// SPDX-License-Identifier: GPL-2.0-only
/*
* BCM283x / BCM271x Unicam Capture Driver
*
* Copyright (C) 2017-2020 - Raspberry Pi (Trading) Ltd.
* Copyright (C) 2024 - Ideas on Board
*
* Dave Stevenson <[email protected]>
*
* Based on TI am437x driver by
* Benoit Parrot <[email protected]>
* Lad, Prabhakar <[email protected]>
*
* and TI CAL camera interface driver by
* Benoit Parrot <[email protected]>
*
*
* There are two camera drivers in the kernel for BCM283x - this one and
* bcm2835-camera (currently in staging).
*
* This driver directly controls the Unicam peripheral - there is no
* involvement with the VideoCore firmware. Unicam receives CSI-2 or CCP2 data
* and writes it into SDRAM. The only potential processing options are to
* repack Bayer data into an alternate format, and applying windowing. The
* repacking does not shift the data, so can repack V4L2_PIX_FMT_Sxxxx10P to
* V4L2_PIX_FMT_Sxxxx10, or V4L2_PIX_FMT_Sxxxx12P to V4L2_PIX_FMT_Sxxxx12, but
* not generically up to V4L2_PIX_FMT_Sxxxx16. Support for windowing may be
* added later.
*
* It should be possible to connect this driver to any sensor with a suitable
* output interface and V4L2 subdevice driver.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/videodev2.h>
#include <media/mipi-csi2.h>
#include <media/v4l2-async.h>
#include <media/v4l2-common.h>
#include <media/v4l2-dev.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-mc.h>
#include <media/v4l2-subdev.h>
#include <media/videobuf2-dma-contig.h>
#include "bcm2835-unicam-regs.h"
#define UNICAM_MODULE_NAME "unicam"
/*
* Unicam must request a minimum of 250Mhz from the VPU clock.
* Otherwise the input FIFOs overrun and cause image corruption.
*/
#define UNICAM_MIN_VPU_CLOCK_RATE (250 * 1000 * 1000)
/* Unicam has an internal DMA alignment constraint of 16 bytes for each line. */
#define UNICAM_DMA_BPL_ALIGNMENT 16
/*
* The image stride is stored in a 16 bit register, and needs to be aligned to
* the DMA constraint. As the ISP in the same SoC has a 32 bytes alignment
* constraint on its input, set the image stride alignment to 32 bytes here as
* well to avoid incompatible configurations.
*/
#define UNICAM_IMAGE_BPL_ALIGNMENT 32
#define UNICAM_IMAGE_MAX_BPL ((1U << 16) - UNICAM_IMAGE_BPL_ALIGNMENT)
/*
* Max width is therefore determined by the max stride divided by the number of
* bits per pixel. Take 32bpp as a worst case. No imposed limit on the height,
* so adopt a square image for want of anything better.
*/
#define UNICAM_IMAGE_MIN_WIDTH 16
#define UNICAM_IMAGE_MIN_HEIGHT 16
#define UNICAM_IMAGE_MAX_WIDTH (UNICAM_IMAGE_MAX_BPL / 4)
#define UNICAM_IMAGE_MAX_HEIGHT UNICAM_IMAGE_MAX_WIDTH
/*
* There's no intrinsic limits on the width and height for embedded data. Use
* the same maximum values as for the image, to avoid overflows in the image
* size computation.
*/
#define UNICAM_META_MIN_WIDTH 1
#define UNICAM_META_MIN_HEIGHT 1
#define UNICAM_META_MAX_WIDTH UNICAM_IMAGE_MAX_WIDTH
#define UNICAM_META_MAX_HEIGHT UNICAM_IMAGE_MAX_HEIGHT
/*
* Size of the dummy buffer. Can be any size really, but the DMA
* allocation works in units of page sizes.
*/
#define UNICAM_DUMMY_BUF_SIZE PAGE_SIZE
enum unicam_pad {
UNICAM_SD_PAD_SINK,
UNICAM_SD_PAD_SOURCE_IMAGE,
UNICAM_SD_PAD_SOURCE_METADATA,
UNICAM_SD_NUM_PADS
};
enum unicam_node_type {
UNICAM_IMAGE_NODE,
UNICAM_METADATA_NODE,
UNICAM_MAX_NODES
};
/*
* struct unicam_format_info - Unicam media bus format information
* @fourcc: V4L2 pixel format FCC identifier. 0 if n/a.
* @unpacked_fourcc: V4L2 pixel format FCC identifier if the data is expanded
* out to 16bpp. 0 if n/a.
* @code: V4L2 media bus format code.
* @depth: Bits per pixel as delivered from the source.
* @csi_dt: CSI data type.
* @unpack: PUM value when unpacking to @unpacked_fourcc
*/
struct unicam_format_info {
u32 fourcc;
u32 unpacked_fourcc;
u32 code;
u8 depth;
u8 csi_dt;
u8 unpack;
};
struct unicam_buffer {
struct vb2_v4l2_buffer vb;
struct list_head list;
dma_addr_t dma_addr;
unsigned int size;
};
static inline struct unicam_buffer *to_unicam_buffer(struct vb2_buffer *vb)
{
return container_of(vb, struct unicam_buffer, vb.vb2_buf);
}
struct unicam_node {
bool registered;
unsigned int id;
/* Pointer to the current v4l2_buffer */
struct unicam_buffer *cur_frm;
/* Pointer to the next v4l2_buffer */
struct unicam_buffer *next_frm;
/* Used to store current pixel format */
struct v4l2_format fmt;
/* Buffer queue used in video-buf */
struct vb2_queue buffer_queue;
/* Queue of filled frames */
struct list_head dma_queue;
/* IRQ lock for DMA queue */
spinlock_t dma_queue_lock;
/* Identifies video device for this channel */
struct video_device video_dev;
/* Pointer to the parent handle */
struct unicam_device *dev;
struct media_pad pad;
/*
* Dummy buffer intended to be used by unicam
* if we have no other queued buffers to swap to.
*/
struct unicam_buffer dummy_buf;
void *dummy_buf_cpu_addr;
};
struct unicam_device {
struct kref kref;
/* peripheral base address */
void __iomem *base;
/* clock gating base address */
void __iomem *clk_gate_base;
/* lp clock handle */
struct clk *clock;
/* vpu clock handle */
struct clk *vpu_clock;
/* V4l2 device */
struct v4l2_device v4l2_dev;
struct media_device mdev;
/* parent device */
struct device *dev;
/* subdevice async notifier */
struct v4l2_async_notifier notifier;
unsigned int sequence;
/* Sensor node */
struct {
struct v4l2_subdev *subdev;
struct media_pad *pad;
} sensor;
/* Internal subdev */
struct {
struct v4l2_subdev sd;
struct media_pad pads[UNICAM_SD_NUM_PADS];
unsigned int enabled_streams;
} subdev;
enum v4l2_mbus_type bus_type;
/*
* Stores bus.mipi_csi2.flags for CSI2 sensors, or
* bus.mipi_csi1.strobe for CCP2.
*/
unsigned int bus_flags;
unsigned int max_data_lanes;
struct {
struct media_pipeline pipe;
unsigned int num_data_lanes;
unsigned int nodes;
} pipe;
/* Lock used for the video devices of both nodes */
struct mutex lock;
struct unicam_node node[UNICAM_MAX_NODES];
};
static inline struct unicam_device *
notifier_to_unicam_device(struct v4l2_async_notifier *notifier)
{
return container_of(notifier, struct unicam_device, notifier);
}
static inline struct unicam_device *
sd_to_unicam_device(struct v4l2_subdev *sd)
{
return container_of(sd, struct unicam_device, subdev.sd);
}
static void unicam_release(struct kref *kref)
{
struct unicam_device *unicam =
container_of(kref, struct unicam_device, kref);
if (unicam->mdev.dev)
media_device_cleanup(&unicam->mdev);
mutex_destroy(&unicam->lock);
kfree(unicam);
}
static struct unicam_device *unicam_get(struct unicam_device *unicam)
{
kref_get(&unicam->kref);
return unicam;
}
static void unicam_put(struct unicam_device *unicam)
{
kref_put(&unicam->kref, unicam_release);
}
/* -----------------------------------------------------------------------------
* Misc helper functions
*/
static inline bool unicam_sd_pad_is_source(u32 pad)
{
/* Camera RX has 1 sink pad, and N source pads */
return pad != UNICAM_SD_PAD_SINK;
}
static inline bool is_metadata_node(struct unicam_node *node)
{
return node->video_dev.device_caps & V4L2_CAP_META_CAPTURE;
}
static inline bool is_image_node(struct unicam_node *node)
{
return node->video_dev.device_caps & V4L2_CAP_VIDEO_CAPTURE;
}
/* -----------------------------------------------------------------------------
* Format data table and helper functions
*/
static const struct v4l2_mbus_framefmt unicam_default_image_format = {
.width = 640,
.height = 480,
.code = MEDIA_BUS_FMT_UYVY8_1X16,
.field = V4L2_FIELD_NONE,
.colorspace = V4L2_COLORSPACE_SRGB,
.ycbcr_enc = V4L2_YCBCR_ENC_601,
.quantization = V4L2_QUANTIZATION_LIM_RANGE,
.xfer_func = V4L2_XFER_FUNC_SRGB,
.flags = 0,
};
static const struct v4l2_mbus_framefmt unicam_default_meta_format = {
.width = 640,
.height = 2,
.code = MEDIA_BUS_FMT_META_8,
.field = V4L2_FIELD_NONE,
};
static const struct unicam_format_info unicam_image_formats[] = {
/* YUV Formats */
{
.fourcc = V4L2_PIX_FMT_YUYV,
.code = MEDIA_BUS_FMT_YUYV8_1X16,
.depth = 16,
.csi_dt = MIPI_CSI2_DT_YUV422_8B,
}, {
.fourcc = V4L2_PIX_FMT_UYVY,
.code = MEDIA_BUS_FMT_UYVY8_1X16,
.depth = 16,
.csi_dt = MIPI_CSI2_DT_YUV422_8B,
}, {
.fourcc = V4L2_PIX_FMT_YVYU,
.code = MEDIA_BUS_FMT_YVYU8_1X16,
.depth = 16,
.csi_dt = MIPI_CSI2_DT_YUV422_8B,
}, {
.fourcc = V4L2_PIX_FMT_VYUY,
.code = MEDIA_BUS_FMT_VYUY8_1X16,
.depth = 16,
.csi_dt = MIPI_CSI2_DT_YUV422_8B,
}, {
/* RGB Formats */
.fourcc = V4L2_PIX_FMT_RGB565, /* gggbbbbb rrrrrggg */
.code = MEDIA_BUS_FMT_RGB565_1X16,
.depth = 16,
.csi_dt = MIPI_CSI2_DT_RGB565,
}, {
.fourcc = V4L2_PIX_FMT_RGB24, /* rgb */
.code = MEDIA_BUS_FMT_RGB888_1X24,
.depth = 24,
.csi_dt = MIPI_CSI2_DT_RGB888,
}, {
.fourcc = V4L2_PIX_FMT_BGR24, /* bgr */
.code = MEDIA_BUS_FMT_BGR888_1X24,
.depth = 24,
.csi_dt = MIPI_CSI2_DT_RGB888,
}, {
/* Bayer Formats */
.fourcc = V4L2_PIX_FMT_SBGGR8,
.code = MEDIA_BUS_FMT_SBGGR8_1X8,
.depth = 8,
.csi_dt = MIPI_CSI2_DT_RAW8,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG8,
.code = MEDIA_BUS_FMT_SGBRG8_1X8,
.depth = 8,
.csi_dt = MIPI_CSI2_DT_RAW8,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG8,
.code = MEDIA_BUS_FMT_SGRBG8_1X8,
.depth = 8,
.csi_dt = MIPI_CSI2_DT_RAW8,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB8,
.code = MEDIA_BUS_FMT_SRGGB8_1X8,
.depth = 8,
.csi_dt = MIPI_CSI2_DT_RAW8,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR10P,
.unpacked_fourcc = V4L2_PIX_FMT_SBGGR10,
.code = MEDIA_BUS_FMT_SBGGR10_1X10,
.depth = 10,
.csi_dt = MIPI_CSI2_DT_RAW10,
.unpack = UNICAM_PUM_UNPACK10,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG10P,
.unpacked_fourcc = V4L2_PIX_FMT_SGBRG10,
.code = MEDIA_BUS_FMT_SGBRG10_1X10,
.depth = 10,
.csi_dt = MIPI_CSI2_DT_RAW10,
.unpack = UNICAM_PUM_UNPACK10,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG10P,
.unpacked_fourcc = V4L2_PIX_FMT_SGRBG10,
.code = MEDIA_BUS_FMT_SGRBG10_1X10,
.depth = 10,
.csi_dt = MIPI_CSI2_DT_RAW10,
.unpack = UNICAM_PUM_UNPACK10,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB10P,
.unpacked_fourcc = V4L2_PIX_FMT_SRGGB10,
.code = MEDIA_BUS_FMT_SRGGB10_1X10,
.depth = 10,
.csi_dt = MIPI_CSI2_DT_RAW10,
.unpack = UNICAM_PUM_UNPACK10,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR12P,
.unpacked_fourcc = V4L2_PIX_FMT_SBGGR12,
.code = MEDIA_BUS_FMT_SBGGR12_1X12,
.depth = 12,
.csi_dt = MIPI_CSI2_DT_RAW12,
.unpack = UNICAM_PUM_UNPACK12,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG12P,
.unpacked_fourcc = V4L2_PIX_FMT_SGBRG12,
.code = MEDIA_BUS_FMT_SGBRG12_1X12,
.depth = 12,
.csi_dt = MIPI_CSI2_DT_RAW12,
.unpack = UNICAM_PUM_UNPACK12,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG12P,
.unpacked_fourcc = V4L2_PIX_FMT_SGRBG12,
.code = MEDIA_BUS_FMT_SGRBG12_1X12,
.depth = 12,
.csi_dt = MIPI_CSI2_DT_RAW12,
.unpack = UNICAM_PUM_UNPACK12,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB12P,
.unpacked_fourcc = V4L2_PIX_FMT_SRGGB12,
.code = MEDIA_BUS_FMT_SRGGB12_1X12,
.depth = 12,
.csi_dt = MIPI_CSI2_DT_RAW12,
.unpack = UNICAM_PUM_UNPACK12,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR14P,
.unpacked_fourcc = V4L2_PIX_FMT_SBGGR14,
.code = MEDIA_BUS_FMT_SBGGR14_1X14,
.depth = 14,
.csi_dt = MIPI_CSI2_DT_RAW14,
.unpack = UNICAM_PUM_UNPACK14,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG14P,
.unpacked_fourcc = V4L2_PIX_FMT_SGBRG14,
.code = MEDIA_BUS_FMT_SGBRG14_1X14,
.depth = 14,
.csi_dt = MIPI_CSI2_DT_RAW14,
.unpack = UNICAM_PUM_UNPACK14,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG14P,
.unpacked_fourcc = V4L2_PIX_FMT_SGRBG14,
.code = MEDIA_BUS_FMT_SGRBG14_1X14,
.depth = 14,
.csi_dt = MIPI_CSI2_DT_RAW14,
.unpack = UNICAM_PUM_UNPACK14,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB14P,
.unpacked_fourcc = V4L2_PIX_FMT_SRGGB14,
.code = MEDIA_BUS_FMT_SRGGB14_1X14,
.depth = 14,
.csi_dt = MIPI_CSI2_DT_RAW14,
.unpack = UNICAM_PUM_UNPACK14,
}, {
/* 16 bit Bayer formats could be supported. */
/* Greyscale formats */
.fourcc = V4L2_PIX_FMT_GREY,
.code = MEDIA_BUS_FMT_Y8_1X8,
.depth = 8,
.csi_dt = MIPI_CSI2_DT_RAW8,
}, {
.fourcc = V4L2_PIX_FMT_Y10P,
.unpacked_fourcc = V4L2_PIX_FMT_Y10,
.code = MEDIA_BUS_FMT_Y10_1X10,
.depth = 10,
.csi_dt = MIPI_CSI2_DT_RAW10,
.unpack = UNICAM_PUM_UNPACK10,
}, {
.fourcc = V4L2_PIX_FMT_Y12P,
.unpacked_fourcc = V4L2_PIX_FMT_Y12,
.code = MEDIA_BUS_FMT_Y12_1X12,
.depth = 12,
.csi_dt = MIPI_CSI2_DT_RAW12,
.unpack = UNICAM_PUM_UNPACK12,
}, {
.fourcc = V4L2_PIX_FMT_Y14P,
.unpacked_fourcc = V4L2_PIX_FMT_Y14,
.code = MEDIA_BUS_FMT_Y14_1X14,
.depth = 14,
.csi_dt = MIPI_CSI2_DT_RAW14,
.unpack = UNICAM_PUM_UNPACK14,
},
};
static const struct unicam_format_info unicam_meta_formats[] = {
{
.fourcc = V4L2_META_FMT_GENERIC_8,
.code = MEDIA_BUS_FMT_META_8,
.depth = 8,
}, {
.fourcc = V4L2_META_FMT_GENERIC_CSI2_10,
.code = MEDIA_BUS_FMT_META_10,
.depth = 10,
}, {
.fourcc = V4L2_META_FMT_GENERIC_CSI2_12,
.code = MEDIA_BUS_FMT_META_12,
.depth = 12,
}, {
.fourcc = V4L2_META_FMT_GENERIC_CSI2_14,
.code = MEDIA_BUS_FMT_META_14,
.depth = 14,
},
};
/* Format setup functions */
static const struct unicam_format_info *
unicam_find_format_by_code(u32 code, u32 pad)
{
const struct unicam_format_info *formats;
unsigned int num_formats;
unsigned int i;
if (pad == UNICAM_SD_PAD_SOURCE_IMAGE) {
formats = unicam_image_formats;
num_formats = ARRAY_SIZE(unicam_image_formats);
} else {
formats = unicam_meta_formats;
num_formats = ARRAY_SIZE(unicam_meta_formats);
}
for (i = 0; i < num_formats; i++) {
if (formats[i].code == code)
return &formats[i];
}
return NULL;
}
static const struct unicam_format_info *
unicam_find_format_by_fourcc(u32 fourcc, u32 pad)
{
const struct unicam_format_info *formats;
unsigned int num_formats;
unsigned int i;
if (pad == UNICAM_SD_PAD_SOURCE_IMAGE) {
formats = unicam_image_formats;
num_formats = ARRAY_SIZE(unicam_image_formats);
} else {
formats = unicam_meta_formats;
num_formats = ARRAY_SIZE(unicam_meta_formats);
}
for (i = 0; i < num_formats; ++i) {
if (formats[i].fourcc == fourcc)
return &formats[i];
}
return NULL;
}
static void unicam_calc_image_size_bpl(struct unicam_device *unicam,
const struct unicam_format_info *fmtinfo,
struct v4l2_pix_format *pix)
{
u32 min_bpl;
v4l_bound_align_image(&pix->width, UNICAM_IMAGE_MIN_WIDTH,
UNICAM_IMAGE_MAX_WIDTH, 2,
&pix->height, UNICAM_IMAGE_MIN_HEIGHT,
UNICAM_IMAGE_MAX_HEIGHT, 0, 0);
/* Unpacking always goes to 16bpp */
if (pix->pixelformat == fmtinfo->unpacked_fourcc)
min_bpl = pix->width * 2;
else
min_bpl = pix->width * fmtinfo->depth / 8;
min_bpl = ALIGN(min_bpl, UNICAM_IMAGE_BPL_ALIGNMENT);
pix->bytesperline = ALIGN(pix->bytesperline, UNICAM_IMAGE_BPL_ALIGNMENT);
pix->bytesperline = clamp_t(unsigned int, pix->bytesperline, min_bpl,
UNICAM_IMAGE_MAX_BPL);
pix->sizeimage = pix->height * pix->bytesperline;
}
static void unicam_calc_meta_size_bpl(struct unicam_device *unicam,
const struct unicam_format_info *fmtinfo,
struct v4l2_meta_format *meta)
{
v4l_bound_align_image(&meta->width, UNICAM_META_MIN_WIDTH,
UNICAM_META_MAX_WIDTH, 0,
&meta->height, UNICAM_META_MIN_HEIGHT,
UNICAM_META_MAX_HEIGHT, 0, 0);
meta->bytesperline = ALIGN(meta->width * fmtinfo->depth / 8,
UNICAM_DMA_BPL_ALIGNMENT);
meta->buffersize = meta->height * meta->bytesperline;
}
/* -----------------------------------------------------------------------------
* Hardware handling
*/
static inline void unicam_clk_write(struct unicam_device *unicam, u32 val)
{
/* Pass the CM_PASSWORD along with the value. */
writel(val | 0x5a000000, unicam->clk_gate_base);
}
static inline u32 unicam_reg_read(struct unicam_device *unicam, u32 offset)
{
return readl(unicam->base + offset);
}
static inline void unicam_reg_write(struct unicam_device *unicam, u32 offset, u32 val)
{
writel(val, unicam->base + offset);
}
static inline int unicam_get_field(u32 value, u32 mask)
{
return (value & mask) >> __ffs(mask);
}
static inline void unicam_set_field(u32 *valp, u32 field, u32 mask)
{
u32 val = *valp;
val &= ~mask;
val |= (field << __ffs(mask)) & mask;
*valp = val;
}
static inline void unicam_reg_write_field(struct unicam_device *unicam, u32 offset,
u32 field, u32 mask)
{
u32 val = unicam_reg_read(unicam, offset);
unicam_set_field(&val, field, mask);
unicam_reg_write(unicam, offset, val);
}
static void unicam_wr_dma_addr(struct unicam_node *node,
struct unicam_buffer *buf)
{
dma_addr_t endaddr = buf->dma_addr + buf->size;
if (node->id == UNICAM_IMAGE_NODE) {
unicam_reg_write(node->dev, UNICAM_IBSA0, buf->dma_addr);
unicam_reg_write(node->dev, UNICAM_IBEA0, endaddr);
} else {
unicam_reg_write(node->dev, UNICAM_DBSA0, buf->dma_addr);
unicam_reg_write(node->dev, UNICAM_DBEA0, endaddr);
}
}
static unsigned int unicam_get_lines_done(struct unicam_device *unicam)
{
struct unicam_node *node = &unicam->node[UNICAM_IMAGE_NODE];
unsigned int stride = node->fmt.fmt.pix.bytesperline;
struct unicam_buffer *frm = node->cur_frm;
dma_addr_t cur_addr;
if (!frm)
return 0;
cur_addr = unicam_reg_read(unicam, UNICAM_IBWP);
return (unsigned int)(cur_addr - frm->dma_addr) / stride;
}
static void unicam_schedule_next_buffer(struct unicam_node *node)
{
struct unicam_buffer *buf;
buf = list_first_entry(&node->dma_queue, struct unicam_buffer, list);
node->next_frm = buf;
list_del(&buf->list);
unicam_wr_dma_addr(node, buf);
}
static void unicam_schedule_dummy_buffer(struct unicam_node *node)
{
int node_id = is_image_node(node) ? UNICAM_IMAGE_NODE : UNICAM_METADATA_NODE;
dev_dbg(node->dev->dev, "Scheduling dummy buffer for node %d\n", node_id);
unicam_wr_dma_addr(node, &node->dummy_buf);
node->next_frm = NULL;
}
static void unicam_process_buffer_complete(struct unicam_node *node,
unsigned int sequence)
{
node->cur_frm->vb.field = node->fmt.fmt.pix.field;
node->cur_frm->vb.sequence = sequence;
vb2_buffer_done(&node->cur_frm->vb.vb2_buf, VB2_BUF_STATE_DONE);
}
static void unicam_queue_event_sof(struct unicam_device *unicam)
{
struct unicam_node *node = &unicam->node[UNICAM_IMAGE_NODE];
struct v4l2_event event = {
.type = V4L2_EVENT_FRAME_SYNC,
.u.frame_sync.frame_sequence = unicam->sequence,
};
v4l2_event_queue(&node->video_dev, &event);
}
static irqreturn_t unicam_isr(int irq, void *dev)
{
struct unicam_device *unicam = dev;
unsigned int lines_done = unicam_get_lines_done(dev);
unsigned int sequence = unicam->sequence;
unsigned int i;
u32 ista, sta;
bool fe;
u64 ts;
sta = unicam_reg_read(unicam, UNICAM_STA);
/* Write value back to clear the interrupts */
unicam_reg_write(unicam, UNICAM_STA, sta);
ista = unicam_reg_read(unicam, UNICAM_ISTA);
/* Write value back to clear the interrupts */
unicam_reg_write(unicam, UNICAM_ISTA, ista);
dev_dbg(unicam->dev, "ISR: ISTA: 0x%X, STA: 0x%X, sequence %d, lines done %d\n",
ista, sta, sequence, lines_done);
if (!(sta & (UNICAM_IS | UNICAM_PI0)))
return IRQ_HANDLED;
/*
* Look for either the Frame End interrupt or the Packet Capture status
* to signal a frame end.
*/
fe = ista & UNICAM_FEI || sta & UNICAM_PI0;
/*
* We must run the frame end handler first. If we have a valid next_frm
* and we get a simultaneout FE + FS interrupt, running the FS handler
* first would null out the next_frm ptr and we would have lost the
* buffer forever.
*/
if (fe) {
/*
* Ensure we have swapped buffers already as we can't
* stop the peripheral. If no buffer is available, use a
* dummy buffer to dump out frames until we get a new buffer
* to use.
*/
for (i = 0; i < ARRAY_SIZE(unicam->node); i++) {
struct unicam_node *node = &unicam->node[i];
if (!vb2_start_streaming_called(&node->buffer_queue))
continue;
/*
* If cur_frm == next_frm, it means we have not had
* a chance to swap buffers, likely due to having
* multiple interrupts occurring simultaneously (like FE
* + FS + LS). In this case, we cannot signal the buffer
* as complete, as the HW will reuse that buffer.
*/
if (node->cur_frm && node->cur_frm != node->next_frm)
unicam_process_buffer_complete(node, sequence);
node->cur_frm = node->next_frm;
}
unicam->sequence++;
}
if (ista & UNICAM_FSI) {
/*
* Timestamp is to be when the first data byte was captured,
* aka frame start.
*/
ts = ktime_get_ns();
for (i = 0; i < ARRAY_SIZE(unicam->node); i++) {
struct unicam_node *node = &unicam->node[i];
if (!vb2_start_streaming_called(&node->buffer_queue))
continue;
if (node->cur_frm)
node->cur_frm->vb.vb2_buf.timestamp = ts;
else
dev_dbg(unicam->v4l2_dev.dev,
"ISR: [%d] Dropping frame, buffer not available at FS\n",
i);
/*
* Set the next frame output to go to a dummy frame
* if we have not managed to obtain another frame
* from the queue.
*/
unicam_schedule_dummy_buffer(node);
}
unicam_queue_event_sof(unicam);
}
/*
* Cannot swap buffer at frame end, there may be a race condition
* where the HW does not actually swap it if the new frame has
* already started.
*/
if (ista & (UNICAM_FSI | UNICAM_LCI) && !fe) {
for (i = 0; i < ARRAY_SIZE(unicam->node); i++) {
struct unicam_node *node = &unicam->node[i];
if (!vb2_start_streaming_called(&node->buffer_queue))
continue;
spin_lock(&node->dma_queue_lock);
if (!list_empty(&node->dma_queue) && !node->next_frm)
unicam_schedule_next_buffer(node);
spin_unlock(&node->dma_queue_lock);
}
}
if (unicam_reg_read(unicam, UNICAM_ICTL) & UNICAM_FCM) {
/* Switch out of trigger mode if selected */
unicam_reg_write_field(unicam, UNICAM_ICTL, 1, UNICAM_TFC);
unicam_reg_write_field(unicam, UNICAM_ICTL, 0, UNICAM_FCM);
}
return IRQ_HANDLED;
}
static void unicam_set_packing_config(struct unicam_device *unicam,
const struct unicam_format_info *fmtinfo)
{
struct unicam_node *node = &unicam->node[UNICAM_IMAGE_NODE];
u32 pack, unpack;
u32 val;
if (node->fmt.fmt.pix.pixelformat == fmtinfo->fourcc) {
unpack = UNICAM_PUM_NONE;
pack = UNICAM_PPM_NONE;
} else {
unpack = fmtinfo->unpack;
/* Repacking is always to 16bpp */
pack = UNICAM_PPM_PACK16;
}
val = 0;
unicam_set_field(&val, unpack, UNICAM_PUM_MASK);
unicam_set_field(&val, pack, UNICAM_PPM_MASK);
unicam_reg_write(unicam, UNICAM_IPIPE, val);
}
static void unicam_cfg_image_id(struct unicam_device *unicam, u8 vc, u8 dt)
{
if (unicam->bus_type == V4L2_MBUS_CSI2_DPHY) {
/* CSI2 mode */
unicam_reg_write(unicam, UNICAM_IDI0, (vc << 6) | dt);
} else {
/* CCP2 mode */
unicam_reg_write(unicam, UNICAM_IDI0, 0x80 | dt);
}
}
static void unicam_enable_ed(struct unicam_device *unicam)
{
u32 val = unicam_reg_read(unicam, UNICAM_DCS);
unicam_set_field(&val, 2, UNICAM_EDL_MASK);
/* Do not wrap at the end of the embedded data buffer */
unicam_set_field(&val, 0, UNICAM_DBOB);
unicam_reg_write(unicam, UNICAM_DCS, val);
}
static int unicam_get_image_vc_dt(struct unicam_device *unicam,
struct v4l2_subdev_state *state,
u8 *vc, u8 *dt)
{
struct v4l2_mbus_frame_desc fd;
u32 stream;
int ret;
ret = v4l2_subdev_routing_find_opposite_end(&state->routing,
UNICAM_SD_PAD_SOURCE_IMAGE,
0, NULL, &stream);
if (ret)
return ret;
ret = v4l2_subdev_call(unicam->sensor.subdev, pad, get_frame_desc,
unicam->sensor.pad->index, &fd);
if (ret)
return ret;
/* Only CSI-2 supports DTs. */
if (fd.type != V4L2_MBUS_FRAME_DESC_TYPE_CSI2)
return -EINVAL;
for (unsigned int i = 0; i < fd.num_entries; ++i) {
const struct v4l2_mbus_frame_desc_entry *fde = &fd.entry[i];
if (fde->stream == stream) {
*vc = fde->bus.csi2.vc;
*dt = fde->bus.csi2.dt;
return 0;
}
}
return -EINVAL;
}
static void unicam_start_rx(struct unicam_device *unicam,
struct v4l2_subdev_state *state)
{
struct unicam_node *node = &unicam->node[UNICAM_IMAGE_NODE];
const struct unicam_format_info *fmtinfo;
const struct v4l2_mbus_framefmt *fmt;
unsigned int line_int_freq;
u8 vc, dt;
u32 val;
int ret;
fmt = v4l2_subdev_state_get_format(state, UNICAM_SD_PAD_SOURCE_IMAGE, 0);
fmtinfo = unicam_find_format_by_code(fmt->code,
UNICAM_SD_PAD_SOURCE_IMAGE);
if (WARN_ON(!fmtinfo))
return;
/*
* Enable lane clocks. The register is structured as follows:
*
* [9:8] - DAT3
* [7:6] - DAT2
* [5:4] - DAT1
* [3:2] - DAT0
* [1:0] - CLK
*
* Enabled lane must be set to b01, and disabled lanes to b00. The clock
* lane is always enabled.
*/
val = 0x155 & GENMASK(unicam->pipe.num_data_lanes * 2 + 1, 0);
unicam_clk_write(unicam, val);
/* Basic init */
unicam_reg_write(unicam, UNICAM_CTRL, UNICAM_MEM);
/* Enable analogue control, and leave in reset. */
val = UNICAM_AR;
unicam_set_field(&val, 7, UNICAM_CTATADJ_MASK);
unicam_set_field(&val, 7, UNICAM_PTATADJ_MASK);
unicam_reg_write(unicam, UNICAM_ANA, val);
usleep_range(1000, 2000);
/* Come out of reset */
unicam_reg_write_field(unicam, UNICAM_ANA, 0, UNICAM_AR);
/* Peripheral reset */
unicam_reg_write_field(unicam, UNICAM_CTRL, 1, UNICAM_CPR);
unicam_reg_write_field(unicam, UNICAM_CTRL, 0, UNICAM_CPR);
unicam_reg_write_field(unicam, UNICAM_CTRL, 0, UNICAM_CPE);
/* Enable Rx control. */
val = unicam_reg_read(unicam, UNICAM_CTRL);
if (unicam->bus_type == V4L2_MBUS_CSI2_DPHY) {
unicam_set_field(&val, UNICAM_CPM_CSI2, UNICAM_CPM_MASK);
unicam_set_field(&val, UNICAM_DCM_STROBE, UNICAM_DCM_MASK);
} else {
unicam_set_field(&val, UNICAM_CPM_CCP2, UNICAM_CPM_MASK);
unicam_set_field(&val, unicam->bus_flags, UNICAM_DCM_MASK);
}
/* Packet framer timeout */
unicam_set_field(&val, 0xf, UNICAM_PFT_MASK);
unicam_set_field(&val, 128, UNICAM_OET_MASK);
unicam_reg_write(unicam, UNICAM_CTRL, val);
unicam_reg_write(unicam, UNICAM_IHWIN, 0);
unicam_reg_write(unicam, UNICAM_IVWIN, 0);
/* AXI bus access QoS setup */
val = unicam_reg_read(unicam, UNICAM_PRI);
unicam_set_field(&val, 0, UNICAM_BL_MASK);
unicam_set_field(&val, 0, UNICAM_BS_MASK);
unicam_set_field(&val, 0xe, UNICAM_PP_MASK);
unicam_set_field(&val, 8, UNICAM_NP_MASK);
unicam_set_field(&val, 2, UNICAM_PT_MASK);
unicam_set_field(&val, 1, UNICAM_PE);
unicam_reg_write(unicam, UNICAM_PRI, val);
unicam_reg_write_field(unicam, UNICAM_ANA, 0, UNICAM_DDL);
/* Always start in trigger frame capture mode (UNICAM_FCM set) */
val = UNICAM_FSIE | UNICAM_FEIE | UNICAM_FCM | UNICAM_IBOB;
line_int_freq = max(fmt->height >> 2, 128);
unicam_set_field(&val, line_int_freq, UNICAM_LCIE_MASK);
unicam_reg_write(unicam, UNICAM_ICTL, val);
unicam_reg_write(unicam, UNICAM_STA, UNICAM_STA_MASK_ALL);
unicam_reg_write(unicam, UNICAM_ISTA, UNICAM_ISTA_MASK_ALL);
/* tclk_term_en */
unicam_reg_write_field(unicam, UNICAM_CLT, 2, UNICAM_CLT1_MASK);
/* tclk_settle */
unicam_reg_write_field(unicam, UNICAM_CLT, 6, UNICAM_CLT2_MASK);
/* td_term_en */
unicam_reg_write_field(unicam, UNICAM_DLT, 2, UNICAM_DLT1_MASK);
/* ths_settle */
unicam_reg_write_field(unicam, UNICAM_DLT, 6, UNICAM_DLT2_MASK);
/* trx_enable */
unicam_reg_write_field(unicam, UNICAM_DLT, 0, UNICAM_DLT3_MASK);
unicam_reg_write_field(unicam, UNICAM_CTRL, 0, UNICAM_SOE);
/* Packet compare setup - required to avoid missing frame ends */
val = 0;
unicam_set_field(&val, 1, UNICAM_PCE);
unicam_set_field(&val, 1, UNICAM_GI);
unicam_set_field(&val, 1, UNICAM_CPH);
unicam_set_field(&val, 0, UNICAM_PCVC_MASK);
unicam_set_field(&val, 1, UNICAM_PCDT_MASK);
unicam_reg_write(unicam, UNICAM_CMP0, val);
/* Enable clock lane and set up terminations */
val = 0;
if (unicam->bus_type == V4L2_MBUS_CSI2_DPHY) {
/* CSI2 */
unicam_set_field(&val, 1, UNICAM_CLE);
unicam_set_field(&val, 1, UNICAM_CLLPE);
if (!(unicam->bus_flags & V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK)) {
unicam_set_field(&val, 1, UNICAM_CLTRE);
unicam_set_field(&val, 1, UNICAM_CLHSE);
}
} else {
/* CCP2 */
unicam_set_field(&val, 1, UNICAM_CLE);
unicam_set_field(&val, 1, UNICAM_CLHSE);
unicam_set_field(&val, 1, UNICAM_CLTRE);
}
unicam_reg_write(unicam, UNICAM_CLK, val);
/*
* Enable required data lanes with appropriate terminations.
* The same value needs to be written to UNICAM_DATn registers for
* the active lanes, and 0 for inactive ones.
*/
val = 0;
if (unicam->bus_type == V4L2_MBUS_CSI2_DPHY) {
/* CSI2 */
unicam_set_field(&val, 1, UNICAM_DLE);
unicam_set_field(&val, 1, UNICAM_DLLPE);
if (!(unicam->bus_flags & V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK)) {
unicam_set_field(&val, 1, UNICAM_DLTRE);
unicam_set_field(&val, 1, UNICAM_DLHSE);
}
} else {
/* CCP2 */
unicam_set_field(&val, 1, UNICAM_DLE);
unicam_set_field(&val, 1, UNICAM_DLHSE);
unicam_set_field(&val, 1, UNICAM_DLTRE);
}
unicam_reg_write(unicam, UNICAM_DAT0, val);
if (unicam->pipe.num_data_lanes == 1)
val = 0;
unicam_reg_write(unicam, UNICAM_DAT1, val);
if (unicam->max_data_lanes > 2) {
/*
* Registers UNICAM_DAT2 and UNICAM_DAT3 only valid if the
* instance supports more than 2 data lanes.
*/
if (unicam->pipe.num_data_lanes == 2)
val = 0;
unicam_reg_write(unicam, UNICAM_DAT2, val);
if (unicam->pipe.num_data_lanes == 3)
val = 0;
unicam_reg_write(unicam, UNICAM_DAT3, val);
}
unicam_reg_write(unicam, UNICAM_IBLS,
node->fmt.fmt.pix.bytesperline);
unicam_wr_dma_addr(node, node->cur_frm);
unicam_set_packing_config(unicam, fmtinfo);
ret = unicam_get_image_vc_dt(unicam, state, &vc, &dt);
if (ret) {
/*
* If the source doesn't support frame descriptors, default to
* VC 0 and use the DT corresponding to the format.
*/
vc = 0;
dt = fmtinfo->csi_dt;
}
unicam_cfg_image_id(unicam, vc, dt);
val = unicam_reg_read(unicam, UNICAM_MISC);
unicam_set_field(&val, 1, UNICAM_FL0);
unicam_set_field(&val, 1, UNICAM_FL1);
unicam_reg_write(unicam, UNICAM_MISC, val);
/* Enable peripheral */
unicam_reg_write_field(unicam, UNICAM_CTRL, 1, UNICAM_CPE);
/* Load image pointers */
unicam_reg_write_field(unicam, UNICAM_ICTL, 1, UNICAM_LIP_MASK);
/*
* Enable trigger only for the first frame to
* sync correctly to the FS from the source.
*/
unicam_reg_write_field(unicam, UNICAM_ICTL, 1, UNICAM_TFC);
}
static void unicam_start_metadata(struct unicam_device *unicam)
{
struct unicam_node *node = &unicam->node[UNICAM_METADATA_NODE];
unicam_enable_ed(unicam);
unicam_wr_dma_addr(node, node->cur_frm);
unicam_reg_write_field(unicam, UNICAM_DCS, 1, UNICAM_LDP);
}
static void unicam_disable(struct unicam_device *unicam)
{
/* Analogue lane control disable */
unicam_reg_write_field(unicam, UNICAM_ANA, 1, UNICAM_DDL);
/* Stop the output engine */
unicam_reg_write_field(unicam, UNICAM_CTRL, 1, UNICAM_SOE);
/* Disable the data lanes. */
unicam_reg_write(unicam, UNICAM_DAT0, 0);
unicam_reg_write(unicam, UNICAM_DAT1, 0);
if (unicam->max_data_lanes > 2) {
unicam_reg_write(unicam, UNICAM_DAT2, 0);
unicam_reg_write(unicam, UNICAM_DAT3, 0);
}
/* Peripheral reset */
unicam_reg_write_field(unicam, UNICAM_CTRL, 1, UNICAM_CPR);
usleep_range(50, 100);
unicam_reg_write_field(unicam, UNICAM_CTRL, 0, UNICAM_CPR);
/* Disable peripheral */
unicam_reg_write_field(unicam, UNICAM_CTRL, 0, UNICAM_CPE);
/* Clear ED setup */
unicam_reg_write(unicam, UNICAM_DCS, 0);
/* Disable all lane clocks */
unicam_clk_write(unicam, 0);
}
/* -----------------------------------------------------------------------------
* V4L2 subdev operations
*/
static int __unicam_subdev_set_routing(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_krouting *routing)
{
struct v4l2_subdev_route *route;
int ret;
ret = v4l2_subdev_routing_validate(sd, routing,
V4L2_SUBDEV_ROUTING_ONLY_1_TO_1);
if (ret)
return ret;
ret = v4l2_subdev_set_routing(sd, state, routing);
if (ret)
return ret;
for_each_active_route(&state->routing, route) {
const struct v4l2_mbus_framefmt *def_fmt;
struct v4l2_mbus_framefmt *fmt;
if (route->source_pad == UNICAM_SD_PAD_SOURCE_IMAGE)
def_fmt = &unicam_default_image_format;
else
def_fmt = &unicam_default_meta_format;
fmt = v4l2_subdev_state_get_format(state, route->sink_pad,
route->sink_stream);
*fmt = *def_fmt;
fmt = v4l2_subdev_state_get_format(state, route->source_pad,
route->source_stream);
*fmt = *def_fmt;
}
return 0;
}
static int unicam_subdev_init_state(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state)
{
struct v4l2_subdev_route routes[] = {
{
.sink_pad = UNICAM_SD_PAD_SINK,
.sink_stream = 0,
.source_pad = UNICAM_SD_PAD_SOURCE_IMAGE,
.source_stream = 0,
.flags = V4L2_SUBDEV_ROUTE_FL_ACTIVE,
},
};
struct v4l2_subdev_krouting routing = {
.len_routes = ARRAY_SIZE(routes),
.num_routes = ARRAY_SIZE(routes),
.routes = routes,
};
/* Initialize routing to single route to the fist source pad. */
return __unicam_subdev_set_routing(sd, state, &routing);
}
static int unicam_subdev_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_mbus_code_enum *code)
{
u32 pad, stream;
int ret;
ret = v4l2_subdev_routing_find_opposite_end(&state->routing,
code->pad, code->stream,
&pad, &stream);
if (ret)
return ret;
if (unicam_sd_pad_is_source(code->pad)) {
/* No transcoding, source and sink codes must match. */
const struct v4l2_mbus_framefmt *fmt;
fmt = v4l2_subdev_state_get_format(state, pad, stream);
if (!fmt)
return -EINVAL;
if (code->index > 0)
return -EINVAL;
code->code = fmt->code;
} else {
const struct unicam_format_info *formats;
unsigned int num_formats;
if (pad == UNICAM_SD_PAD_SOURCE_IMAGE) {
formats = unicam_image_formats;
num_formats = ARRAY_SIZE(unicam_image_formats);
} else {
formats = unicam_meta_formats;
num_formats = ARRAY_SIZE(unicam_meta_formats);
}
if (code->index >= num_formats)
return -EINVAL;
code->code = formats[code->index].code;
}
return 0;
}
static int unicam_subdev_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_frame_size_enum *fse)
{
u32 pad, stream;
int ret;
if (fse->index > 0)
return -EINVAL;
ret = v4l2_subdev_routing_find_opposite_end(&state->routing, fse->pad,
fse->stream, &pad,
&stream);
if (ret)
return ret;
if (unicam_sd_pad_is_source(fse->pad)) {
/* No transcoding, source and sink formats must match. */
const struct v4l2_mbus_framefmt *fmt;
fmt = v4l2_subdev_state_get_format(state, pad, stream);
if (!fmt)
return -EINVAL;
if (fse->code != fmt->code)
return -EINVAL;
fse->min_width = fmt->width;
fse->max_width = fmt->width;
fse->min_height = fmt->height;
fse->max_height = fmt->height;
} else {
const struct unicam_format_info *fmtinfo;
fmtinfo = unicam_find_format_by_code(fse->code, pad);
if (!fmtinfo)
return -EINVAL;
if (pad == UNICAM_SD_PAD_SOURCE_IMAGE) {
fse->min_width = UNICAM_IMAGE_MIN_WIDTH;
fse->max_width = UNICAM_IMAGE_MAX_WIDTH;
fse->min_height = UNICAM_IMAGE_MIN_HEIGHT;
fse->max_height = UNICAM_IMAGE_MAX_HEIGHT;
} else {
fse->min_width = UNICAM_META_MIN_WIDTH;
fse->max_width = UNICAM_META_MAX_WIDTH;
fse->min_height = UNICAM_META_MIN_HEIGHT;
fse->max_height = UNICAM_META_MAX_HEIGHT;
}
}
return 0;
}
static int unicam_subdev_set_format(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_format *format)
{
struct unicam_device *unicam = sd_to_unicam_device(sd);
struct v4l2_mbus_framefmt *sink_format, *source_format;
const struct unicam_format_info *fmtinfo;
u32 source_pad, source_stream;
int ret;
if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE &&
unicam->subdev.enabled_streams)
return -EBUSY;
/* No transcoding, source and sink formats must match. */
if (unicam_sd_pad_is_source(format->pad))
return v4l2_subdev_get_fmt(sd, state, format);
/*
* Allowed formats for the stream on the sink pad depend on what source
* pad the stream is routed to. Find the corresponding source pad and
* use it to validate the media bus code.
*/
ret = v4l2_subdev_routing_find_opposite_end(&state->routing,
format->pad, format->stream,
&source_pad, &source_stream);
if (ret)
return ret;
fmtinfo = unicam_find_format_by_code(format->format.code, source_pad);
if (!fmtinfo) {
fmtinfo = source_pad == UNICAM_SD_PAD_SOURCE_IMAGE
? &unicam_image_formats[0] : &unicam_meta_formats[0];
format->format.code = fmtinfo->code;
}
if (source_pad == UNICAM_SD_PAD_SOURCE_IMAGE) {
format->format.width = clamp_t(unsigned int,
format->format.width,
UNICAM_IMAGE_MIN_WIDTH,
UNICAM_IMAGE_MAX_WIDTH);
format->format.height = clamp_t(unsigned int,
format->format.height,
UNICAM_IMAGE_MIN_HEIGHT,
UNICAM_IMAGE_MAX_HEIGHT);
format->format.field = V4L2_FIELD_NONE;
} else {
format->format.width = clamp_t(unsigned int,
format->format.width,
UNICAM_META_MIN_WIDTH,
UNICAM_META_MAX_WIDTH);
format->format.height = clamp_t(unsigned int,
format->format.height,
UNICAM_META_MIN_HEIGHT,
UNICAM_META_MAX_HEIGHT);
format->format.field = V4L2_FIELD_NONE;
/* Colorspace don't apply to metadata. */
format->format.colorspace = 0;
format->format.ycbcr_enc = 0;
format->format.quantization = 0;
format->format.xfer_func = 0;
}
sink_format = v4l2_subdev_state_get_format(state, format->pad,
format->stream);
source_format = v4l2_subdev_state_get_format(state, source_pad,
source_stream);
*sink_format = format->format;
*source_format = format->format;
return 0;
}
static int unicam_subdev_set_routing(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
enum v4l2_subdev_format_whence which,
struct v4l2_subdev_krouting *routing)
{
struct unicam_device *unicam = sd_to_unicam_device(sd);
if (which == V4L2_SUBDEV_FORMAT_ACTIVE && unicam->subdev.enabled_streams)
return -EBUSY;
return __unicam_subdev_set_routing(sd, state, routing);
}
static int unicam_sd_enable_streams(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state, u32 pad,
u64 streams_mask)
{
struct unicam_device *unicam = sd_to_unicam_device(sd);
u32 other_pad, other_stream;
int ret;
if (!unicam->subdev.enabled_streams) {
/* Configure and start Unicam. */
unicam->sequence = 0;
if (unicam->pipe.nodes & BIT(UNICAM_METADATA_NODE))
unicam_start_metadata(unicam);
unicam_start_rx(unicam, state);
}
ret = v4l2_subdev_routing_find_opposite_end(&state->routing, pad, 0,
&other_pad, &other_stream);
if (ret)
return ret;
ret = v4l2_subdev_enable_streams(unicam->sensor.subdev,
unicam->sensor.pad->index,
BIT(other_stream));
if (ret) {
dev_err(unicam->dev, "stream on failed in subdev\n");
return ret;
}
unicam->subdev.enabled_streams |= BIT(other_stream);
return 0;
}
static int unicam_sd_disable_streams(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state, u32 pad,
u64 streams_mask)
{
struct unicam_device *unicam = sd_to_unicam_device(sd);
u32 other_pad, other_stream;
int ret;
ret = v4l2_subdev_routing_find_opposite_end(&state->routing, pad, 0,
&other_pad, &other_stream);
if (ret)
return ret;
v4l2_subdev_disable_streams(unicam->sensor.subdev,
unicam->sensor.pad->index,
BIT(other_stream));
unicam->subdev.enabled_streams &= ~BIT(other_stream);
if (!unicam->subdev.enabled_streams)
unicam_disable(unicam);
return 0;
}
static const struct v4l2_subdev_pad_ops unicam_subdev_pad_ops = {
.enum_mbus_code = unicam_subdev_enum_mbus_code,
.enum_frame_size = unicam_subdev_enum_frame_size,
.get_fmt = v4l2_subdev_get_fmt,
.set_fmt = unicam_subdev_set_format,
.set_routing = unicam_subdev_set_routing,
.enable_streams = unicam_sd_enable_streams,
.disable_streams = unicam_sd_disable_streams,
};
static const struct v4l2_subdev_ops unicam_subdev_ops = {
.pad = &unicam_subdev_pad_ops,
};
static const struct v4l2_subdev_internal_ops unicam_subdev_internal_ops = {
.init_state = unicam_subdev_init_state,
};
static const struct media_entity_operations unicam_subdev_media_ops = {
.link_validate = v4l2_subdev_link_validate,
.has_pad_interdep = v4l2_subdev_has_pad_interdep,
};
static int unicam_subdev_init(struct unicam_device *unicam)
{
struct v4l2_subdev *sd = &unicam->subdev.sd;
int ret;
v4l2_subdev_init(sd, &unicam_subdev_ops);
sd->internal_ops = &unicam_subdev_internal_ops;
v4l2_set_subdevdata(sd, unicam);
sd->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
sd->entity.ops = &unicam_subdev_media_ops;
sd->dev = unicam->dev;
sd->owner = THIS_MODULE;
sd->flags = V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_STREAMS;
strscpy(sd->name, "unicam", sizeof(sd->name));
unicam->subdev.pads[UNICAM_SD_PAD_SINK].flags = MEDIA_PAD_FL_SINK;
unicam->subdev.pads[UNICAM_SD_PAD_SOURCE_IMAGE].flags = MEDIA_PAD_FL_SOURCE;
unicam->subdev.pads[UNICAM_SD_PAD_SOURCE_METADATA].flags = MEDIA_PAD_FL_SOURCE;
ret = media_entity_pads_init(&sd->entity, ARRAY_SIZE(unicam->subdev.pads),
unicam->subdev.pads);
if (ret) {
dev_err(unicam->dev, "Failed to initialize media entity: %d\n",
ret);
return ret;
}
ret = v4l2_subdev_init_finalize(sd);
if (ret) {
dev_err(unicam->dev, "Failed to initialize subdev: %d\n", ret);
goto err_entity;
}
ret = v4l2_device_register_subdev(&unicam->v4l2_dev, sd);
if (ret) {
dev_err(unicam->dev, "Failed to register subdev: %d\n", ret);
goto err_subdev;
}
return 0;
err_subdev:
v4l2_subdev_cleanup(sd);
err_entity:
media_entity_cleanup(&sd->entity);
return ret;
}
static void unicam_subdev_cleanup(struct unicam_device *unicam)
{
v4l2_subdev_cleanup(&unicam->subdev.sd);
media_entity_cleanup(&unicam->subdev.sd.entity);
}
/* -----------------------------------------------------------------------------
* Videobuf2 queue operations
*/
static int unicam_queue_setup(struct vb2_queue *vq, unsigned int *nbuffers,
unsigned int *nplanes, unsigned int sizes[],
struct device *alloc_devs[])
{
struct unicam_node *node = vb2_get_drv_priv(vq);
u32 size = is_image_node(node) ? node->fmt.fmt.pix.sizeimage
: node->fmt.fmt.meta.buffersize;
if (*nplanes) {
if (sizes[0] < size) {
dev_dbg(node->dev->dev, "sizes[0] %i < size %u\n",
sizes[0], size);
return -EINVAL;
}
size = sizes[0];
}
*nplanes = 1;
sizes[0] = size;
return 0;
}
static int unicam_buffer_prepare(struct vb2_buffer *vb)
{
struct unicam_node *node = vb2_get_drv_priv(vb->vb2_queue);
struct unicam_buffer *buf = to_unicam_buffer(vb);
u32 size = is_image_node(node) ? node->fmt.fmt.pix.sizeimage
: node->fmt.fmt.meta.buffersize;
if (vb2_plane_size(vb, 0) < size) {
dev_dbg(node->dev->dev,
"data will not fit into plane (%lu < %u)\n",
vb2_plane_size(vb, 0), size);
return -EINVAL;
}
buf->dma_addr = vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0);
buf->size = size;
vb2_set_plane_payload(&buf->vb.vb2_buf, 0, size);
return 0;
}
static void unicam_return_buffers(struct unicam_node *node,
enum vb2_buffer_state state)
{
struct unicam_buffer *buf, *tmp;
list_for_each_entry_safe(buf, tmp, &node->dma_queue, list) {
list_del(&buf->list);
vb2_buffer_done(&buf->vb.vb2_buf, state);
}
if (node->cur_frm)
vb2_buffer_done(&node->cur_frm->vb.vb2_buf,
state);
if (node->next_frm && node->cur_frm != node->next_frm)
vb2_buffer_done(&node->next_frm->vb.vb2_buf,
state);
node->cur_frm = NULL;
node->next_frm = NULL;
}
static int unicam_num_data_lanes(struct unicam_device *unicam)
{
struct v4l2_mbus_config mbus_config = { 0 };
unsigned int num_data_lanes;
int ret;
if (unicam->bus_type != V4L2_MBUS_CSI2_DPHY)
return unicam->max_data_lanes;
ret = v4l2_subdev_call(unicam->sensor.subdev, pad, get_mbus_config,
unicam->sensor.pad->index, &mbus_config);
if (ret == -ENOIOCTLCMD)
return unicam->max_data_lanes;
if (ret < 0) {
dev_err(unicam->dev, "Failed to get mbus config: %d\n", ret);
return ret;
}
num_data_lanes = mbus_config.bus.mipi_csi2.num_data_lanes;
if (num_data_lanes != 1 && num_data_lanes != 2 && num_data_lanes != 4) {
dev_err(unicam->dev,
"Device %s has requested %u data lanes, invalid\n",
unicam->sensor.subdev->name, num_data_lanes);
return -EINVAL;
}
if (num_data_lanes > unicam->max_data_lanes) {
dev_err(unicam->dev,
"Device %s has requested %u data lanes, >%u configured in DT\n",
unicam->sensor.subdev->name, num_data_lanes,
unicam->max_data_lanes);
return -EINVAL;
}
return num_data_lanes;
}
static int unicam_start_streaming(struct vb2_queue *vq, unsigned int count)
{
struct unicam_node *node = vb2_get_drv_priv(vq);
struct unicam_device *unicam = node->dev;
struct unicam_buffer *buf;
struct media_pipeline_pad_iter iter;
struct media_pad *pad;
unsigned long flags;
int ret;
dev_dbg(unicam->dev, "Starting stream on %s device\n",
is_metadata_node(node) ? "metadata" : "image");
/*
* Start the pipeline. This validates all links, and populates the
* pipeline structure.
*/
ret = video_device_pipeline_start(&node->video_dev, &unicam->pipe.pipe);
if (ret < 0) {
dev_dbg(unicam->dev, "Failed to start media pipeline: %d\n", ret);
goto err_buffers;
}
/*
* Determine which video nodes are included in the pipeline, and get the
* number of data lanes.
*/
if (unicam->pipe.pipe.start_count == 1) {
unicam->pipe.nodes = 0;
media_pipeline_for_each_pad(&unicam->pipe.pipe, &iter, pad) {
if (pad->entity != &unicam->subdev.sd.entity)
continue;
if (pad->index == UNICAM_SD_PAD_SOURCE_IMAGE)
unicam->pipe.nodes |= BIT(UNICAM_IMAGE_NODE);
else if (pad->index == UNICAM_SD_PAD_SOURCE_METADATA)
unicam->pipe.nodes |= BIT(UNICAM_METADATA_NODE);
}
if (!(unicam->pipe.nodes & BIT(UNICAM_IMAGE_NODE))) {
dev_dbg(unicam->dev,
"Pipeline does not include image node\n");
ret = -EPIPE;
goto err_pipeline;
}
ret = unicam_num_data_lanes(unicam);
if (ret < 0)
goto err_pipeline;
unicam->pipe.num_data_lanes = ret;
dev_dbg(unicam->dev, "Running with %u data lanes, nodes %u\n",
unicam->pipe.num_data_lanes, unicam->pipe.nodes);
}
/* Arm the node with the first buffer from the DMA queue. */
spin_lock_irqsave(&node->dma_queue_lock, flags);
buf = list_first_entry(&node->dma_queue, struct unicam_buffer, list);
node->cur_frm = buf;
node->next_frm = buf;
list_del(&buf->list);
spin_unlock_irqrestore(&node->dma_queue_lock, flags);
/*
* Wait for all the video devices in the pipeline to have been started
* before starting the hardware. In the general case, this would
* prevent capturing multiple streams independently. However, the
* Unicam DMA engines are not generic, they have been designed to
* capture image data and embedded data from the same camera sensor.
* Not only does the main use case not benefit from independent
* capture, it requires proper synchronization of the streams at start
* time.
*/
if (unicam->pipe.pipe.start_count < hweight32(unicam->pipe.nodes))
return 0;
ret = pm_runtime_resume_and_get(unicam->dev);
if (ret < 0) {
dev_err(unicam->dev, "PM runtime resume failed: %d\n", ret);
goto err_pipeline;
}
/* Enable the streams on the source. */
ret = v4l2_subdev_enable_streams(&unicam->subdev.sd,
UNICAM_SD_PAD_SOURCE_IMAGE,
BIT(0));
if (ret < 0) {
dev_err(unicam->dev, "stream on failed in subdev\n");
goto err_pm_put;
}
if (unicam->pipe.nodes & BIT(UNICAM_METADATA_NODE)) {
ret = v4l2_subdev_enable_streams(&unicam->subdev.sd,
UNICAM_SD_PAD_SOURCE_METADATA,
BIT(0));
if (ret < 0) {
dev_err(unicam->dev, "stream on failed in subdev\n");
goto err_disable_streams;
}
}
return 0;
err_disable_streams:
v4l2_subdev_disable_streams(&unicam->subdev.sd,
UNICAM_SD_PAD_SOURCE_IMAGE, BIT(0));
err_pm_put:
pm_runtime_put_sync(unicam->dev);
err_pipeline:
video_device_pipeline_stop(&node->video_dev);
err_buffers:
unicam_return_buffers(node, VB2_BUF_STATE_QUEUED);
return ret;
}
static void unicam_stop_streaming(struct vb2_queue *vq)
{
struct unicam_node *node = vb2_get_drv_priv(vq);
struct unicam_device *unicam = node->dev;
/* Stop the hardware when the first video device gets stopped. */
if (unicam->pipe.pipe.start_count == hweight32(unicam->pipe.nodes)) {
if (unicam->pipe.nodes & BIT(UNICAM_METADATA_NODE))
v4l2_subdev_disable_streams(&unicam->subdev.sd,
UNICAM_SD_PAD_SOURCE_METADATA,
BIT(0));
v4l2_subdev_disable_streams(&unicam->subdev.sd,
UNICAM_SD_PAD_SOURCE_IMAGE,
BIT(0));
pm_runtime_put(unicam->dev);
}
video_device_pipeline_stop(&node->video_dev);
/* Clear all queued buffers for the node */
unicam_return_buffers(node, VB2_BUF_STATE_ERROR);
}
static void unicam_buffer_queue(struct vb2_buffer *vb)
{
struct unicam_node *node = vb2_get_drv_priv(vb->vb2_queue);
struct unicam_buffer *buf = to_unicam_buffer(vb);
spin_lock_irq(&node->dma_queue_lock);
list_add_tail(&buf->list, &node->dma_queue);
spin_unlock_irq(&node->dma_queue_lock);
}
static const struct vb2_ops unicam_video_qops = {
.queue_setup = unicam_queue_setup,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
.buf_prepare = unicam_buffer_prepare,
.start_streaming = unicam_start_streaming,
.stop_streaming = unicam_stop_streaming,
.buf_queue = unicam_buffer_queue,
};
/* -----------------------------------------------------------------------------
* V4L2 video device operations
*/
static int unicam_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
strscpy(cap->driver, UNICAM_MODULE_NAME, sizeof(cap->driver));
strscpy(cap->card, UNICAM_MODULE_NAME, sizeof(cap->card));
cap->capabilities |= V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_META_CAPTURE;
return 0;
}
static int unicam_enum_fmt_vid(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
unsigned int index;
unsigned int i;
for (i = 0, index = 0; i < ARRAY_SIZE(unicam_image_formats); i++) {
if (f->mbus_code && unicam_image_formats[i].code != f->mbus_code)
continue;
if (index == f->index) {
f->pixelformat = unicam_image_formats[i].fourcc;
return 0;
}
index++;
if (!unicam_image_formats[i].unpacked_fourcc)
continue;
if (index == f->index) {
f->pixelformat = unicam_image_formats[i].unpacked_fourcc;
return 0;
}
index++;
}
return -EINVAL;
}
static int unicam_g_fmt_vid(struct file *file, void *priv,
struct v4l2_format *f)
{
struct unicam_node *node = video_drvdata(file);
*f = node->fmt;
return 0;
}
static void __unicam_try_fmt_vid(struct unicam_node *node,
struct v4l2_pix_format *pix)
{
const struct unicam_format_info *fmtinfo;
/*
* Default to the first format if the requested pixel format code isn't
* supported.
*/
fmtinfo = unicam_find_format_by_fourcc(pix->pixelformat,
UNICAM_SD_PAD_SOURCE_IMAGE);
if (!fmtinfo) {
fmtinfo = &unicam_image_formats[0];
pix->pixelformat = fmtinfo->fourcc;
}
unicam_calc_image_size_bpl(node->dev, fmtinfo, pix);
if (pix->field == V4L2_FIELD_ANY)
pix->field = V4L2_FIELD_NONE;
}
static int unicam_try_fmt_vid(struct file *file, void *priv,
struct v4l2_format *f)
{
struct unicam_node *node = video_drvdata(file);
__unicam_try_fmt_vid(node, &f->fmt.pix);
return 0;
}
static int unicam_s_fmt_vid(struct file *file, void *priv,
struct v4l2_format *f)
{
struct unicam_node *node = video_drvdata(file);
if (vb2_is_busy(&node->buffer_queue))
return -EBUSY;
__unicam_try_fmt_vid(node, &f->fmt.pix);
node->fmt = *f;
return 0;
}
static int unicam_enum_fmt_meta(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
unsigned int i, index;
for (i = 0, index = 0; i < ARRAY_SIZE(unicam_meta_formats); i++) {
if (f->mbus_code && unicam_meta_formats[i].code != f->mbus_code)
continue;
if (index == f->index) {
f->pixelformat = unicam_meta_formats[i].fourcc;
f->type = V4L2_BUF_TYPE_META_CAPTURE;
f->flags = V4L2_FMT_FLAG_META_LINE_BASED;
return 0;
}
index++;
}
return -EINVAL;
}
static int unicam_g_fmt_meta(struct file *file, void *priv,
struct v4l2_format *f)
{
struct unicam_node *node = video_drvdata(file);
f->fmt.meta = node->fmt.fmt.meta;
return 0;
}
static const struct unicam_format_info *
__unicam_try_fmt_meta(struct unicam_node *node, struct v4l2_meta_format *meta)
{
const struct unicam_format_info *fmtinfo;
/*
* Default to the first format if the requested pixel format code isn't
* supported.
*/
fmtinfo = unicam_find_format_by_fourcc(meta->dataformat,
UNICAM_SD_PAD_SOURCE_METADATA);
if (!fmtinfo) {
fmtinfo = &unicam_meta_formats[0];
meta->dataformat = fmtinfo->fourcc;
}
unicam_calc_meta_size_bpl(node->dev, fmtinfo, meta);
return fmtinfo;
}
static int unicam_try_fmt_meta(struct file *file, void *priv,
struct v4l2_format *f)
{
struct unicam_node *node = video_drvdata(file);
__unicam_try_fmt_meta(node, &f->fmt.meta);
return 0;
}
static int unicam_s_fmt_meta(struct file *file, void *priv,
struct v4l2_format *f)
{
struct unicam_node *node = video_drvdata(file);
if (vb2_is_busy(&node->buffer_queue))
return -EBUSY;
__unicam_try_fmt_meta(node, &f->fmt.meta);
node->fmt = *f;
return 0;
}
static int unicam_enum_framesizes(struct file *file, void *fh,
struct v4l2_frmsizeenum *fsize)
{
struct unicam_node *node = video_drvdata(file);
int ret = -EINVAL;
if (fsize->index > 0)
return ret;
if (is_image_node(node)) {
if (!unicam_find_format_by_fourcc(fsize->pixel_format,
UNICAM_SD_PAD_SOURCE_IMAGE))
return ret;
fsize->type = V4L2_FRMSIZE_TYPE_STEPWISE;
fsize->stepwise.min_width = UNICAM_IMAGE_MIN_WIDTH;
fsize->stepwise.max_width = UNICAM_IMAGE_MAX_WIDTH;
fsize->stepwise.step_width = 1;
fsize->stepwise.min_height = UNICAM_IMAGE_MIN_HEIGHT;
fsize->stepwise.max_height = UNICAM_IMAGE_MAX_HEIGHT;
fsize->stepwise.step_height = 1;
} else {
if (!unicam_find_format_by_fourcc(fsize->pixel_format,
UNICAM_SD_PAD_SOURCE_METADATA))
return ret;
fsize->type = V4L2_FRMSIZE_TYPE_STEPWISE;
fsize->stepwise.min_width = UNICAM_META_MIN_WIDTH;
fsize->stepwise.max_width = UNICAM_META_MAX_WIDTH;
fsize->stepwise.step_width = 1;
fsize->stepwise.min_height = UNICAM_META_MIN_HEIGHT;
fsize->stepwise.max_height = UNICAM_META_MAX_HEIGHT;
fsize->stepwise.step_height = 1;
}
return 0;
}
static int unicam_log_status(struct file *file, void *fh)
{
struct unicam_node *node = video_drvdata(file);
struct unicam_device *unicam = node->dev;
u32 reg;
/* status for sub devices */
v4l2_device_call_all(&unicam->v4l2_dev, 0, core, log_status);
dev_info(unicam->dev, "-----Receiver status-----\n");
dev_info(unicam->dev, "V4L2 width/height: %ux%u\n",
node->fmt.fmt.pix.width, node->fmt.fmt.pix.height);
dev_info(unicam->dev, "V4L2 format: %08x\n",
node->fmt.fmt.pix.pixelformat);
reg = unicam_reg_read(unicam, UNICAM_IPIPE);
dev_info(unicam->dev, "Unpacking/packing: %u / %u\n",
unicam_get_field(reg, UNICAM_PUM_MASK),
unicam_get_field(reg, UNICAM_PPM_MASK));
dev_info(unicam->dev, "----Live data----\n");
dev_info(unicam->dev, "Programmed stride: %4u\n",
unicam_reg_read(unicam, UNICAM_IBLS));
dev_info(unicam->dev, "Detected resolution: %ux%u\n",
unicam_reg_read(unicam, UNICAM_IHSTA),
unicam_reg_read(unicam, UNICAM_IVSTA));
dev_info(unicam->dev, "Write pointer: %08x\n",
unicam_reg_read(unicam, UNICAM_IBWP));
return 0;
}
static int unicam_subscribe_event(struct v4l2_fh *fh,
const struct v4l2_event_subscription *sub)
{
switch (sub->type) {
case V4L2_EVENT_FRAME_SYNC:
return v4l2_event_subscribe(fh, sub, 2, NULL);
default:
return -EINVAL;
}
}
static const struct v4l2_ioctl_ops unicam_ioctl_ops = {
.vidioc_querycap = unicam_querycap,
.vidioc_enum_fmt_vid_cap = unicam_enum_fmt_vid,
.vidioc_g_fmt_vid_cap = unicam_g_fmt_vid,
.vidioc_try_fmt_vid_cap = unicam_try_fmt_vid,
.vidioc_s_fmt_vid_cap = unicam_s_fmt_vid,
.vidioc_enum_fmt_meta_cap = unicam_enum_fmt_meta,
.vidioc_g_fmt_meta_cap = unicam_g_fmt_meta,
.vidioc_try_fmt_meta_cap = unicam_try_fmt_meta,
.vidioc_s_fmt_meta_cap = unicam_s_fmt_meta,
.vidioc_enum_framesizes = unicam_enum_framesizes,
.vidioc_reqbufs = vb2_ioctl_reqbufs,
.vidioc_create_bufs = vb2_ioctl_create_bufs,
.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
.vidioc_querybuf = vb2_ioctl_querybuf,
.vidioc_qbuf = vb2_ioctl_qbuf,
.vidioc_dqbuf = vb2_ioctl_dqbuf,
.vidioc_expbuf = vb2_ioctl_expbuf,
.vidioc_streamon = vb2_ioctl_streamon,
.vidioc_streamoff = vb2_ioctl_streamoff,
.vidioc_log_status = unicam_log_status,
.vidioc_subscribe_event = unicam_subscribe_event,
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};
/* unicam capture driver file operations */
static const struct v4l2_file_operations unicam_fops = {
.owner = THIS_MODULE,
.open = v4l2_fh_open,
.release = vb2_fop_release,
.poll = vb2_fop_poll,
.unlocked_ioctl = video_ioctl2,
.mmap = vb2_fop_mmap,
};
static int unicam_video_link_validate(struct media_link *link)
{
struct video_device *vdev =
media_entity_to_video_device(link->sink->entity);
struct v4l2_subdev *sd =
media_entity_to_v4l2_subdev(link->source->entity);
struct unicam_node *node = video_get_drvdata(vdev);
const u32 pad = is_image_node(node) ? UNICAM_SD_PAD_SOURCE_IMAGE
: UNICAM_SD_PAD_SOURCE_METADATA;
const struct v4l2_mbus_framefmt *format;
struct v4l2_subdev_state *state;
int ret = 0;
state = v4l2_subdev_lock_and_get_active_state(sd);
format = v4l2_subdev_state_get_format(state, pad, 0);
if (!format) {
ret = -EINVAL;
goto out;
}
if (is_image_node(node)) {
const struct v4l2_pix_format *fmt = &node->fmt.fmt.pix;
const struct unicam_format_info *fmtinfo;
fmtinfo = unicam_find_format_by_fourcc(fmt->pixelformat,
UNICAM_SD_PAD_SOURCE_IMAGE);
if (WARN_ON(!fmtinfo)) {
ret = -EPIPE;
goto out;
}
if (fmtinfo->code != format->code ||
fmt->height != format->height ||
fmt->width != format->width ||
fmt->field != format->field) {
dev_dbg(node->dev->dev,
"image: (%u x %u) 0x%08x %s != (%u x %u) 0x%08x %s\n",
fmt->width, fmt->height, fmtinfo->code,
v4l2_field_names[fmt->field],
format->width, format->height, format->code,
v4l2_field_names[format->field]);
ret = -EPIPE;
}
} else {
const struct v4l2_meta_format *fmt = &node->fmt.fmt.meta;
const struct unicam_format_info *fmtinfo;
fmtinfo = unicam_find_format_by_fourcc(fmt->dataformat,
UNICAM_SD_PAD_SOURCE_METADATA);
if (WARN_ON(!fmtinfo)) {
ret = -EPIPE;
goto out;
}
if (fmtinfo->code != format->code ||
fmt->height != format->height ||
fmt->width != format->width) {
dev_dbg(node->dev->dev,
"meta: (%u x %u) 0x%04x != (%u x %u) 0x%04x\n",
fmt->width, fmt->height, fmtinfo->code,
format->width, format->height, format->code);
ret = -EPIPE;
}
}
out:
v4l2_subdev_unlock_state(state);
return ret;
}
static const struct media_entity_operations unicam_video_media_ops = {
.link_validate = unicam_video_link_validate,
};
static void unicam_node_release(struct video_device *vdev)
{
struct unicam_node *node = video_get_drvdata(vdev);
unicam_put(node->dev);
}
static void unicam_set_default_format(struct unicam_node *node)
{
if (is_image_node(node)) {
struct v4l2_pix_format *fmt = &node->fmt.fmt.pix;
const struct unicam_format_info *fmtinfo =
&unicam_image_formats[0];
node->fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
v4l2_fill_pix_format(fmt, &unicam_default_image_format);
fmt->pixelformat = fmtinfo->fourcc;
unicam_calc_image_size_bpl(node->dev, fmtinfo, fmt);
} else {
struct v4l2_meta_format *fmt = &node->fmt.fmt.meta;
const struct unicam_format_info *fmtinfo =
&unicam_meta_formats[0];
node->fmt.type = V4L2_BUF_TYPE_META_CAPTURE;
fmt->dataformat = fmtinfo->fourcc;
fmt->width = unicam_default_meta_format.width;
fmt->height = unicam_default_meta_format.height;
unicam_calc_meta_size_bpl(node->dev, fmtinfo, fmt);
}
}
static int unicam_register_node(struct unicam_device *unicam,
enum unicam_node_type type)
{
const u32 pad_index = type == UNICAM_IMAGE_NODE
? UNICAM_SD_PAD_SOURCE_IMAGE
: UNICAM_SD_PAD_SOURCE_METADATA;
struct unicam_node *node = &unicam->node[type];
struct video_device *vdev = &node->video_dev;
struct vb2_queue *q = &node->buffer_queue;
int ret;
node->dev = unicam_get(unicam);
node->id = type;
spin_lock_init(&node->dma_queue_lock);
INIT_LIST_HEAD(&node->dma_queue);
/* Initialize the videobuf2 queue. */
q->type = type == UNICAM_IMAGE_NODE ? V4L2_BUF_TYPE_VIDEO_CAPTURE
: V4L2_BUF_TYPE_META_CAPTURE;
q->io_modes = VB2_MMAP | VB2_DMABUF;
q->drv_priv = node;
q->ops = &unicam_video_qops;
q->mem_ops = &vb2_dma_contig_memops;
q->buf_struct_size = sizeof(struct unicam_buffer);
q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
q->lock = &unicam->lock;
q->min_queued_buffers = 1;
q->dev = unicam->dev;
ret = vb2_queue_init(q);
if (ret) {
dev_err(unicam->dev, "vb2_queue_init() failed\n");
goto err_unicam_put;
}
/* Initialize the video device. */
vdev->release = unicam_node_release;
vdev->fops = &unicam_fops;
vdev->ioctl_ops = &unicam_ioctl_ops;
vdev->v4l2_dev = &unicam->v4l2_dev;
vdev->vfl_dir = VFL_DIR_RX;
vdev->queue = q;
vdev->lock = &unicam->lock;
vdev->device_caps = type == UNICAM_IMAGE_NODE
? V4L2_CAP_VIDEO_CAPTURE : V4L2_CAP_META_CAPTURE;
vdev->device_caps |= V4L2_CAP_STREAMING | V4L2_CAP_IO_MC;
vdev->entity.ops = &unicam_video_media_ops;
snprintf(vdev->name, sizeof(vdev->name), "%s-%s", UNICAM_MODULE_NAME,
type == UNICAM_IMAGE_NODE ? "image" : "embedded");
video_set_drvdata(vdev, node);
if (type == UNICAM_IMAGE_NODE)
vdev->entity.flags |= MEDIA_ENT_FL_DEFAULT;
node->pad.flags = MEDIA_PAD_FL_SINK;
ret = media_entity_pads_init(&vdev->entity, 1, &node->pad);
if (ret)
goto err_unicam_put;
node->dummy_buf.size = UNICAM_DUMMY_BUF_SIZE;
node->dummy_buf_cpu_addr = dma_alloc_coherent(unicam->dev,
node->dummy_buf.size,
&node->dummy_buf.dma_addr,
GFP_KERNEL);
if (!node->dummy_buf_cpu_addr) {
dev_err(unicam->dev, "Unable to allocate dummy buffer.\n");
ret = -ENOMEM;
goto err_entity_cleanup;
}
unicam_set_default_format(node);
ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
if (ret) {
dev_err(unicam->dev, "Unable to register video device %s\n",
vdev->name);
goto err_dma_free;
}
node->registered = true;
ret = media_create_pad_link(&unicam->subdev.sd.entity,
pad_index,
&node->video_dev.entity,
0,
MEDIA_LNK_FL_ENABLED |
MEDIA_LNK_FL_IMMUTABLE);
if (ret) {
/*
* No need for cleanup, the caller will unregister the
* video device, which will drop the reference on the
* device and trigger the cleanup.
*/
dev_err(unicam->dev, "Unable to create pad link for %s\n",
unicam->sensor.subdev->name);
return ret;
}
return 0;
err_dma_free:
dma_free_coherent(unicam->dev, node->dummy_buf.size,
node->dummy_buf_cpu_addr,
node->dummy_buf.dma_addr);
err_entity_cleanup:
media_entity_cleanup(&vdev->entity);
err_unicam_put:
unicam_put(unicam);
return ret;
}
static void unicam_unregister_nodes(struct unicam_device *unicam)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(unicam->node); i++) {
struct unicam_node *node = &unicam->node[i];
if (node->registered) {
vb2_video_unregister_device(&node->video_dev);
node->registered = false;
}
if (node->dummy_buf_cpu_addr)
dma_free_coherent(unicam->dev, node->dummy_buf.size,
node->dummy_buf_cpu_addr,
node->dummy_buf.dma_addr);
}
}
/* -----------------------------------------------------------------------------
* Power management
*/
static int unicam_runtime_resume(struct device *dev)
{
struct unicam_device *unicam = dev_get_drvdata(dev);
int ret;
ret = clk_set_min_rate(unicam->vpu_clock, UNICAM_MIN_VPU_CLOCK_RATE);
if (ret) {
dev_err(unicam->dev, "failed to set up VPU clock\n");
return ret;
}
ret = clk_prepare_enable(unicam->vpu_clock);
if (ret) {
dev_err(unicam->dev, "Failed to enable VPU clock: %d\n", ret);
goto err_vpu_clock;
}
ret = clk_set_rate(unicam->clock, 100 * 1000 * 1000);
if (ret) {
dev_err(unicam->dev, "failed to set up CSI clock\n");
goto err_vpu_prepare;
}
ret = clk_prepare_enable(unicam->clock);
if (ret) {
dev_err(unicam->dev, "Failed to enable CSI clock: %d\n", ret);
goto err_vpu_prepare;
}
return 0;
err_vpu_prepare:
clk_disable_unprepare(unicam->vpu_clock);
err_vpu_clock:
if (clk_set_min_rate(unicam->vpu_clock, 0))
dev_err(unicam->dev, "failed to reset the VPU clock\n");
return ret;
}
static int unicam_runtime_suspend(struct device *dev)
{
struct unicam_device *unicam = dev_get_drvdata(dev);
clk_disable_unprepare(unicam->clock);
if (clk_set_min_rate(unicam->vpu_clock, 0))
dev_err(unicam->dev, "failed to reset the VPU clock\n");
clk_disable_unprepare(unicam->vpu_clock);
return 0;
}
static const struct dev_pm_ops unicam_pm_ops = {
RUNTIME_PM_OPS(unicam_runtime_suspend, unicam_runtime_resume, NULL)
};
/* -----------------------------------------------------------------------------
* V4L2 async notifier
*/
static int unicam_async_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_connection *asc)
{
struct unicam_device *unicam = notifier_to_unicam_device(notifier);
struct media_pad *sink = &unicam->subdev.pads[UNICAM_SD_PAD_SINK];
struct media_pad *source;
int ret;
dev_dbg(unicam->dev, "Using sensor %s for capture\n",
subdev->name);
ret = v4l2_create_fwnode_links_to_pad(subdev, sink, MEDIA_LNK_FL_ENABLED |
MEDIA_LNK_FL_IMMUTABLE);
if (ret)
return ret;
source = media_pad_remote_pad_unique(sink);
if (IS_ERR(source)) {
dev_err(unicam->dev, "No connected sensor pad\n");
return PTR_ERR(source);
}
unicam->sensor.subdev = subdev;
unicam->sensor.pad = source;
return 0;
}
static int unicam_async_complete(struct v4l2_async_notifier *notifier)
{
struct unicam_device *unicam = notifier_to_unicam_device(notifier);
int ret;
ret = unicam_register_node(unicam, UNICAM_IMAGE_NODE);
if (ret) {
dev_err(unicam->dev, "Unable to register image video device.\n");
goto unregister;
}
ret = unicam_register_node(unicam, UNICAM_METADATA_NODE);
if (ret) {
dev_err(unicam->dev, "Unable to register metadata video device.\n");
goto unregister;
}
ret = v4l2_device_register_subdev_nodes(&unicam->v4l2_dev);
if (ret) {
dev_err(unicam->dev, "Unable to register subdev nodes.\n");
goto unregister;
}
return 0;
unregister:
unicam_unregister_nodes(unicam);
unicam_put(unicam);
return ret;
}
static const struct v4l2_async_notifier_operations unicam_async_ops = {
.bound = unicam_async_bound,
.complete = unicam_async_complete,
};
static int unicam_async_nf_init(struct unicam_device *unicam)
{
struct v4l2_fwnode_endpoint ep = { };
struct fwnode_handle *ep_handle;
struct v4l2_async_connection *asc;
int ret;
ret = of_property_read_u32(unicam->dev->of_node, "brcm,num-data-lanes",
&unicam->max_data_lanes);
if (ret < 0) {
dev_err(unicam->dev, "Missing %s DT property\n",
"brcm,num-data-lanes");
return -EINVAL;
}
/* Get and parse the local endpoint. */
ep_handle = fwnode_graph_get_endpoint_by_id(dev_fwnode(unicam->dev), 0, 0,
FWNODE_GRAPH_ENDPOINT_NEXT);
if (!ep_handle) {
dev_err(unicam->dev, "No endpoint found\n");
return -ENODEV;
}
ret = v4l2_fwnode_endpoint_parse(ep_handle, &ep);
if (ret) {
dev_err(unicam->dev, "Failed to parse endpoint: %d\n", ret);
goto error;
}
unicam->bus_type = ep.bus_type;
switch (ep.bus_type) {
case V4L2_MBUS_CSI2_DPHY: {
unsigned int num_data_lanes = ep.bus.mipi_csi2.num_data_lanes;
if (num_data_lanes != 1 && num_data_lanes != 2 &&
num_data_lanes != 4) {
dev_err(unicam->dev, "%u data lanes not supported\n",
num_data_lanes);
ret = -EINVAL;
goto error;
}
if (num_data_lanes > unicam->max_data_lanes) {
dev_err(unicam->dev,
"Endpoint uses %u data lanes when %u are supported\n",
num_data_lanes, unicam->max_data_lanes);
ret = -EINVAL;
goto error;
}
unicam->max_data_lanes = num_data_lanes;
unicam->bus_flags = ep.bus.mipi_csi2.flags;
break;
}
case V4L2_MBUS_CCP2:
unicam->max_data_lanes = 1;
unicam->bus_flags = ep.bus.mipi_csi1.strobe;
break;
default:
/* Unsupported bus type */
dev_err(unicam->dev, "Unsupported bus type %u\n", ep.bus_type);
ret = -EINVAL;
goto error;
}
/* Initialize and register the async notifier. */
v4l2_async_nf_init(&unicam->notifier, &unicam->v4l2_dev);
asc = v4l2_async_nf_add_fwnode_remote(&unicam->notifier, ep_handle,
struct v4l2_async_connection);
fwnode_handle_put(ep_handle);
ep_handle = NULL;
if (IS_ERR(asc)) {
ret = PTR_ERR(asc);
dev_err(unicam->dev, "Failed to add entry to notifier: %d\n",
ret);
goto error;
}
unicam->notifier.ops = &unicam_async_ops;
ret = v4l2_async_nf_register(&unicam->notifier);
if (ret) {
dev_err(unicam->dev, "Error registering device notifier: %d\n",
ret);
goto error;
}
return 0;
error:
fwnode_handle_put(ep_handle);
return ret;
}
/* -----------------------------------------------------------------------------
* Probe & remove
*/
static int unicam_media_init(struct unicam_device *unicam)
{
int ret;
unicam->mdev.dev = unicam->dev;
strscpy(unicam->mdev.model, UNICAM_MODULE_NAME,
sizeof(unicam->mdev.model));
unicam->mdev.hw_revision = 0;
media_device_init(&unicam->mdev);
unicam->v4l2_dev.mdev = &unicam->mdev;
ret = v4l2_device_register(unicam->dev, &unicam->v4l2_dev);
if (ret < 0) {
dev_err(unicam->dev, "Unable to register v4l2 device\n");
goto err_media_cleanup;
}
ret = media_device_register(&unicam->mdev);
if (ret < 0) {
dev_err(unicam->dev,
"Unable to register media-controller device\n");
goto err_v4l2_unregister;
}
return 0;
err_v4l2_unregister:
v4l2_device_unregister(&unicam->v4l2_dev);
err_media_cleanup:
media_device_cleanup(&unicam->mdev);
return ret;
}
static int unicam_probe(struct platform_device *pdev)
{
struct unicam_device *unicam;
int ret;
unicam = kzalloc(sizeof(*unicam), GFP_KERNEL);
if (!unicam)
return -ENOMEM;
kref_init(&unicam->kref);
mutex_init(&unicam->lock);
unicam->dev = &pdev->dev;
platform_set_drvdata(pdev, unicam);
unicam->base = devm_platform_ioremap_resource_byname(pdev, "unicam");
if (IS_ERR(unicam->base)) {
ret = PTR_ERR(unicam->base);
goto err_unicam_put;
}
unicam->clk_gate_base = devm_platform_ioremap_resource_byname(pdev, "cmi");
if (IS_ERR(unicam->clk_gate_base)) {
ret = PTR_ERR(unicam->clk_gate_base);
goto err_unicam_put;
}
unicam->clock = devm_clk_get(&pdev->dev, "lp");
if (IS_ERR(unicam->clock)) {
dev_err(unicam->dev, "Failed to get lp clock\n");
ret = PTR_ERR(unicam->clock);
goto err_unicam_put;
}
unicam->vpu_clock = devm_clk_get(&pdev->dev, "vpu");
if (IS_ERR(unicam->vpu_clock)) {
dev_err(unicam->dev, "Failed to get vpu clock\n");
ret = PTR_ERR(unicam->vpu_clock);
goto err_unicam_put;
}
ret = platform_get_irq(pdev, 0);
if (ret < 0)
goto err_unicam_put;
ret = devm_request_irq(&pdev->dev, ret, unicam_isr, 0,
"unicam_capture0", unicam);
if (ret) {
dev_err(&pdev->dev, "Unable to request interrupt\n");
goto err_unicam_put;
}
/* Enable the block power domain. */
pm_runtime_enable(&pdev->dev);
ret = unicam_media_init(unicam);
if (ret)
goto err_pm_runtime;
ret = unicam_subdev_init(unicam);
if (ret)
goto err_media_unregister;
ret = unicam_async_nf_init(unicam);
if (ret)
goto err_subdev_unregister;
return 0;
err_subdev_unregister:
unicam_subdev_cleanup(unicam);
err_media_unregister:
media_device_unregister(&unicam->mdev);
err_pm_runtime:
pm_runtime_disable(&pdev->dev);
err_unicam_put:
unicam_put(unicam);
return ret;
}
static void unicam_remove(struct platform_device *pdev)
{
struct unicam_device *unicam = platform_get_drvdata(pdev);
unicam_unregister_nodes(unicam);
v4l2_device_unregister(&unicam->v4l2_dev);
media_device_unregister(&unicam->mdev);
v4l2_async_nf_unregister(&unicam->notifier);
unicam_subdev_cleanup(unicam);
unicam_put(unicam);
pm_runtime_disable(&pdev->dev);
}
static const struct of_device_id unicam_of_match[] = {
{ .compatible = "brcm,bcm2835-unicam", },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, unicam_of_match);
static struct platform_driver unicam_driver = {
.probe = unicam_probe,
.remove_new = unicam_remove,
.driver = {
.name = UNICAM_MODULE_NAME,
.pm = pm_ptr(&unicam_pm_ops),
.of_match_table = unicam_of_match,
},
};
module_platform_driver(unicam_driver);
MODULE_AUTHOR("Dave Stevenson <[email protected]>");
MODULE_DESCRIPTION("BCM2835 Unicam driver");
MODULE_LICENSE("GPL");