0)
WRITE_ONCE(fs_devices->offload_csum_mode,
val ? BTRFS_OFFLOAD_CSUM_FORCE_ON : BTRFS_OFFLOAD_CSUM_FORCE_OFF);
else if (ret == -EINVAL && sysfs_streq(buf, "auto"))
WRITE_ONCE(fs_devices->offload_csum_mode, BTRFS_OFFLOAD_CSUM_AUTO);
else
return -EINVAL;
return len;
}
BTRFS_ATTR_RW(, offload_csum, btrfs_offload_csum_show, btrfs_offload_csum_store);
#endif
/*
* Per-filesystem information and stats.
*
* Path: /sys/fs/btrfs/<uuid>/
*/
static const struct attribute *btrfs_attrs[] = {
BTRFS_ATTR_PTR(, label),
BTRFS_ATTR_PTR(, nodesize),
BTRFS_ATTR_PTR(, sectorsize),
BTRFS_ATTR_PTR(, clone_alignment),
BTRFS_ATTR_PTR(, quota_override),
BTRFS_ATTR_PTR(, metadata_uuid),
BTRFS_ATTR_PTR(, checksum),
BTRFS_ATTR_PTR(, exclusive_operation),
BTRFS_ATTR_PTR(, generation),
BTRFS_ATTR_PTR(, read_policy),
BTRFS_ATTR_PTR(, bg_reclaim_threshold),
BTRFS_ATTR_PTR(, commit_stats),
BTRFS_ATTR_PTR(, temp_fsid),
#ifdef CONFIG_BTRFS_DEBUG
BTRFS_ATTR_PTR(, offload_csum),
#endif
NULL,
};
static void btrfs_release_fsid_kobj(struct kobject *kobj)
{
struct btrfs_fs_devices *fs_devs = to_fs_devs(kobj);
memset(&fs_devs->fsid_kobj, 0, sizeof(struct kobject));
complete(&fs_devs->kobj_unregister);
}
static const struct kobj_type btrfs_ktype = {
.sysfs_ops = &kobj_sysfs_ops,
.release = btrfs_release_fsid_kobj,
};
static inline struct btrfs_fs_devices *to_fs_devs(struct kobject *kobj)
{
if (kobj->ktype != &btrfs_ktype)
return NULL;
return container_of(kobj, struct btrfs_fs_devices, fsid_kobj);
}
static inline struct btrfs_fs_info *to_fs_info(struct kobject *kobj)
{
if (kobj->ktype != &btrfs_ktype)
return NULL;
return to_fs_devs(kobj)->fs_info;
}
static struct kobject *get_btrfs_kobj(struct kobject *kobj)
{
while (kobj) {
if (kobj->ktype == &btrfs_ktype)
return kobj;
kobj = kobj->parent;
}
return NULL;
}
#define NUM_FEATURE_BITS 64
#define BTRFS_FEATURE_NAME_MAX 13
static char btrfs_unknown_feature_names[FEAT_MAX][NUM_FEATURE_BITS][BTRFS_FEATURE_NAME_MAX];
static struct btrfs_feature_attr btrfs_feature_attrs[FEAT_MAX][NUM_FEATURE_BITS];
static_assert(ARRAY_SIZE(btrfs_unknown_feature_names) ==
ARRAY_SIZE(btrfs_feature_attrs));
static_assert(ARRAY_SIZE(btrfs_unknown_feature_names[0]) ==
ARRAY_SIZE(btrfs_feature_attrs[0]));
static const u64 supported_feature_masks[FEAT_MAX] = {
[FEAT_COMPAT] = BTRFS_FEATURE_COMPAT_SUPP,
[FEAT_COMPAT_RO] = BTRFS_FEATURE_COMPAT_RO_SUPP,
[FEAT_INCOMPAT] = BTRFS_FEATURE_INCOMPAT_SUPP,
};
static int addrm_unknown_feature_attrs(struct btrfs_fs_info *fs_info, bool add)
{
int set;
for (set = 0; set < FEAT_MAX; set++) {
int i;
struct attribute *attrs[2];
struct attribute_group agroup = {
.name = "features",
.attrs = attrs,
};
u64 features = get_features(fs_info, set);
features &= ~supported_feature_masks[set];
if (!features)
continue;
attrs[1] = NULL;
for (i = 0; i < NUM_FEATURE_BITS; i++) {
struct btrfs_feature_attr *fa;
if (!(features & (1ULL << i)))
continue;
fa = &btrfs_feature_attrs[set][i];
attrs[0] = &fa->kobj_attr.attr;
if (add) {
int ret;
ret = sysfs_merge_group(&fs_info->fs_devices->fsid_kobj,
&agroup);
if (ret)
return ret;
} else
sysfs_unmerge_group(&fs_info->fs_devices->fsid_kobj,
&agroup);
}
}
return 0;
}
static void __btrfs_sysfs_remove_fsid(struct btrfs_fs_devices *fs_devs)
{
if (fs_devs->devinfo_kobj) {
kobject_del(fs_devs->devinfo_kobj);
kobject_put(fs_devs->devinfo_kobj);
fs_devs->devinfo_kobj = NULL;
}
if (fs_devs->devices_kobj) {
kobject_del(fs_devs->devices_kobj);
kobject_put(fs_devs->devices_kobj);
fs_devs->devices_kobj = NULL;
}
if (fs_devs->fsid_kobj.state_initialized) {
kobject_del(&fs_devs->fsid_kobj);
kobject_put(&fs_devs->fsid_kobj);
wait_for_completion(&fs_devs->kobj_unregister);
}
}
/* when fs_devs is NULL it will remove all fsid kobject */
void btrfs_sysfs_remove_fsid(struct btrfs_fs_devices *fs_devs)
{
struct list_head *fs_uuids = btrfs_get_fs_uuids();
if (fs_devs) {
__btrfs_sysfs_remove_fsid(fs_devs);
return;
}
list_for_each_entry(fs_devs, fs_uuids, fs_list) {
__btrfs_sysfs_remove_fsid(fs_devs);
}
}
static void btrfs_sysfs_remove_fs_devices(struct btrfs_fs_devices *fs_devices)
{
struct btrfs_device *device;
struct btrfs_fs_devices *seed;
list_for_each_entry(device, &fs_devices->devices, dev_list)
btrfs_sysfs_remove_device(device);
list_for_each_entry(seed, &fs_devices->seed_list, seed_list) {
list_for_each_entry(device, &seed->devices, dev_list)
btrfs_sysfs_remove_device(device);
}
}
void btrfs_sysfs_remove_mounted(struct btrfs_fs_info *fs_info)
{
struct kobject *fsid_kobj = &fs_info->fs_devices->fsid_kobj;
sysfs_remove_link(fsid_kobj, "bdi");
if (fs_info->space_info_kobj) {
sysfs_remove_files(fs_info->space_info_kobj, allocation_attrs);
kobject_del(fs_info->space_info_kobj);
kobject_put(fs_info->space_info_kobj);
}
if (fs_info->discard_kobj) {
sysfs_remove_files(fs_info->discard_kobj, discard_attrs);
kobject_del(fs_info->discard_kobj);
kobject_put(fs_info->discard_kobj);
}
#ifdef CONFIG_BTRFS_DEBUG
if (fs_info->debug_kobj) {
sysfs_remove_files(fs_info->debug_kobj, btrfs_debug_mount_attrs);
kobject_del(fs_info->debug_kobj);
kobject_put(fs_info->debug_kobj);
}
#endif
addrm_unknown_feature_attrs(fs_info, false);
sysfs_remove_group(fsid_kobj, &btrfs_feature_attr_group);
sysfs_remove_files(fsid_kobj, btrfs_attrs);
btrfs_sysfs_remove_fs_devices(fs_info->fs_devices);
}
static const char * const btrfs_feature_set_names[FEAT_MAX] = {
[FEAT_COMPAT] = "compat",
[FEAT_COMPAT_RO] = "compat_ro",
[FEAT_INCOMPAT] = "incompat",
};
const char *btrfs_feature_set_name(enum btrfs_feature_set set)
{
return btrfs_feature_set_names[set];
}
char *btrfs_printable_features(enum btrfs_feature_set set, u64 flags)
{
size_t bufsize = 4096; /* safe max, 64 names * 64 bytes */
int len = 0;
int i;
char *str;
str = kmalloc(bufsize, GFP_KERNEL);
if (!str)
return str;
for (i = 0; i < ARRAY_SIZE(btrfs_feature_attrs[set]); i++) {
const char *name;
if (!(flags & (1ULL << i)))
continue;
name = btrfs_feature_attrs[set][i].kobj_attr.attr.name;
len += scnprintf(str + len, bufsize - len, "%s%s",
len ? "," : "", name);
}
return str;
}
static void init_feature_attrs(void)
{
struct btrfs_feature_attr *fa;
int set, i;
memset(btrfs_feature_attrs, 0, sizeof(btrfs_feature_attrs));
memset(btrfs_unknown_feature_names, 0,
sizeof(btrfs_unknown_feature_names));
for (i = 0; btrfs_supported_feature_attrs[i]; i++) {
struct btrfs_feature_attr *sfa;
struct attribute *a = btrfs_supported_feature_attrs[i];
int bit;
sfa = attr_to_btrfs_feature_attr(a);
bit = ilog2(sfa->feature_bit);
fa = &btrfs_feature_attrs[sfa->feature_set][bit];
fa->kobj_attr.attr.name = sfa->kobj_attr.attr.name;
}
for (set = 0; set < FEAT_MAX; set++) {
for (i = 0; i < ARRAY_SIZE(btrfs_feature_attrs[set]); i++) {
char *name = btrfs_unknown_feature_names[set][i];
fa = &btrfs_feature_attrs[set][i];
if (fa->kobj_attr.attr.name)
continue;
snprintf(name, BTRFS_FEATURE_NAME_MAX, "%s:%u",
btrfs_feature_set_names[set], i);
fa->kobj_attr.attr.name = name;
fa->kobj_attr.attr.mode = S_IRUGO;
fa->feature_set = set;
fa->feature_bit = 1ULL << i;
}
}
}
/*
* Create a sysfs entry for a given block group type at path
* /sys/fs/btrfs/UUID/allocation/data/TYPE
*/
void btrfs_sysfs_add_block_group_type(struct btrfs_block_group *cache)
{
struct btrfs_fs_info *fs_info = cache->fs_info;
struct btrfs_space_info *space_info = cache->space_info;
struct raid_kobject *rkobj;
const int index = btrfs_bg_flags_to_raid_index(cache->flags);
unsigned int nofs_flag;
int ret;
/*
* Setup a NOFS context because kobject_add(), deep in its call chain,
* does GFP_KERNEL allocations, and we are often called in a context
* where if reclaim is triggered we can deadlock (we are either holding
* a transaction handle or some lock required for a transaction
* commit).
*/
nofs_flag = memalloc_nofs_save();
rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
if (!rkobj) {
memalloc_nofs_restore(nofs_flag);
btrfs_warn(cache->fs_info,
"couldn't alloc memory for raid level kobject");
return;
}
rkobj->flags = cache->flags;
kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
/*
* We call this either on mount, or if we've created a block group for a
* new index type while running (i.e. when restriping). The running
* case is tricky because we could race with other threads, so we need
* to have this check to make sure we didn't already init the kobject.
*
* We don't have to protect on the free side because it only happens on
* unmount.
*/
spin_lock(&space_info->lock);
if (space_info->block_group_kobjs[index]) {
spin_unlock(&space_info->lock);
kobject_put(&rkobj->kobj);
return;
} else {
space_info->block_group_kobjs[index] = &rkobj->kobj;
}
spin_unlock(&space_info->lock);
ret = kobject_add(&rkobj->kobj, &space_info->kobj, "%s",
btrfs_bg_type_to_raid_name(rkobj->flags));
memalloc_nofs_restore(nofs_flag);
if (ret) {
spin_lock(&space_info->lock);
space_info->block_group_kobjs[index] = NULL;
spin_unlock(&space_info->lock);
kobject_put(&rkobj->kobj);
btrfs_warn(fs_info,
"failed to add kobject for block cache, ignoring");
return;
}
}
/*
* Remove sysfs directories for all block group types of a given space info and
* the space info as well
*/
void btrfs_sysfs_remove_space_info(struct btrfs_space_info *space_info)
{
int i;
for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
struct kobject *kobj;
kobj = space_info->block_group_kobjs[i];
space_info->block_group_kobjs[i] = NULL;
if (kobj) {
kobject_del(kobj);
kobject_put(kobj);
}
}
kobject_del(&space_info->kobj);
kobject_put(&space_info->kobj);
}
static const char *alloc_name(u64 flags)
{
switch (flags) {
case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
return "mixed";
case BTRFS_BLOCK_GROUP_METADATA:
return "metadata";
case BTRFS_BLOCK_GROUP_DATA:
return "data";
case BTRFS_BLOCK_GROUP_SYSTEM:
return "system";
default:
WARN_ON(1);
return "invalid-combination";
}
}
/*
* Create a sysfs entry for a space info type at path
* /sys/fs/btrfs/UUID/allocation/TYPE
*/
int btrfs_sysfs_add_space_info_type(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info)
{
int ret;
ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
fs_info->space_info_kobj, "%s",
alloc_name(space_info->flags));
if (ret) {
kobject_put(&space_info->kobj);
return ret;
}
return 0;
}
void btrfs_sysfs_remove_device(struct btrfs_device *device)
{
struct kobject *devices_kobj;
/*
* Seed fs_devices devices_kobj aren't used, fetch kobject from the
* fs_info::fs_devices.
*/
devices_kobj = device->fs_info->fs_devices->devices_kobj;
ASSERT(devices_kobj);
if (device->bdev)
sysfs_remove_link(devices_kobj, bdev_kobj(device->bdev)->name);
if (device->devid_kobj.state_initialized) {
kobject_del(&device->devid_kobj);
kobject_put(&device->devid_kobj);
wait_for_completion(&device->kobj_unregister);
}
}
static ssize_t btrfs_devinfo_in_fs_metadata_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
int val;
struct btrfs_device *device = container_of(kobj, struct btrfs_device,
devid_kobj);
val = !!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
return sysfs_emit(buf, "%d\n", val);
}
BTRFS_ATTR(devid, in_fs_metadata, btrfs_devinfo_in_fs_metadata_show);
static ssize_t btrfs_devinfo_missing_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
int val;
struct btrfs_device *device = container_of(kobj, struct btrfs_device,
devid_kobj);
val = !!test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
return sysfs_emit(buf, "%d\n", val);
}
BTRFS_ATTR(devid, missing, btrfs_devinfo_missing_show);
static ssize_t btrfs_devinfo_replace_target_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
int val;
struct btrfs_device *device = container_of(kobj, struct btrfs_device,
devid_kobj);
val = !!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
return sysfs_emit(buf, "%d\n", val);
}
BTRFS_ATTR(devid, replace_target, btrfs_devinfo_replace_target_show);
static ssize_t btrfs_devinfo_scrub_speed_max_show(struct kobject *kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_device *device = container_of(kobj, struct btrfs_device,
devid_kobj);
return sysfs_emit(buf, "%llu\n", READ_ONCE(device->scrub_speed_max));
}
static ssize_t btrfs_devinfo_scrub_speed_max_store(struct kobject *kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_device *device = container_of(kobj, struct btrfs_device,
devid_kobj);
char *endptr;
unsigned long long limit;
limit = memparse(buf, &endptr);
/* There could be trailing '\n', also catch any typos after the value. */
endptr = skip_spaces(endptr);
if (*endptr != 0)
return -EINVAL;
WRITE_ONCE(device->scrub_speed_max, limit);
return len;
}
BTRFS_ATTR_RW(devid, scrub_speed_max, btrfs_devinfo_scrub_speed_max_show,
btrfs_devinfo_scrub_speed_max_store);
static ssize_t btrfs_devinfo_writeable_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
int val;
struct btrfs_device *device = container_of(kobj, struct btrfs_device,
devid_kobj);
val = !!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
return sysfs_emit(buf, "%d\n", val);
}
BTRFS_ATTR(devid, writeable, btrfs_devinfo_writeable_show);
static ssize_t btrfs_devinfo_fsid_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_device *device = container_of(kobj, struct btrfs_device,
devid_kobj);
return sysfs_emit(buf, "%pU\n", device->fs_devices->fsid);
}
BTRFS_ATTR(devid, fsid, btrfs_devinfo_fsid_show);
static ssize_t btrfs_devinfo_error_stats_show(struct kobject *kobj,
struct kobj_attribute *a, char *buf)
{
struct btrfs_device *device = container_of(kobj, struct btrfs_device,
devid_kobj);
if (!device->dev_stats_valid)
return sysfs_emit(buf, "invalid\n");
/*
* Print all at once so we get a snapshot of all values from the same
* time. Keep them in sync and in order of definition of
* btrfs_dev_stat_values.
*/
return sysfs_emit(buf,
"write_errs %d\n"
"read_errs %d\n"
"flush_errs %d\n"
"corruption_errs %d\n"
"generation_errs %d\n",
btrfs_dev_stat_read(device, BTRFS_DEV_STAT_WRITE_ERRS),
btrfs_dev_stat_read(device, BTRFS_DEV_STAT_READ_ERRS),
btrfs_dev_stat_read(device, BTRFS_DEV_STAT_FLUSH_ERRS),
btrfs_dev_stat_read(device, BTRFS_DEV_STAT_CORRUPTION_ERRS),
btrfs_dev_stat_read(device, BTRFS_DEV_STAT_GENERATION_ERRS));
}
BTRFS_ATTR(devid, error_stats, btrfs_devinfo_error_stats_show);
/*
* Information about one device.
*
* Path: /sys/fs/btrfs/<uuid>/devinfo/<devid>/
*/
static struct attribute *devid_attrs[] = {
BTRFS_ATTR_PTR(devid, error_stats),
BTRFS_ATTR_PTR(devid, fsid),
BTRFS_ATTR_PTR(devid, in_fs_metadata),
BTRFS_ATTR_PTR(devid, missing),
BTRFS_ATTR_PTR(devid, replace_target),
BTRFS_ATTR_PTR(devid, scrub_speed_max),
BTRFS_ATTR_PTR(devid, writeable),
NULL
};
ATTRIBUTE_GROUPS(devid);
static void btrfs_release_devid_kobj(struct kobject *kobj)
{
struct btrfs_device *device = container_of(kobj, struct btrfs_device,
devid_kobj);
memset(&device->devid_kobj, 0, sizeof(struct kobject));
complete(&device->kobj_unregister);
}
static const struct kobj_type devid_ktype = {
.sysfs_ops = &kobj_sysfs_ops,
.default_groups = devid_groups,
.release = btrfs_release_devid_kobj,
};
int btrfs_sysfs_add_device(struct btrfs_device *device)
{
int ret;
unsigned int nofs_flag;
struct kobject *devices_kobj;
struct kobject *devinfo_kobj;
/*
* Make sure we use the fs_info::fs_devices to fetch the kobjects even
* for the seed fs_devices
*/
devices_kobj = device->fs_info->fs_devices->devices_kobj;
devinfo_kobj = device->fs_info->fs_devices->devinfo_kobj;
ASSERT(devices_kobj);
ASSERT(devinfo_kobj);
nofs_flag = memalloc_nofs_save();
if (device->bdev) {
struct kobject *disk_kobj = bdev_kobj(device->bdev);
ret = sysfs_create_link(devices_kobj, disk_kobj, disk_kobj->name);
if (ret) {
btrfs_warn(device->fs_info,
"creating sysfs device link for devid %llu failed: %d",
device->devid, ret);
goto out;
}
}
init_completion(&device->kobj_unregister);
ret = kobject_init_and_add(&device->devid_kobj, &devid_ktype,
devinfo_kobj, "%llu", device->devid);
if (ret) {
kobject_put(&device->devid_kobj);
btrfs_warn(device->fs_info,
"devinfo init for devid %llu failed: %d",
device->devid, ret);
}
out:
memalloc_nofs_restore(nofs_flag);
return ret;
}
static int btrfs_sysfs_add_fs_devices(struct btrfs_fs_devices *fs_devices)
{
int ret;
struct btrfs_device *device;
struct btrfs_fs_devices *seed;
list_for_each_entry(device, &fs_devices->devices, dev_list) {
ret = btrfs_sysfs_add_device(device);
if (ret)
goto fail;
}
list_for_each_entry(seed, &fs_devices->seed_list, seed_list) {
list_for_each_entry(device, &seed->devices, dev_list) {
ret = btrfs_sysfs_add_device(device);
if (ret)
goto fail;
}
}
return 0;
fail:
btrfs_sysfs_remove_fs_devices(fs_devices);
return ret;
}
void btrfs_kobject_uevent(struct block_device *bdev, enum kobject_action action)
{
int ret;
ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
if (ret)
pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
action, kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
&disk_to_dev(bdev->bd_disk)->kobj);
}
void btrfs_sysfs_update_sprout_fsid(struct btrfs_fs_devices *fs_devices)
{
char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
/*
* Sprouting changes fsid of the mounted filesystem, rename the fsid
* directory
*/
snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", fs_devices->fsid);
if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
btrfs_warn(fs_devices->fs_info,
"sysfs: failed to create fsid for sprout");
}
void btrfs_sysfs_update_devid(struct btrfs_device *device)
{
char tmp[24];
snprintf(tmp, sizeof(tmp), "%llu", device->devid);
if (kobject_rename(&device->devid_kobj, tmp))
btrfs_warn(device->fs_devices->fs_info,
"sysfs: failed to update devid for %llu",
device->devid);
}
/* /sys/fs/btrfs/ entry */
static struct kset *btrfs_kset;
/*
* Creates:
* /sys/fs/btrfs/UUID
*
* Can be called by the device discovery thread.
*/
int btrfs_sysfs_add_fsid(struct btrfs_fs_devices *fs_devs)
{
int error;
init_completion(&fs_devs->kobj_unregister);
fs_devs->fsid_kobj.kset = btrfs_kset;
error = kobject_init_and_add(&fs_devs->fsid_kobj, &btrfs_ktype, NULL,
"%pU", fs_devs->fsid);
if (error) {
kobject_put(&fs_devs->fsid_kobj);
return error;
}
fs_devs->devices_kobj = kobject_create_and_add("devices",
&fs_devs->fsid_kobj);
if (!fs_devs->devices_kobj) {
btrfs_err(fs_devs->fs_info,
"failed to init sysfs device interface");
btrfs_sysfs_remove_fsid(fs_devs);
return -ENOMEM;
}
fs_devs->devinfo_kobj = kobject_create_and_add("devinfo",
&fs_devs->fsid_kobj);
if (!fs_devs->devinfo_kobj) {
btrfs_err(fs_devs->fs_info,
"failed to init sysfs devinfo kobject");
btrfs_sysfs_remove_fsid(fs_devs);
return -ENOMEM;
}
return 0;
}
int btrfs_sysfs_add_mounted(struct btrfs_fs_info *fs_info)
{
int error;
struct btrfs_fs_devices *fs_devs = fs_info->fs_devices;
struct kobject *fsid_kobj = &fs_devs->fsid_kobj;
error = btrfs_sysfs_add_fs_devices(fs_devs);
if (error)
return error;
error = sysfs_create_files(fsid_kobj, btrfs_attrs);
if (error) {
btrfs_sysfs_remove_fs_devices(fs_devs);
return error;
}
error = sysfs_create_group(fsid_kobj,
&btrfs_feature_attr_group);
if (error)
goto failure;
#ifdef CONFIG_BTRFS_DEBUG
fs_info->debug_kobj = kobject_create_and_add("debug", fsid_kobj);
if (!fs_info->debug_kobj) {
error = -ENOMEM;
goto failure;
}
error = sysfs_create_files(fs_info->debug_kobj, btrfs_debug_mount_attrs);
if (error)
goto failure;
#endif
/* Discard directory */
fs_info->discard_kobj = kobject_create_and_add("discard", fsid_kobj);
if (!fs_info->discard_kobj) {
error = -ENOMEM;
goto failure;
}
error = sysfs_create_files(fs_info->discard_kobj, discard_attrs);
if (error)
goto failure;
error = addrm_unknown_feature_attrs(fs_info, true);
if (error)
goto failure;
error = sysfs_create_link(fsid_kobj, &fs_info->sb->s_bdi->dev->kobj, "bdi");
if (error)
goto failure;
fs_info->space_info_kobj = kobject_create_and_add("allocation",
fsid_kobj);
if (!fs_info->space_info_kobj) {
error = -ENOMEM;
goto failure;
}
error = sysfs_create_files(fs_info->space_info_kobj, allocation_attrs);
if (error)
goto failure;
return 0;
failure:
btrfs_sysfs_remove_mounted(fs_info);
return error;
}
static ssize_t qgroup_enabled_show(struct kobject *qgroups_kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(qgroups_kobj->parent);
bool enabled;
spin_lock(&fs_info->qgroup_lock);
enabled = fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_ON;
spin_unlock(&fs_info->qgroup_lock);
return sysfs_emit(buf, "%d\n", enabled);
}
BTRFS_ATTR(qgroups, enabled, qgroup_enabled_show);
static ssize_t qgroup_mode_show(struct kobject *qgroups_kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(qgroups_kobj->parent);
ssize_t ret = 0;
spin_lock(&fs_info->qgroup_lock);
ASSERT(btrfs_qgroup_enabled(fs_info));
switch (btrfs_qgroup_mode(fs_info)) {
case BTRFS_QGROUP_MODE_FULL:
ret = sysfs_emit(buf, "qgroup\n");
break;
case BTRFS_QGROUP_MODE_SIMPLE:
ret = sysfs_emit(buf, "squota\n");
break;
default:
btrfs_warn(fs_info, "unexpected qgroup mode %d\n",
btrfs_qgroup_mode(fs_info));
break;
}
spin_unlock(&fs_info->qgroup_lock);
return ret;
}
BTRFS_ATTR(qgroups, mode, qgroup_mode_show);
static ssize_t qgroup_inconsistent_show(struct kobject *qgroups_kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(qgroups_kobj->parent);
bool inconsistent;
spin_lock(&fs_info->qgroup_lock);
inconsistent = (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT);
spin_unlock(&fs_info->qgroup_lock);
return sysfs_emit(buf, "%d\n", inconsistent);
}
BTRFS_ATTR(qgroups, inconsistent, qgroup_inconsistent_show);
static ssize_t qgroup_drop_subtree_thres_show(struct kobject *qgroups_kobj,
struct kobj_attribute *a,
char *buf)
{
struct btrfs_fs_info *fs_info = to_fs_info(qgroups_kobj->parent);
u8 result;
spin_lock(&fs_info->qgroup_lock);
result = fs_info->qgroup_drop_subtree_thres;
spin_unlock(&fs_info->qgroup_lock);
return sysfs_emit(buf, "%d\n", result);
}
static ssize_t qgroup_drop_subtree_thres_store(struct kobject *qgroups_kobj,
struct kobj_attribute *a,
const char *buf, size_t len)
{
struct btrfs_fs_info *fs_info = to_fs_info(qgroups_kobj->parent);
u8 new_thres;
int ret;
ret = kstrtou8(buf, 10, &new_thres);
if (ret)
return -EINVAL;
if (new_thres > BTRFS_MAX_LEVEL)
return -EINVAL;
spin_lock(&fs_info->qgroup_lock);
fs_info->qgroup_drop_subtree_thres = new_thres;
spin_unlock(&fs_info->qgroup_lock);
return len;
}
BTRFS_ATTR_RW(qgroups, drop_subtree_threshold, qgroup_drop_subtree_thres_show,
qgroup_drop_subtree_thres_store);
/*
* Qgroups global info
*
* Path: /sys/fs/btrfs/<uuid>/qgroups/
*/
static struct attribute *qgroups_attrs[] = {
BTRFS_ATTR_PTR(qgroups, enabled),
BTRFS_ATTR_PTR(qgroups, inconsistent),
BTRFS_ATTR_PTR(qgroups, drop_subtree_threshold),
BTRFS_ATTR_PTR(qgroups, mode),
NULL
};
ATTRIBUTE_GROUPS(qgroups);
static void qgroups_release(struct kobject *kobj)
{
kfree(kobj);
}
static const struct kobj_type qgroups_ktype = {
.sysfs_ops = &kobj_sysfs_ops,
.default_groups = qgroups_groups,
.release = qgroups_release,
};
static inline struct btrfs_fs_info *qgroup_kobj_to_fs_info(struct kobject *kobj)
{
return to_fs_info(kobj->parent->parent);
}
#define QGROUP_ATTR(_member, _show_name) \
static ssize_t btrfs_qgroup_show_##_member(struct kobject *qgroup_kobj, \
struct kobj_attribute *a, \
char *buf) \
{ \
struct btrfs_fs_info *fs_info = qgroup_kobj_to_fs_info(qgroup_kobj); \
struct btrfs_qgroup *qgroup = container_of(qgroup_kobj, \
struct btrfs_qgroup, kobj); \
return btrfs_show_u64(&qgroup->_member, &fs_info->qgroup_lock, buf); \
} \
BTRFS_ATTR(qgroup, _show_name, btrfs_qgroup_show_##_member)
#define QGROUP_RSV_ATTR(_name, _type) \
static ssize_t btrfs_qgroup_rsv_show_##_name(struct kobject *qgroup_kobj, \
struct kobj_attribute *a, \
char *buf) \
{ \
struct btrfs_fs_info *fs_info = qgroup_kobj_to_fs_info(qgroup_kobj); \
struct btrfs_qgroup *qgroup = container_of(qgroup_kobj, \
struct btrfs_qgroup, kobj); \
return btrfs_show_u64(&qgroup->rsv.values[_type], \
&fs_info->qgroup_lock, buf); \
} \
BTRFS_ATTR(qgroup, rsv_##_name, btrfs_qgroup_rsv_show_##_name)
QGROUP_ATTR(rfer, referenced);
QGROUP_ATTR(excl, exclusive);
QGROUP_ATTR(max_rfer, max_referenced);
QGROUP_ATTR(max_excl, max_exclusive);
QGROUP_ATTR(lim_flags, limit_flags);
QGROUP_RSV_ATTR(data, BTRFS_QGROUP_RSV_DATA);
QGROUP_RSV_ATTR(meta_pertrans, BTRFS_QGROUP_RSV_META_PERTRANS);
QGROUP_RSV_ATTR(meta_prealloc, BTRFS_QGROUP_RSV_META_PREALLOC);
/*
* Qgroup information.
*
* Path: /sys/fs/btrfs/<uuid>/qgroups/<level>_<qgroupid>/
*/
static struct attribute *qgroup_attrs[] = {
BTRFS_ATTR_PTR(qgroup, referenced),
BTRFS_ATTR_PTR(qgroup, exclusive),
BTRFS_ATTR_PTR(qgroup, max_referenced),
BTRFS_ATTR_PTR(qgroup, max_exclusive),
BTRFS_ATTR_PTR(qgroup, limit_flags),
BTRFS_ATTR_PTR(qgroup, rsv_data),
BTRFS_ATTR_PTR(qgroup, rsv_meta_pertrans),
BTRFS_ATTR_PTR(qgroup, rsv_meta_prealloc),
NULL
};
ATTRIBUTE_GROUPS(qgroup);
static void qgroup_release(struct kobject *kobj)
{
struct btrfs_qgroup *qgroup = container_of(kobj, struct btrfs_qgroup, kobj);
memset(&qgroup->kobj, 0, sizeof(*kobj));
}
static const struct kobj_type qgroup_ktype = {
.sysfs_ops = &kobj_sysfs_ops,
.release = qgroup_release,
.default_groups = qgroup_groups,
};
int btrfs_sysfs_add_one_qgroup(struct btrfs_fs_info *fs_info,
struct btrfs_qgroup *qgroup)
{
struct kobject *qgroups_kobj = fs_info->qgroups_kobj;
int ret;
if (btrfs_is_testing(fs_info))
return 0;
if (qgroup->kobj.state_initialized)
return 0;
if (!qgroups_kobj)
return -EINVAL;
ret = kobject_init_and_add(&qgroup->kobj, &qgroup_ktype, qgroups_kobj,
"%hu_%llu", btrfs_qgroup_level(qgroup->qgroupid),
btrfs_qgroup_subvolid(qgroup->qgroupid));
if (ret < 0)
kobject_put(&qgroup->kobj);
return ret;
}
void btrfs_sysfs_del_qgroups(struct btrfs_fs_info *fs_info)
{
struct btrfs_qgroup *qgroup;
struct btrfs_qgroup *next;
if (btrfs_is_testing(fs_info))
return;
rbtree_postorder_for_each_entry_safe(qgroup, next,
&fs_info->qgroup_tree, node)
btrfs_sysfs_del_one_qgroup(fs_info, qgroup);
if (fs_info->qgroups_kobj) {
kobject_del(fs_info->qgroups_kobj);
kobject_put(fs_info->qgroups_kobj);
fs_info->qgroups_kobj = NULL;
}
}
/* Called when qgroups get initialized, thus there is no need for locking */
int btrfs_sysfs_add_qgroups(struct btrfs_fs_info *fs_info)
{
struct kobject *fsid_kobj = &fs_info->fs_devices->fsid_kobj;
struct btrfs_qgroup *qgroup;
struct btrfs_qgroup *next;
int ret = 0;
if (btrfs_is_testing(fs_info))
return 0;
ASSERT(fsid_kobj);
if (fs_info->qgroups_kobj)
return 0;
fs_info->qgroups_kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (!fs_info->qgroups_kobj)
return -ENOMEM;
ret = kobject_init_and_add(fs_info->qgroups_kobj, &qgroups_ktype,
fsid_kobj, "qgroups");
if (ret < 0)
goto out;
rbtree_postorder_for_each_entry_safe(qgroup, next,
&fs_info->qgroup_tree, node) {
ret = btrfs_sysfs_add_one_qgroup(fs_info, qgroup);
if (ret < 0)
goto out;
}
out:
if (ret < 0)
btrfs_sysfs_del_qgroups(fs_info);
return ret;
}
void btrfs_sysfs_del_one_qgroup(struct btrfs_fs_info *fs_info,
struct btrfs_qgroup *qgroup)
{
if (btrfs_is_testing(fs_info))
return;
if (qgroup->kobj.state_initialized) {
kobject_del(&qgroup->kobj);
kobject_put(&qgroup->kobj);
}
}
/*
* Change per-fs features in /sys/fs/btrfs/UUID/features to match current
* values in superblock. Call after any changes to incompat/compat_ro flags
*/
void btrfs_sysfs_feature_update(struct btrfs_fs_info *fs_info)
{
struct kobject *fsid_kobj;
int ret;
if (!fs_info)
return;
fsid_kobj = &fs_info->fs_devices->fsid_kobj;
if (!fsid_kobj->state_initialized)
return;
ret = sysfs_update_group(fsid_kobj, &btrfs_feature_attr_group);
if (ret < 0)
btrfs_warn(fs_info,
"failed to update /sys/fs/btrfs/%pU/features: %d",
fs_info->fs_devices->fsid, ret);
}
int __init btrfs_init_sysfs(void)
{
int ret;
btrfs_kset = kset_create_and_add("btrfs", NULL, fs_kobj);
if (!btrfs_kset)
return -ENOMEM;
init_feature_attrs();
ret = sysfs_create_group(&btrfs_kset->kobj, &btrfs_feature_attr_group);
if (ret)
goto out2;
ret = sysfs_merge_group(&btrfs_kset->kobj,
&btrfs_static_feature_attr_group);
if (ret)
goto out_remove_group;
#ifdef CONFIG_BTRFS_DEBUG
ret = sysfs_create_group(&btrfs_kset->kobj, &btrfs_debug_feature_attr_group);
if (ret) {
sysfs_unmerge_group(&btrfs_kset->kobj,
&btrfs_static_feature_attr_group);
goto out_remove_group;
}
#endif
return 0;
out_remove_group:
sysfs_remove_group(&btrfs_kset->kobj, &btrfs_feature_attr_group);
out2:
kset_unregister(btrfs_kset);
return ret;
}
void __cold btrfs_exit_sysfs(void)
{
sysfs_unmerge_group(&btrfs_kset->kobj,
&btrfs_static_feature_attr_group);
sysfs_remove_group(&btrfs_kset->kobj, &btrfs_feature_attr_group);
#ifdef CONFIG_BTRFS_DEBUG
sysfs_remove_group(&btrfs_kset->kobj, &btrfs_debug_feature_attr_group);
#endif
kset_unregister(btrfs_kset);
}