/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHEFS_FORMAT_H
#define _BCACHEFS_FORMAT_H
/*
* bcachefs on disk data structures
*
* OVERVIEW:
*
* There are three main types of on disk data structures in bcachefs (this is
* reduced from 5 in bcache)
*
* - superblock
* - journal
* - btree
*
* The btree is the primary structure; most metadata exists as keys in the
* various btrees. There are only a small number of btrees, they're not
* sharded - we have one btree for extents, another for inodes, et cetera.
*
* SUPERBLOCK:
*
* The superblock contains the location of the journal, the list of devices in
* the filesystem, and in general any metadata we need in order to decide
* whether we can start a filesystem or prior to reading the journal/btree
* roots.
*
* The superblock is extensible, and most of the contents of the superblock are
* in variable length, type tagged fields; see struct bch_sb_field.
*
* Backup superblocks do not reside in a fixed location; also, superblocks do
* not have a fixed size. To locate backup superblocks we have struct
* bch_sb_layout; we store a copy of this inside every superblock, and also
* before the first superblock.
*
* JOURNAL:
*
* The journal primarily records btree updates in the order they occurred;
* journal replay consists of just iterating over all the keys in the open
* journal entries and re-inserting them into the btrees.
*
* The journal also contains entry types for the btree roots, and blacklisted
* journal sequence numbers (see journal_seq_blacklist.c).
*
* BTREE:
*
* bcachefs btrees are copy on write b+ trees, where nodes are big (typically
* 128k-256k) and log structured. We use struct btree_node for writing the first
* entry in a given node (offset 0), and struct btree_node_entry for all
* subsequent writes.
*
* After the header, btree node entries contain a list of keys in sorted order.
* Values are stored inline with the keys; since values are variable length (and
* keys effectively are variable length too, due to packing) we can't do random
* access without building up additional in memory tables in the btree node read
* path.
*
* BTREE KEYS (struct bkey):
*
* The various btrees share a common format for the key - so as to avoid
* switching in fastpath lookup/comparison code - but define their own
* structures for the key values.
*
* The size of a key/value pair is stored as a u8 in units of u64s, so the max
* size is just under 2k. The common part also contains a type tag for the
* value, and a format field indicating whether the key is packed or not (and
* also meant to allow adding new key fields in the future, if desired).
*
* bkeys, when stored within a btree node, may also be packed. In that case, the
* bkey_format in that node is used to unpack it. Packed bkeys mean that we can
* be generous with field sizes in the common part of the key format (64 bit
* inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost.
*/
#include <asm/types.h>
#include <asm/byteorder.h>
#include <linux/kernel.h>
#include <linux/uuid.h>
#include <uapi/linux/magic.h>
#include "vstructs.h"
#ifdef __KERNEL__
typedef uuid_t __uuid_t;
#endif
#define BITMASK(name, type, field, offset, end) \
static const __maybe_unused unsigned name##_OFFSET = offset; \
static const __maybe_unused unsigned name##_BITS = (end - offset); \
\
static inline __u64 name(const type *k) \
{ \
return (k->field >> offset) & ~(~0ULL << (end - offset)); \
} \
\
static inline void SET_##name(type *k, __u64 v) \
{ \
k->field &= ~(~(~0ULL << (end - offset)) << offset); \
k->field |= (v & ~(~0ULL << (end - offset))) << offset; \
}
#define LE_BITMASK(_bits, name, type, field, offset, end) \
static const __maybe_unused unsigned name##_OFFSET = offset; \
static const __maybe_unused unsigned name##_BITS = (end - offset); \
static const __maybe_unused __u##_bits name##_MAX = (1ULL << (end - offset)) - 1;\
\
static inline __u64 name(const type *k) \
{ \
return (__le##_bits##_to_cpu(k->field) >> offset) & \
~(~0ULL << (end - offset)); \
} \
\
static inline void SET_##name(type *k, __u64 v) \
{ \
__u##_bits new = __le##_bits##_to_cpu(k->field); \
\
new &= ~(~(~0ULL << (end - offset)) << offset); \
new |= (v & ~(~0ULL << (end - offset))) << offset; \
k->field = __cpu_to_le##_bits(new); \
}
#define LE16_BITMASK(n, t, f, o, e) LE_BITMASK(16, n, t, f, o, e)
#define LE32_BITMASK(n, t, f, o, e) LE_BITMASK(32, n, t, f, o, e)
#define LE64_BITMASK(n, t, f, o, e) LE_BITMASK(64, n, t, f, o, e)
struct bkey_format {
__u8 key_u64s;
__u8 nr_fields;
/* One unused slot for now: */
__u8 bits_per_field[6];
__le64 field_offset[6];
};
/* Btree keys - all units are in sectors */
struct bpos {
/*
* Word order matches machine byte order - btree code treats a bpos as a
* single large integer, for search/comparison purposes
*
* Note that wherever a bpos is embedded in another on disk data
* structure, it has to be byte swabbed when reading in metadata that
* wasn't written in native endian order:
*/
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
__u32 snapshot;
__u64 offset;
__u64 inode;
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
__u64 inode;
__u64 offset; /* Points to end of extent - sectors */
__u32 snapshot;
#else
#error edit for your odd byteorder.
#endif
} __packed
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
__aligned(4)
#endif
;
#define KEY_INODE_MAX ((__u64)~0ULL)
#define KEY_OFFSET_MAX ((__u64)~0ULL)
#define KEY_SNAPSHOT_MAX ((__u32)~0U)
#define KEY_SIZE_MAX ((__u32)~0U)
static inline struct bpos SPOS(__u64 inode, __u64 offset, __u32 snapshot)
{
return (struct bpos) {
.inode = inode,
.offset = offset,
.snapshot = snapshot,
};
}
#define POS_MIN SPOS(0, 0, 0)
#define POS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0)
#define SPOS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX)
#define POS(_inode, _offset) SPOS(_inode, _offset, 0)
/* Empty placeholder struct, for container_of() */
struct bch_val {
__u64 __nothing[0];
};
struct bversion {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
__u64 lo;
__u32 hi;
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
__u32 hi;
__u64 lo;
#endif
} __packed
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
__aligned(4)
#endif
;
struct bkey {
/* Size of combined key and value, in u64s */
__u8 u64s;
/* Format of key (0 for format local to btree node) */
#if defined(__LITTLE_ENDIAN_BITFIELD)
__u8 format:7,
needs_whiteout:1;
#elif defined (__BIG_ENDIAN_BITFIELD)
__u8 needs_whiteout:1,
format:7;
#else
#error edit for your odd byteorder.
#endif
/* Type of the value */
__u8 type;
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
__u8 pad[1];
struct bversion bversion;
__u32 size; /* extent size, in sectors */
struct bpos p;
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
struct bpos p;
__u32 size; /* extent size, in sectors */
struct bversion bversion;
__u8 pad[1];
#endif
} __packed
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
/*
* The big-endian version of bkey can't be compiled by rustc with the "aligned"
* attr since it doesn't allow types to have both "packed" and "aligned" attrs.
* So for Rust compatibility, don't include this. It can be included in the LE
* version because the "packed" attr is redundant in that case.
*
* History: (quoting Kent)
*
* Specifically, when i was designing bkey, I wanted the header to be no
* bigger than necessary so that bkey_packed could use the rest. That means that
* decently offten extent keys will fit into only 8 bytes, instead of spilling over
* to 16.
*
* But packed_bkey treats the part after the header - the packed section -
* as a single multi word, variable length integer. And bkey, the unpacked
* version, is just a special case version of a bkey_packed; all the packed
* bkey code will work on keys in any packed format, the in-memory
* representation of an unpacked key also is just one type of packed key...
*
* So that constrains the key part of a bkig endian bkey to start right
* after the header.
*
* If we ever do a bkey_v2 and need to expand the hedaer by another byte for
* some reason - that will clean up this wart.
*/
__aligned(8)
#endif
;
struct bkey_packed {
__u64 _data[0];
/* Size of combined key and value, in u64s */
__u8 u64s;
/* Format of key (0 for format local to btree node) */
/*
* XXX: next incompat on disk format change, switch format and
* needs_whiteout - bkey_packed() will be cheaper if format is the high
* bits of the bitfield
*/
#if defined(__LITTLE_ENDIAN_BITFIELD)
__u8 format:7,
needs_whiteout:1;
#elif defined (__BIG_ENDIAN_BITFIELD)
__u8 needs_whiteout:1,
format:7;
#endif
/* Type of the value */
__u8 type;
__u8 key_start[0];
/*
* We copy bkeys with struct assignment in various places, and while
* that shouldn't be done with packed bkeys we can't disallow it in C,
* and it's legal to cast a bkey to a bkey_packed - so padding it out
* to the same size as struct bkey should hopefully be safest.
*/
__u8 pad[sizeof(struct bkey) - 3];
} __packed __aligned(8);
typedef struct {
__le64 lo;
__le64 hi;
} bch_le128;
#define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64))
#define BKEY_U64s_MAX U8_MAX
#define BKEY_VAL_U64s_MAX (BKEY_U64s_MAX - BKEY_U64s)
#define KEY_PACKED_BITS_START 24
#define KEY_FORMAT_LOCAL_BTREE 0
#define KEY_FORMAT_CURRENT 1
enum bch_bkey_fields {
BKEY_FIELD_INODE,
BKEY_FIELD_OFFSET,
BKEY_FIELD_SNAPSHOT,
BKEY_FIELD_SIZE,
BKEY_FIELD_VERSION_HI,
BKEY_FIELD_VERSION_LO,
BKEY_NR_FIELDS,
};
#define bkey_format_field(name, field) \
[BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8)
#define BKEY_FORMAT_CURRENT \
((struct bkey_format) { \
.key_u64s = BKEY_U64s, \
.nr_fields = BKEY_NR_FIELDS, \
.bits_per_field = { \
bkey_format_field(INODE, p.inode), \
bkey_format_field(OFFSET, p.offset), \
bkey_format_field(SNAPSHOT, p.snapshot), \
bkey_format_field(SIZE, size), \
bkey_format_field(VERSION_HI, bversion.hi), \
bkey_format_field(VERSION_LO, bversion.lo), \
}, \
})
/* bkey with inline value */
struct bkey_i {
__u64 _data[0];
struct bkey k;
struct bch_val v;
};
#define POS_KEY(_pos) \
((struct bkey) { \
.u64s = BKEY_U64s, \
.format = KEY_FORMAT_CURRENT, \
.p = _pos, \
})
#define KEY(_inode, _offset, _size) \
((struct bkey) { \
.u64s = BKEY_U64s, \
.format = KEY_FORMAT_CURRENT, \
.p = POS(_inode, _offset), \
.size = _size, \
})
static inline void bkey_init(struct bkey *k)
{
*k = KEY(0, 0, 0);
}
#define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64))
#define __BKEY_PADDED(key, pad) \
struct bkey_i key; __u64 key ## _pad[pad]
/*
* - DELETED keys are used internally to mark keys that should be ignored but
* override keys in composition order. Their version number is ignored.
*
* - DISCARDED keys indicate that the data is all 0s because it has been
* discarded. DISCARDs may have a version; if the version is nonzero the key
* will be persistent, otherwise the key will be dropped whenever the btree
* node is rewritten (like DELETED keys).
*
* - ERROR: any read of the data returns a read error, as the data was lost due
* to a failing device. Like DISCARDED keys, they can be removed (overridden)
* by new writes or cluster-wide GC. Node repair can also overwrite them with
* the same or a more recent version number, but not with an older version
* number.
*
* - WHITEOUT: for hash table btrees
*/
#define BCH_BKEY_TYPES() \
x(deleted, 0) \
x(whiteout, 1) \
x(error, 2) \
x(cookie, 3) \
x(hash_whiteout, 4) \
x(btree_ptr, 5) \
x(extent, 6) \
x(reservation, 7) \
x(inode, 8) \
x(inode_generation, 9) \
x(dirent, 10) \
x(xattr, 11) \
x(alloc, 12) \
x(quota, 13) \
x(stripe, 14) \
x(reflink_p, 15) \
x(reflink_v, 16) \
x(inline_data, 17) \
x(btree_ptr_v2, 18) \
x(indirect_inline_data, 19) \
x(alloc_v2, 20) \
x(subvolume, 21) \
x(snapshot, 22) \
x(inode_v2, 23) \
x(alloc_v3, 24) \
x(set, 25) \
x(lru, 26) \
x(alloc_v4, 27) \
x(backpointer, 28) \
x(inode_v3, 29) \
x(bucket_gens, 30) \
x(snapshot_tree, 31) \
x(logged_op_truncate, 32) \
x(logged_op_finsert, 33) \
x(accounting, 34)
enum bch_bkey_type {
#define x(name, nr) KEY_TYPE_##name = nr,
BCH_BKEY_TYPES()
#undef x
KEY_TYPE_MAX,
};
struct bch_deleted {
struct bch_val v;
};
struct bch_whiteout {
struct bch_val v;
};
struct bch_error {
struct bch_val v;
};
struct bch_cookie {
struct bch_val v;
__le64 cookie;
};
struct bch_hash_whiteout {
struct bch_val v;
};
struct bch_set {
struct bch_val v;
};
/* 128 bits, sufficient for cryptographic MACs: */
struct bch_csum {
__le64 lo;
__le64 hi;
} __packed __aligned(8);
struct bch_backpointer {
struct bch_val v;
__u8 btree_id;
__u8 level;
__u8 data_type;
__u64 bucket_offset:40;
__u32 bucket_len;
struct bpos pos;
} __packed __aligned(8);
/* Optional/variable size superblock sections: */
struct bch_sb_field {
__u64 _data[0];
__le32 u64s;
__le32 type;
};
#define BCH_SB_FIELDS() \
x(journal, 0) \
x(members_v1, 1) \
x(crypt, 2) \
x(replicas_v0, 3) \
x(quota, 4) \
x(disk_groups, 5) \
x(clean, 6) \
x(replicas, 7) \
x(journal_seq_blacklist, 8) \
x(journal_v2, 9) \
x(counters, 10) \
x(members_v2, 11) \
x(errors, 12) \
x(ext, 13) \
x(downgrade, 14)
#include "alloc_background_format.h"
#include "dirent_format.h"
#include "disk_accounting_format.h"
#include "disk_groups_format.h"
#include "extents_format.h"
#include "ec_format.h"
#include "dirent_format.h"
#include "disk_groups_format.h"
#include "inode_format.h"
#include "journal_seq_blacklist_format.h"
#include "logged_ops_format.h"
#include "lru_format.h"
#include "quota_format.h"
#include "reflink_format.h"
#include "replicas_format.h"
#include "snapshot_format.h"
#include "subvolume_format.h"
#include "sb-counters_format.h"
#include "sb-downgrade_format.h"
#include "sb-errors_format.h"
#include "sb-members_format.h"
#include "xattr_format.h"
enum bch_sb_field_type {
#define x(f, nr) BCH_SB_FIELD_##f = nr,
BCH_SB_FIELDS()
#undef x
BCH_SB_FIELD_NR
};
/*
* Most superblock fields are replicated in all device's superblocks - a few are
* not:
*/
#define BCH_SINGLE_DEVICE_SB_FIELDS \
((1U << BCH_SB_FIELD_journal)| \
(1U << BCH_SB_FIELD_journal_v2))
/* BCH_SB_FIELD_journal: */
struct bch_sb_field_journal {
struct bch_sb_field field;
__le64 buckets[];
};
struct bch_sb_field_journal_v2 {
struct bch_sb_field field;
struct bch_sb_field_journal_v2_entry {
__le64 start;
__le64 nr;
} d[];
};
/* BCH_SB_FIELD_crypt: */
struct nonce {
__le32 d[4];
};
struct bch_key {
__le64 key[4];
};
#define BCH_KEY_MAGIC \
(((__u64) 'b' << 0)|((__u64) 'c' << 8)| \
((__u64) 'h' << 16)|((__u64) '*' << 24)| \
((__u64) '*' << 32)|((__u64) 'k' << 40)| \
((__u64) 'e' << 48)|((__u64) 'y' << 56))
struct bch_encrypted_key {
__le64 magic;
struct bch_key key;
};
/*
* If this field is present in the superblock, it stores an encryption key which
* is used encrypt all other data/metadata. The key will normally be encrypted
* with the key userspace provides, but if encryption has been turned off we'll
* just store the master key unencrypted in the superblock so we can access the
* previously encrypted data.
*/
struct bch_sb_field_crypt {
struct bch_sb_field field;
__le64 flags;
__le64 kdf_flags;
struct bch_encrypted_key key;
};
LE64_BITMASK(BCH_CRYPT_KDF_TYPE, struct bch_sb_field_crypt, flags, 0, 4);
enum bch_kdf_types {
BCH_KDF_SCRYPT = 0,
BCH_KDF_NR = 1,
};
/* stored as base 2 log of scrypt params: */
LE64_BITMASK(BCH_KDF_SCRYPT_N, struct bch_sb_field_crypt, kdf_flags, 0, 16);
LE64_BITMASK(BCH_KDF_SCRYPT_R, struct bch_sb_field_crypt, kdf_flags, 16, 32);
LE64_BITMASK(BCH_KDF_SCRYPT_P, struct bch_sb_field_crypt, kdf_flags, 32, 48);
/*
* On clean shutdown, store btree roots and current journal sequence number in
* the superblock:
*/
struct jset_entry {
__le16 u64s;
__u8 btree_id;
__u8 level;
__u8 type; /* designates what this jset holds */
__u8 pad[3];
struct bkey_i start[0];
__u64 _data[];
};
struct bch_sb_field_clean {
struct bch_sb_field field;
__le32 flags;
__le16 _read_clock; /* no longer used */
__le16 _write_clock;
__le64 journal_seq;
struct jset_entry start[0];
__u64 _data[];
};
struct bch_sb_field_ext {
struct bch_sb_field field;
__le64 recovery_passes_required[2];
__le64 errors_silent[8];
__le64 btrees_lost_data;
};
/* Superblock: */
/*
* New versioning scheme:
* One common version number for all on disk data structures - superblock, btree
* nodes, journal entries
*/
#define BCH_VERSION_MAJOR(_v) ((__u16) ((_v) >> 10))
#define BCH_VERSION_MINOR(_v) ((__u16) ((_v) & ~(~0U << 10)))
#define BCH_VERSION(_major, _minor) (((_major) << 10)|(_minor) << 0)
/*
* field 1: version name
* field 2: BCH_VERSION(major, minor)
* field 3: recovery passess required on upgrade
*/
#define BCH_METADATA_VERSIONS() \
x(bkey_renumber, BCH_VERSION(0, 10)) \
x(inode_btree_change, BCH_VERSION(0, 11)) \
x(snapshot, BCH_VERSION(0, 12)) \
x(inode_backpointers, BCH_VERSION(0, 13)) \
x(btree_ptr_sectors_written, BCH_VERSION(0, 14)) \
x(snapshot_2, BCH_VERSION(0, 15)) \
x(reflink_p_fix, BCH_VERSION(0, 16)) \
x(subvol_dirent, BCH_VERSION(0, 17)) \
x(inode_v2, BCH_VERSION(0, 18)) \
x(freespace, BCH_VERSION(0, 19)) \
x(alloc_v4, BCH_VERSION(0, 20)) \
x(new_data_types, BCH_VERSION(0, 21)) \
x(backpointers, BCH_VERSION(0, 22)) \
x(inode_v3, BCH_VERSION(0, 23)) \
x(unwritten_extents, BCH_VERSION(0, 24)) \
x(bucket_gens, BCH_VERSION(0, 25)) \
x(lru_v2, BCH_VERSION(0, 26)) \
x(fragmentation_lru, BCH_VERSION(0, 27)) \
x(no_bps_in_alloc_keys, BCH_VERSION(0, 28)) \
x(snapshot_trees, BCH_VERSION(0, 29)) \
x(major_minor, BCH_VERSION(1, 0)) \
x(snapshot_skiplists, BCH_VERSION(1, 1)) \
x(deleted_inodes, BCH_VERSION(1, 2)) \
x(rebalance_work, BCH_VERSION(1, 3)) \
x(member_seq, BCH_VERSION(1, 4)) \
x(subvolume_fs_parent, BCH_VERSION(1, 5)) \
x(btree_subvolume_children, BCH_VERSION(1, 6)) \
x(mi_btree_bitmap, BCH_VERSION(1, 7)) \
x(bucket_stripe_sectors, BCH_VERSION(1, 8)) \
x(disk_accounting_v2, BCH_VERSION(1, 9)) \
x(disk_accounting_v3, BCH_VERSION(1, 10)) \
x(disk_accounting_inum, BCH_VERSION(1, 11)) \
x(rebalance_work_acct_fix, BCH_VERSION(1, 12))
enum bcachefs_metadata_version {
bcachefs_metadata_version_min = 9,
#define x(t, n) bcachefs_metadata_version_##t = n,
BCH_METADATA_VERSIONS()
#undef x
bcachefs_metadata_version_max
};
static const __maybe_unused
unsigned bcachefs_metadata_required_upgrade_below = bcachefs_metadata_version_rebalance_work;
#define bcachefs_metadata_version_current (bcachefs_metadata_version_max - 1)
#define BCH_SB_SECTOR 8
#define BCH_SB_LAYOUT_SIZE_BITS_MAX 16 /* 32 MB */
struct bch_sb_layout {
__uuid_t magic; /* bcachefs superblock UUID */
__u8 layout_type;
__u8 sb_max_size_bits; /* base 2 of 512 byte sectors */
__u8 nr_superblocks;
__u8 pad[5];
__le64 sb_offset[61];
} __packed __aligned(8);
#define BCH_SB_LAYOUT_SECTOR 7
/*
* @offset - sector where this sb was written
* @version - on disk format version
* @version_min - Oldest metadata version this filesystem contains; so we can
* safely drop compatibility code and refuse to mount filesystems
* we'd need it for
* @magic - identifies as a bcachefs superblock (BCHFS_MAGIC)
* @seq - incremented each time superblock is written
* @uuid - used for generating various magic numbers and identifying
* member devices, never changes
* @user_uuid - user visible UUID, may be changed
* @label - filesystem label
* @seq - identifies most recent superblock, incremented each time
* superblock is written
* @features - enabled incompatible features
*/
struct bch_sb {
struct bch_csum csum;
__le16 version;
__le16 version_min;
__le16 pad[2];
__uuid_t magic;
__uuid_t uuid;
__uuid_t user_uuid;
__u8 label[BCH_SB_LABEL_SIZE];
__le64 offset;
__le64 seq;
__le16 block_size;
__u8 dev_idx;
__u8 nr_devices;
__le32 u64s;
__le64 time_base_lo;
__le32 time_base_hi;
__le32 time_precision;
__le64 flags[7];
__le64 write_time;
__le64 features[2];
__le64 compat[2];
struct bch_sb_layout layout;
struct bch_sb_field start[0];
__le64 _data[];
} __packed __aligned(8);
/*
* Flags:
* BCH_SB_INITALIZED - set on first mount
* BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect
* behaviour of mount/recovery path:
* BCH_SB_INODE_32BIT - limit inode numbers to 32 bits
* BCH_SB_128_BIT_MACS - 128 bit macs instead of 80
* BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides
* DATA/META_CSUM_TYPE. Also indicates encryption
* algorithm in use, if/when we get more than one
*/
LE16_BITMASK(BCH_SB_BLOCK_SIZE, struct bch_sb, block_size, 0, 16);
LE64_BITMASK(BCH_SB_INITIALIZED, struct bch_sb, flags[0], 0, 1);
LE64_BITMASK(BCH_SB_CLEAN, struct bch_sb, flags[0], 1, 2);
LE64_BITMASK(BCH_SB_CSUM_TYPE, struct bch_sb, flags[0], 2, 8);
LE64_BITMASK(BCH_SB_ERROR_ACTION, struct bch_sb, flags[0], 8, 12);
LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE, struct bch_sb, flags[0], 12, 28);
LE64_BITMASK(BCH_SB_GC_RESERVE, struct bch_sb, flags[0], 28, 33);
LE64_BITMASK(BCH_SB_ROOT_RESERVE, struct bch_sb, flags[0], 33, 40);
LE64_BITMASK(BCH_SB_META_CSUM_TYPE, struct bch_sb, flags[0], 40, 44);
LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE, struct bch_sb, flags[0], 44, 48);
LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52);
LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56);
LE64_BITMASK(BCH_SB_POSIX_ACL, struct bch_sb, flags[0], 56, 57);
LE64_BITMASK(BCH_SB_USRQUOTA, struct bch_sb, flags[0], 57, 58);
LE64_BITMASK(BCH_SB_GRPQUOTA, struct bch_sb, flags[0], 58, 59);
LE64_BITMASK(BCH_SB_PRJQUOTA, struct bch_sb, flags[0], 59, 60);
LE64_BITMASK(BCH_SB_HAS_ERRORS, struct bch_sb, flags[0], 60, 61);
LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS,struct bch_sb, flags[0], 61, 62);
LE64_BITMASK(BCH_SB_BIG_ENDIAN, struct bch_sb, flags[0], 62, 63);
LE64_BITMASK(BCH_SB_PROMOTE_WHOLE_EXTENTS,
struct bch_sb, flags[0], 63, 64);
LE64_BITMASK(BCH_SB_STR_HASH_TYPE, struct bch_sb, flags[1], 0, 4);
LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_LO,struct bch_sb, flags[1], 4, 8);
LE64_BITMASK(BCH_SB_INODE_32BIT, struct bch_sb, flags[1], 8, 9);
LE64_BITMASK(BCH_SB_128_BIT_MACS, struct bch_sb, flags[1], 9, 10);
LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE, struct bch_sb, flags[1], 10, 14);
/*
* Max size of an extent that may require bouncing to read or write
* (checksummed, compressed): 64k
*/
LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS,
struct bch_sb, flags[1], 14, 20);
LE64_BITMASK(BCH_SB_META_REPLICAS_REQ, struct bch_sb, flags[1], 20, 24);
LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ, struct bch_sb, flags[1], 24, 28);
LE64_BITMASK(BCH_SB_PROMOTE_TARGET, struct bch_sb, flags[1], 28, 40);
LE64_BITMASK(BCH_SB_FOREGROUND_TARGET, struct bch_sb, flags[1], 40, 52);
LE64_BITMASK(BCH_SB_BACKGROUND_TARGET, struct bch_sb, flags[1], 52, 64);
LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO,
struct bch_sb, flags[2], 0, 4);
LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES, struct bch_sb, flags[2], 4, 64);
LE64_BITMASK(BCH_SB_ERASURE_CODE, struct bch_sb, flags[3], 0, 16);
LE64_BITMASK(BCH_SB_METADATA_TARGET, struct bch_sb, flags[3], 16, 28);
LE64_BITMASK(BCH_SB_SHARD_INUMS, struct bch_sb, flags[3], 28, 29);
LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE,struct bch_sb, flags[3], 29, 30);
LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY,struct bch_sb, flags[3], 30, 62);
LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED,struct bch_sb, flags[3], 62, 63);
LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY,struct bch_sb, flags[4], 0, 32);
LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES,struct bch_sb, flags[4], 32, 33);
LE64_BITMASK(BCH_SB_NOCOW, struct bch_sb, flags[4], 33, 34);
LE64_BITMASK(BCH_SB_WRITE_BUFFER_SIZE, struct bch_sb, flags[4], 34, 54);
LE64_BITMASK(BCH_SB_VERSION_UPGRADE, struct bch_sb, flags[4], 54, 56);
LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_HI,struct bch_sb, flags[4], 56, 60);
LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI,
struct bch_sb, flags[4], 60, 64);
LE64_BITMASK(BCH_SB_VERSION_UPGRADE_COMPLETE,
struct bch_sb, flags[5], 0, 16);
LE64_BITMASK(BCH_SB_ALLOCATOR_STUCK_TIMEOUT,
struct bch_sb, flags[5], 16, 32);
static inline __u64 BCH_SB_COMPRESSION_TYPE(const struct bch_sb *sb)
{
return BCH_SB_COMPRESSION_TYPE_LO(sb) | (BCH_SB_COMPRESSION_TYPE_HI(sb) << 4);
}
static inline void SET_BCH_SB_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v)
{
SET_BCH_SB_COMPRESSION_TYPE_LO(sb, v);
SET_BCH_SB_COMPRESSION_TYPE_HI(sb, v >> 4);
}
static inline __u64 BCH_SB_BACKGROUND_COMPRESSION_TYPE(const struct bch_sb *sb)
{
return BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb) |
(BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb) << 4);
}
static inline void SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v)
{
SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb, v);
SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb, v >> 4);
}
/*
* Features:
*
* journal_seq_blacklist_v3: gates BCH_SB_FIELD_journal_seq_blacklist
* reflink: gates KEY_TYPE_reflink
* inline_data: gates KEY_TYPE_inline_data
* new_siphash: gates BCH_STR_HASH_siphash
* new_extent_overwrite: gates BTREE_NODE_NEW_EXTENT_OVERWRITE
*/
#define BCH_SB_FEATURES() \
x(lz4, 0) \
x(gzip, 1) \
x(zstd, 2) \
x(atomic_nlink, 3) \
x(ec, 4) \
x(journal_seq_blacklist_v3, 5) \
x(reflink, 6) \
x(new_siphash, 7) \
x(inline_data, 8) \
x(new_extent_overwrite, 9) \
x(incompressible, 10) \
x(btree_ptr_v2, 11) \
x(extents_above_btree_updates, 12) \
x(btree_updates_journalled, 13) \
x(reflink_inline_data, 14) \
x(new_varint, 15) \
x(journal_no_flush, 16) \
x(alloc_v2, 17) \
x(extents_across_btree_nodes, 18)
#define BCH_SB_FEATURES_ALWAYS \
((1ULL << BCH_FEATURE_new_extent_overwrite)| \
(1ULL << BCH_FEATURE_extents_above_btree_updates)|\
(1ULL << BCH_FEATURE_btree_updates_journalled)|\
(1ULL << BCH_FEATURE_alloc_v2)|\
(1ULL << BCH_FEATURE_extents_across_btree_nodes))
#define BCH_SB_FEATURES_ALL \
(BCH_SB_FEATURES_ALWAYS| \
(1ULL << BCH_FEATURE_new_siphash)| \
(1ULL << BCH_FEATURE_btree_ptr_v2)| \
(1ULL << BCH_FEATURE_new_varint)| \
(1ULL << BCH_FEATURE_journal_no_flush))
enum bch_sb_feature {
#define x(f, n) BCH_FEATURE_##f,
BCH_SB_FEATURES()
#undef x
BCH_FEATURE_NR,
};
#define BCH_SB_COMPAT() \
x(alloc_info, 0) \
x(alloc_metadata, 1) \
x(extents_above_btree_updates_done, 2) \
x(bformat_overflow_done, 3)
enum bch_sb_compat {
#define x(f, n) BCH_COMPAT_##f,
BCH_SB_COMPAT()
#undef x
BCH_COMPAT_NR,
};
/* options: */
#define BCH_VERSION_UPGRADE_OPTS() \
x(compatible, 0) \
x(incompatible, 1) \
x(none, 2)
enum bch_version_upgrade_opts {
#define x(t, n) BCH_VERSION_UPGRADE_##t = n,
BCH_VERSION_UPGRADE_OPTS()
#undef x
};
#define BCH_REPLICAS_MAX 4U
#define BCH_BKEY_PTRS_MAX 16U
#define BCH_ERROR_ACTIONS() \
x(continue, 0) \
x(fix_safe, 1) \
x(panic, 2) \
x(ro, 3)
enum bch_error_actions {
#define x(t, n) BCH_ON_ERROR_##t = n,
BCH_ERROR_ACTIONS()
#undef x
BCH_ON_ERROR_NR
};
#define BCH_STR_HASH_TYPES() \
x(crc32c, 0) \
x(crc64, 1) \
x(siphash_old, 2) \
x(siphash, 3)
enum bch_str_hash_type {
#define x(t, n) BCH_STR_HASH_##t = n,
BCH_STR_HASH_TYPES()
#undef x
BCH_STR_HASH_NR
};
#define BCH_STR_HASH_OPTS() \
x(crc32c, 0) \
x(crc64, 1) \
x(siphash, 2)
enum bch_str_hash_opts {
#define x(t, n) BCH_STR_HASH_OPT_##t = n,
BCH_STR_HASH_OPTS()
#undef x
BCH_STR_HASH_OPT_NR
};
#define BCH_CSUM_TYPES() \
x(none, 0) \
x(crc32c_nonzero, 1) \
x(crc64_nonzero, 2) \
x(chacha20_poly1305_80, 3) \
x(chacha20_poly1305_128, 4) \
x(crc32c, 5) \
x(crc64, 6) \
x(xxhash, 7)
enum bch_csum_type {
#define x(t, n) BCH_CSUM_##t = n,
BCH_CSUM_TYPES()
#undef x
BCH_CSUM_NR
};
static const __maybe_unused unsigned bch_crc_bytes[] = {
[BCH_CSUM_none] = 0,
[BCH_CSUM_crc32c_nonzero] = 4,
[BCH_CSUM_crc32c] = 4,
[BCH_CSUM_crc64_nonzero] = 8,
[BCH_CSUM_crc64] = 8,
[BCH_CSUM_xxhash] = 8,
[BCH_CSUM_chacha20_poly1305_80] = 10,
[BCH_CSUM_chacha20_poly1305_128] = 16,
};
static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type)
{
switch (type) {
case BCH_CSUM_chacha20_poly1305_80:
case BCH_CSUM_chacha20_poly1305_128:
return true;
default:
return false;
}
}
#define BCH_CSUM_OPTS() \
x(none, 0) \
x(crc32c, 1) \
x(crc64, 2) \
x(xxhash, 3)
enum bch_csum_opts {
#define x(t, n) BCH_CSUM_OPT_##t = n,
BCH_CSUM_OPTS()
#undef x
BCH_CSUM_OPT_NR
};
#define BCH_COMPRESSION_TYPES() \
x(none, 0) \
x(lz4_old, 1) \
x(gzip, 2) \
x(lz4, 3) \
x(zstd, 4) \
x(incompressible, 5)
enum bch_compression_type {
#define x(t, n) BCH_COMPRESSION_TYPE_##t = n,
BCH_COMPRESSION_TYPES()
#undef x
BCH_COMPRESSION_TYPE_NR
};
#define BCH_COMPRESSION_OPTS() \
x(none, 0) \
x(lz4, 1) \
x(gzip, 2) \
x(zstd, 3)
enum bch_compression_opts {
#define x(t, n) BCH_COMPRESSION_OPT_##t = n,
BCH_COMPRESSION_OPTS()
#undef x
BCH_COMPRESSION_OPT_NR
};
/*
* Magic numbers
*
* The various other data structures have their own magic numbers, which are
* xored with the first part of the cache set's UUID
*/
#define BCACHE_MAGIC \
UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca, \
0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81)
#define BCHFS_MAGIC \
UUID_INIT(0xc68573f6, 0x66ce, 0x90a9, \
0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef)
#define BCACHEFS_STATFS_MAGIC BCACHEFS_SUPER_MAGIC
#define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL)
#define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL)
static inline __le64 __bch2_sb_magic(struct bch_sb *sb)
{
__le64 ret;
memcpy(&ret, &sb->uuid, sizeof(ret));
return ret;
}
static inline __u64 __jset_magic(struct bch_sb *sb)
{
return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC);
}
static inline __u64 __bset_magic(struct bch_sb *sb)
{
return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC);
}
/* Journal */
#define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64))
#define BCH_JSET_ENTRY_TYPES() \
x(btree_keys, 0) \
x(btree_root, 1) \
x(prio_ptrs, 2) \
x(blacklist, 3) \
x(blacklist_v2, 4) \
x(usage, 5) \
x(data_usage, 6) \
x(clock, 7) \
x(dev_usage, 8) \
x(log, 9) \
x(overwrite, 10) \
x(write_buffer_keys, 11) \
x(datetime, 12)
enum bch_jset_entry_type {
#define x(f, nr) BCH_JSET_ENTRY_##f = nr,
BCH_JSET_ENTRY_TYPES()
#undef x
BCH_JSET_ENTRY_NR
};
static inline bool jset_entry_is_key(struct jset_entry *e)
{
switch (e->type) {
case BCH_JSET_ENTRY_btree_keys:
case BCH_JSET_ENTRY_btree_root:
case BCH_JSET_ENTRY_write_buffer_keys:
return true;
}
return false;
}
/*
* Journal sequence numbers can be blacklisted: bsets record the max sequence
* number of all the journal entries they contain updates for, so that on
* recovery we can ignore those bsets that contain index updates newer that what
* made it into the journal.
*
* This means that we can't reuse that journal_seq - we have to skip it, and
* then record that we skipped it so that the next time we crash and recover we
* don't think there was a missing journal entry.
*/
struct jset_entry_blacklist {
struct jset_entry entry;
__le64 seq;
};
struct jset_entry_blacklist_v2 {
struct jset_entry entry;
__le64 start;
__le64 end;
};
#define BCH_FS_USAGE_TYPES() \
x(reserved, 0) \
x(inodes, 1) \
x(key_version, 2)
enum bch_fs_usage_type {
#define x(f, nr) BCH_FS_USAGE_##f = nr,
BCH_FS_USAGE_TYPES()
#undef x
BCH_FS_USAGE_NR
};
struct jset_entry_usage {
struct jset_entry entry;
__le64 v;
} __packed;
struct jset_entry_data_usage {
struct jset_entry entry;
__le64 v;
struct bch_replicas_entry_v1 r;
} __packed;
struct jset_entry_clock {
struct jset_entry entry;
__u8 rw;
__u8 pad[7];
__le64 time;
} __packed;
struct jset_entry_dev_usage_type {
__le64 buckets;
__le64 sectors;
__le64 fragmented;
} __packed;
struct jset_entry_dev_usage {
struct jset_entry entry;
__le32 dev;
__u32 pad;
__le64 _buckets_ec; /* No longer used */
__le64 _buckets_unavailable; /* No longer used */
struct jset_entry_dev_usage_type d[];
};
static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage *u)
{
return (vstruct_bytes(&u->entry) - sizeof(struct jset_entry_dev_usage)) /
sizeof(struct jset_entry_dev_usage_type);
}
struct jset_entry_log {
struct jset_entry entry;
u8 d[];
} __packed __aligned(8);
struct jset_entry_datetime {
struct jset_entry entry;
__le64 seconds;
} __packed __aligned(8);
/*
* On disk format for a journal entry:
* seq is monotonically increasing; every journal entry has its own unique
* sequence number.
*
* last_seq is the oldest journal entry that still has keys the btree hasn't
* flushed to disk yet.
*
* version is for on disk format changes.
*/
struct jset {
struct bch_csum csum;
__le64 magic;
__le64 seq;
__le32 version;
__le32 flags;
__le32 u64s; /* size of d[] in u64s */
__u8 encrypted_start[0];
__le16 _read_clock; /* no longer used */
__le16 _write_clock;
/* Sequence number of oldest dirty journal entry */
__le64 last_seq;
struct jset_entry start[0];
__u64 _data[];
} __packed __aligned(8);
LE32_BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4);
LE32_BITMASK(JSET_BIG_ENDIAN, struct jset, flags, 4, 5);
LE32_BITMASK(JSET_NO_FLUSH, struct jset, flags, 5, 6);
#define BCH_JOURNAL_BUCKETS_MIN 8
/* Btree: */
enum btree_id_flags {
BTREE_ID_EXTENTS = BIT(0),
BTREE_ID_SNAPSHOTS = BIT(1),
BTREE_ID_SNAPSHOT_FIELD = BIT(2),
BTREE_ID_DATA = BIT(3),
};
#define BCH_BTREE_IDS() \
x(extents, 0, BTREE_ID_EXTENTS|BTREE_ID_SNAPSHOTS|BTREE_ID_DATA,\
BIT_ULL(KEY_TYPE_whiteout)| \
BIT_ULL(KEY_TYPE_error)| \
BIT_ULL(KEY_TYPE_cookie)| \
BIT_ULL(KEY_TYPE_extent)| \
BIT_ULL(KEY_TYPE_reservation)| \
BIT_ULL(KEY_TYPE_reflink_p)| \
BIT_ULL(KEY_TYPE_inline_data)) \
x(inodes, 1, BTREE_ID_SNAPSHOTS, \
BIT_ULL(KEY_TYPE_whiteout)| \
BIT_ULL(KEY_TYPE_inode)| \
BIT_ULL(KEY_TYPE_inode_v2)| \
BIT_ULL(KEY_TYPE_inode_v3)| \
BIT_ULL(KEY_TYPE_inode_generation)) \
x(dirents, 2, BTREE_ID_SNAPSHOTS, \
BIT_ULL(KEY_TYPE_whiteout)| \
BIT_ULL(KEY_TYPE_hash_whiteout)| \
BIT_ULL(KEY_TYPE_dirent)) \
x(xattrs, 3, BTREE_ID_SNAPSHOTS, \
BIT_ULL(KEY_TYPE_whiteout)| \
BIT_ULL(KEY_TYPE_cookie)| \
BIT_ULL(KEY_TYPE_hash_whiteout)| \
BIT_ULL(KEY_TYPE_xattr)) \
x(alloc, 4, 0, \
BIT_ULL(KEY_TYPE_alloc)| \
BIT_ULL(KEY_TYPE_alloc_v2)| \
BIT_ULL(KEY_TYPE_alloc_v3)| \
BIT_ULL(KEY_TYPE_alloc_v4)) \
x(quotas, 5, 0, \
BIT_ULL(KEY_TYPE_quota)) \
x(stripes, 6, 0, \
BIT_ULL(KEY_TYPE_stripe)) \
x(reflink, 7, BTREE_ID_EXTENTS|BTREE_ID_DATA, \
BIT_ULL(KEY_TYPE_reflink_v)| \
BIT_ULL(KEY_TYPE_indirect_inline_data)| \
BIT_ULL(KEY_TYPE_error)) \
x(subvolumes, 8, 0, \
BIT_ULL(KEY_TYPE_subvolume)) \
x(snapshots, 9, 0, \
BIT_ULL(KEY_TYPE_snapshot)) \
x(lru, 10, 0, \
BIT_ULL(KEY_TYPE_set)) \
x(freespace, 11, BTREE_ID_EXTENTS, \
BIT_ULL(KEY_TYPE_set)) \
x(need_discard, 12, 0, \
BIT_ULL(KEY_TYPE_set)) \
x(backpointers, 13, 0, \
BIT_ULL(KEY_TYPE_backpointer)) \
x(bucket_gens, 14, 0, \
BIT_ULL(KEY_TYPE_bucket_gens)) \
x(snapshot_trees, 15, 0, \
BIT_ULL(KEY_TYPE_snapshot_tree)) \
x(deleted_inodes, 16, BTREE_ID_SNAPSHOT_FIELD, \
BIT_ULL(KEY_TYPE_set)) \
x(logged_ops, 17, 0, \
BIT_ULL(KEY_TYPE_logged_op_truncate)| \
BIT_ULL(KEY_TYPE_logged_op_finsert)) \
x(rebalance_work, 18, BTREE_ID_SNAPSHOT_FIELD, \
BIT_ULL(KEY_TYPE_set)|BIT_ULL(KEY_TYPE_cookie)) \
x(subvolume_children, 19, 0, \
BIT_ULL(KEY_TYPE_set)) \
x(accounting, 20, BTREE_ID_SNAPSHOT_FIELD, \
BIT_ULL(KEY_TYPE_accounting)) \
enum btree_id {
#define x(name, nr, ...) BTREE_ID_##name = nr,
BCH_BTREE_IDS()
#undef x
BTREE_ID_NR
};
/*
* Maximum number of btrees that we will _ever_ have under the current scheme,
* where we refer to them with 64 bit bitfields - and we also need a bit for
* the interior btree node type:
*/
#define BTREE_ID_NR_MAX 63
static inline bool btree_id_is_alloc(enum btree_id id)
{
switch (id) {
case BTREE_ID_alloc:
case BTREE_ID_backpointers:
case BTREE_ID_need_discard:
case BTREE_ID_freespace:
case BTREE_ID_bucket_gens:
return true;
default:
return false;
}
}
#define BTREE_MAX_DEPTH 4U
/* Btree nodes */
/*
* Btree nodes
*
* On disk a btree node is a list/log of these; within each set the keys are
* sorted
*/
struct bset {
__le64 seq;
/*
* Highest journal entry this bset contains keys for.
* If on recovery we don't see that journal entry, this bset is ignored:
* this allows us to preserve the order of all index updates after a
* crash, since the journal records a total order of all index updates
* and anything that didn't make it to the journal doesn't get used.
*/
__le64 journal_seq;
__le32 flags;
__le16 version;
__le16 u64s; /* count of d[] in u64s */
struct bkey_packed start[0];
__u64 _data[];
} __packed __aligned(8);
LE32_BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4);
LE32_BITMASK(BSET_BIG_ENDIAN, struct bset, flags, 4, 5);
LE32_BITMASK(BSET_SEPARATE_WHITEOUTS,
struct bset, flags, 5, 6);
/* Sector offset within the btree node: */
LE32_BITMASK(BSET_OFFSET, struct bset, flags, 16, 32);
struct btree_node {
struct bch_csum csum;
__le64 magic;
/* this flags field is encrypted, unlike bset->flags: */
__le64 flags;
/* Closed interval: */
struct bpos min_key;
struct bpos max_key;
struct bch_extent_ptr _ptr; /* not used anymore */
struct bkey_format format;
union {
struct bset keys;
struct {
__u8 pad[22];
__le16 u64s;
__u64 _data[0];
};
};
} __packed __aligned(8);
LE64_BITMASK(BTREE_NODE_ID_LO, struct btree_node, flags, 0, 4);
LE64_BITMASK(BTREE_NODE_LEVEL, struct btree_node, flags, 4, 8);
LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE,
struct btree_node, flags, 8, 9);
LE64_BITMASK(BTREE_NODE_ID_HI, struct btree_node, flags, 9, 25);
/* 25-32 unused */
LE64_BITMASK(BTREE_NODE_SEQ, struct btree_node, flags, 32, 64);
static inline __u64 BTREE_NODE_ID(struct btree_node *n)
{
return BTREE_NODE_ID_LO(n) | (BTREE_NODE_ID_HI(n) << 4);
}
static inline void SET_BTREE_NODE_ID(struct btree_node *n, __u64 v)
{
SET_BTREE_NODE_ID_LO(n, v);
SET_BTREE_NODE_ID_HI(n, v >> 4);
}
struct btree_node_entry {
struct bch_csum csum;
union {
struct bset keys;
struct {
__u8 pad[22];
__le16 u64s;
__u64 _data[0];
};
};
} __packed __aligned(8);
#endif /* _BCACHEFS_FORMAT_H */