/* SPDX-License-Identifier: MIT */
/*
* Copyright 2023 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dm_helpers.h"
#include "core_types.h"
#include "resource.h"
#include "dccg.h"
#include "dce/dce_hwseq.h"
#include "clk_mgr.h"
#include "reg_helper.h"
#include "abm.h"
#include "hubp.h"
#include "dchubbub.h"
#include "timing_generator.h"
#include "opp.h"
#include "ipp.h"
#include "mpc.h"
#include "mcif_wb.h"
#include "dc_dmub_srv.h"
#include "dcn35_hwseq.h"
#include "dcn35/dcn35_dccg.h"
#include "link_hwss.h"
#include "dpcd_defs.h"
#include "dce/dmub_outbox.h"
#include "link.h"
#include "dcn10/dcn10_hwseq.h"
#include "inc/link_enc_cfg.h"
#include "dcn30/dcn30_vpg.h"
#include "dce/dce_i2c_hw.h"
#include "dsc.h"
#include "dcn20/dcn20_optc.h"
#include "dcn30/dcn30_cm_common.h"
#include "dcn31/dcn31_hwseq.h"
#include "dcn20/dcn20_hwseq.h"
#include "dc_state_priv.h"
#define DC_LOGGER_INIT(logger) \
struct dal_logger *dc_logger = logger
#define CTX \
hws->ctx
#define REG(reg)\
hws->regs->reg
#define DC_LOGGER \
dc_logger
#undef FN
#define FN(reg_name, field_name) \
hws->shifts->field_name, hws->masks->field_name
#if 0
static void enable_memory_low_power(struct dc *dc)
{
struct dce_hwseq *hws = dc->hwseq;
int i;
if (dc->debug.enable_mem_low_power.bits.dmcu) {
// Force ERAM to shutdown if DMCU is not enabled
if (dc->debug.disable_dmcu || dc->config.disable_dmcu) {
REG_UPDATE(DMU_MEM_PWR_CNTL, DMCU_ERAM_MEM_PWR_FORCE, 3);
}
}
/*dcn35 has default MEM_PWR enabled, make sure wake them up*/
// Set default OPTC memory power states
if (dc->debug.enable_mem_low_power.bits.optc) {
// Shutdown when unassigned and light sleep in VBLANK
REG_SET_2(ODM_MEM_PWR_CTRL3, 0, ODM_MEM_UNASSIGNED_PWR_MODE, 3, ODM_MEM_VBLANK_PWR_MODE, 1);
}
if (dc->debug.enable_mem_low_power.bits.vga) {
// Power down VGA memory
REG_UPDATE(MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, 1);
}
if (dc->debug.enable_mem_low_power.bits.mpc &&
dc->res_pool->mpc->funcs->set_mpc_mem_lp_mode)
dc->res_pool->mpc->funcs->set_mpc_mem_lp_mode(dc->res_pool->mpc);
if (dc->debug.enable_mem_low_power.bits.vpg && dc->res_pool->stream_enc[0]->vpg->funcs->vpg_powerdown) {
// Power down VPGs
for (i = 0; i < dc->res_pool->stream_enc_count; i++)
dc->res_pool->stream_enc[i]->vpg->funcs->vpg_powerdown(dc->res_pool->stream_enc[i]->vpg);
#if defined(CONFIG_DRM_AMD_DC_DP2_0)
for (i = 0; i < dc->res_pool->hpo_dp_stream_enc_count; i++)
dc->res_pool->hpo_dp_stream_enc[i]->vpg->funcs->vpg_powerdown(dc->res_pool->hpo_dp_stream_enc[i]->vpg);
#endif
}
}
#endif
void dcn35_set_dmu_fgcg(struct dce_hwseq *hws, bool enable)
{
REG_UPDATE_3(DMU_CLK_CNTL,
RBBMIF_FGCG_REP_DIS, !enable,
IHC_FGCG_REP_DIS, !enable,
LONO_FGCG_REP_DIS, !enable
);
}
void dcn35_setup_hpo_hw_control(const struct dce_hwseq *hws, bool enable)
{
REG_UPDATE(HPO_TOP_HW_CONTROL, HPO_IO_EN, !!enable);
}
void dcn35_init_hw(struct dc *dc)
{
struct abm **abms = dc->res_pool->multiple_abms;
struct dce_hwseq *hws = dc->hwseq;
struct dc_bios *dcb = dc->ctx->dc_bios;
struct resource_pool *res_pool = dc->res_pool;
uint32_t backlight = MAX_BACKLIGHT_LEVEL;
uint32_t user_level = MAX_BACKLIGHT_LEVEL;
int i;
if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
//dcn35_set_dmu_fgcg(hws, dc->debug.enable_fine_grain_clock_gating.bits.dmu);
if (!dcb->funcs->is_accelerated_mode(dcb)) {
/*this calls into dmubfw to do the init*/
hws->funcs.bios_golden_init(dc);
}
// Initialize the dccg
if (res_pool->dccg->funcs->dccg_init)
res_pool->dccg->funcs->dccg_init(res_pool->dccg);
//enable_memory_low_power(dc);
if (dc->ctx->dc_bios->fw_info_valid) {
res_pool->ref_clocks.xtalin_clock_inKhz =
dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
if (res_pool->hubbub) {
(res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg,
dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency,
&res_pool->ref_clocks.dccg_ref_clock_inKhz);
(res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub,
res_pool->ref_clocks.dccg_ref_clock_inKhz,
&res_pool->ref_clocks.dchub_ref_clock_inKhz);
} else {
// Not all ASICs have DCCG sw component
res_pool->ref_clocks.dccg_ref_clock_inKhz =
res_pool->ref_clocks.xtalin_clock_inKhz;
res_pool->ref_clocks.dchub_ref_clock_inKhz =
res_pool->ref_clocks.xtalin_clock_inKhz;
}
} else
ASSERT_CRITICAL(false);
for (i = 0; i < dc->link_count; i++) {
/* Power up AND update implementation according to the
* required signal (which may be different from the
* default signal on connector).
*/
struct dc_link *link = dc->links[i];
if (link->ep_type != DISPLAY_ENDPOINT_PHY)
continue;
link->link_enc->funcs->hw_init(link->link_enc);
/* Check for enabled DIG to identify enabled display */
if (link->link_enc->funcs->is_dig_enabled &&
link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
link->link_status.link_active = true;
if (link->link_enc->funcs->fec_is_active &&
link->link_enc->funcs->fec_is_active(link->link_enc))
link->fec_state = dc_link_fec_enabled;
}
}
/* we want to turn off all dp displays before doing detection */
dc->link_srv->blank_all_dp_displays(dc);
/*
if (hws->funcs.enable_power_gating_plane)
hws->funcs.enable_power_gating_plane(dc->hwseq, true);
*/
if (res_pool->hubbub && res_pool->hubbub->funcs->dchubbub_init)
res_pool->hubbub->funcs->dchubbub_init(dc->res_pool->hubbub);
/* If taking control over from VBIOS, we may want to optimize our first
* mode set, so we need to skip powering down pipes until we know which
* pipes we want to use.
* Otherwise, if taking control is not possible, we need to power
* everything down.
*/
if (dcb->funcs->is_accelerated_mode(dcb) || !dc->config.seamless_boot_edp_requested) {
// we want to turn off edp displays if odm is enabled and no seamless boot
if (!dc->caps.seamless_odm) {
for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
uint32_t num_opps, opp_id_src0, opp_id_src1;
num_opps = 1;
if (tg) {
if (tg->funcs->is_tg_enabled(tg) && tg->funcs->get_optc_source) {
tg->funcs->get_optc_source(tg, &num_opps,
&opp_id_src0, &opp_id_src1);
}
}
if (num_opps > 1) {
dc->link_srv->blank_all_edp_displays(dc);
break;
}
}
}
hws->funcs.init_pipes(dc, dc->current_state);
if (dc->res_pool->hubbub->funcs->allow_self_refresh_control)
dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
!dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);
}
if (res_pool->dccg->funcs->dccg_root_gate_disable_control) {
for (i = 0; i < res_pool->pipe_count; i++)
res_pool->dccg->funcs->dccg_root_gate_disable_control(res_pool->dccg, i, 0);
}
for (i = 0; i < res_pool->audio_count; i++) {
struct audio *audio = res_pool->audios[i];
audio->funcs->hw_init(audio);
}
for (i = 0; i < dc->link_count; i++) {
struct dc_link *link = dc->links[i];
if (link->panel_cntl) {
backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
user_level = link->panel_cntl->stored_backlight_registers.USER_LEVEL;
}
}
if (dc->ctx->dmub_srv) {
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (abms[i] != NULL && abms[i]->funcs != NULL)
abms[i]->funcs->abm_init(abms[i], backlight, user_level);
}
}
/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
REG_WRITE(DIO_MEM_PWR_CTRL, 0);
// Set i2c to light sleep until engine is setup
if (dc->debug.enable_mem_low_power.bits.i2c)
REG_UPDATE(DIO_MEM_PWR_CTRL, I2C_LIGHT_SLEEP_FORCE, 0);
if (hws->funcs.setup_hpo_hw_control)
hws->funcs.setup_hpo_hw_control(hws, false);
if (!dc->debug.disable_clock_gate) {
/* enable all DCN clock gating */
REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
}
if (dc->debug.disable_mem_low_power) {
REG_UPDATE(DC_MEM_GLOBAL_PWR_REQ_CNTL, DC_MEM_GLOBAL_PWR_REQ_DIS, 1);
}
if (!dcb->funcs->is_accelerated_mode(dcb) && dc->res_pool->hubbub->funcs->init_watermarks)
dc->res_pool->hubbub->funcs->init_watermarks(dc->res_pool->hubbub);
if (dc->clk_mgr && dc->clk_mgr->funcs->notify_wm_ranges)
dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr);
if (dc->clk_mgr && dc->clk_mgr->funcs->set_hard_max_memclk && !dc->clk_mgr->dc_mode_softmax_enabled)
dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
if (dc->res_pool->hubbub->funcs->force_pstate_change_control)
dc->res_pool->hubbub->funcs->force_pstate_change_control(
dc->res_pool->hubbub, false, false);
if (dc->res_pool->hubbub->funcs->init_crb)
dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub);
if (dc->res_pool->hubbub->funcs->set_request_limit && dc->config.sdpif_request_limit_words_per_umc > 0)
dc->res_pool->hubbub->funcs->set_request_limit(dc->res_pool->hubbub, dc->ctx->dc_bios->vram_info.num_chans, dc->config.sdpif_request_limit_words_per_umc);
// Get DMCUB capabilities
if (dc->ctx->dmub_srv) {
dc_dmub_srv_query_caps_cmd(dc->ctx->dmub_srv);
dc->caps.dmub_caps.psr = dc->ctx->dmub_srv->dmub->feature_caps.psr;
dc->caps.dmub_caps.mclk_sw = dc->ctx->dmub_srv->dmub->feature_caps.fw_assisted_mclk_switch_ver;
}
if (dc->res_pool->pg_cntl) {
if (dc->res_pool->pg_cntl->funcs->init_pg_status)
dc->res_pool->pg_cntl->funcs->init_pg_status(dc->res_pool->pg_cntl);
}
}
static void update_dsc_on_stream(struct pipe_ctx *pipe_ctx, bool enable)
{
struct display_stream_compressor *dsc = pipe_ctx->stream_res.dsc;
struct dc_stream_state *stream = pipe_ctx->stream;
struct pipe_ctx *odm_pipe;
int opp_cnt = 1;
DC_LOGGER_INIT(stream->ctx->logger);
ASSERT(dsc);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
opp_cnt++;
if (enable) {
struct dsc_config dsc_cfg;
struct dsc_optc_config dsc_optc_cfg = {0};
enum optc_dsc_mode optc_dsc_mode;
struct dcn_dsc_state dsc_state = {0};
if (!dsc) {
DC_LOG_DSC("DSC is NULL for tg instance %d:", pipe_ctx->stream_res.tg->inst);
return;
}
if (dsc->funcs->dsc_read_state) {
dsc->funcs->dsc_read_state(dsc, &dsc_state);
if (!dsc_state.dsc_fw_en) {
DC_LOG_DSC("DSC has been disabled for tg instance %d:", pipe_ctx->stream_res.tg->inst);
return;
}
}
/* Enable DSC hw block */
dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right) / opp_cnt;
dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top + stream->timing.v_border_bottom;
dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
dsc_cfg.color_depth = stream->timing.display_color_depth;
dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
ASSERT(dsc_cfg.dc_dsc_cfg.num_slices_h % opp_cnt == 0);
dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
dsc->funcs->dsc_set_config(dsc, &dsc_cfg, &dsc_optc_cfg);
dsc->funcs->dsc_enable(dsc, pipe_ctx->stream_res.opp->inst);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
struct display_stream_compressor *odm_dsc = odm_pipe->stream_res.dsc;
ASSERT(odm_dsc);
odm_dsc->funcs->dsc_set_config(odm_dsc, &dsc_cfg, &dsc_optc_cfg);
odm_dsc->funcs->dsc_enable(odm_dsc, odm_pipe->stream_res.opp->inst);
}
dsc_cfg.dc_dsc_cfg.num_slices_h *= opp_cnt;
dsc_cfg.pic_width *= opp_cnt;
optc_dsc_mode = dsc_optc_cfg.is_pixel_format_444 ? OPTC_DSC_ENABLED_444 : OPTC_DSC_ENABLED_NATIVE_SUBSAMPLED;
/* Enable DSC in OPTC */
DC_LOG_DSC("Setting optc DSC config for tg instance %d:", pipe_ctx->stream_res.tg->inst);
pipe_ctx->stream_res.tg->funcs->set_dsc_config(pipe_ctx->stream_res.tg,
optc_dsc_mode,
dsc_optc_cfg.bytes_per_pixel,
dsc_optc_cfg.slice_width);
} else {
/* disable DSC in OPTC */
pipe_ctx->stream_res.tg->funcs->set_dsc_config(
pipe_ctx->stream_res.tg,
OPTC_DSC_DISABLED, 0, 0);
/* disable DSC block */
dsc->funcs->dsc_disable(pipe_ctx->stream_res.dsc);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
ASSERT(odm_pipe->stream_res.dsc);
odm_pipe->stream_res.dsc->funcs->dsc_disable(odm_pipe->stream_res.dsc);
}
}
}
// Given any pipe_ctx, return the total ODM combine factor, and optionally return
// the OPPids which are used
static unsigned int get_odm_config(struct pipe_ctx *pipe_ctx, unsigned int *opp_instances)
{
unsigned int opp_count = 1;
struct pipe_ctx *odm_pipe;
// First get to the top pipe
for (odm_pipe = pipe_ctx; odm_pipe->prev_odm_pipe; odm_pipe = odm_pipe->prev_odm_pipe)
;
// First pipe is always used
if (opp_instances)
opp_instances[0] = odm_pipe->stream_res.opp->inst;
// Find and count odm pipes, if any
for (odm_pipe = odm_pipe->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
if (opp_instances)
opp_instances[opp_count] = odm_pipe->stream_res.opp->inst;
opp_count++;
}
return opp_count;
}
void dcn35_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
{
struct pipe_ctx *odm_pipe;
int opp_cnt = 0;
int opp_inst[MAX_PIPES] = {0};
int odm_slice_width = resource_get_odm_slice_dst_width(pipe_ctx, false);
int last_odm_slice_width = resource_get_odm_slice_dst_width(pipe_ctx, true);
opp_cnt = get_odm_config(pipe_ctx, opp_inst);
if (opp_cnt > 1)
pipe_ctx->stream_res.tg->funcs->set_odm_combine(
pipe_ctx->stream_res.tg,
opp_inst, opp_cnt,
odm_slice_width, last_odm_slice_width);
else
pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control(
odm_pipe->stream_res.opp,
true);
}
if (pipe_ctx->stream_res.dsc) {
struct pipe_ctx *current_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[pipe_ctx->pipe_idx];
update_dsc_on_stream(pipe_ctx, pipe_ctx->stream->timing.flags.DSC);
/* Check if no longer using pipe for ODM, then need to disconnect DSC for that pipe */
if (!pipe_ctx->next_odm_pipe && current_pipe_ctx->next_odm_pipe &&
current_pipe_ctx->next_odm_pipe->stream_res.dsc) {
struct display_stream_compressor *dsc = current_pipe_ctx->next_odm_pipe->stream_res.dsc;
/* disconnect DSC block from stream */
dsc->funcs->dsc_disconnect(dsc);
}
}
}
void dcn35_dpp_root_clock_control(struct dce_hwseq *hws, unsigned int dpp_inst, bool clock_on)
{
if (!hws->ctx->dc->debug.root_clock_optimization.bits.dpp)
return;
if (hws->ctx->dc->res_pool->dccg->funcs->dpp_root_clock_control) {
hws->ctx->dc->res_pool->dccg->funcs->dpp_root_clock_control(
hws->ctx->dc->res_pool->dccg, dpp_inst, clock_on);
}
}
void dcn35_dpstream_root_clock_control(struct dce_hwseq *hws, unsigned int dp_hpo_inst, bool clock_on)
{
if (!hws->ctx->dc->debug.root_clock_optimization.bits.dpstream)
return;
if (hws->ctx->dc->res_pool->dccg->funcs->set_dpstreamclk_root_clock_gating) {
hws->ctx->dc->res_pool->dccg->funcs->set_dpstreamclk_root_clock_gating(
hws->ctx->dc->res_pool->dccg, dp_hpo_inst, clock_on);
}
}
void dcn35_physymclk_root_clock_control(struct dce_hwseq *hws, unsigned int phy_inst, bool clock_on)
{
if (!hws->ctx->dc->debug.root_clock_optimization.bits.physymclk)
return;
if (hws->ctx->dc->res_pool->dccg->funcs->set_physymclk_root_clock_gating) {
hws->ctx->dc->res_pool->dccg->funcs->set_physymclk_root_clock_gating(
hws->ctx->dc->res_pool->dccg, phy_inst, clock_on);
}
}
void dcn35_dsc_pg_control(
struct dce_hwseq *hws,
unsigned int dsc_inst,
bool power_on)
{
uint32_t power_gate = power_on ? 0 : 1;
uint32_t pwr_status = power_on ? 0 : 2;
uint32_t org_ip_request_cntl = 0;
if (hws->ctx->dc->debug.disable_dsc_power_gate)
return;
if (hws->ctx->dc->debug.ignore_pg)
return;
REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
if (org_ip_request_cntl == 0)
REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
switch (dsc_inst) {
case 0: /* DSC0 */
REG_UPDATE(DOMAIN16_PG_CONFIG,
DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN16_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 1: /* DSC1 */
REG_UPDATE(DOMAIN17_PG_CONFIG,
DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN17_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 2: /* DSC2 */
REG_UPDATE(DOMAIN18_PG_CONFIG,
DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN18_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 3: /* DSC3 */
REG_UPDATE(DOMAIN19_PG_CONFIG,
DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN19_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
if (org_ip_request_cntl == 0)
REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
}
void dcn35_enable_power_gating_plane(struct dce_hwseq *hws, bool enable)
{
bool force_on = true; /* disable power gating */
uint32_t org_ip_request_cntl = 0;
if (hws->ctx->dc->debug.disable_hubp_power_gate)
return;
if (hws->ctx->dc->debug.ignore_pg)
return;
REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
if (org_ip_request_cntl == 0)
REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
/* DCHUBP0/1/2/3/4/5 */
REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
/* DPP0/1/2/3/4/5 */
REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
force_on = true; /* disable power gating */
if (enable && !hws->ctx->dc->debug.disable_dsc_power_gate)
force_on = false;
/* DCS0/1/2/3/4 */
REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
}
/* In headless boot cases, DIG may be turned
* on which causes HW/SW discrepancies.
* To avoid this, power down hardware on boot
* if DIG is turned on
*/
void dcn35_power_down_on_boot(struct dc *dc)
{
struct dc_link *edp_links[MAX_NUM_EDP];
struct dc_link *edp_link = NULL;
int edp_num;
int i = 0;
dc_get_edp_links(dc, edp_links, &edp_num);
if (edp_num)
edp_link = edp_links[0];
if (edp_link && edp_link->link_enc->funcs->is_dig_enabled &&
edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
dc->hwseq->funcs.edp_backlight_control &&
dc->hwseq->funcs.power_down &&
dc->hwss.edp_power_control) {
dc->hwseq->funcs.edp_backlight_control(edp_link, false);
dc->hwseq->funcs.power_down(dc);
dc->hwss.edp_power_control(edp_link, false);
} else {
for (i = 0; i < dc->link_count; i++) {
struct dc_link *link = dc->links[i];
if (link->link_enc && link->link_enc->funcs->is_dig_enabled &&
link->link_enc->funcs->is_dig_enabled(link->link_enc) &&
dc->hwseq->funcs.power_down) {
dc->hwseq->funcs.power_down(dc);
break;
}
}
}
/*
* Call update_clocks with empty context
* to send DISPLAY_OFF
* Otherwise DISPLAY_OFF may not be asserted
*/
if (dc->clk_mgr->funcs->set_low_power_state)
dc->clk_mgr->funcs->set_low_power_state(dc->clk_mgr);
if (dc->clk_mgr->clks.pwr_state == DCN_PWR_STATE_LOW_POWER)
dc_allow_idle_optimizations(dc, true);
}
bool dcn35_apply_idle_power_optimizations(struct dc *dc, bool enable)
{
if (dc->debug.dmcub_emulation)
return true;
if (enable) {
uint32_t num_active_edp = 0;
int i;
for (i = 0; i < dc->current_state->stream_count; ++i) {
struct dc_stream_state *stream = dc->current_state->streams[i];
struct dc_link *link = stream->link;
bool is_psr = link && !link->panel_config.psr.disable_psr &&
(link->psr_settings.psr_version == DC_PSR_VERSION_1 ||
link->psr_settings.psr_version == DC_PSR_VERSION_SU_1);
bool is_replay = link && link->replay_settings.replay_feature_enabled;
/* Ignore streams that disabled. */
if (stream->dpms_off)
continue;
/* Active external displays block idle optimizations. */
if (!dc_is_embedded_signal(stream->signal))
return false;
/* If not PWRSEQ0 can't enter idle optimizations */
if (link && link->link_index != 0)
return false;
/* Check for panel power features required for idle optimizations. */
if (!is_psr && !is_replay)
return false;
num_active_edp += 1;
}
/* If more than one active eDP then disallow. */
if (num_active_edp > 1)
return false;
}
// TODO: review other cases when idle optimization is allowed
dc_dmub_srv_apply_idle_power_optimizations(dc, enable);
return true;
}
void dcn35_z10_restore(const struct dc *dc)
{
if (dc->debug.disable_z10)
return;
dc_dmub_srv_apply_idle_power_optimizations(dc, false);
dcn31_z10_restore(dc);
}
void dcn35_init_pipes(struct dc *dc, struct dc_state *context)
{
int i;
struct dce_hwseq *hws = dc->hwseq;
struct hubbub *hubbub = dc->res_pool->hubbub;
struct pg_cntl *pg_cntl = dc->res_pool->pg_cntl;
bool can_apply_seamless_boot = false;
bool tg_enabled[MAX_PIPES] = {false};
for (i = 0; i < context->stream_count; i++) {
if (context->streams[i]->apply_seamless_boot_optimization) {
can_apply_seamless_boot = true;
break;
}
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
/* There is assumption that pipe_ctx is not mapping irregularly
* to non-preferred front end. If pipe_ctx->stream is not NULL,
* we will use the pipe, so don't disable
*/
if (pipe_ctx->stream != NULL && can_apply_seamless_boot)
continue;
/* Blank controller using driver code instead of
* command table.
*/
if (tg->funcs->is_tg_enabled(tg)) {
if (hws->funcs.init_blank != NULL) {
hws->funcs.init_blank(dc, tg);
tg->funcs->lock(tg);
} else {
tg->funcs->lock(tg);
tg->funcs->set_blank(tg, true);
hwss_wait_for_blank_complete(tg);
}
}
}
/* Reset det size */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
struct hubp *hubp = dc->res_pool->hubps[i];
/* Do not need to reset for seamless boot */
if (pipe_ctx->stream != NULL && can_apply_seamless_boot)
continue;
if (hubbub && hubp) {
if (hubbub->funcs->program_det_size)
hubbub->funcs->program_det_size(hubbub, hubp->inst, 0);
if (hubbub->funcs->program_det_segments)
hubbub->funcs->program_det_segments(hubbub, hubp->inst, 0);
}
}
/* num_opp will be equal to number of mpcc */
for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
/* Cannot reset the MPC mux if seamless boot */
if (pipe_ctx->stream != NULL && can_apply_seamless_boot)
continue;
dc->res_pool->mpc->funcs->mpc_init_single_inst(
dc->res_pool->mpc, i);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
struct hubp *hubp = dc->res_pool->hubps[i];
struct dpp *dpp = dc->res_pool->dpps[i];
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
/* There is assumption that pipe_ctx is not mapping irregularly
* to non-preferred front end. If pipe_ctx->stream is not NULL,
* we will use the pipe, so don't disable
*/
if (can_apply_seamless_boot &&
pipe_ctx->stream != NULL &&
pipe_ctx->stream_res.tg->funcs->is_tg_enabled(
pipe_ctx->stream_res.tg)) {
// Enable double buffering for OTG_BLANK no matter if
// seamless boot is enabled or not to suppress global sync
// signals when OTG blanked. This is to prevent pipe from
// requesting data while in PSR.
tg->funcs->tg_init(tg);
hubp->power_gated = true;
tg_enabled[i] = true;
continue;
}
/* Disable on the current state so the new one isn't cleared. */
pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
dpp->funcs->dpp_reset(dpp);
pipe_ctx->stream_res.tg = tg;
pipe_ctx->pipe_idx = i;
pipe_ctx->plane_res.hubp = hubp;
pipe_ctx->plane_res.dpp = dpp;
pipe_ctx->plane_res.mpcc_inst = dpp->inst;
hubp->mpcc_id = dpp->inst;
hubp->opp_id = OPP_ID_INVALID;
hubp->power_gated = false;
dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst;
dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
pipe_ctx->stream_res.opp = dc->res_pool->opps[i];
hws->funcs.plane_atomic_disconnect(dc, context, pipe_ctx);
if (tg->funcs->is_tg_enabled(tg))
tg->funcs->unlock(tg);
dc->hwss.disable_plane(dc, context, pipe_ctx);
pipe_ctx->stream_res.tg = NULL;
pipe_ctx->plane_res.hubp = NULL;
if (tg->funcs->is_tg_enabled(tg)) {
if (tg->funcs->init_odm)
tg->funcs->init_odm(tg);
}
tg->funcs->tg_init(tg);
}
/* Clean up MPC tree */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (tg_enabled[i]) {
if (dc->res_pool->opps[i]->mpc_tree_params.opp_list) {
if (dc->res_pool->opps[i]->mpc_tree_params.opp_list->mpcc_bot) {
int bot_id = dc->res_pool->opps[i]->mpc_tree_params.opp_list->mpcc_bot->mpcc_id;
if ((bot_id < MAX_MPCC) && (bot_id < MAX_PIPES) && (!tg_enabled[bot_id]))
dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
}
}
}
}
if (pg_cntl != NULL) {
if (pg_cntl->funcs->dsc_pg_control != NULL) {
uint32_t num_opps = 0;
uint32_t opp_id_src0 = OPP_ID_INVALID;
uint32_t opp_id_src1 = OPP_ID_INVALID;
// Step 1: To find out which OPTC is running & OPTC DSC is ON
// We can't use res_pool->res_cap->num_timing_generator to check
// Because it records display pipes default setting built in driver,
// not display pipes of the current chip.
// Some ASICs would be fused display pipes less than the default setting.
// In dcnxx_resource_construct function, driver would obatin real information.
for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
uint32_t optc_dsc_state = 0;
struct timing_generator *tg = dc->res_pool->timing_generators[i];
if (tg->funcs->is_tg_enabled(tg)) {
if (tg->funcs->get_dsc_status)
tg->funcs->get_dsc_status(tg, &optc_dsc_state);
// Only one OPTC with DSC is ON, so if we got one result,
// we would exit this block. non-zero value is DSC enabled
if (optc_dsc_state != 0) {
tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
break;
}
}
}
// Step 2: To power down DSC but skip DSC of running OPTC
for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) {
struct dcn_dsc_state s = {0};
dc->res_pool->dscs[i]->funcs->dsc_read_state(dc->res_pool->dscs[i], &s);
if ((s.dsc_opp_source == opp_id_src0 || s.dsc_opp_source == opp_id_src1) &&
s.dsc_clock_en && s.dsc_fw_en)
continue;
pg_cntl->funcs->dsc_pg_control(pg_cntl, dc->res_pool->dscs[i]->inst, false);
}
}
}
}
void dcn35_enable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx,
struct dc_state *context)
{
/* enable DCFCLK current DCHUB */
pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true);
/* initialize HUBP on power up */
pipe_ctx->plane_res.hubp->funcs->hubp_init(pipe_ctx->plane_res.hubp);
/* make sure OPP_PIPE_CLOCK_EN = 1 */
pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
pipe_ctx->stream_res.opp,
true);
/*to do: insert PG here*/
if (dc->vm_pa_config.valid) {
struct vm_system_aperture_param apt;
apt.sys_default.quad_part = 0;
apt.sys_low.quad_part = dc->vm_pa_config.system_aperture.start_addr;
apt.sys_high.quad_part = dc->vm_pa_config.system_aperture.end_addr;
// Program system aperture settings
pipe_ctx->plane_res.hubp->funcs->hubp_set_vm_system_aperture_settings(pipe_ctx->plane_res.hubp, &apt);
}
if (!pipe_ctx->top_pipe
&& pipe_ctx->plane_state
&& pipe_ctx->plane_state->flip_int_enabled
&& pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int)
pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int(pipe_ctx->plane_res.hubp);
}
/* disable HW used by plane.
* note: cannot disable until disconnect is complete
*/
void dcn35_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
struct hubp *hubp = pipe_ctx->plane_res.hubp;
struct dpp *dpp = pipe_ctx->plane_res.dpp;
dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx);
/* In flip immediate with pipe splitting case GSL is used for
* synchronization so we must disable it when the plane is disabled.
*/
if (pipe_ctx->stream_res.gsl_group != 0)
dcn20_setup_gsl_group_as_lock(dc, pipe_ctx, false);
/*
if (hubp->funcs->hubp_update_mall_sel)
hubp->funcs->hubp_update_mall_sel(hubp, 0, false);
*/
dc->hwss.set_flip_control_gsl(pipe_ctx, false);
hubp->funcs->hubp_clk_cntl(hubp, false);
dpp->funcs->dpp_dppclk_control(dpp, false, false);
/*to do, need to support both case*/
hubp->power_gated = true;
dpp->funcs->dpp_reset(dpp);
pipe_ctx->stream = NULL;
memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res));
memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res));
pipe_ctx->top_pipe = NULL;
pipe_ctx->bottom_pipe = NULL;
pipe_ctx->plane_state = NULL;
}
void dcn35_disable_plane(struct dc *dc, struct dc_state *state, struct pipe_ctx *pipe_ctx)
{
struct dce_hwseq *hws = dc->hwseq;
bool is_phantom = dc_state_get_pipe_subvp_type(state, pipe_ctx) == SUBVP_PHANTOM;
struct timing_generator *tg = is_phantom ? pipe_ctx->stream_res.tg : NULL;
DC_LOGGER_INIT(dc->ctx->logger);
if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated)
return;
if (hws->funcs.plane_atomic_disable)
hws->funcs.plane_atomic_disable(dc, pipe_ctx);
/* Turn back off the phantom OTG after the phantom plane is fully disabled
*/
if (is_phantom)
if (tg && tg->funcs->disable_phantom_crtc)
tg->funcs->disable_phantom_crtc(tg);
DC_LOG_DC("Power down front end %d\n",
pipe_ctx->pipe_idx);
}
void dcn35_calc_blocks_to_gate(struct dc *dc, struct dc_state *context,
struct pg_block_update *update_state)
{
bool hpo_frl_stream_enc_acquired = false;
bool hpo_dp_stream_enc_acquired = false;
int i = 0, j = 0;
int edp_num = 0;
struct dc_link *edp_links[MAX_NUM_EDP] = { NULL };
memset(update_state, 0, sizeof(struct pg_block_update));
for (i = 0; i < dc->res_pool->hpo_dp_stream_enc_count; i++) {
if (context->res_ctx.is_hpo_dp_stream_enc_acquired[i] &&
dc->res_pool->hpo_dp_stream_enc[i]) {
hpo_dp_stream_enc_acquired = true;
break;
}
}
if (!hpo_frl_stream_enc_acquired && !hpo_dp_stream_enc_acquired)
update_state->pg_res_update[PG_HPO] = true;
update_state->pg_res_update[PG_DWB] = true;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
for (j = 0; j < PG_HW_PIPE_RESOURCES_NUM_ELEMENT; j++)
update_state->pg_pipe_res_update[j][i] = true;
if (!pipe_ctx)
continue;
if (pipe_ctx->plane_res.hubp)
update_state->pg_pipe_res_update[PG_HUBP][pipe_ctx->plane_res.hubp->inst] = false;
if (pipe_ctx->plane_res.dpp && pipe_ctx->plane_res.hubp)
update_state->pg_pipe_res_update[PG_DPP][pipe_ctx->plane_res.hubp->inst] = false;
if (pipe_ctx->plane_res.dpp || pipe_ctx->stream_res.opp)
update_state->pg_pipe_res_update[PG_MPCC][pipe_ctx->plane_res.mpcc_inst] = false;
if (pipe_ctx->stream_res.dsc)
update_state->pg_pipe_res_update[PG_DSC][pipe_ctx->stream_res.dsc->inst] = false;
if (pipe_ctx->stream_res.opp)
update_state->pg_pipe_res_update[PG_OPP][pipe_ctx->stream_res.opp->inst] = false;
if (pipe_ctx->stream_res.hpo_dp_stream_enc)
update_state->pg_pipe_res_update[PG_DPSTREAM][pipe_ctx->stream_res.hpo_dp_stream_enc->inst] = false;
}
for (i = 0; i < dc->link_count; i++) {
update_state->pg_pipe_res_update[PG_PHYSYMCLK][dc->links[i]->link_enc_hw_inst] = true;
if (dc->links[i]->type != dc_connection_none)
update_state->pg_pipe_res_update[PG_PHYSYMCLK][dc->links[i]->link_enc_hw_inst] = false;
}
/*domain24 controls all the otg, mpc, opp, as long as one otg is still up, avoid enabling OTG PG*/
for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
if (tg && tg->funcs->is_tg_enabled(tg)) {
update_state->pg_pipe_res_update[PG_OPTC][i] = false;
break;
}
}
dc_get_edp_links(dc, edp_links, &edp_num);
if (edp_num == 0 ||
((!edp_links[0] || !edp_links[0]->edp_sink_present) &&
(!edp_links[1] || !edp_links[1]->edp_sink_present))) {
/*eDP not exist on this config, keep Domain24 power on, for S0i3, this will be handled in dmubfw*/
update_state->pg_pipe_res_update[PG_OPTC][0] = false;
}
if (dc->caps.sequential_ono) {
for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
if (!update_state->pg_pipe_res_update[PG_HUBP][i] &&
!update_state->pg_pipe_res_update[PG_DPP][i]) {
for (j = i - 1; j >= 0; j--) {
update_state->pg_pipe_res_update[PG_HUBP][j] = false;
update_state->pg_pipe_res_update[PG_DPP][j] = false;
}
break;
}
}
}
}
void dcn35_calc_blocks_to_ungate(struct dc *dc, struct dc_state *context,
struct pg_block_update *update_state)
{
bool hpo_frl_stream_enc_acquired = false;
bool hpo_dp_stream_enc_acquired = false;
int i = 0, j = 0;
memset(update_state, 0, sizeof(struct pg_block_update));
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *cur_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
if (cur_pipe == NULL || new_pipe == NULL)
continue;
if ((!cur_pipe->plane_state && new_pipe->plane_state) ||
(!cur_pipe->stream && new_pipe->stream) ||
(cur_pipe->stream != new_pipe->stream && new_pipe->stream)) {
// New pipe addition
for (j = 0; j < PG_HW_PIPE_RESOURCES_NUM_ELEMENT; j++) {
if (j == PG_HUBP && new_pipe->plane_res.hubp)
update_state->pg_pipe_res_update[j][new_pipe->plane_res.hubp->inst] = true;
if (j == PG_DPP && new_pipe->plane_res.dpp)
update_state->pg_pipe_res_update[j][new_pipe->plane_res.dpp->inst] = true;
if (j == PG_MPCC && new_pipe->plane_res.dpp)
update_state->pg_pipe_res_update[j][new_pipe->plane_res.mpcc_inst] = true;
if (j == PG_DSC && new_pipe->stream_res.dsc)
update_state->pg_pipe_res_update[j][new_pipe->stream_res.dsc->inst] = true;
if (j == PG_OPP && new_pipe->stream_res.opp)
update_state->pg_pipe_res_update[j][new_pipe->stream_res.opp->inst] = true;
if (j == PG_OPTC && new_pipe->stream_res.tg)
update_state->pg_pipe_res_update[j][new_pipe->stream_res.tg->inst] = true;
if (j == PG_DPSTREAM && new_pipe->stream_res.hpo_dp_stream_enc)
update_state->pg_pipe_res_update[j][new_pipe->stream_res.hpo_dp_stream_enc->inst] = true;
}
} else if (cur_pipe->plane_state == new_pipe->plane_state ||
cur_pipe == new_pipe) {
//unchanged pipes
for (j = 0; j < PG_HW_PIPE_RESOURCES_NUM_ELEMENT; j++) {
if (j == PG_HUBP &&
cur_pipe->plane_res.hubp != new_pipe->plane_res.hubp &&
new_pipe->plane_res.hubp)
update_state->pg_pipe_res_update[j][new_pipe->plane_res.hubp->inst] = true;
if (j == PG_DPP &&
cur_pipe->plane_res.dpp != new_pipe->plane_res.dpp &&
new_pipe->plane_res.dpp)
update_state->pg_pipe_res_update[j][new_pipe->plane_res.dpp->inst] = true;
if (j == PG_OPP &&
cur_pipe->stream_res.opp != new_pipe->stream_res.opp &&
new_pipe->stream_res.opp)
update_state->pg_pipe_res_update[j][new_pipe->stream_res.opp->inst] = true;
if (j == PG_DSC &&
cur_pipe->stream_res.dsc != new_pipe->stream_res.dsc &&
new_pipe->stream_res.dsc)
update_state->pg_pipe_res_update[j][new_pipe->stream_res.dsc->inst] = true;
if (j == PG_OPTC &&
cur_pipe->stream_res.tg != new_pipe->stream_res.tg &&
new_pipe->stream_res.tg)
update_state->pg_pipe_res_update[j][new_pipe->stream_res.tg->inst] = true;
if (j == PG_DPSTREAM &&
cur_pipe->stream_res.hpo_dp_stream_enc != new_pipe->stream_res.hpo_dp_stream_enc &&
new_pipe->stream_res.hpo_dp_stream_enc)
update_state->pg_pipe_res_update[j][new_pipe->stream_res.hpo_dp_stream_enc->inst] = true;
}
}
}
for (i = 0; i < dc->link_count; i++)
if (dc->links[i]->type != dc_connection_none)
update_state->pg_pipe_res_update[PG_PHYSYMCLK][dc->links[i]->link_enc_hw_inst] = true;
for (i = 0; i < dc->res_pool->hpo_dp_stream_enc_count; i++) {
if (context->res_ctx.is_hpo_dp_stream_enc_acquired[i] &&
dc->res_pool->hpo_dp_stream_enc[i]) {
hpo_dp_stream_enc_acquired = true;
break;
}
}
if (hpo_frl_stream_enc_acquired || hpo_dp_stream_enc_acquired)
update_state->pg_res_update[PG_HPO] = true;
if (hpo_frl_stream_enc_acquired)
update_state->pg_pipe_res_update[PG_HDMISTREAM][0] = true;
if (dc->caps.sequential_ono) {
for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
if (update_state->pg_pipe_res_update[PG_HUBP][i] &&
update_state->pg_pipe_res_update[PG_DPP][i]) {
for (j = i - 1; j >= 0; j--) {
update_state->pg_pipe_res_update[PG_HUBP][j] = true;
update_state->pg_pipe_res_update[PG_DPP][j] = true;
}
break;
}
}
}
}
/**
* dcn35_hw_block_power_down() - power down sequence
*
* The following sequence describes the ON-OFF (ONO) for power down:
*
* ONO Region 3, DCPG 25: hpo - SKIPPED
* ONO Region 4, DCPG 0: dchubp0, dpp0
* ONO Region 6, DCPG 1: dchubp1, dpp1
* ONO Region 8, DCPG 2: dchubp2, dpp2
* ONO Region 10, DCPG 3: dchubp3, dpp3
* ONO Region 1, DCPG 23: dchubbub dchvm dchubbubmem - SKIPPED. PMFW will pwr dwn at IPS2 entry
* ONO Region 5, DCPG 16: dsc0
* ONO Region 7, DCPG 17: dsc1
* ONO Region 9, DCPG 18: dsc2
* ONO Region 11, DCPG 19: dsc3
* ONO Region 2, DCPG 24: mpc opp optc dwb
* ONO Region 0, DCPG 22: dccg dio dcio - SKIPPED. will be pwr dwn after lono timer is armed
*
* If sequential ONO is specified the order is modified from ONO Region 11 -> ONO Region 0 descending.
*
* @dc: Current DC state
* @update_state: update PG sequence states for HW block
*/
void dcn35_hw_block_power_down(struct dc *dc,
struct pg_block_update *update_state)
{
int i = 0;
struct pg_cntl *pg_cntl = dc->res_pool->pg_cntl;
if (!pg_cntl)
return;
if (dc->debug.ignore_pg)
return;
if (update_state->pg_res_update[PG_HPO]) {
if (pg_cntl->funcs->hpo_pg_control)
pg_cntl->funcs->hpo_pg_control(pg_cntl, false);
}
if (!dc->caps.sequential_ono) {
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (update_state->pg_pipe_res_update[PG_HUBP][i] &&
update_state->pg_pipe_res_update[PG_DPP][i]) {
if (pg_cntl->funcs->hubp_dpp_pg_control)
pg_cntl->funcs->hubp_dpp_pg_control(pg_cntl, i, false);
}
}
for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) {
if (update_state->pg_pipe_res_update[PG_DSC][i]) {
if (pg_cntl->funcs->dsc_pg_control)
pg_cntl->funcs->dsc_pg_control(pg_cntl, i, false);
}
}
} else {
for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
if (update_state->pg_pipe_res_update[PG_DSC][i]) {
if (pg_cntl->funcs->dsc_pg_control)
pg_cntl->funcs->dsc_pg_control(pg_cntl, i, false);
}
if (update_state->pg_pipe_res_update[PG_HUBP][i] &&
update_state->pg_pipe_res_update[PG_DPP][i]) {
if (pg_cntl->funcs->hubp_dpp_pg_control)
pg_cntl->funcs->hubp_dpp_pg_control(pg_cntl, i, false);
}
}
}
/*this will need all the clients to unregister optc interruts let dmubfw handle this*/
if (pg_cntl->funcs->plane_otg_pg_control)
pg_cntl->funcs->plane_otg_pg_control(pg_cntl, false);
//domain22, 23, 25 currently always on.
}
/**
* dcn35_hw_block_power_up() - power up sequence
*
* The following sequence describes the ON-OFF (ONO) for power up:
*
* ONO Region 0, DCPG 22: dccg dio dcio - SKIPPED
* ONO Region 2, DCPG 24: mpc opp optc dwb
* ONO Region 5, DCPG 16: dsc0
* ONO Region 7, DCPG 17: dsc1
* ONO Region 9, DCPG 18: dsc2
* ONO Region 11, DCPG 19: dsc3
* ONO Region 1, DCPG 23: dchubbub dchvm dchubbubmem - SKIPPED. PMFW will power up at IPS2 exit
* ONO Region 4, DCPG 0: dchubp0, dpp0
* ONO Region 6, DCPG 1: dchubp1, dpp1
* ONO Region 8, DCPG 2: dchubp2, dpp2
* ONO Region 10, DCPG 3: dchubp3, dpp3
* ONO Region 3, DCPG 25: hpo - SKIPPED
*
* If sequential ONO is specified the order is modified from ONO Region 0 -> ONO Region 11 ascending.
*
* @dc: Current DC state
* @update_state: update PG sequence states for HW block
*/
void dcn35_hw_block_power_up(struct dc *dc,
struct pg_block_update *update_state)
{
int i = 0;
struct pg_cntl *pg_cntl = dc->res_pool->pg_cntl;
if (!pg_cntl)
return;
if (dc->debug.ignore_pg)
return;
//domain22, 23, 25 currently always on.
/*this will need all the clients to unregister optc interruts let dmubfw handle this*/
if (pg_cntl->funcs->plane_otg_pg_control)
pg_cntl->funcs->plane_otg_pg_control(pg_cntl, true);
if (!dc->caps.sequential_ono) {
for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++)
if (update_state->pg_pipe_res_update[PG_DSC][i]) {
if (pg_cntl->funcs->dsc_pg_control)
pg_cntl->funcs->dsc_pg_control(pg_cntl, i, true);
}
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (update_state->pg_pipe_res_update[PG_HUBP][i] &&
update_state->pg_pipe_res_update[PG_DPP][i]) {
if (pg_cntl->funcs->hubp_dpp_pg_control)
pg_cntl->funcs->hubp_dpp_pg_control(pg_cntl, i, true);
}
if (dc->caps.sequential_ono) {
if (update_state->pg_pipe_res_update[PG_DSC][i]) {
if (pg_cntl->funcs->dsc_pg_control)
pg_cntl->funcs->dsc_pg_control(pg_cntl, i, true);
}
}
}
if (update_state->pg_res_update[PG_HPO]) {
if (pg_cntl->funcs->hpo_pg_control)
pg_cntl->funcs->hpo_pg_control(pg_cntl, true);
}
}
void dcn35_root_clock_control(struct dc *dc,
struct pg_block_update *update_state, bool power_on)
{
int i = 0;
struct pg_cntl *pg_cntl = dc->res_pool->pg_cntl;
if (!pg_cntl)
return;
/*enable root clock first when power up*/
if (power_on) {
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (update_state->pg_pipe_res_update[PG_HUBP][i] &&
update_state->pg_pipe_res_update[PG_DPP][i]) {
if (dc->hwseq->funcs.dpp_root_clock_control)
dc->hwseq->funcs.dpp_root_clock_control(dc->hwseq, i, power_on);
}
if (update_state->pg_pipe_res_update[PG_DPSTREAM][i])
if (dc->hwseq->funcs.dpstream_root_clock_control)
dc->hwseq->funcs.dpstream_root_clock_control(dc->hwseq, i, power_on);
}
for (i = 0; i < dc->res_pool->dig_link_enc_count; i++)
if (update_state->pg_pipe_res_update[PG_PHYSYMCLK][i])
if (dc->hwseq->funcs.physymclk_root_clock_control)
dc->hwseq->funcs.physymclk_root_clock_control(dc->hwseq, i, power_on);
}
for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) {
if (update_state->pg_pipe_res_update[PG_DSC][i]) {
if (power_on) {
if (dc->res_pool->dccg->funcs->enable_dsc)
dc->res_pool->dccg->funcs->enable_dsc(dc->res_pool->dccg, i);
} else {
if (dc->res_pool->dccg->funcs->disable_dsc)
dc->res_pool->dccg->funcs->disable_dsc(dc->res_pool->dccg, i);
}
}
}
/*disable root clock first when power down*/
if (!power_on) {
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (update_state->pg_pipe_res_update[PG_HUBP][i] &&
update_state->pg_pipe_res_update[PG_DPP][i]) {
if (dc->hwseq->funcs.dpp_root_clock_control)
dc->hwseq->funcs.dpp_root_clock_control(dc->hwseq, i, power_on);
}
if (update_state->pg_pipe_res_update[PG_DPSTREAM][i])
if (dc->hwseq->funcs.dpstream_root_clock_control)
dc->hwseq->funcs.dpstream_root_clock_control(dc->hwseq, i, power_on);
}
for (i = 0; i < dc->res_pool->dig_link_enc_count; i++)
if (update_state->pg_pipe_res_update[PG_PHYSYMCLK][i])
if (dc->hwseq->funcs.physymclk_root_clock_control)
dc->hwseq->funcs.physymclk_root_clock_control(dc->hwseq, i, power_on);
}
}
void dcn35_prepare_bandwidth(
struct dc *dc,
struct dc_state *context)
{
struct pg_block_update pg_update_state;
if (dc->hwss.calc_blocks_to_ungate) {
dc->hwss.calc_blocks_to_ungate(dc, context, &pg_update_state);
if (dc->hwss.root_clock_control)
dc->hwss.root_clock_control(dc, &pg_update_state, true);
/*power up required HW block*/
if (dc->hwss.hw_block_power_up)
dc->hwss.hw_block_power_up(dc, &pg_update_state);
}
dcn20_prepare_bandwidth(dc, context);
}
void dcn35_optimize_bandwidth(
struct dc *dc,
struct dc_state *context)
{
struct pg_block_update pg_update_state;
dcn20_optimize_bandwidth(dc, context);
if (dc->hwss.calc_blocks_to_gate) {
dc->hwss.calc_blocks_to_gate(dc, context, &pg_update_state);
/*try to power down unused block*/
if (dc->hwss.hw_block_power_down)
dc->hwss.hw_block_power_down(dc, &pg_update_state);
if (dc->hwss.root_clock_control)
dc->hwss.root_clock_control(dc, &pg_update_state, false);
}
}
void dcn35_set_drr(struct pipe_ctx **pipe_ctx,
int num_pipes, struct dc_crtc_timing_adjust adjust)
{
int i = 0;
struct drr_params params = {0};
// DRR set trigger event mapped to OTG_TRIG_A
unsigned int event_triggers = 0x2;//Bit[1]: OTG_TRIG_A
// Note DRR trigger events are generated regardless of whether num frames met.
unsigned int num_frames = 2;
params.vertical_total_max = adjust.v_total_max;
params.vertical_total_min = adjust.v_total_min;
params.vertical_total_mid = adjust.v_total_mid;
params.vertical_total_mid_frame_num = adjust.v_total_mid_frame_num;
for (i = 0; i < num_pipes; i++) {
/* dc_state_destruct() might null the stream resources, so fetch tg
* here first to avoid a race condition. The lifetime of the pointee
* itself (the timing_generator object) is not a problem here.
*/
struct timing_generator *tg = pipe_ctx[i]->stream_res.tg;
if ((tg != NULL) && tg->funcs) {
if (pipe_ctx[i]->stream && pipe_ctx[i]->stream->ctx->dc->debug.static_screen_wait_frames) {
struct dc_crtc_timing *timing = &pipe_ctx[i]->stream->timing;
struct dc *dc = pipe_ctx[i]->stream->ctx->dc;
unsigned int frame_rate = timing->pix_clk_100hz / (timing->h_total * timing->v_total);
if (frame_rate >= 120 && dc->caps.ips_support &&
dc->config.disable_ips != DMUB_IPS_DISABLE_ALL) {
/*ips enable case*/
num_frames = 2 * (frame_rate % 60);
}
}
if (tg->funcs->set_drr)
tg->funcs->set_drr(tg, ¶ms);
if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
if (tg->funcs->set_static_screen_control)
tg->funcs->set_static_screen_control(
tg, event_triggers, num_frames);
}
}
}
void dcn35_set_static_screen_control(struct pipe_ctx **pipe_ctx,
int num_pipes, const struct dc_static_screen_params *params)
{
unsigned int i;
unsigned int triggers = 0;
if (params->triggers.surface_update)
triggers |= 0x200;/*bit 9 : 10 0000 0000*/
if (params->triggers.cursor_update)
triggers |= 0x8;/*bit3*/
if (params->triggers.force_trigger)
triggers |= 0x1;
for (i = 0; i < num_pipes; i++)
pipe_ctx[i]->stream_res.tg->funcs->
set_static_screen_control(pipe_ctx[i]->stream_res.tg,
triggers, params->num_frames);
}
void dcn35_set_long_vblank(struct pipe_ctx **pipe_ctx,
int num_pipes, uint32_t v_total_min, uint32_t v_total_max)
{
int i = 0;
struct long_vtotal_params params = {0};
params.vertical_total_max = v_total_max;
params.vertical_total_min = v_total_min;
for (i = 0; i < num_pipes; i++) {
if (!pipe_ctx[i])
continue;
if (pipe_ctx[i]->stream) {
struct dc_crtc_timing *timing = &pipe_ctx[i]->stream->timing;
if (timing)
params.vertical_blank_start = timing->v_total - timing->v_front_porch;
else
params.vertical_blank_start = 0;
if ((pipe_ctx[i]->stream_res.tg != NULL) && pipe_ctx[i]->stream_res.tg->funcs &&
pipe_ctx[i]->stream_res.tg->funcs->set_long_vtotal)
pipe_ctx[i]->stream_res.tg->funcs->set_long_vtotal(pipe_ctx[i]->stream_res.tg, ¶ms);
}
}
}
static bool should_avoid_empty_tu(struct pipe_ctx *pipe_ctx)
{
/* Calculate average pixel count per TU, return false if under ~2.00 to
* avoid empty TUs. This is only required for DPIA tunneling as empty TUs
* are legal to generate for native DP links. Assume TU size 64 as there
* is currently no scenario where it's reprogrammed from HW default.
* MTPs have no such limitation, so this does not affect MST use cases.
*/
unsigned int pix_clk_mhz;
unsigned int symclk_mhz;
unsigned int avg_pix_per_tu_x1000;
unsigned int tu_size_bytes = 64;
struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
struct dc_link_settings *link_settings = &pipe_ctx->link_config.dp_link_settings;
const struct dc *dc = pipe_ctx->stream->link->dc;
if (pipe_ctx->stream->link->ep_type != DISPLAY_ENDPOINT_USB4_DPIA)
return false;
// Not necessary for MST configurations
if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)
return false;
pix_clk_mhz = timing->pix_clk_100hz / 10000;
// If this is true, can't block due to dynamic ODM
if (pix_clk_mhz > dc->clk_mgr->bw_params->clk_table.entries[0].dispclk_mhz)
return false;
switch (link_settings->link_rate) {
case LINK_RATE_LOW:
symclk_mhz = 162;
break;
case LINK_RATE_HIGH:
symclk_mhz = 270;
break;
case LINK_RATE_HIGH2:
symclk_mhz = 540;
break;
case LINK_RATE_HIGH3:
symclk_mhz = 810;
break;
default:
// We shouldn't be tunneling any other rates, something is wrong
ASSERT(0);
return false;
}
avg_pix_per_tu_x1000 = (1000 * pix_clk_mhz * tu_size_bytes)
/ (symclk_mhz * link_settings->lane_count);
// Add small empirically-decided margin to account for potential jitter
return (avg_pix_per_tu_x1000 < 2020);
}
bool dcn35_is_dp_dig_pixel_rate_div_policy(struct pipe_ctx *pipe_ctx)
{
struct dc *dc = pipe_ctx->stream->ctx->dc;
if (!is_h_timing_divisible_by_2(pipe_ctx->stream))
return false;
if (should_avoid_empty_tu(pipe_ctx))
return false;
if (dc_is_dp_signal(pipe_ctx->stream->signal) && !dc->link_srv->dp_is_128b_132b_signal(pipe_ctx) &&
dc->debug.enable_dp_dig_pixel_rate_div_policy)
return true;
return false;
}