// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2013--2024 Intel Corporation
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/math64.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/pfn.h>
#include <linux/pm_runtime.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/time64.h>
#include "ipu6.h"
#include "ipu6-bus.h"
#include "ipu6-buttress.h"
#include "ipu6-platform-buttress-regs.h"
#define BOOTLOADER_STATUS_OFFSET 0x15c
#define BOOTLOADER_MAGIC_KEY 0xb00710ad
#define ENTRY BUTTRESS_IU2CSECSR_IPC_PEER_COMP_ACTIONS_RST_PHASE1
#define EXIT BUTTRESS_IU2CSECSR_IPC_PEER_COMP_ACTIONS_RST_PHASE2
#define QUERY BUTTRESS_IU2CSECSR_IPC_PEER_QUERIED_IP_COMP_ACTIONS_RST_PHASE
#define BUTTRESS_TSC_SYNC_RESET_TRIAL_MAX 10
#define BUTTRESS_POWER_TIMEOUT_US (200 * USEC_PER_MSEC)
#define BUTTRESS_CSE_BOOTLOAD_TIMEOUT_US (5 * USEC_PER_SEC)
#define BUTTRESS_CSE_AUTHENTICATE_TIMEOUT_US (10 * USEC_PER_SEC)
#define BUTTRESS_CSE_FWRESET_TIMEOUT_US (100 * USEC_PER_MSEC)
#define BUTTRESS_IPC_TX_TIMEOUT_MS MSEC_PER_SEC
#define BUTTRESS_IPC_RX_TIMEOUT_MS MSEC_PER_SEC
#define BUTTRESS_IPC_VALIDITY_TIMEOUT_US (1 * USEC_PER_SEC)
#define BUTTRESS_TSC_SYNC_TIMEOUT_US (5 * USEC_PER_MSEC)
#define BUTTRESS_IPC_RESET_RETRY 2000
#define BUTTRESS_CSE_IPC_RESET_RETRY 4
#define BUTTRESS_IPC_CMD_SEND_RETRY 1
#define BUTTRESS_MAX_CONSECUTIVE_IRQS 100
static const u32 ipu6_adev_irq_mask[2] = {
BUTTRESS_ISR_IS_IRQ,
BUTTRESS_ISR_PS_IRQ
};
int ipu6_buttress_ipc_reset(struct ipu6_device *isp,
struct ipu6_buttress_ipc *ipc)
{
unsigned int retries = BUTTRESS_IPC_RESET_RETRY;
struct ipu6_buttress *b = &isp->buttress;
u32 val = 0, csr_in_clr;
if (!isp->secure_mode) {
dev_dbg(&isp->pdev->dev, "Skip IPC reset for non-secure mode");
return 0;
}
mutex_lock(&b->ipc_mutex);
/* Clear-by-1 CSR (all bits), corresponding internal states. */
val = readl(isp->base + ipc->csr_in);
writel(val, isp->base + ipc->csr_in);
/* Set peer CSR bit IPC_PEER_COMP_ACTIONS_RST_PHASE1 */
writel(ENTRY, isp->base + ipc->csr_out);
/*
* Clear-by-1 all CSR bits EXCEPT following
* bits:
* A. IPC_PEER_COMP_ACTIONS_RST_PHASE1.
* B. IPC_PEER_COMP_ACTIONS_RST_PHASE2.
* C. Possibly custom bits, depending on
* their role.
*/
csr_in_clr = BUTTRESS_IU2CSECSR_IPC_PEER_DEASSERTED_REG_VALID_REQ |
BUTTRESS_IU2CSECSR_IPC_PEER_ACKED_REG_VALID |
BUTTRESS_IU2CSECSR_IPC_PEER_ASSERTED_REG_VALID_REQ | QUERY;
do {
usleep_range(400, 500);
val = readl(isp->base + ipc->csr_in);
switch (val) {
case ENTRY | EXIT:
case ENTRY | EXIT | QUERY:
/*
* 1) Clear-by-1 CSR bits
* (IPC_PEER_COMP_ACTIONS_RST_PHASE1,
* IPC_PEER_COMP_ACTIONS_RST_PHASE2).
* 2) Set peer CSR bit
* IPC_PEER_QUERIED_IP_COMP_ACTIONS_RST_PHASE.
*/
writel(ENTRY | EXIT, isp->base + ipc->csr_in);
writel(QUERY, isp->base + ipc->csr_out);
break;
case ENTRY:
case ENTRY | QUERY:
/*
* 1) Clear-by-1 CSR bits
* (IPC_PEER_COMP_ACTIONS_RST_PHASE1,
* IPC_PEER_QUERIED_IP_COMP_ACTIONS_RST_PHASE).
* 2) Set peer CSR bit
* IPC_PEER_COMP_ACTIONS_RST_PHASE1.
*/
writel(ENTRY | QUERY, isp->base + ipc->csr_in);
writel(ENTRY, isp->base + ipc->csr_out);
break;
case EXIT:
case EXIT | QUERY:
/*
* Clear-by-1 CSR bit
* IPC_PEER_COMP_ACTIONS_RST_PHASE2.
* 1) Clear incoming doorbell.
* 2) Clear-by-1 all CSR bits EXCEPT following
* bits:
* A. IPC_PEER_COMP_ACTIONS_RST_PHASE1.
* B. IPC_PEER_COMP_ACTIONS_RST_PHASE2.
* C. Possibly custom bits, depending on
* their role.
* 3) Set peer CSR bit
* IPC_PEER_COMP_ACTIONS_RST_PHASE2.
*/
writel(EXIT, isp->base + ipc->csr_in);
writel(0, isp->base + ipc->db0_in);
writel(csr_in_clr, isp->base + ipc->csr_in);
writel(EXIT, isp->base + ipc->csr_out);
/*
* Read csr_in again to make sure if RST_PHASE2 is done.
* If csr_in is QUERY, it should be handled again.
*/
usleep_range(200, 300);
val = readl(isp->base + ipc->csr_in);
if (val & QUERY) {
dev_dbg(&isp->pdev->dev,
"RST_PHASE2 retry csr_in = %x\n", val);
break;
}
mutex_unlock(&b->ipc_mutex);
return 0;
case QUERY:
/*
* 1) Clear-by-1 CSR bit
* IPC_PEER_QUERIED_IP_COMP_ACTIONS_RST_PHASE.
* 2) Set peer CSR bit
* IPC_PEER_COMP_ACTIONS_RST_PHASE1
*/
writel(QUERY, isp->base + ipc->csr_in);
writel(ENTRY, isp->base + ipc->csr_out);
break;
default:
dev_dbg_ratelimited(&isp->pdev->dev,
"Unexpected CSR 0x%x\n", val);
break;
}
} while (retries--);
mutex_unlock(&b->ipc_mutex);
dev_err(&isp->pdev->dev, "Timed out while waiting for CSE\n");
return -ETIMEDOUT;
}
static void ipu6_buttress_ipc_validity_close(struct ipu6_device *isp,
struct ipu6_buttress_ipc *ipc)
{
writel(BUTTRESS_IU2CSECSR_IPC_PEER_DEASSERTED_REG_VALID_REQ,
isp->base + ipc->csr_out);
}
static int
ipu6_buttress_ipc_validity_open(struct ipu6_device *isp,
struct ipu6_buttress_ipc *ipc)
{
unsigned int mask = BUTTRESS_IU2CSECSR_IPC_PEER_ACKED_REG_VALID;
void __iomem *addr;
int ret;
u32 val;
writel(BUTTRESS_IU2CSECSR_IPC_PEER_ASSERTED_REG_VALID_REQ,
isp->base + ipc->csr_out);
addr = isp->base + ipc->csr_in;
ret = readl_poll_timeout(addr, val, val & mask, 200,
BUTTRESS_IPC_VALIDITY_TIMEOUT_US);
if (ret) {
dev_err(&isp->pdev->dev, "CSE validity timeout 0x%x\n", val);
ipu6_buttress_ipc_validity_close(isp, ipc);
}
return ret;
}
static void ipu6_buttress_ipc_recv(struct ipu6_device *isp,
struct ipu6_buttress_ipc *ipc, u32 *ipc_msg)
{
if (ipc_msg)
*ipc_msg = readl(isp->base + ipc->data0_in);
writel(0, isp->base + ipc->db0_in);
}
static int ipu6_buttress_ipc_send_bulk(struct ipu6_device *isp,
enum ipu6_buttress_ipc_domain ipc_domain,
struct ipu6_ipc_buttress_bulk_msg *msgs,
u32 size)
{
unsigned long tx_timeout_jiffies, rx_timeout_jiffies;
unsigned int i, retry = BUTTRESS_IPC_CMD_SEND_RETRY;
struct ipu6_buttress *b = &isp->buttress;
struct ipu6_buttress_ipc *ipc;
u32 val;
int ret;
int tout;
ipc = ipc_domain == IPU6_BUTTRESS_IPC_CSE ? &b->cse : &b->ish;
mutex_lock(&b->ipc_mutex);
ret = ipu6_buttress_ipc_validity_open(isp, ipc);
if (ret) {
dev_err(&isp->pdev->dev, "IPC validity open failed\n");
goto out;
}
tx_timeout_jiffies = msecs_to_jiffies(BUTTRESS_IPC_TX_TIMEOUT_MS);
rx_timeout_jiffies = msecs_to_jiffies(BUTTRESS_IPC_RX_TIMEOUT_MS);
for (i = 0; i < size; i++) {
reinit_completion(&ipc->send_complete);
if (msgs[i].require_resp)
reinit_completion(&ipc->recv_complete);
dev_dbg(&isp->pdev->dev, "bulk IPC command: 0x%x\n",
msgs[i].cmd);
writel(msgs[i].cmd, isp->base + ipc->data0_out);
val = BUTTRESS_IU2CSEDB0_BUSY | msgs[i].cmd_size;
writel(val, isp->base + ipc->db0_out);
tout = wait_for_completion_timeout(&ipc->send_complete,
tx_timeout_jiffies);
if (!tout) {
dev_err(&isp->pdev->dev, "send IPC response timeout\n");
if (!retry--) {
ret = -ETIMEDOUT;
goto out;
}
/* Try again if CSE is not responding on first try */
writel(0, isp->base + ipc->db0_out);
i--;
continue;
}
retry = BUTTRESS_IPC_CMD_SEND_RETRY;
if (!msgs[i].require_resp)
continue;
tout = wait_for_completion_timeout(&ipc->recv_complete,
rx_timeout_jiffies);
if (!tout) {
dev_err(&isp->pdev->dev, "recv IPC response timeout\n");
ret = -ETIMEDOUT;
goto out;
}
if (ipc->nack_mask &&
(ipc->recv_data & ipc->nack_mask) == ipc->nack) {
dev_err(&isp->pdev->dev,
"IPC NACK for cmd 0x%x\n", msgs[i].cmd);
ret = -EIO;
goto out;
}
if (ipc->recv_data != msgs[i].expected_resp) {
dev_err(&isp->pdev->dev,
"expected resp: 0x%x, IPC response: 0x%x ",
msgs[i].expected_resp, ipc->recv_data);
ret = -EIO;
goto out;
}
}
dev_dbg(&isp->pdev->dev, "bulk IPC commands done\n");
out:
ipu6_buttress_ipc_validity_close(isp, ipc);
mutex_unlock(&b->ipc_mutex);
return ret;
}
static int
ipu6_buttress_ipc_send(struct ipu6_device *isp,
enum ipu6_buttress_ipc_domain ipc_domain,
u32 ipc_msg, u32 size, bool require_resp,
u32 expected_resp)
{
struct ipu6_ipc_buttress_bulk_msg msg = {
.cmd = ipc_msg,
.cmd_size = size,
.require_resp = require_resp,
.expected_resp = expected_resp,
};
return ipu6_buttress_ipc_send_bulk(isp, ipc_domain, &msg, 1);
}
static irqreturn_t ipu6_buttress_call_isr(struct ipu6_bus_device *adev)
{
irqreturn_t ret = IRQ_WAKE_THREAD;
if (!adev || !adev->auxdrv || !adev->auxdrv_data)
return IRQ_NONE;
if (adev->auxdrv_data->isr)
ret = adev->auxdrv_data->isr(adev);
if (ret == IRQ_WAKE_THREAD && !adev->auxdrv_data->isr_threaded)
ret = IRQ_NONE;
return ret;
}
irqreturn_t ipu6_buttress_isr(int irq, void *isp_ptr)
{
struct ipu6_device *isp = isp_ptr;
struct ipu6_bus_device *adev[] = { isp->isys, isp->psys };
struct ipu6_buttress *b = &isp->buttress;
u32 reg_irq_sts = BUTTRESS_REG_ISR_STATUS;
irqreturn_t ret = IRQ_NONE;
u32 disable_irqs = 0;
u32 irq_status;
u32 i, count = 0;
pm_runtime_get_noresume(&isp->pdev->dev);
irq_status = readl(isp->base + reg_irq_sts);
if (!irq_status) {
pm_runtime_put_noidle(&isp->pdev->dev);
return IRQ_NONE;
}
do {
writel(irq_status, isp->base + BUTTRESS_REG_ISR_CLEAR);
for (i = 0; i < ARRAY_SIZE(ipu6_adev_irq_mask); i++) {
irqreturn_t r = ipu6_buttress_call_isr(adev[i]);
if (!(irq_status & ipu6_adev_irq_mask[i]))
continue;
if (r == IRQ_WAKE_THREAD) {
ret = IRQ_WAKE_THREAD;
disable_irqs |= ipu6_adev_irq_mask[i];
} else if (ret == IRQ_NONE && r == IRQ_HANDLED) {
ret = IRQ_HANDLED;
}
}
if ((irq_status & BUTTRESS_EVENT) && ret == IRQ_NONE)
ret = IRQ_HANDLED;
if (irq_status & BUTTRESS_ISR_IPC_FROM_CSE_IS_WAITING) {
dev_dbg(&isp->pdev->dev,
"BUTTRESS_ISR_IPC_FROM_CSE_IS_WAITING\n");
ipu6_buttress_ipc_recv(isp, &b->cse, &b->cse.recv_data);
complete(&b->cse.recv_complete);
}
if (irq_status & BUTTRESS_ISR_IPC_FROM_ISH_IS_WAITING) {
dev_dbg(&isp->pdev->dev,
"BUTTRESS_ISR_IPC_FROM_ISH_IS_WAITING\n");
ipu6_buttress_ipc_recv(isp, &b->ish, &b->ish.recv_data);
complete(&b->ish.recv_complete);
}
if (irq_status & BUTTRESS_ISR_IPC_EXEC_DONE_BY_CSE) {
dev_dbg(&isp->pdev->dev,
"BUTTRESS_ISR_IPC_EXEC_DONE_BY_CSE\n");
complete(&b->cse.send_complete);
}
if (irq_status & BUTTRESS_ISR_IPC_EXEC_DONE_BY_ISH) {
dev_dbg(&isp->pdev->dev,
"BUTTRESS_ISR_IPC_EXEC_DONE_BY_CSE\n");
complete(&b->ish.send_complete);
}
if (irq_status & BUTTRESS_ISR_SAI_VIOLATION &&
ipu6_buttress_get_secure_mode(isp))
dev_err(&isp->pdev->dev,
"BUTTRESS_ISR_SAI_VIOLATION\n");
if (irq_status & (BUTTRESS_ISR_IS_FATAL_MEM_ERR |
BUTTRESS_ISR_PS_FATAL_MEM_ERR))
dev_err(&isp->pdev->dev,
"BUTTRESS_ISR_FATAL_MEM_ERR\n");
if (irq_status & BUTTRESS_ISR_UFI_ERROR)
dev_err(&isp->pdev->dev, "BUTTRESS_ISR_UFI_ERROR\n");
if (++count == BUTTRESS_MAX_CONSECUTIVE_IRQS) {
dev_err(&isp->pdev->dev, "too many consecutive IRQs\n");
ret = IRQ_NONE;
break;
}
irq_status = readl(isp->base + reg_irq_sts);
} while (irq_status);
if (disable_irqs)
writel(BUTTRESS_IRQS & ~disable_irqs,
isp->base + BUTTRESS_REG_ISR_ENABLE);
pm_runtime_put(&isp->pdev->dev);
return ret;
}
irqreturn_t ipu6_buttress_isr_threaded(int irq, void *isp_ptr)
{
struct ipu6_device *isp = isp_ptr;
struct ipu6_bus_device *adev[] = { isp->isys, isp->psys };
const struct ipu6_auxdrv_data *drv_data = NULL;
irqreturn_t ret = IRQ_NONE;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ipu6_adev_irq_mask) && adev[i]; i++) {
drv_data = adev[i]->auxdrv_data;
if (!drv_data)
continue;
if (drv_data->wake_isr_thread &&
drv_data->isr_threaded(adev[i]) == IRQ_HANDLED)
ret = IRQ_HANDLED;
}
writel(BUTTRESS_IRQS, isp->base + BUTTRESS_REG_ISR_ENABLE);
return ret;
}
int ipu6_buttress_power(struct device *dev, struct ipu6_buttress_ctrl *ctrl,
bool on)
{
struct ipu6_device *isp = to_ipu6_bus_device(dev)->isp;
u32 pwr_sts, val;
int ret;
if (!ctrl)
return 0;
mutex_lock(&isp->buttress.power_mutex);
if (!on) {
val = 0;
pwr_sts = ctrl->pwr_sts_off << ctrl->pwr_sts_shift;
} else {
val = BUTTRESS_FREQ_CTL_START |
FIELD_PREP(BUTTRESS_FREQ_CTL_RATIO_MASK,
ctrl->ratio) |
FIELD_PREP(BUTTRESS_FREQ_CTL_QOS_FLOOR_MASK,
ctrl->qos_floor) |
BUTTRESS_FREQ_CTL_ICCMAX_LEVEL;
pwr_sts = ctrl->pwr_sts_on << ctrl->pwr_sts_shift;
}
writel(val, isp->base + ctrl->freq_ctl);
ret = readl_poll_timeout(isp->base + BUTTRESS_REG_PWR_STATE,
val, (val & ctrl->pwr_sts_mask) == pwr_sts,
100, BUTTRESS_POWER_TIMEOUT_US);
if (ret)
dev_err(&isp->pdev->dev,
"Change power status timeout with 0x%x\n", val);
ctrl->started = !ret && on;
mutex_unlock(&isp->buttress.power_mutex);
return ret;
}
bool ipu6_buttress_get_secure_mode(struct ipu6_device *isp)
{
u32 val;
val = readl(isp->base + BUTTRESS_REG_SECURITY_CTL);
return val & BUTTRESS_SECURITY_CTL_FW_SECURE_MODE;
}
bool ipu6_buttress_auth_done(struct ipu6_device *isp)
{
u32 val;
if (!isp->secure_mode)
return true;
val = readl(isp->base + BUTTRESS_REG_SECURITY_CTL);
val = FIELD_GET(BUTTRESS_SECURITY_CTL_FW_SETUP_MASK, val);
return val == BUTTRESS_SECURITY_CTL_AUTH_DONE;
}
EXPORT_SYMBOL_NS_GPL(ipu6_buttress_auth_done, INTEL_IPU6);
int ipu6_buttress_reset_authentication(struct ipu6_device *isp)
{
int ret;
u32 val;
if (!isp->secure_mode) {
dev_dbg(&isp->pdev->dev, "Skip auth for non-secure mode\n");
return 0;
}
writel(BUTTRESS_FW_RESET_CTL_START, isp->base +
BUTTRESS_REG_FW_RESET_CTL);
ret = readl_poll_timeout(isp->base + BUTTRESS_REG_FW_RESET_CTL, val,
val & BUTTRESS_FW_RESET_CTL_DONE, 500,
BUTTRESS_CSE_FWRESET_TIMEOUT_US);
if (ret) {
dev_err(&isp->pdev->dev,
"Time out while resetting authentication state\n");
return ret;
}
dev_dbg(&isp->pdev->dev, "FW reset for authentication done\n");
writel(0, isp->base + BUTTRESS_REG_FW_RESET_CTL);
/* leave some time for HW restore */
usleep_range(800, 1000);
return 0;
}
int ipu6_buttress_map_fw_image(struct ipu6_bus_device *sys,
const struct firmware *fw, struct sg_table *sgt)
{
bool is_vmalloc = is_vmalloc_addr(fw->data);
struct page **pages;
const void *addr;
unsigned long n_pages;
unsigned int i;
int ret;
if (!is_vmalloc && !virt_addr_valid(fw->data))
return -EDOM;
n_pages = PHYS_PFN(PAGE_ALIGN(fw->size));
pages = kmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
if (!pages)
return -ENOMEM;
addr = fw->data;
for (i = 0; i < n_pages; i++) {
struct page *p = is_vmalloc ?
vmalloc_to_page(addr) : virt_to_page(addr);
if (!p) {
ret = -ENOMEM;
goto out;
}
pages[i] = p;
addr += PAGE_SIZE;
}
ret = sg_alloc_table_from_pages(sgt, pages, n_pages, 0, fw->size,
GFP_KERNEL);
if (ret) {
ret = -ENOMEM;
goto out;
}
ret = dma_map_sgtable(&sys->auxdev.dev, sgt, DMA_TO_DEVICE, 0);
if (ret < 0) {
ret = -ENOMEM;
sg_free_table(sgt);
goto out;
}
dma_sync_sgtable_for_device(&sys->auxdev.dev, sgt, DMA_TO_DEVICE);
out:
kfree(pages);
return ret;
}
EXPORT_SYMBOL_NS_GPL(ipu6_buttress_map_fw_image, INTEL_IPU6);
void ipu6_buttress_unmap_fw_image(struct ipu6_bus_device *sys,
struct sg_table *sgt)
{
dma_unmap_sgtable(&sys->auxdev.dev, sgt, DMA_TO_DEVICE, 0);
sg_free_table(sgt);
}
EXPORT_SYMBOL_NS_GPL(ipu6_buttress_unmap_fw_image, INTEL_IPU6);
int ipu6_buttress_authenticate(struct ipu6_device *isp)
{
struct ipu6_buttress *b = &isp->buttress;
struct ipu6_psys_pdata *psys_pdata;
u32 data, mask, done, fail;
int ret;
if (!isp->secure_mode) {
dev_dbg(&isp->pdev->dev, "Skip auth for non-secure mode\n");
return 0;
}
psys_pdata = isp->psys->pdata;
mutex_lock(&b->auth_mutex);
if (ipu6_buttress_auth_done(isp)) {
ret = 0;
goto out_unlock;
}
/*
* Write address of FIT table to FW_SOURCE register
* Let's use fw address. I.e. not using FIT table yet
*/
data = lower_32_bits(isp->psys->pkg_dir_dma_addr);
writel(data, isp->base + BUTTRESS_REG_FW_SOURCE_BASE_LO);
data = upper_32_bits(isp->psys->pkg_dir_dma_addr);
writel(data, isp->base + BUTTRESS_REG_FW_SOURCE_BASE_HI);
/*
* Write boot_load into IU2CSEDATA0
* Write sizeof(boot_load) | 0x2 << CLIENT_ID to
* IU2CSEDB.IU2CSECMD and set IU2CSEDB.IU2CSEBUSY as
*/
dev_info(&isp->pdev->dev, "Sending BOOT_LOAD to CSE\n");
ret = ipu6_buttress_ipc_send(isp, IPU6_BUTTRESS_IPC_CSE,
BUTTRESS_IU2CSEDATA0_IPC_BOOT_LOAD,
1, true,
BUTTRESS_CSE2IUDATA0_IPC_BOOT_LOAD_DONE);
if (ret) {
dev_err(&isp->pdev->dev, "CSE boot_load failed\n");
goto out_unlock;
}
mask = BUTTRESS_SECURITY_CTL_FW_SETUP_MASK;
done = BUTTRESS_SECURITY_CTL_FW_SETUP_DONE;
fail = BUTTRESS_SECURITY_CTL_AUTH_FAILED;
ret = readl_poll_timeout(isp->base + BUTTRESS_REG_SECURITY_CTL, data,
((data & mask) == done ||
(data & mask) == fail), 500,
BUTTRESS_CSE_BOOTLOAD_TIMEOUT_US);
if (ret) {
dev_err(&isp->pdev->dev, "CSE boot_load timeout\n");
goto out_unlock;
}
if ((data & mask) == fail) {
dev_err(&isp->pdev->dev, "CSE auth failed\n");
ret = -EINVAL;
goto out_unlock;
}
ret = readl_poll_timeout(psys_pdata->base + BOOTLOADER_STATUS_OFFSET,
data, data == BOOTLOADER_MAGIC_KEY, 500,
BUTTRESS_CSE_BOOTLOAD_TIMEOUT_US);
if (ret) {
dev_err(&isp->pdev->dev, "Unexpected magic number 0x%x\n",
data);
goto out_unlock;
}
/*
* Write authenticate_run into IU2CSEDATA0
* Write sizeof(boot_load) | 0x2 << CLIENT_ID to
* IU2CSEDB.IU2CSECMD and set IU2CSEDB.IU2CSEBUSY as
*/
dev_info(&isp->pdev->dev, "Sending AUTHENTICATE_RUN to CSE\n");
ret = ipu6_buttress_ipc_send(isp, IPU6_BUTTRESS_IPC_CSE,
BUTTRESS_IU2CSEDATA0_IPC_AUTH_RUN,
1, true,
BUTTRESS_CSE2IUDATA0_IPC_AUTH_RUN_DONE);
if (ret) {
dev_err(&isp->pdev->dev, "CSE authenticate_run failed\n");
goto out_unlock;
}
done = BUTTRESS_SECURITY_CTL_AUTH_DONE;
ret = readl_poll_timeout(isp->base + BUTTRESS_REG_SECURITY_CTL, data,
((data & mask) == done ||
(data & mask) == fail), 500,
BUTTRESS_CSE_AUTHENTICATE_TIMEOUT_US);
if (ret) {
dev_err(&isp->pdev->dev, "CSE authenticate timeout\n");
goto out_unlock;
}
if ((data & mask) == fail) {
dev_err(&isp->pdev->dev, "CSE boot_load failed\n");
ret = -EINVAL;
goto out_unlock;
}
dev_info(&isp->pdev->dev, "CSE authenticate_run done\n");
out_unlock:
mutex_unlock(&b->auth_mutex);
return ret;
}
static int ipu6_buttress_send_tsc_request(struct ipu6_device *isp)
{
u32 val, mask, done;
int ret;
mask = BUTTRESS_PWR_STATE_HH_STATUS_MASK;
writel(BUTTRESS_FABRIC_CMD_START_TSC_SYNC,
isp->base + BUTTRESS_REG_FABRIC_CMD);
val = readl(isp->base + BUTTRESS_REG_PWR_STATE);
val = FIELD_GET(mask, val);
if (val == BUTTRESS_PWR_STATE_HH_STATE_ERR) {
dev_err(&isp->pdev->dev, "Start tsc sync failed\n");
return -EINVAL;
}
done = BUTTRESS_PWR_STATE_HH_STATE_DONE;
ret = readl_poll_timeout(isp->base + BUTTRESS_REG_PWR_STATE, val,
FIELD_GET(mask, val) == done, 500,
BUTTRESS_TSC_SYNC_TIMEOUT_US);
if (ret)
dev_err(&isp->pdev->dev, "Start tsc sync timeout\n");
return ret;
}
int ipu6_buttress_start_tsc_sync(struct ipu6_device *isp)
{
unsigned int i;
for (i = 0; i < BUTTRESS_TSC_SYNC_RESET_TRIAL_MAX; i++) {
u32 val;
int ret;
ret = ipu6_buttress_send_tsc_request(isp);
if (ret != -ETIMEDOUT)
return ret;
val = readl(isp->base + BUTTRESS_REG_TSW_CTL);
val = val | BUTTRESS_TSW_CTL_SOFT_RESET;
writel(val, isp->base + BUTTRESS_REG_TSW_CTL);
val = val & ~BUTTRESS_TSW_CTL_SOFT_RESET;
writel(val, isp->base + BUTTRESS_REG_TSW_CTL);
}
dev_err(&isp->pdev->dev, "TSC sync failed (timeout)\n");
return -ETIMEDOUT;
}
EXPORT_SYMBOL_NS_GPL(ipu6_buttress_start_tsc_sync, INTEL_IPU6);
void ipu6_buttress_tsc_read(struct ipu6_device *isp, u64 *val)
{
u32 tsc_hi_1, tsc_hi_2, tsc_lo;
unsigned long flags;
local_irq_save(flags);
tsc_hi_1 = readl(isp->base + BUTTRESS_REG_TSC_HI);
tsc_lo = readl(isp->base + BUTTRESS_REG_TSC_LO);
tsc_hi_2 = readl(isp->base + BUTTRESS_REG_TSC_HI);
if (tsc_hi_1 == tsc_hi_2) {
*val = (u64)tsc_hi_1 << 32 | tsc_lo;
} else {
/* Check if TSC has rolled over */
if (tsc_lo & BIT(31))
*val = (u64)tsc_hi_1 << 32 | tsc_lo;
else
*val = (u64)tsc_hi_2 << 32 | tsc_lo;
}
local_irq_restore(flags);
}
EXPORT_SYMBOL_NS_GPL(ipu6_buttress_tsc_read, INTEL_IPU6);
u64 ipu6_buttress_tsc_ticks_to_ns(u64 ticks, const struct ipu6_device *isp)
{
u64 ns = ticks * 10000;
/*
* converting TSC tick count to ns is calculated by:
* Example (TSC clock frequency is 19.2MHz):
* ns = ticks * 1000 000 000 / 19.2Mhz
* = ticks * 1000 000 000 / 19200000Hz
* = ticks * 10000 / 192 ns
*/
return div_u64(ns, isp->buttress.ref_clk);
}
EXPORT_SYMBOL_NS_GPL(ipu6_buttress_tsc_ticks_to_ns, INTEL_IPU6);
void ipu6_buttress_restore(struct ipu6_device *isp)
{
struct ipu6_buttress *b = &isp->buttress;
writel(BUTTRESS_IRQS, isp->base + BUTTRESS_REG_ISR_CLEAR);
writel(BUTTRESS_IRQS, isp->base + BUTTRESS_REG_ISR_ENABLE);
writel(b->wdt_cached_value, isp->base + BUTTRESS_REG_WDT);
}
int ipu6_buttress_init(struct ipu6_device *isp)
{
int ret, ipc_reset_retry = BUTTRESS_CSE_IPC_RESET_RETRY;
struct ipu6_buttress *b = &isp->buttress;
u32 val;
mutex_init(&b->power_mutex);
mutex_init(&b->auth_mutex);
mutex_init(&b->cons_mutex);
mutex_init(&b->ipc_mutex);
init_completion(&b->ish.send_complete);
init_completion(&b->cse.send_complete);
init_completion(&b->ish.recv_complete);
init_completion(&b->cse.recv_complete);
b->cse.nack = BUTTRESS_CSE2IUDATA0_IPC_NACK;
b->cse.nack_mask = BUTTRESS_CSE2IUDATA0_IPC_NACK_MASK;
b->cse.csr_in = BUTTRESS_REG_CSE2IUCSR;
b->cse.csr_out = BUTTRESS_REG_IU2CSECSR;
b->cse.db0_in = BUTTRESS_REG_CSE2IUDB0;
b->cse.db0_out = BUTTRESS_REG_IU2CSEDB0;
b->cse.data0_in = BUTTRESS_REG_CSE2IUDATA0;
b->cse.data0_out = BUTTRESS_REG_IU2CSEDATA0;
/* no ISH on IPU6 */
memset(&b->ish, 0, sizeof(b->ish));
INIT_LIST_HEAD(&b->constraints);
isp->secure_mode = ipu6_buttress_get_secure_mode(isp);
dev_info(&isp->pdev->dev, "IPU6 in %s mode touch 0x%x mask 0x%x\n",
isp->secure_mode ? "secure" : "non-secure",
readl(isp->base + BUTTRESS_REG_SECURITY_TOUCH),
readl(isp->base + BUTTRESS_REG_CAMERA_MASK));
b->wdt_cached_value = readl(isp->base + BUTTRESS_REG_WDT);
writel(BUTTRESS_IRQS, isp->base + BUTTRESS_REG_ISR_CLEAR);
writel(BUTTRESS_IRQS, isp->base + BUTTRESS_REG_ISR_ENABLE);
/* get ref_clk frequency by reading the indication in btrs control */
val = readl(isp->base + BUTTRESS_REG_BTRS_CTRL);
val = FIELD_GET(BUTTRESS_REG_BTRS_CTRL_REF_CLK_IND, val);
switch (val) {
case 0x0:
b->ref_clk = 240;
break;
case 0x1:
b->ref_clk = 192;
break;
case 0x2:
b->ref_clk = 384;
break;
default:
dev_warn(&isp->pdev->dev,
"Unsupported ref clock, use 19.2Mhz by default.\n");
b->ref_clk = 192;
break;
}
/* Retry couple of times in case of CSE initialization is delayed */
do {
ret = ipu6_buttress_ipc_reset(isp, &b->cse);
if (ret) {
dev_warn(&isp->pdev->dev,
"IPC reset protocol failed, retrying\n");
} else {
dev_dbg(&isp->pdev->dev, "IPC reset done\n");
return 0;
}
} while (ipc_reset_retry--);
dev_err(&isp->pdev->dev, "IPC reset protocol failed\n");
mutex_destroy(&b->power_mutex);
mutex_destroy(&b->auth_mutex);
mutex_destroy(&b->cons_mutex);
mutex_destroy(&b->ipc_mutex);
return ret;
}
void ipu6_buttress_exit(struct ipu6_device *isp)
{
struct ipu6_buttress *b = &isp->buttress;
writel(0, isp->base + BUTTRESS_REG_ISR_ENABLE);
mutex_destroy(&b->power_mutex);
mutex_destroy(&b->auth_mutex);
mutex_destroy(&b->cons_mutex);
mutex_destroy(&b->ipc_mutex);
}