// SPDX-License-Identifier: GPL-2.0-only
/*
* RTL8XXXU mac80211 USB driver
*
* Copyright (c) 2014 - 2017 Jes Sorensen <[email protected]>
*
* Portions, notably calibration code:
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This driver was written as a replacement for the vendor provided
* rtl8723au driver. As the Realtek 8xxx chips are very similar in
* their programming interface, I have started adding support for
* additional 8xxx chips like the 8192cu, 8188cus, etc.
*/
#include <linux/firmware.h>
#include "regs.h"
#include "rtl8xxxu.h"
#define DRIVER_NAME "rtl8xxxu"
int rtl8xxxu_debug;
static bool rtl8xxxu_ht40_2g;
static bool rtl8xxxu_dma_aggregation;
static int rtl8xxxu_dma_agg_timeout = -1;
static int rtl8xxxu_dma_agg_pages = -1;
MODULE_AUTHOR("Jes Sorensen <[email protected]>");
MODULE_DESCRIPTION("RTL8XXXu USB mac80211 Wireless LAN Driver");
MODULE_LICENSE("GPL");
MODULE_FIRMWARE("rtlwifi/rtl8723aufw_A.bin");
MODULE_FIRMWARE("rtlwifi/rtl8723aufw_B.bin");
MODULE_FIRMWARE("rtlwifi/rtl8723aufw_B_NoBT.bin");
MODULE_FIRMWARE("rtlwifi/rtl8188eufw.bin");
MODULE_FIRMWARE("rtlwifi/rtl8192cufw_A.bin");
MODULE_FIRMWARE("rtlwifi/rtl8192cufw_B.bin");
MODULE_FIRMWARE("rtlwifi/rtl8192cufw_TMSC.bin");
MODULE_FIRMWARE("rtlwifi/rtl8192eu_nic.bin");
MODULE_FIRMWARE("rtlwifi/rtl8723bu_nic.bin");
MODULE_FIRMWARE("rtlwifi/rtl8723bu_bt.bin");
MODULE_FIRMWARE("rtlwifi/rtl8188fufw.bin");
MODULE_FIRMWARE("rtlwifi/rtl8710bufw_SMIC.bin");
MODULE_FIRMWARE("rtlwifi/rtl8710bufw_UMC.bin");
MODULE_FIRMWARE("rtlwifi/rtl8192fufw.bin");
module_param_named(debug, rtl8xxxu_debug, int, 0600);
MODULE_PARM_DESC(debug, "Set debug mask");
module_param_named(ht40_2g, rtl8xxxu_ht40_2g, bool, 0600);
MODULE_PARM_DESC(ht40_2g, "Enable HT40 support on the 2.4GHz band");
module_param_named(dma_aggregation, rtl8xxxu_dma_aggregation, bool, 0600);
MODULE_PARM_DESC(dma_aggregation, "Enable DMA packet aggregation");
module_param_named(dma_agg_timeout, rtl8xxxu_dma_agg_timeout, int, 0600);
MODULE_PARM_DESC(dma_agg_timeout, "Set DMA aggregation timeout (range 1-127)");
module_param_named(dma_agg_pages, rtl8xxxu_dma_agg_pages, int, 0600);
MODULE_PARM_DESC(dma_agg_pages, "Set DMA aggregation pages (range 1-127, 0 to disable)");
#define USB_VENDOR_ID_REALTEK 0x0bda
#define RTL8XXXU_RX_URBS 32
#define RTL8XXXU_RX_URB_PENDING_WATER 8
#define RTL8XXXU_TX_URBS 64
#define RTL8XXXU_TX_URB_LOW_WATER 25
#define RTL8XXXU_TX_URB_HIGH_WATER 32
static int rtl8xxxu_submit_rx_urb(struct rtl8xxxu_priv *priv,
struct rtl8xxxu_rx_urb *rx_urb);
static struct ieee80211_rate rtl8xxxu_rates[] = {
{ .bitrate = 10, .hw_value = DESC_RATE_1M, .flags = 0 },
{ .bitrate = 20, .hw_value = DESC_RATE_2M, .flags = 0 },
{ .bitrate = 55, .hw_value = DESC_RATE_5_5M, .flags = 0 },
{ .bitrate = 110, .hw_value = DESC_RATE_11M, .flags = 0 },
{ .bitrate = 60, .hw_value = DESC_RATE_6M, .flags = 0 },
{ .bitrate = 90, .hw_value = DESC_RATE_9M, .flags = 0 },
{ .bitrate = 120, .hw_value = DESC_RATE_12M, .flags = 0 },
{ .bitrate = 180, .hw_value = DESC_RATE_18M, .flags = 0 },
{ .bitrate = 240, .hw_value = DESC_RATE_24M, .flags = 0 },
{ .bitrate = 360, .hw_value = DESC_RATE_36M, .flags = 0 },
{ .bitrate = 480, .hw_value = DESC_RATE_48M, .flags = 0 },
{ .bitrate = 540, .hw_value = DESC_RATE_54M, .flags = 0 },
};
static struct ieee80211_channel rtl8xxxu_channels_2g[] = {
{ .band = NL80211_BAND_2GHZ, .center_freq = 2412,
.hw_value = 1, .max_power = 30 },
{ .band = NL80211_BAND_2GHZ, .center_freq = 2417,
.hw_value = 2, .max_power = 30 },
{ .band = NL80211_BAND_2GHZ, .center_freq = 2422,
.hw_value = 3, .max_power = 30 },
{ .band = NL80211_BAND_2GHZ, .center_freq = 2427,
.hw_value = 4, .max_power = 30 },
{ .band = NL80211_BAND_2GHZ, .center_freq = 2432,
.hw_value = 5, .max_power = 30 },
{ .band = NL80211_BAND_2GHZ, .center_freq = 2437,
.hw_value = 6, .max_power = 30 },
{ .band = NL80211_BAND_2GHZ, .center_freq = 2442,
.hw_value = 7, .max_power = 30 },
{ .band = NL80211_BAND_2GHZ, .center_freq = 2447,
.hw_value = 8, .max_power = 30 },
{ .band = NL80211_BAND_2GHZ, .center_freq = 2452,
.hw_value = 9, .max_power = 30 },
{ .band = NL80211_BAND_2GHZ, .center_freq = 2457,
.hw_value = 10, .max_power = 30 },
{ .band = NL80211_BAND_2GHZ, .center_freq = 2462,
.hw_value = 11, .max_power = 30 },
{ .band = NL80211_BAND_2GHZ, .center_freq = 2467,
.hw_value = 12, .max_power = 30 },
{ .band = NL80211_BAND_2GHZ, .center_freq = 2472,
.hw_value = 13, .max_power = 30 },
{ .band = NL80211_BAND_2GHZ, .center_freq = 2484,
.hw_value = 14, .max_power = 30 }
};
static struct ieee80211_supported_band rtl8xxxu_supported_band = {
.channels = rtl8xxxu_channels_2g,
.n_channels = ARRAY_SIZE(rtl8xxxu_channels_2g),
.bitrates = rtl8xxxu_rates,
.n_bitrates = ARRAY_SIZE(rtl8xxxu_rates),
};
static const struct rtl8xxxu_reg32val rtl8723a_phy_1t_init_table[] = {
{0x800, 0x80040000}, {0x804, 0x00000003},
{0x808, 0x0000fc00}, {0x80c, 0x0000000a},
{0x810, 0x10001331}, {0x814, 0x020c3d10},
{0x818, 0x02200385}, {0x81c, 0x00000000},
{0x820, 0x01000100}, {0x824, 0x00390004},
{0x828, 0x00000000}, {0x82c, 0x00000000},
{0x830, 0x00000000}, {0x834, 0x00000000},
{0x838, 0x00000000}, {0x83c, 0x00000000},
{0x840, 0x00010000}, {0x844, 0x00000000},
{0x848, 0x00000000}, {0x84c, 0x00000000},
{0x850, 0x00000000}, {0x854, 0x00000000},
{0x858, 0x569a569a}, {0x85c, 0x001b25a4},
{0x860, 0x66f60110}, {0x864, 0x061f0130},
{0x868, 0x00000000}, {0x86c, 0x32323200},
{0x870, 0x07000760}, {0x874, 0x22004000},
{0x878, 0x00000808}, {0x87c, 0x00000000},
{0x880, 0xc0083070}, {0x884, 0x000004d5},
{0x888, 0x00000000}, {0x88c, 0xccc000c0},
{0x890, 0x00000800}, {0x894, 0xfffffffe},
{0x898, 0x40302010}, {0x89c, 0x00706050},
{0x900, 0x00000000}, {0x904, 0x00000023},
{0x908, 0x00000000}, {0x90c, 0x81121111},
{0xa00, 0x00d047c8}, {0xa04, 0x80ff000c},
{0xa08, 0x8c838300}, {0xa0c, 0x2e68120f},
{0xa10, 0x9500bb78}, {0xa14, 0x11144028},
{0xa18, 0x00881117}, {0xa1c, 0x89140f00},
{0xa20, 0x1a1b0000}, {0xa24, 0x090e1317},
{0xa28, 0x00000204}, {0xa2c, 0x00d30000},
{0xa70, 0x101fbf00}, {0xa74, 0x00000007},
{0xa78, 0x00000900},
{0xc00, 0x48071d40}, {0xc04, 0x03a05611},
{0xc08, 0x000000e4}, {0xc0c, 0x6c6c6c6c},
{0xc10, 0x08800000}, {0xc14, 0x40000100},
{0xc18, 0x08800000}, {0xc1c, 0x40000100},
{0xc20, 0x00000000}, {0xc24, 0x00000000},
{0xc28, 0x00000000}, {0xc2c, 0x00000000},
{0xc30, 0x69e9ac44}, {0xc34, 0x469652af},
{0xc38, 0x49795994}, {0xc3c, 0x0a97971c},
{0xc40, 0x1f7c403f}, {0xc44, 0x000100b7},
{0xc48, 0xec020107}, {0xc4c, 0x007f037f},
{0xc50, 0x69543420}, {0xc54, 0x43bc0094},
{0xc58, 0x69543420}, {0xc5c, 0x433c0094},
{0xc60, 0x00000000}, {0xc64, 0x7112848b},
{0xc68, 0x47c00bff}, {0xc6c, 0x00000036},
{0xc70, 0x2c7f000d}, {0xc74, 0x018610db},
{0xc78, 0x0000001f}, {0xc7c, 0x00b91612},
{0xc80, 0x40000100}, {0xc84, 0x20f60000},
{0xc88, 0x40000100}, {0xc8c, 0x20200000},
{0xc90, 0x00121820}, {0xc94, 0x00000000},
{0xc98, 0x00121820}, {0xc9c, 0x00007f7f},
{0xca0, 0x00000000}, {0xca4, 0x00000080},
{0xca8, 0x00000000}, {0xcac, 0x00000000},
{0xcb0, 0x00000000}, {0xcb4, 0x00000000},
{0xcb8, 0x00000000}, {0xcbc, 0x28000000},
{0xcc0, 0x00000000}, {0xcc4, 0x00000000},
{0xcc8, 0x00000000}, {0xccc, 0x00000000},
{0xcd0, 0x00000000}, {0xcd4, 0x00000000},
{0xcd8, 0x64b22427}, {0xcdc, 0x00766932},
{0xce0, 0x00222222}, {0xce4, 0x00000000},
{0xce8, 0x37644302}, {0xcec, 0x2f97d40c},
{0xd00, 0x00080740}, {0xd04, 0x00020401},
{0xd08, 0x0000907f}, {0xd0c, 0x20010201},
{0xd10, 0xa0633333}, {0xd14, 0x3333bc43},
{0xd18, 0x7a8f5b6b}, {0xd2c, 0xcc979975},
{0xd30, 0x00000000}, {0xd34, 0x80608000},
{0xd38, 0x00000000}, {0xd3c, 0x00027293},
{0xd40, 0x00000000}, {0xd44, 0x00000000},
{0xd48, 0x00000000}, {0xd4c, 0x00000000},
{0xd50, 0x6437140a}, {0xd54, 0x00000000},
{0xd58, 0x00000000}, {0xd5c, 0x30032064},
{0xd60, 0x4653de68}, {0xd64, 0x04518a3c},
{0xd68, 0x00002101}, {0xd6c, 0x2a201c16},
{0xd70, 0x1812362e}, {0xd74, 0x322c2220},
{0xd78, 0x000e3c24}, {0xe00, 0x2a2a2a2a},
{0xe04, 0x2a2a2a2a}, {0xe08, 0x03902a2a},
{0xe10, 0x2a2a2a2a}, {0xe14, 0x2a2a2a2a},
{0xe18, 0x2a2a2a2a}, {0xe1c, 0x2a2a2a2a},
{0xe28, 0x00000000}, {0xe30, 0x1000dc1f},
{0xe34, 0x10008c1f}, {0xe38, 0x02140102},
{0xe3c, 0x681604c2}, {0xe40, 0x01007c00},
{0xe44, 0x01004800}, {0xe48, 0xfb000000},
{0xe4c, 0x000028d1}, {0xe50, 0x1000dc1f},
{0xe54, 0x10008c1f}, {0xe58, 0x02140102},
{0xe5c, 0x28160d05}, {0xe60, 0x00000008},
{0xe68, 0x001b25a4}, {0xe6c, 0x631b25a0},
{0xe70, 0x631b25a0}, {0xe74, 0x081b25a0},
{0xe78, 0x081b25a0}, {0xe7c, 0x081b25a0},
{0xe80, 0x081b25a0}, {0xe84, 0x631b25a0},
{0xe88, 0x081b25a0}, {0xe8c, 0x631b25a0},
{0xed0, 0x631b25a0}, {0xed4, 0x631b25a0},
{0xed8, 0x631b25a0}, {0xedc, 0x001b25a0},
{0xee0, 0x001b25a0}, {0xeec, 0x6b1b25a0},
{0xf14, 0x00000003}, {0xf4c, 0x00000000},
{0xf00, 0x00000300},
{0xffff, 0xffffffff},
};
static const struct rtl8xxxu_reg32val rtl8192cu_phy_2t_init_table[] = {
{0x024, 0x0011800f}, {0x028, 0x00ffdb83},
{0x800, 0x80040002}, {0x804, 0x00000003},
{0x808, 0x0000fc00}, {0x80c, 0x0000000a},
{0x810, 0x10000330}, {0x814, 0x020c3d10},
{0x818, 0x02200385}, {0x81c, 0x00000000},
{0x820, 0x01000100}, {0x824, 0x00390004},
{0x828, 0x01000100}, {0x82c, 0x00390004},
{0x830, 0x27272727}, {0x834, 0x27272727},
{0x838, 0x27272727}, {0x83c, 0x27272727},
{0x840, 0x00010000}, {0x844, 0x00010000},
{0x848, 0x27272727}, {0x84c, 0x27272727},
{0x850, 0x00000000}, {0x854, 0x00000000},
{0x858, 0x569a569a}, {0x85c, 0x0c1b25a4},
{0x860, 0x66e60230}, {0x864, 0x061f0130},
{0x868, 0x27272727}, {0x86c, 0x2b2b2b27},
{0x870, 0x07000700}, {0x874, 0x22184000},
{0x878, 0x08080808}, {0x87c, 0x00000000},
{0x880, 0xc0083070}, {0x884, 0x000004d5},
{0x888, 0x00000000}, {0x88c, 0xcc0000c0},
{0x890, 0x00000800}, {0x894, 0xfffffffe},
{0x898, 0x40302010}, {0x89c, 0x00706050},
{0x900, 0x00000000}, {0x904, 0x00000023},
{0x908, 0x00000000}, {0x90c, 0x81121313},
{0xa00, 0x00d047c8}, {0xa04, 0x80ff000c},
{0xa08, 0x8c838300}, {0xa0c, 0x2e68120f},
{0xa10, 0x9500bb78}, {0xa14, 0x11144028},
{0xa18, 0x00881117}, {0xa1c, 0x89140f00},
{0xa20, 0x1a1b0000}, {0xa24, 0x090e1317},
{0xa28, 0x00000204}, {0xa2c, 0x00d30000},
{0xa70, 0x101fbf00}, {0xa74, 0x00000007},
{0xc00, 0x48071d40}, {0xc04, 0x03a05633},
{0xc08, 0x000000e4}, {0xc0c, 0x6c6c6c6c},
{0xc10, 0x08800000}, {0xc14, 0x40000100},
{0xc18, 0x08800000}, {0xc1c, 0x40000100},
{0xc20, 0x00000000}, {0xc24, 0x00000000},
{0xc28, 0x00000000}, {0xc2c, 0x00000000},
{0xc30, 0x69e9ac44}, {0xc34, 0x469652cf},
{0xc38, 0x49795994}, {0xc3c, 0x0a97971c},
{0xc40, 0x1f7c403f}, {0xc44, 0x000100b7},
{0xc48, 0xec020107}, {0xc4c, 0x007f037f},
{0xc50, 0x69543420}, {0xc54, 0x43bc0094},
{0xc58, 0x69543420}, {0xc5c, 0x433c0094},
{0xc60, 0x00000000}, {0xc64, 0x5116848b},
{0xc68, 0x47c00bff}, {0xc6c, 0x00000036},
{0xc70, 0x2c7f000d}, {0xc74, 0x2186115b},
{0xc78, 0x0000001f}, {0xc7c, 0x00b99612},
{0xc80, 0x40000100}, {0xc84, 0x20f60000},
{0xc88, 0x40000100}, {0xc8c, 0xa0e40000},
{0xc90, 0x00121820}, {0xc94, 0x00000000},
{0xc98, 0x00121820}, {0xc9c, 0x00007f7f},
{0xca0, 0x00000000}, {0xca4, 0x00000080},
{0xca8, 0x00000000}, {0xcac, 0x00000000},
{0xcb0, 0x00000000}, {0xcb4, 0x00000000},
{0xcb8, 0x00000000}, {0xcbc, 0x28000000},
{0xcc0, 0x00000000}, {0xcc4, 0x00000000},
{0xcc8, 0x00000000}, {0xccc, 0x00000000},
{0xcd0, 0x00000000}, {0xcd4, 0x00000000},
{0xcd8, 0x64b22427}, {0xcdc, 0x00766932},
{0xce0, 0x00222222}, {0xce4, 0x00000000},
{0xce8, 0x37644302}, {0xcec, 0x2f97d40c},
{0xd00, 0x00080740}, {0xd04, 0x00020403},
{0xd08, 0x0000907f}, {0xd0c, 0x20010201},
{0xd10, 0xa0633333}, {0xd14, 0x3333bc43},
{0xd18, 0x7a8f5b6b}, {0xd2c, 0xcc979975},
{0xd30, 0x00000000}, {0xd34, 0x80608000},
{0xd38, 0x00000000}, {0xd3c, 0x00027293},
{0xd40, 0x00000000}, {0xd44, 0x00000000},
{0xd48, 0x00000000}, {0xd4c, 0x00000000},
{0xd50, 0x6437140a}, {0xd54, 0x00000000},
{0xd58, 0x00000000}, {0xd5c, 0x30032064},
{0xd60, 0x4653de68}, {0xd64, 0x04518a3c},
{0xd68, 0x00002101}, {0xd6c, 0x2a201c16},
{0xd70, 0x1812362e}, {0xd74, 0x322c2220},
{0xd78, 0x000e3c24}, {0xe00, 0x2a2a2a2a},
{0xe04, 0x2a2a2a2a}, {0xe08, 0x03902a2a},
{0xe10, 0x2a2a2a2a}, {0xe14, 0x2a2a2a2a},
{0xe18, 0x2a2a2a2a}, {0xe1c, 0x2a2a2a2a},
{0xe28, 0x00000000}, {0xe30, 0x1000dc1f},
{0xe34, 0x10008c1f}, {0xe38, 0x02140102},
{0xe3c, 0x681604c2}, {0xe40, 0x01007c00},
{0xe44, 0x01004800}, {0xe48, 0xfb000000},
{0xe4c, 0x000028d1}, {0xe50, 0x1000dc1f},
{0xe54, 0x10008c1f}, {0xe58, 0x02140102},
{0xe5c, 0x28160d05}, {0xe60, 0x00000010},
{0xe68, 0x001b25a4}, {0xe6c, 0x63db25a4},
{0xe70, 0x63db25a4}, {0xe74, 0x0c1b25a4},
{0xe78, 0x0c1b25a4}, {0xe7c, 0x0c1b25a4},
{0xe80, 0x0c1b25a4}, {0xe84, 0x63db25a4},
{0xe88, 0x0c1b25a4}, {0xe8c, 0x63db25a4},
{0xed0, 0x63db25a4}, {0xed4, 0x63db25a4},
{0xed8, 0x63db25a4}, {0xedc, 0x001b25a4},
{0xee0, 0x001b25a4}, {0xeec, 0x6fdb25a4},
{0xf14, 0x00000003}, {0xf4c, 0x00000000},
{0xf00, 0x00000300},
{0xffff, 0xffffffff},
};
static const struct rtl8xxxu_reg32val rtl8188ru_phy_1t_highpa_table[] = {
{0x024, 0x0011800f}, {0x028, 0x00ffdb83},
{0x040, 0x000c0004}, {0x800, 0x80040000},
{0x804, 0x00000001}, {0x808, 0x0000fc00},
{0x80c, 0x0000000a}, {0x810, 0x10005388},
{0x814, 0x020c3d10}, {0x818, 0x02200385},
{0x81c, 0x00000000}, {0x820, 0x01000100},
{0x824, 0x00390204}, {0x828, 0x00000000},
{0x82c, 0x00000000}, {0x830, 0x00000000},
{0x834, 0x00000000}, {0x838, 0x00000000},
{0x83c, 0x00000000}, {0x840, 0x00010000},
{0x844, 0x00000000}, {0x848, 0x00000000},
{0x84c, 0x00000000}, {0x850, 0x00000000},
{0x854, 0x00000000}, {0x858, 0x569a569a},
{0x85c, 0x001b25a4}, {0x860, 0x66e60230},
{0x864, 0x061f0130}, {0x868, 0x00000000},
{0x86c, 0x20202000}, {0x870, 0x03000300},
{0x874, 0x22004000}, {0x878, 0x00000808},
{0x87c, 0x00ffc3f1}, {0x880, 0xc0083070},
{0x884, 0x000004d5}, {0x888, 0x00000000},
{0x88c, 0xccc000c0}, {0x890, 0x00000800},
{0x894, 0xfffffffe}, {0x898, 0x40302010},
{0x89c, 0x00706050}, {0x900, 0x00000000},
{0x904, 0x00000023}, {0x908, 0x00000000},
{0x90c, 0x81121111}, {0xa00, 0x00d047c8},
{0xa04, 0x80ff000c}, {0xa08, 0x8c838300},
{0xa0c, 0x2e68120f}, {0xa10, 0x9500bb78},
{0xa14, 0x11144028}, {0xa18, 0x00881117},
{0xa1c, 0x89140f00}, {0xa20, 0x15160000},
{0xa24, 0x070b0f12}, {0xa28, 0x00000104},
{0xa2c, 0x00d30000}, {0xa70, 0x101fbf00},
{0xa74, 0x00000007}, {0xc00, 0x48071d40},
{0xc04, 0x03a05611}, {0xc08, 0x000000e4},
{0xc0c, 0x6c6c6c6c}, {0xc10, 0x08800000},
{0xc14, 0x40000100}, {0xc18, 0x08800000},
{0xc1c, 0x40000100}, {0xc20, 0x00000000},
{0xc24, 0x00000000}, {0xc28, 0x00000000},
{0xc2c, 0x00000000}, {0xc30, 0x69e9ac44},
{0xc34, 0x469652cf}, {0xc38, 0x49795994},
{0xc3c, 0x0a97971c}, {0xc40, 0x1f7c403f},
{0xc44, 0x000100b7}, {0xc48, 0xec020107},
{0xc4c, 0x007f037f}, {0xc50, 0x6954342e},
{0xc54, 0x43bc0094}, {0xc58, 0x6954342f},
{0xc5c, 0x433c0094}, {0xc60, 0x00000000},
{0xc64, 0x5116848b}, {0xc68, 0x47c00bff},
{0xc6c, 0x00000036}, {0xc70, 0x2c46000d},
{0xc74, 0x018610db}, {0xc78, 0x0000001f},
{0xc7c, 0x00b91612}, {0xc80, 0x24000090},
{0xc84, 0x20f60000}, {0xc88, 0x24000090},
{0xc8c, 0x20200000}, {0xc90, 0x00121820},
{0xc94, 0x00000000}, {0xc98, 0x00121820},
{0xc9c, 0x00007f7f}, {0xca0, 0x00000000},
{0xca4, 0x00000080}, {0xca8, 0x00000000},
{0xcac, 0x00000000}, {0xcb0, 0x00000000},
{0xcb4, 0x00000000}, {0xcb8, 0x00000000},
{0xcbc, 0x28000000}, {0xcc0, 0x00000000},
{0xcc4, 0x00000000}, {0xcc8, 0x00000000},
{0xccc, 0x00000000}, {0xcd0, 0x00000000},
{0xcd4, 0x00000000}, {0xcd8, 0x64b22427},
{0xcdc, 0x00766932}, {0xce0, 0x00222222},
{0xce4, 0x00000000}, {0xce8, 0x37644302},
{0xcec, 0x2f97d40c}, {0xd00, 0x00080740},
{0xd04, 0x00020401}, {0xd08, 0x0000907f},
{0xd0c, 0x20010201}, {0xd10, 0xa0633333},
{0xd14, 0x3333bc43}, {0xd18, 0x7a8f5b6b},
{0xd2c, 0xcc979975}, {0xd30, 0x00000000},
{0xd34, 0x80608000}, {0xd38, 0x00000000},
{0xd3c, 0x00027293}, {0xd40, 0x00000000},
{0xd44, 0x00000000}, {0xd48, 0x00000000},
{0xd4c, 0x00000000}, {0xd50, 0x6437140a},
{0xd54, 0x00000000}, {0xd58, 0x00000000},
{0xd5c, 0x30032064}, {0xd60, 0x4653de68},
{0xd64, 0x04518a3c}, {0xd68, 0x00002101},
{0xd6c, 0x2a201c16}, {0xd70, 0x1812362e},
{0xd74, 0x322c2220}, {0xd78, 0x000e3c24},
{0xe00, 0x24242424}, {0xe04, 0x24242424},
{0xe08, 0x03902024}, {0xe10, 0x24242424},
{0xe14, 0x24242424}, {0xe18, 0x24242424},
{0xe1c, 0x24242424}, {0xe28, 0x00000000},
{0xe30, 0x1000dc1f}, {0xe34, 0x10008c1f},
{0xe38, 0x02140102}, {0xe3c, 0x681604c2},
{0xe40, 0x01007c00}, {0xe44, 0x01004800},
{0xe48, 0xfb000000}, {0xe4c, 0x000028d1},
{0xe50, 0x1000dc1f}, {0xe54, 0x10008c1f},
{0xe58, 0x02140102}, {0xe5c, 0x28160d05},
{0xe60, 0x00000008}, {0xe68, 0x001b25a4},
{0xe6c, 0x631b25a0}, {0xe70, 0x631b25a0},
{0xe74, 0x081b25a0}, {0xe78, 0x081b25a0},
{0xe7c, 0x081b25a0}, {0xe80, 0x081b25a0},
{0xe84, 0x631b25a0}, {0xe88, 0x081b25a0},
{0xe8c, 0x631b25a0}, {0xed0, 0x631b25a0},
{0xed4, 0x631b25a0}, {0xed8, 0x631b25a0},
{0xedc, 0x001b25a0}, {0xee0, 0x001b25a0},
{0xeec, 0x6b1b25a0}, {0xee8, 0x31555448},
{0xf14, 0x00000003}, {0xf4c, 0x00000000},
{0xf00, 0x00000300},
{0xffff, 0xffffffff},
};
static const struct rtl8xxxu_reg32val rtl8xxx_agc_standard_table[] = {
{0xc78, 0x7b000001}, {0xc78, 0x7b010001},
{0xc78, 0x7b020001}, {0xc78, 0x7b030001},
{0xc78, 0x7b040001}, {0xc78, 0x7b050001},
{0xc78, 0x7a060001}, {0xc78, 0x79070001},
{0xc78, 0x78080001}, {0xc78, 0x77090001},
{0xc78, 0x760a0001}, {0xc78, 0x750b0001},
{0xc78, 0x740c0001}, {0xc78, 0x730d0001},
{0xc78, 0x720e0001}, {0xc78, 0x710f0001},
{0xc78, 0x70100001}, {0xc78, 0x6f110001},
{0xc78, 0x6e120001}, {0xc78, 0x6d130001},
{0xc78, 0x6c140001}, {0xc78, 0x6b150001},
{0xc78, 0x6a160001}, {0xc78, 0x69170001},
{0xc78, 0x68180001}, {0xc78, 0x67190001},
{0xc78, 0x661a0001}, {0xc78, 0x651b0001},
{0xc78, 0x641c0001}, {0xc78, 0x631d0001},
{0xc78, 0x621e0001}, {0xc78, 0x611f0001},
{0xc78, 0x60200001}, {0xc78, 0x49210001},
{0xc78, 0x48220001}, {0xc78, 0x47230001},
{0xc78, 0x46240001}, {0xc78, 0x45250001},
{0xc78, 0x44260001}, {0xc78, 0x43270001},
{0xc78, 0x42280001}, {0xc78, 0x41290001},
{0xc78, 0x402a0001}, {0xc78, 0x262b0001},
{0xc78, 0x252c0001}, {0xc78, 0x242d0001},
{0xc78, 0x232e0001}, {0xc78, 0x222f0001},
{0xc78, 0x21300001}, {0xc78, 0x20310001},
{0xc78, 0x06320001}, {0xc78, 0x05330001},
{0xc78, 0x04340001}, {0xc78, 0x03350001},
{0xc78, 0x02360001}, {0xc78, 0x01370001},
{0xc78, 0x00380001}, {0xc78, 0x00390001},
{0xc78, 0x003a0001}, {0xc78, 0x003b0001},
{0xc78, 0x003c0001}, {0xc78, 0x003d0001},
{0xc78, 0x003e0001}, {0xc78, 0x003f0001},
{0xc78, 0x7b400001}, {0xc78, 0x7b410001},
{0xc78, 0x7b420001}, {0xc78, 0x7b430001},
{0xc78, 0x7b440001}, {0xc78, 0x7b450001},
{0xc78, 0x7a460001}, {0xc78, 0x79470001},
{0xc78, 0x78480001}, {0xc78, 0x77490001},
{0xc78, 0x764a0001}, {0xc78, 0x754b0001},
{0xc78, 0x744c0001}, {0xc78, 0x734d0001},
{0xc78, 0x724e0001}, {0xc78, 0x714f0001},
{0xc78, 0x70500001}, {0xc78, 0x6f510001},
{0xc78, 0x6e520001}, {0xc78, 0x6d530001},
{0xc78, 0x6c540001}, {0xc78, 0x6b550001},
{0xc78, 0x6a560001}, {0xc78, 0x69570001},
{0xc78, 0x68580001}, {0xc78, 0x67590001},
{0xc78, 0x665a0001}, {0xc78, 0x655b0001},
{0xc78, 0x645c0001}, {0xc78, 0x635d0001},
{0xc78, 0x625e0001}, {0xc78, 0x615f0001},
{0xc78, 0x60600001}, {0xc78, 0x49610001},
{0xc78, 0x48620001}, {0xc78, 0x47630001},
{0xc78, 0x46640001}, {0xc78, 0x45650001},
{0xc78, 0x44660001}, {0xc78, 0x43670001},
{0xc78, 0x42680001}, {0xc78, 0x41690001},
{0xc78, 0x406a0001}, {0xc78, 0x266b0001},
{0xc78, 0x256c0001}, {0xc78, 0x246d0001},
{0xc78, 0x236e0001}, {0xc78, 0x226f0001},
{0xc78, 0x21700001}, {0xc78, 0x20710001},
{0xc78, 0x06720001}, {0xc78, 0x05730001},
{0xc78, 0x04740001}, {0xc78, 0x03750001},
{0xc78, 0x02760001}, {0xc78, 0x01770001},
{0xc78, 0x00780001}, {0xc78, 0x00790001},
{0xc78, 0x007a0001}, {0xc78, 0x007b0001},
{0xc78, 0x007c0001}, {0xc78, 0x007d0001},
{0xc78, 0x007e0001}, {0xc78, 0x007f0001},
{0xc78, 0x3800001e}, {0xc78, 0x3801001e},
{0xc78, 0x3802001e}, {0xc78, 0x3803001e},
{0xc78, 0x3804001e}, {0xc78, 0x3805001e},
{0xc78, 0x3806001e}, {0xc78, 0x3807001e},
{0xc78, 0x3808001e}, {0xc78, 0x3c09001e},
{0xc78, 0x3e0a001e}, {0xc78, 0x400b001e},
{0xc78, 0x440c001e}, {0xc78, 0x480d001e},
{0xc78, 0x4c0e001e}, {0xc78, 0x500f001e},
{0xc78, 0x5210001e}, {0xc78, 0x5611001e},
{0xc78, 0x5a12001e}, {0xc78, 0x5e13001e},
{0xc78, 0x6014001e}, {0xc78, 0x6015001e},
{0xc78, 0x6016001e}, {0xc78, 0x6217001e},
{0xc78, 0x6218001e}, {0xc78, 0x6219001e},
{0xc78, 0x621a001e}, {0xc78, 0x621b001e},
{0xc78, 0x621c001e}, {0xc78, 0x621d001e},
{0xc78, 0x621e001e}, {0xc78, 0x621f001e},
{0xffff, 0xffffffff}
};
static const struct rtl8xxxu_reg32val rtl8xxx_agc_highpa_table[] = {
{0xc78, 0x7b000001}, {0xc78, 0x7b010001},
{0xc78, 0x7b020001}, {0xc78, 0x7b030001},
{0xc78, 0x7b040001}, {0xc78, 0x7b050001},
{0xc78, 0x7b060001}, {0xc78, 0x7b070001},
{0xc78, 0x7b080001}, {0xc78, 0x7a090001},
{0xc78, 0x790a0001}, {0xc78, 0x780b0001},
{0xc78, 0x770c0001}, {0xc78, 0x760d0001},
{0xc78, 0x750e0001}, {0xc78, 0x740f0001},
{0xc78, 0x73100001}, {0xc78, 0x72110001},
{0xc78, 0x71120001}, {0xc78, 0x70130001},
{0xc78, 0x6f140001}, {0xc78, 0x6e150001},
{0xc78, 0x6d160001}, {0xc78, 0x6c170001},
{0xc78, 0x6b180001}, {0xc78, 0x6a190001},
{0xc78, 0x691a0001}, {0xc78, 0x681b0001},
{0xc78, 0x671c0001}, {0xc78, 0x661d0001},
{0xc78, 0x651e0001}, {0xc78, 0x641f0001},
{0xc78, 0x63200001}, {0xc78, 0x62210001},
{0xc78, 0x61220001}, {0xc78, 0x60230001},
{0xc78, 0x46240001}, {0xc78, 0x45250001},
{0xc78, 0x44260001}, {0xc78, 0x43270001},
{0xc78, 0x42280001}, {0xc78, 0x41290001},
{0xc78, 0x402a0001}, {0xc78, 0x262b0001},
{0xc78, 0x252c0001}, {0xc78, 0x242d0001},
{0xc78, 0x232e0001}, {0xc78, 0x222f0001},
{0xc78, 0x21300001}, {0xc78, 0x20310001},
{0xc78, 0x06320001}, {0xc78, 0x05330001},
{0xc78, 0x04340001}, {0xc78, 0x03350001},
{0xc78, 0x02360001}, {0xc78, 0x01370001},
{0xc78, 0x00380001}, {0xc78, 0x00390001},
{0xc78, 0x003a0001}, {0xc78, 0x003b0001},
{0xc78, 0x003c0001}, {0xc78, 0x003d0001},
{0xc78, 0x003e0001}, {0xc78, 0x003f0001},
{0xc78, 0x7b400001}, {0xc78, 0x7b410001},
{0xc78, 0x7b420001}, {0xc78, 0x7b430001},
{0xc78, 0x7b440001}, {0xc78, 0x7b450001},
{0xc78, 0x7b460001}, {0xc78, 0x7b470001},
{0xc78, 0x7b480001}, {0xc78, 0x7a490001},
{0xc78, 0x794a0001}, {0xc78, 0x784b0001},
{0xc78, 0x774c0001}, {0xc78, 0x764d0001},
{0xc78, 0x754e0001}, {0xc78, 0x744f0001},
{0xc78, 0x73500001}, {0xc78, 0x72510001},
{0xc78, 0x71520001}, {0xc78, 0x70530001},
{0xc78, 0x6f540001}, {0xc78, 0x6e550001},
{0xc78, 0x6d560001}, {0xc78, 0x6c570001},
{0xc78, 0x6b580001}, {0xc78, 0x6a590001},
{0xc78, 0x695a0001}, {0xc78, 0x685b0001},
{0xc78, 0x675c0001}, {0xc78, 0x665d0001},
{0xc78, 0x655e0001}, {0xc78, 0x645f0001},
{0xc78, 0x63600001}, {0xc78, 0x62610001},
{0xc78, 0x61620001}, {0xc78, 0x60630001},
{0xc78, 0x46640001}, {0xc78, 0x45650001},
{0xc78, 0x44660001}, {0xc78, 0x43670001},
{0xc78, 0x42680001}, {0xc78, 0x41690001},
{0xc78, 0x406a0001}, {0xc78, 0x266b0001},
{0xc78, 0x256c0001}, {0xc78, 0x246d0001},
{0xc78, 0x236e0001}, {0xc78, 0x226f0001},
{0xc78, 0x21700001}, {0xc78, 0x20710001},
{0xc78, 0x06720001}, {0xc78, 0x05730001},
{0xc78, 0x04740001}, {0xc78, 0x03750001},
{0xc78, 0x02760001}, {0xc78, 0x01770001},
{0xc78, 0x00780001}, {0xc78, 0x00790001},
{0xc78, 0x007a0001}, {0xc78, 0x007b0001},
{0xc78, 0x007c0001}, {0xc78, 0x007d0001},
{0xc78, 0x007e0001}, {0xc78, 0x007f0001},
{0xc78, 0x3800001e}, {0xc78, 0x3801001e},
{0xc78, 0x3802001e}, {0xc78, 0x3803001e},
{0xc78, 0x3804001e}, {0xc78, 0x3805001e},
{0xc78, 0x3806001e}, {0xc78, 0x3807001e},
{0xc78, 0x3808001e}, {0xc78, 0x3c09001e},
{0xc78, 0x3e0a001e}, {0xc78, 0x400b001e},
{0xc78, 0x440c001e}, {0xc78, 0x480d001e},
{0xc78, 0x4c0e001e}, {0xc78, 0x500f001e},
{0xc78, 0x5210001e}, {0xc78, 0x5611001e},
{0xc78, 0x5a12001e}, {0xc78, 0x5e13001e},
{0xc78, 0x6014001e}, {0xc78, 0x6015001e},
{0xc78, 0x6016001e}, {0xc78, 0x6217001e},
{0xc78, 0x6218001e}, {0xc78, 0x6219001e},
{0xc78, 0x621a001e}, {0xc78, 0x621b001e},
{0xc78, 0x621c001e}, {0xc78, 0x621d001e},
{0xc78, 0x621e001e}, {0xc78, 0x621f001e},
{0xffff, 0xffffffff}
};
static const struct rtl8xxxu_rfregs rtl8xxxu_rfregs[] = {
{ /* RF_A */
.hssiparm1 = REG_FPGA0_XA_HSSI_PARM1,
.hssiparm2 = REG_FPGA0_XA_HSSI_PARM2,
.lssiparm = REG_FPGA0_XA_LSSI_PARM,
.hspiread = REG_HSPI_XA_READBACK,
.lssiread = REG_FPGA0_XA_LSSI_READBACK,
.rf_sw_ctrl = REG_FPGA0_XA_RF_SW_CTRL,
},
{ /* RF_B */
.hssiparm1 = REG_FPGA0_XB_HSSI_PARM1,
.hssiparm2 = REG_FPGA0_XB_HSSI_PARM2,
.lssiparm = REG_FPGA0_XB_LSSI_PARM,
.hspiread = REG_HSPI_XB_READBACK,
.lssiread = REG_FPGA0_XB_LSSI_READBACK,
.rf_sw_ctrl = REG_FPGA0_XB_RF_SW_CTRL,
},
};
const u32 rtl8xxxu_iqk_phy_iq_bb_reg[RTL8XXXU_BB_REGS] = {
REG_OFDM0_XA_RX_IQ_IMBALANCE,
REG_OFDM0_XB_RX_IQ_IMBALANCE,
REG_OFDM0_ENERGY_CCA_THRES,
REG_OFDM0_AGC_RSSI_TABLE,
REG_OFDM0_XA_TX_IQ_IMBALANCE,
REG_OFDM0_XB_TX_IQ_IMBALANCE,
REG_OFDM0_XC_TX_AFE,
REG_OFDM0_XD_TX_AFE,
REG_OFDM0_RX_IQ_EXT_ANTA
};
u8 rtl8xxxu_read8(struct rtl8xxxu_priv *priv, u16 addr)
{
struct usb_device *udev = priv->udev;
int len;
u8 data;
if (priv->rtl_chip == RTL8710B && addr <= 0xff)
addr |= 0x8000;
mutex_lock(&priv->usb_buf_mutex);
len = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
REALTEK_USB_CMD_REQ, REALTEK_USB_READ,
addr, 0, &priv->usb_buf.val8, sizeof(u8),
RTW_USB_CONTROL_MSG_TIMEOUT);
data = priv->usb_buf.val8;
mutex_unlock(&priv->usb_buf_mutex);
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_REG_READ)
dev_info(&udev->dev, "%s(%04x) = 0x%02x, len %i\n",
__func__, addr, data, len);
return data;
}
u16 rtl8xxxu_read16(struct rtl8xxxu_priv *priv, u16 addr)
{
struct usb_device *udev = priv->udev;
int len;
u16 data;
if (priv->rtl_chip == RTL8710B && addr <= 0xff)
addr |= 0x8000;
mutex_lock(&priv->usb_buf_mutex);
len = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
REALTEK_USB_CMD_REQ, REALTEK_USB_READ,
addr, 0, &priv->usb_buf.val16, sizeof(u16),
RTW_USB_CONTROL_MSG_TIMEOUT);
data = le16_to_cpu(priv->usb_buf.val16);
mutex_unlock(&priv->usb_buf_mutex);
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_REG_READ)
dev_info(&udev->dev, "%s(%04x) = 0x%04x, len %i\n",
__func__, addr, data, len);
return data;
}
u32 rtl8xxxu_read32(struct rtl8xxxu_priv *priv, u16 addr)
{
struct usb_device *udev = priv->udev;
int len;
u32 data;
if (priv->rtl_chip == RTL8710B && addr <= 0xff)
addr |= 0x8000;
mutex_lock(&priv->usb_buf_mutex);
len = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
REALTEK_USB_CMD_REQ, REALTEK_USB_READ,
addr, 0, &priv->usb_buf.val32, sizeof(u32),
RTW_USB_CONTROL_MSG_TIMEOUT);
data = le32_to_cpu(priv->usb_buf.val32);
mutex_unlock(&priv->usb_buf_mutex);
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_REG_READ)
dev_info(&udev->dev, "%s(%04x) = 0x%08x, len %i\n",
__func__, addr, data, len);
return data;
}
int rtl8xxxu_write8(struct rtl8xxxu_priv *priv, u16 addr, u8 val)
{
struct usb_device *udev = priv->udev;
int ret;
if (priv->rtl_chip == RTL8710B && addr <= 0xff)
addr |= 0x8000;
mutex_lock(&priv->usb_buf_mutex);
priv->usb_buf.val8 = val;
ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
REALTEK_USB_CMD_REQ, REALTEK_USB_WRITE,
addr, 0, &priv->usb_buf.val8, sizeof(u8),
RTW_USB_CONTROL_MSG_TIMEOUT);
mutex_unlock(&priv->usb_buf_mutex);
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_REG_WRITE)
dev_info(&udev->dev, "%s(%04x) = 0x%02x\n",
__func__, addr, val);
return ret;
}
int rtl8xxxu_write16(struct rtl8xxxu_priv *priv, u16 addr, u16 val)
{
struct usb_device *udev = priv->udev;
int ret;
if (priv->rtl_chip == RTL8710B && addr <= 0xff)
addr |= 0x8000;
mutex_lock(&priv->usb_buf_mutex);
priv->usb_buf.val16 = cpu_to_le16(val);
ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
REALTEK_USB_CMD_REQ, REALTEK_USB_WRITE,
addr, 0, &priv->usb_buf.val16, sizeof(u16),
RTW_USB_CONTROL_MSG_TIMEOUT);
mutex_unlock(&priv->usb_buf_mutex);
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_REG_WRITE)
dev_info(&udev->dev, "%s(%04x) = 0x%04x\n",
__func__, addr, val);
return ret;
}
int rtl8xxxu_write32(struct rtl8xxxu_priv *priv, u16 addr, u32 val)
{
struct usb_device *udev = priv->udev;
int ret;
if (priv->rtl_chip == RTL8710B && addr <= 0xff)
addr |= 0x8000;
mutex_lock(&priv->usb_buf_mutex);
priv->usb_buf.val32 = cpu_to_le32(val);
ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
REALTEK_USB_CMD_REQ, REALTEK_USB_WRITE,
addr, 0, &priv->usb_buf.val32, sizeof(u32),
RTW_USB_CONTROL_MSG_TIMEOUT);
mutex_unlock(&priv->usb_buf_mutex);
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_REG_WRITE)
dev_info(&udev->dev, "%s(%04x) = 0x%08x\n",
__func__, addr, val);
return ret;
}
int rtl8xxxu_write8_set(struct rtl8xxxu_priv *priv, u16 addr, u8 bits)
{
u8 val8;
val8 = rtl8xxxu_read8(priv, addr);
val8 |= bits;
return rtl8xxxu_write8(priv, addr, val8);
}
int rtl8xxxu_write8_clear(struct rtl8xxxu_priv *priv, u16 addr, u8 bits)
{
u8 val8;
val8 = rtl8xxxu_read8(priv, addr);
val8 &= ~bits;
return rtl8xxxu_write8(priv, addr, val8);
}
int rtl8xxxu_write16_set(struct rtl8xxxu_priv *priv, u16 addr, u16 bits)
{
u16 val16;
val16 = rtl8xxxu_read16(priv, addr);
val16 |= bits;
return rtl8xxxu_write16(priv, addr, val16);
}
int rtl8xxxu_write16_clear(struct rtl8xxxu_priv *priv, u16 addr, u16 bits)
{
u16 val16;
val16 = rtl8xxxu_read16(priv, addr);
val16 &= ~bits;
return rtl8xxxu_write16(priv, addr, val16);
}
int rtl8xxxu_write32_set(struct rtl8xxxu_priv *priv, u16 addr, u32 bits)
{
u32 val32;
val32 = rtl8xxxu_read32(priv, addr);
val32 |= bits;
return rtl8xxxu_write32(priv, addr, val32);
}
int rtl8xxxu_write32_clear(struct rtl8xxxu_priv *priv, u16 addr, u32 bits)
{
u32 val32;
val32 = rtl8xxxu_read32(priv, addr);
val32 &= ~bits;
return rtl8xxxu_write32(priv, addr, val32);
}
int rtl8xxxu_write32_mask(struct rtl8xxxu_priv *priv, u16 addr,
u32 mask, u32 val)
{
u32 orig, new, shift;
shift = __ffs(mask);
orig = rtl8xxxu_read32(priv, addr);
new = (orig & ~mask) | ((val << shift) & mask);
return rtl8xxxu_write32(priv, addr, new);
}
int rtl8xxxu_write_rfreg_mask(struct rtl8xxxu_priv *priv,
enum rtl8xxxu_rfpath path, u8 reg,
u32 mask, u32 val)
{
u32 orig, new, shift;
shift = __ffs(mask);
orig = rtl8xxxu_read_rfreg(priv, path, reg);
new = (orig & ~mask) | ((val << shift) & mask);
return rtl8xxxu_write_rfreg(priv, path, reg, new);
}
static int
rtl8xxxu_writeN(struct rtl8xxxu_priv *priv, u16 addr, u8 *buf, u16 len)
{
struct usb_device *udev = priv->udev;
int blocksize = priv->fops->writeN_block_size;
int ret, i, count, remainder;
count = len / blocksize;
remainder = len % blocksize;
for (i = 0; i < count; i++) {
ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
REALTEK_USB_CMD_REQ, REALTEK_USB_WRITE,
addr, 0, buf, blocksize,
RTW_USB_CONTROL_MSG_TIMEOUT);
if (ret != blocksize)
goto write_error;
addr += blocksize;
buf += blocksize;
}
if (remainder) {
ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
REALTEK_USB_CMD_REQ, REALTEK_USB_WRITE,
addr, 0, buf, remainder,
RTW_USB_CONTROL_MSG_TIMEOUT);
if (ret != remainder)
goto write_error;
}
return len;
write_error:
dev_info(&udev->dev,
"%s: Failed to write block at addr: %04x size: %04x\n",
__func__, addr, blocksize);
return -EAGAIN;
}
u32 rtl8xxxu_read_rfreg(struct rtl8xxxu_priv *priv,
enum rtl8xxxu_rfpath path, u8 reg)
{
u32 hssia, val32, retval;
hssia = rtl8xxxu_read32(priv, REG_FPGA0_XA_HSSI_PARM2);
if (path != RF_A)
val32 = rtl8xxxu_read32(priv, rtl8xxxu_rfregs[path].hssiparm2);
else
val32 = hssia;
val32 &= ~FPGA0_HSSI_PARM2_ADDR_MASK;
val32 |= (reg << FPGA0_HSSI_PARM2_ADDR_SHIFT);
val32 |= FPGA0_HSSI_PARM2_EDGE_READ;
hssia &= ~FPGA0_HSSI_PARM2_EDGE_READ;
rtl8xxxu_write32(priv, REG_FPGA0_XA_HSSI_PARM2, hssia);
udelay(10);
rtl8xxxu_write32(priv, rtl8xxxu_rfregs[path].hssiparm2, val32);
udelay(100);
hssia |= FPGA0_HSSI_PARM2_EDGE_READ;
rtl8xxxu_write32(priv, REG_FPGA0_XA_HSSI_PARM2, hssia);
udelay(10);
val32 = rtl8xxxu_read32(priv, rtl8xxxu_rfregs[path].hssiparm1);
if (val32 & FPGA0_HSSI_PARM1_PI)
retval = rtl8xxxu_read32(priv, rtl8xxxu_rfregs[path].hspiread);
else
retval = rtl8xxxu_read32(priv, rtl8xxxu_rfregs[path].lssiread);
retval &= 0xfffff;
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_RFREG_READ)
dev_info(&priv->udev->dev, "%s(%02x) = 0x%06x\n",
__func__, reg, retval);
return retval;
}
/*
* The RTL8723BU driver indicates that registers 0xb2 and 0xb6 can
* have write issues in high temperature conditions. We may have to
* retry writing them.
*/
int rtl8xxxu_write_rfreg(struct rtl8xxxu_priv *priv,
enum rtl8xxxu_rfpath path, u8 reg, u32 data)
{
int ret, retval;
u32 dataaddr, val32;
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_RFREG_WRITE)
dev_info(&priv->udev->dev, "%s(%02x) = 0x%06x\n",
__func__, reg, data);
data &= FPGA0_LSSI_PARM_DATA_MASK;
dataaddr = (reg << FPGA0_LSSI_PARM_ADDR_SHIFT) | data;
if (priv->rtl_chip == RTL8192E) {
val32 = rtl8xxxu_read32(priv, REG_FPGA0_POWER_SAVE);
val32 &= ~0x20000;
rtl8xxxu_write32(priv, REG_FPGA0_POWER_SAVE, val32);
}
/* Use XB for path B */
ret = rtl8xxxu_write32(priv, rtl8xxxu_rfregs[path].lssiparm, dataaddr);
if (ret != sizeof(dataaddr))
retval = -EIO;
else
retval = 0;
udelay(1);
if (priv->rtl_chip == RTL8192E) {
val32 = rtl8xxxu_read32(priv, REG_FPGA0_POWER_SAVE);
val32 |= 0x20000;
rtl8xxxu_write32(priv, REG_FPGA0_POWER_SAVE, val32);
}
return retval;
}
static int
rtl8xxxu_gen1_h2c_cmd(struct rtl8xxxu_priv *priv, struct h2c_cmd *h2c, int len)
{
struct device *dev = &priv->udev->dev;
int mbox_nr, retry, retval = 0;
int mbox_reg, mbox_ext_reg;
u8 val8;
mutex_lock(&priv->h2c_mutex);
mbox_nr = priv->next_mbox;
mbox_reg = REG_HMBOX_0 + (mbox_nr * 4);
mbox_ext_reg = REG_HMBOX_EXT_0 + (mbox_nr * 2);
/*
* MBOX ready?
*/
retry = 100;
do {
val8 = rtl8xxxu_read8(priv, REG_HMTFR);
if (!(val8 & BIT(mbox_nr)))
break;
} while (retry--);
if (!retry) {
dev_info(dev, "%s: Mailbox busy\n", __func__);
retval = -EBUSY;
goto error;
}
/*
* Need to swap as it's being swapped again by rtl8xxxu_write16/32()
*/
if (len > sizeof(u32)) {
rtl8xxxu_write16(priv, mbox_ext_reg, le16_to_cpu(h2c->raw.ext));
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_H2C)
dev_info(dev, "H2C_EXT %04x\n",
le16_to_cpu(h2c->raw.ext));
}
rtl8xxxu_write32(priv, mbox_reg, le32_to_cpu(h2c->raw.data));
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_H2C)
dev_info(dev, "H2C %08x\n", le32_to_cpu(h2c->raw.data));
priv->next_mbox = (mbox_nr + 1) % H2C_MAX_MBOX;
error:
mutex_unlock(&priv->h2c_mutex);
return retval;
}
int
rtl8xxxu_gen2_h2c_cmd(struct rtl8xxxu_priv *priv, struct h2c_cmd *h2c, int len)
{
struct device *dev = &priv->udev->dev;
int mbox_nr, retry, retval = 0;
int mbox_reg, mbox_ext_reg;
u8 val8;
mutex_lock(&priv->h2c_mutex);
mbox_nr = priv->next_mbox;
mbox_reg = REG_HMBOX_0 + (mbox_nr * 4);
mbox_ext_reg = REG_HMBOX_EXT0_8723B + (mbox_nr * 4);
/*
* MBOX ready?
*/
retry = 100;
do {
val8 = rtl8xxxu_read8(priv, REG_HMTFR);
if (!(val8 & BIT(mbox_nr)))
break;
} while (retry--);
if (!retry) {
dev_info(dev, "%s: Mailbox busy\n", __func__);
retval = -EBUSY;
goto error;
}
/*
* Need to swap as it's being swapped again by rtl8xxxu_write16/32()
*/
if (len > sizeof(u32)) {
rtl8xxxu_write32(priv, mbox_ext_reg,
le32_to_cpu(h2c->raw_wide.ext));
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_H2C)
dev_info(dev, "H2C_EXT %08x\n",
le32_to_cpu(h2c->raw_wide.ext));
}
rtl8xxxu_write32(priv, mbox_reg, le32_to_cpu(h2c->raw.data));
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_H2C)
dev_info(dev, "H2C %08x\n", le32_to_cpu(h2c->raw.data));
priv->next_mbox = (mbox_nr + 1) % H2C_MAX_MBOX;
error:
mutex_unlock(&priv->h2c_mutex);
return retval;
}
void rtl8xxxu_gen1_enable_rf(struct rtl8xxxu_priv *priv)
{
u8 val8;
u32 val32;
val8 = rtl8xxxu_read8(priv, REG_SPS0_CTRL);
val8 |= BIT(0) | BIT(3);
rtl8xxxu_write8(priv, REG_SPS0_CTRL, val8);
val32 = rtl8xxxu_read32(priv, REG_FPGA0_XAB_RF_PARM);
val32 &= ~(BIT(4) | BIT(5));
val32 |= BIT(3);
if (priv->rf_paths == 2) {
val32 &= ~(BIT(20) | BIT(21));
val32 |= BIT(19);
}
rtl8xxxu_write32(priv, REG_FPGA0_XAB_RF_PARM, val32);
val32 = rtl8xxxu_read32(priv, REG_OFDM0_TRX_PATH_ENABLE);
val32 &= ~OFDM_RF_PATH_TX_MASK;
if (priv->tx_paths == 2)
val32 |= OFDM_RF_PATH_TX_A | OFDM_RF_PATH_TX_B;
else if (priv->rtl_chip == RTL8192C || priv->rtl_chip == RTL8191C)
val32 |= OFDM_RF_PATH_TX_B;
else
val32 |= OFDM_RF_PATH_TX_A;
rtl8xxxu_write32(priv, REG_OFDM0_TRX_PATH_ENABLE, val32);
val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE);
val32 &= ~FPGA_RF_MODE_JAPAN;
rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32);
if (priv->rf_paths == 2)
rtl8xxxu_write32(priv, REG_RX_WAIT_CCA, 0x63db25a0);
else
rtl8xxxu_write32(priv, REG_RX_WAIT_CCA, 0x631b25a0);
rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_AC, 0x32d95);
if (priv->rf_paths == 2)
rtl8xxxu_write_rfreg(priv, RF_B, RF6052_REG_AC, 0x32d95);
rtl8xxxu_write8(priv, REG_TXPAUSE, 0x00);
}
void rtl8xxxu_gen1_disable_rf(struct rtl8xxxu_priv *priv)
{
u8 sps0;
u32 val32;
sps0 = rtl8xxxu_read8(priv, REG_SPS0_CTRL);
/* RF RX code for preamble power saving */
val32 = rtl8xxxu_read32(priv, REG_FPGA0_XAB_RF_PARM);
val32 &= ~(BIT(3) | BIT(4) | BIT(5));
if (priv->rf_paths == 2)
val32 &= ~(BIT(19) | BIT(20) | BIT(21));
rtl8xxxu_write32(priv, REG_FPGA0_XAB_RF_PARM, val32);
/* Disable TX for four paths */
val32 = rtl8xxxu_read32(priv, REG_OFDM0_TRX_PATH_ENABLE);
val32 &= ~OFDM_RF_PATH_TX_MASK;
rtl8xxxu_write32(priv, REG_OFDM0_TRX_PATH_ENABLE, val32);
/* Enable power saving */
val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE);
val32 |= FPGA_RF_MODE_JAPAN;
rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32);
/* AFE control register to power down bits [30:22] */
if (priv->rf_paths == 2)
rtl8xxxu_write32(priv, REG_RX_WAIT_CCA, 0x00db25a0);
else
rtl8xxxu_write32(priv, REG_RX_WAIT_CCA, 0x001b25a0);
/* Power down RF module */
rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_AC, 0);
if (priv->rf_paths == 2)
rtl8xxxu_write_rfreg(priv, RF_B, RF6052_REG_AC, 0);
sps0 &= ~(BIT(0) | BIT(3));
rtl8xxxu_write8(priv, REG_SPS0_CTRL, sps0);
}
static void rtl8xxxu_stop_tx_beacon(struct rtl8xxxu_priv *priv)
{
u8 val8;
val8 = rtl8xxxu_read8(priv, REG_FWHW_TXQ_CTRL + 2);
val8 &= ~BIT(6);
rtl8xxxu_write8(priv, REG_FWHW_TXQ_CTRL + 2, val8);
rtl8xxxu_write8(priv, REG_TBTT_PROHIBIT + 1, 0x64);
val8 = rtl8xxxu_read8(priv, REG_TBTT_PROHIBIT + 2);
val8 &= ~BIT(0);
rtl8xxxu_write8(priv, REG_TBTT_PROHIBIT + 2, val8);
}
static void rtl8xxxu_start_tx_beacon(struct rtl8xxxu_priv *priv)
{
u8 val8;
val8 = rtl8xxxu_read8(priv, REG_FWHW_TXQ_CTRL + 2);
val8 |= EN_BCNQ_DL >> 16;
rtl8xxxu_write8(priv, REG_FWHW_TXQ_CTRL + 2, val8);
rtl8xxxu_write8(priv, REG_TBTT_PROHIBIT + 1, 0x80);
val8 = rtl8xxxu_read8(priv, REG_TBTT_PROHIBIT + 2);
val8 &= 0xF0;
rtl8xxxu_write8(priv, REG_TBTT_PROHIBIT + 2, val8);
}
/*
* The rtl8723a has 3 channel groups for it's efuse settings. It only
* supports the 2.4GHz band, so channels 1 - 14:
* group 0: channels 1 - 3
* group 1: channels 4 - 9
* group 2: channels 10 - 14
*
* Note: We index from 0 in the code
*/
static int rtl8xxxu_gen1_channel_to_group(int channel)
{
int group;
if (channel < 4)
group = 0;
else if (channel < 10)
group = 1;
else
group = 2;
return group;
}
/*
* Valid for rtl8723bu and rtl8192eu
*/
int rtl8xxxu_gen2_channel_to_group(int channel)
{
int group;
if (channel < 3)
group = 0;
else if (channel < 6)
group = 1;
else if (channel < 9)
group = 2;
else if (channel < 12)
group = 3;
else
group = 4;
return group;
}
void rtl8xxxu_gen1_config_channel(struct ieee80211_hw *hw)
{
struct rtl8xxxu_priv *priv = hw->priv;
u32 val32, rsr;
u8 val8, opmode;
bool ht = true;
int sec_ch_above, channel;
int i;
opmode = rtl8xxxu_read8(priv, REG_BW_OPMODE);
rsr = rtl8xxxu_read32(priv, REG_RESPONSE_RATE_SET);
channel = hw->conf.chandef.chan->hw_value;
switch (hw->conf.chandef.width) {
case NL80211_CHAN_WIDTH_20_NOHT:
ht = false;
fallthrough;
case NL80211_CHAN_WIDTH_20:
opmode |= BW_OPMODE_20MHZ;
rtl8xxxu_write8(priv, REG_BW_OPMODE, opmode);
val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE);
val32 &= ~FPGA_RF_MODE;
rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32);
val32 = rtl8xxxu_read32(priv, REG_FPGA1_RF_MODE);
val32 &= ~FPGA_RF_MODE;
rtl8xxxu_write32(priv, REG_FPGA1_RF_MODE, val32);
val32 = rtl8xxxu_read32(priv, REG_FPGA0_ANALOG2);
val32 |= FPGA0_ANALOG2_20MHZ;
rtl8xxxu_write32(priv, REG_FPGA0_ANALOG2, val32);
break;
case NL80211_CHAN_WIDTH_40:
if (hw->conf.chandef.center_freq1 >
hw->conf.chandef.chan->center_freq) {
sec_ch_above = 1;
channel += 2;
} else {
sec_ch_above = 0;
channel -= 2;
}
opmode &= ~BW_OPMODE_20MHZ;
rtl8xxxu_write8(priv, REG_BW_OPMODE, opmode);
rsr &= ~RSR_RSC_BANDWIDTH_40M;
if (sec_ch_above)
rsr |= RSR_RSC_UPPER_SUB_CHANNEL;
else
rsr |= RSR_RSC_LOWER_SUB_CHANNEL;
rtl8xxxu_write32(priv, REG_RESPONSE_RATE_SET, rsr);
val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE);
val32 |= FPGA_RF_MODE;
rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32);
val32 = rtl8xxxu_read32(priv, REG_FPGA1_RF_MODE);
val32 |= FPGA_RF_MODE;
rtl8xxxu_write32(priv, REG_FPGA1_RF_MODE, val32);
/*
* Set Control channel to upper or lower. These settings
* are required only for 40MHz
*/
val32 = rtl8xxxu_read32(priv, REG_CCK0_SYSTEM);
val32 &= ~CCK0_SIDEBAND;
if (!sec_ch_above)
val32 |= CCK0_SIDEBAND;
rtl8xxxu_write32(priv, REG_CCK0_SYSTEM, val32);
val32 = rtl8xxxu_read32(priv, REG_OFDM1_LSTF);
val32 &= ~OFDM_LSTF_PRIME_CH_MASK; /* 0xc00 */
if (sec_ch_above)
val32 |= OFDM_LSTF_PRIME_CH_LOW;
else
val32 |= OFDM_LSTF_PRIME_CH_HIGH;
rtl8xxxu_write32(priv, REG_OFDM1_LSTF, val32);
val32 = rtl8xxxu_read32(priv, REG_FPGA0_ANALOG2);
val32 &= ~FPGA0_ANALOG2_20MHZ;
rtl8xxxu_write32(priv, REG_FPGA0_ANALOG2, val32);
val32 = rtl8xxxu_read32(priv, REG_FPGA0_POWER_SAVE);
val32 &= ~(FPGA0_PS_LOWER_CHANNEL | FPGA0_PS_UPPER_CHANNEL);
if (sec_ch_above)
val32 |= FPGA0_PS_UPPER_CHANNEL;
else
val32 |= FPGA0_PS_LOWER_CHANNEL;
rtl8xxxu_write32(priv, REG_FPGA0_POWER_SAVE, val32);
break;
default:
break;
}
for (i = RF_A; i < priv->rf_paths; i++) {
val32 = rtl8xxxu_read_rfreg(priv, i, RF6052_REG_MODE_AG);
val32 &= ~MODE_AG_CHANNEL_MASK;
val32 |= channel;
rtl8xxxu_write_rfreg(priv, i, RF6052_REG_MODE_AG, val32);
}
if (ht)
val8 = 0x0e;
else
val8 = 0x0a;
rtl8xxxu_write8(priv, REG_SIFS_CCK + 1, val8);
rtl8xxxu_write8(priv, REG_SIFS_OFDM + 1, val8);
rtl8xxxu_write16(priv, REG_R2T_SIFS, 0x0808);
rtl8xxxu_write16(priv, REG_T2T_SIFS, 0x0a0a);
for (i = RF_A; i < priv->rf_paths; i++) {
val32 = rtl8xxxu_read_rfreg(priv, i, RF6052_REG_MODE_AG);
if (hw->conf.chandef.width == NL80211_CHAN_WIDTH_40)
val32 &= ~MODE_AG_CHANNEL_20MHZ;
else
val32 |= MODE_AG_CHANNEL_20MHZ;
rtl8xxxu_write_rfreg(priv, i, RF6052_REG_MODE_AG, val32);
}
}
void rtl8xxxu_gen2_config_channel(struct ieee80211_hw *hw)
{
struct rtl8xxxu_priv *priv = hw->priv;
u32 val32;
u8 val8, subchannel;
u16 rf_mode_bw;
bool ht = true;
int sec_ch_above, channel;
int i;
rf_mode_bw = rtl8xxxu_read16(priv, REG_WMAC_TRXPTCL_CTL);
rf_mode_bw &= ~WMAC_TRXPTCL_CTL_BW_MASK;
channel = hw->conf.chandef.chan->hw_value;
/* Hack */
subchannel = 0;
switch (hw->conf.chandef.width) {
case NL80211_CHAN_WIDTH_20_NOHT:
ht = false;
fallthrough;
case NL80211_CHAN_WIDTH_20:
rf_mode_bw |= WMAC_TRXPTCL_CTL_BW_20;
subchannel = 0;
val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE);
val32 &= ~FPGA_RF_MODE;
rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32);
val32 = rtl8xxxu_read32(priv, REG_FPGA1_RF_MODE);
val32 &= ~FPGA_RF_MODE;
rtl8xxxu_write32(priv, REG_FPGA1_RF_MODE, val32);
val32 = rtl8xxxu_read32(priv, REG_OFDM0_TX_PSDO_NOISE_WEIGHT);
val32 &= ~(BIT(30) | BIT(31));
rtl8xxxu_write32(priv, REG_OFDM0_TX_PSDO_NOISE_WEIGHT, val32);
break;
case NL80211_CHAN_WIDTH_40:
rf_mode_bw |= WMAC_TRXPTCL_CTL_BW_40;
if (hw->conf.chandef.center_freq1 >
hw->conf.chandef.chan->center_freq) {
sec_ch_above = 1;
channel += 2;
} else {
sec_ch_above = 0;
channel -= 2;
}
val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE);
val32 |= FPGA_RF_MODE;
rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32);
val32 = rtl8xxxu_read32(priv, REG_FPGA1_RF_MODE);
val32 |= FPGA_RF_MODE;
rtl8xxxu_write32(priv, REG_FPGA1_RF_MODE, val32);
/*
* Set Control channel to upper or lower. These settings
* are required only for 40MHz
*/
val32 = rtl8xxxu_read32(priv, REG_CCK0_SYSTEM);
val32 &= ~CCK0_SIDEBAND;
if (!sec_ch_above)
val32 |= CCK0_SIDEBAND;
rtl8xxxu_write32(priv, REG_CCK0_SYSTEM, val32);
val32 = rtl8xxxu_read32(priv, REG_OFDM1_LSTF);
val32 &= ~OFDM_LSTF_PRIME_CH_MASK; /* 0xc00 */
if (sec_ch_above)
val32 |= OFDM_LSTF_PRIME_CH_LOW;
else
val32 |= OFDM_LSTF_PRIME_CH_HIGH;
rtl8xxxu_write32(priv, REG_OFDM1_LSTF, val32);
val32 = rtl8xxxu_read32(priv, REG_FPGA0_POWER_SAVE);
val32 &= ~(FPGA0_PS_LOWER_CHANNEL | FPGA0_PS_UPPER_CHANNEL);
if (sec_ch_above)
val32 |= FPGA0_PS_UPPER_CHANNEL;
else
val32 |= FPGA0_PS_LOWER_CHANNEL;
rtl8xxxu_write32(priv, REG_FPGA0_POWER_SAVE, val32);
break;
case NL80211_CHAN_WIDTH_80:
rf_mode_bw |= WMAC_TRXPTCL_CTL_BW_80;
break;
default:
break;
}
for (i = RF_A; i < priv->rf_paths; i++) {
val32 = rtl8xxxu_read_rfreg(priv, i, RF6052_REG_MODE_AG);
val32 &= ~MODE_AG_CHANNEL_MASK;
val32 |= channel;
rtl8xxxu_write_rfreg(priv, i, RF6052_REG_MODE_AG, val32);
}
rtl8xxxu_write16(priv, REG_WMAC_TRXPTCL_CTL, rf_mode_bw);
rtl8xxxu_write8(priv, REG_DATA_SUBCHANNEL, subchannel);
if (ht)
val8 = 0x0e;
else
val8 = 0x0a;
rtl8xxxu_write8(priv, REG_SIFS_CCK + 1, val8);
rtl8xxxu_write8(priv, REG_SIFS_OFDM + 1, val8);
rtl8xxxu_write16(priv, REG_R2T_SIFS, 0x0808);
rtl8xxxu_write16(priv, REG_T2T_SIFS, 0x0a0a);
for (i = RF_A; i < priv->rf_paths; i++) {
val32 = rtl8xxxu_read_rfreg(priv, i, RF6052_REG_MODE_AG);
val32 &= ~MODE_AG_BW_MASK;
switch(hw->conf.chandef.width) {
case NL80211_CHAN_WIDTH_80:
val32 |= MODE_AG_BW_80MHZ_8723B;
break;
case NL80211_CHAN_WIDTH_40:
val32 |= MODE_AG_BW_40MHZ_8723B;
break;
default:
val32 |= MODE_AG_BW_20MHZ_8723B;
break;
}
rtl8xxxu_write_rfreg(priv, i, RF6052_REG_MODE_AG, val32);
}
}
void
rtl8xxxu_gen1_set_tx_power(struct rtl8xxxu_priv *priv, int channel, bool ht40)
{
struct rtl8xxxu_power_base *power_base = priv->power_base;
u8 cck[RTL8723A_MAX_RF_PATHS], ofdm[RTL8723A_MAX_RF_PATHS];
u8 ofdmbase[RTL8723A_MAX_RF_PATHS], mcsbase[RTL8723A_MAX_RF_PATHS];
u32 val32, ofdm_a, ofdm_b, mcs_a, mcs_b;
u8 val8, base;
int group, i;
group = rtl8xxxu_gen1_channel_to_group(channel);
cck[0] = priv->cck_tx_power_index_A[group];
cck[1] = priv->cck_tx_power_index_B[group];
if (priv->hi_pa) {
if (cck[0] > 0x20)
cck[0] = 0x20;
if (cck[1] > 0x20)
cck[1] = 0x20;
}
ofdm[0] = priv->ht40_1s_tx_power_index_A[group];
ofdm[1] = priv->ht40_1s_tx_power_index_B[group];
ofdmbase[0] = ofdm[0] + priv->ofdm_tx_power_index_diff[group].a;
ofdmbase[1] = ofdm[1] + priv->ofdm_tx_power_index_diff[group].b;
mcsbase[0] = ofdm[0];
mcsbase[1] = ofdm[1];
if (!ht40) {
mcsbase[0] += priv->ht20_tx_power_index_diff[group].a;
mcsbase[1] += priv->ht20_tx_power_index_diff[group].b;
}
if (priv->tx_paths > 1) {
if (ofdm[0] > priv->ht40_2s_tx_power_index_diff[group].a)
ofdm[0] -= priv->ht40_2s_tx_power_index_diff[group].a;
if (ofdm[1] > priv->ht40_2s_tx_power_index_diff[group].b)
ofdm[1] -= priv->ht40_2s_tx_power_index_diff[group].b;
}
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_CHANNEL)
dev_info(&priv->udev->dev,
"%s: Setting TX power CCK A: %02x, "
"CCK B: %02x, OFDM A: %02x, OFDM B: %02x\n",
__func__, cck[0], cck[1], ofdm[0], ofdm[1]);
for (i = 0; i < RTL8723A_MAX_RF_PATHS; i++) {
if (cck[i] > RF6052_MAX_TX_PWR)
cck[i] = RF6052_MAX_TX_PWR;
if (ofdm[i] > RF6052_MAX_TX_PWR)
ofdm[i] = RF6052_MAX_TX_PWR;
}
val32 = rtl8xxxu_read32(priv, REG_TX_AGC_A_CCK1_MCS32);
val32 &= 0xffff00ff;
val32 |= (cck[0] << 8);
rtl8xxxu_write32(priv, REG_TX_AGC_A_CCK1_MCS32, val32);
val32 = rtl8xxxu_read32(priv, REG_TX_AGC_B_CCK11_A_CCK2_11);
val32 &= 0xff;
val32 |= ((cck[0] << 8) | (cck[0] << 16) | (cck[0] << 24));
rtl8xxxu_write32(priv, REG_TX_AGC_B_CCK11_A_CCK2_11, val32);
val32 = rtl8xxxu_read32(priv, REG_TX_AGC_B_CCK11_A_CCK2_11);
val32 &= 0xffffff00;
val32 |= cck[1];
rtl8xxxu_write32(priv, REG_TX_AGC_B_CCK11_A_CCK2_11, val32);
val32 = rtl8xxxu_read32(priv, REG_TX_AGC_B_CCK1_55_MCS32);
val32 &= 0xff;
val32 |= ((cck[1] << 8) | (cck[1] << 16) | (cck[1] << 24));
rtl8xxxu_write32(priv, REG_TX_AGC_B_CCK1_55_MCS32, val32);
ofdm_a = ofdmbase[0] | ofdmbase[0] << 8 |
ofdmbase[0] << 16 | ofdmbase[0] << 24;
ofdm_b = ofdmbase[1] | ofdmbase[1] << 8 |
ofdmbase[1] << 16 | ofdmbase[1] << 24;
rtl8xxxu_write32(priv, REG_TX_AGC_A_RATE18_06,
ofdm_a + power_base->reg_0e00);
rtl8xxxu_write32(priv, REG_TX_AGC_B_RATE18_06,
ofdm_b + power_base->reg_0830);
rtl8xxxu_write32(priv, REG_TX_AGC_A_RATE54_24,
ofdm_a + power_base->reg_0e04);
rtl8xxxu_write32(priv, REG_TX_AGC_B_RATE54_24,
ofdm_b + power_base->reg_0834);
mcs_a = mcsbase[0] | mcsbase[0] << 8 |
mcsbase[0] << 16 | mcsbase[0] << 24;
mcs_b = mcsbase[1] | mcsbase[1] << 8 |
mcsbase[1] << 16 | mcsbase[1] << 24;
rtl8xxxu_write32(priv, REG_TX_AGC_A_MCS03_MCS00,
mcs_a + power_base->reg_0e10);
rtl8xxxu_write32(priv, REG_TX_AGC_B_MCS03_MCS00,
mcs_b + power_base->reg_083c);
rtl8xxxu_write32(priv, REG_TX_AGC_A_MCS07_MCS04,
mcs_a + power_base->reg_0e14);
rtl8xxxu_write32(priv, REG_TX_AGC_B_MCS07_MCS04,
mcs_b + power_base->reg_0848);
rtl8xxxu_write32(priv, REG_TX_AGC_A_MCS11_MCS08,
mcs_a + power_base->reg_0e18);
rtl8xxxu_write32(priv, REG_TX_AGC_B_MCS11_MCS08,
mcs_b + power_base->reg_084c);
rtl8xxxu_write32(priv, REG_TX_AGC_A_MCS15_MCS12,
mcs_a + power_base->reg_0e1c);
val8 = u32_get_bits(mcs_a + power_base->reg_0e1c, 0xff000000);
for (i = 0; i < 3; i++) {
base = i != 2 ? 8 : 6;
val8 = max_t(int, val8 - base, 0);
rtl8xxxu_write8(priv, REG_OFDM0_XC_TX_IQ_IMBALANCE + i, val8);
}
rtl8xxxu_write32(priv, REG_TX_AGC_B_MCS15_MCS12,
mcs_b + power_base->reg_0868);
val8 = u32_get_bits(mcs_b + power_base->reg_0868, 0xff000000);
for (i = 0; i < 3; i++) {
base = i != 2 ? 8 : 6;
val8 = max_t(int, val8 - base, 0);
rtl8xxxu_write8(priv, REG_OFDM0_XD_TX_IQ_IMBALANCE + i, val8);
}
}
static void rtl8xxxu_set_linktype(struct rtl8xxxu_priv *priv,
enum nl80211_iftype linktype, int port_num)
{
u8 val8, type;
switch (linktype) {
case NL80211_IFTYPE_UNSPECIFIED:
type = MSR_LINKTYPE_NONE;
break;
case NL80211_IFTYPE_ADHOC:
type = MSR_LINKTYPE_ADHOC;
break;
case NL80211_IFTYPE_STATION:
type = MSR_LINKTYPE_STATION;
break;
case NL80211_IFTYPE_AP:
type = MSR_LINKTYPE_AP;
break;
default:
return;
}
switch (port_num) {
case 0:
val8 = rtl8xxxu_read8(priv, REG_MSR) & 0x0c;
val8 |= type;
break;
case 1:
val8 = rtl8xxxu_read8(priv, REG_MSR) & 0x03;
val8 |= type << 2;
break;
default:
return;
}
rtl8xxxu_write8(priv, REG_MSR, val8);
}
static void
rtl8xxxu_set_retry(struct rtl8xxxu_priv *priv, u16 short_retry, u16 long_retry)
{
u16 val16;
val16 = ((short_retry << RETRY_LIMIT_SHORT_SHIFT) &
RETRY_LIMIT_SHORT_MASK) |
((long_retry << RETRY_LIMIT_LONG_SHIFT) &
RETRY_LIMIT_LONG_MASK);
rtl8xxxu_write16(priv, REG_RETRY_LIMIT, val16);
}
static void
rtl8xxxu_set_spec_sifs(struct rtl8xxxu_priv *priv, u16 cck, u16 ofdm)
{
u16 val16;
val16 = ((cck << SPEC_SIFS_CCK_SHIFT) & SPEC_SIFS_CCK_MASK) |
((ofdm << SPEC_SIFS_OFDM_SHIFT) & SPEC_SIFS_OFDM_MASK);
rtl8xxxu_write16(priv, REG_SPEC_SIFS, val16);
}
static void rtl8xxxu_print_chipinfo(struct rtl8xxxu_priv *priv)
{
struct device *dev = &priv->udev->dev;
char cut = 'A' + priv->chip_cut;
dev_info(dev,
"RTL%s rev %c (%s) romver %d, %iT%iR, TX queues %i, WiFi=%i, BT=%i, GPS=%i, HI PA=%i\n",
priv->chip_name, cut, priv->chip_vendor, priv->rom_rev,
priv->tx_paths, priv->rx_paths, priv->ep_tx_count,
priv->has_wifi, priv->has_bluetooth, priv->has_gps,
priv->hi_pa);
dev_info(dev, "RTL%s MAC: %pM\n", priv->chip_name, priv->mac_addr);
}
void rtl8xxxu_identify_vendor_1bit(struct rtl8xxxu_priv *priv, u32 vendor)
{
if (vendor) {
strscpy(priv->chip_vendor, "UMC", sizeof(priv->chip_vendor));
priv->vendor_umc = 1;
} else {
strscpy(priv->chip_vendor, "TSMC", sizeof(priv->chip_vendor));
}
}
void rtl8xxxu_identify_vendor_2bits(struct rtl8xxxu_priv *priv, u32 vendor)
{
switch (vendor) {
case SYS_CFG_VENDOR_ID_TSMC:
strscpy(priv->chip_vendor, "TSMC", sizeof(priv->chip_vendor));
break;
case SYS_CFG_VENDOR_ID_SMIC:
strscpy(priv->chip_vendor, "SMIC", sizeof(priv->chip_vendor));
priv->vendor_smic = 1;
break;
case SYS_CFG_VENDOR_ID_UMC:
strscpy(priv->chip_vendor, "UMC", sizeof(priv->chip_vendor));
priv->vendor_umc = 1;
break;
default:
strscpy(priv->chip_vendor, "unknown", sizeof(priv->chip_vendor));
}
}
void rtl8xxxu_config_endpoints_sie(struct rtl8xxxu_priv *priv)
{
u16 val16;
val16 = rtl8xxxu_read16(priv, REG_NORMAL_SIE_EP_TX);
if (val16 & NORMAL_SIE_EP_TX_HIGH_MASK) {
priv->ep_tx_high_queue = 1;
priv->ep_tx_count++;
}
if (val16 & NORMAL_SIE_EP_TX_NORMAL_MASK) {
priv->ep_tx_normal_queue = 1;
priv->ep_tx_count++;
}
if (val16 & NORMAL_SIE_EP_TX_LOW_MASK) {
priv->ep_tx_low_queue = 1;
priv->ep_tx_count++;
}
}
int rtl8xxxu_config_endpoints_no_sie(struct rtl8xxxu_priv *priv)
{
struct device *dev = &priv->udev->dev;
switch (priv->nr_out_eps) {
case 6:
case 5:
case 4:
case 3:
priv->ep_tx_low_queue = 1;
priv->ep_tx_count++;
fallthrough;
case 2:
priv->ep_tx_normal_queue = 1;
priv->ep_tx_count++;
fallthrough;
case 1:
priv->ep_tx_high_queue = 1;
priv->ep_tx_count++;
break;
default:
dev_info(dev, "Unsupported USB TX end-points\n");
return -ENOTSUPP;
}
return 0;
}
int
rtl8xxxu_read_efuse8(struct rtl8xxxu_priv *priv, u16 offset, u8 *data)
{
int i;
u8 val8;
u32 val32;
/* Write Address */
rtl8xxxu_write8(priv, REG_EFUSE_CTRL + 1, offset & 0xff);
val8 = rtl8xxxu_read8(priv, REG_EFUSE_CTRL + 2);
val8 &= 0xfc;
val8 |= (offset >> 8) & 0x03;
rtl8xxxu_write8(priv, REG_EFUSE_CTRL + 2, val8);
val8 = rtl8xxxu_read8(priv, REG_EFUSE_CTRL + 3);
rtl8xxxu_write8(priv, REG_EFUSE_CTRL + 3, val8 & 0x7f);
/* Poll for data read */
val32 = rtl8xxxu_read32(priv, REG_EFUSE_CTRL);
for (i = 0; i < RTL8XXXU_MAX_REG_POLL; i++) {
val32 = rtl8xxxu_read32(priv, REG_EFUSE_CTRL);
if (val32 & BIT(31))
break;
}
if (i == RTL8XXXU_MAX_REG_POLL)
return -EIO;
udelay(50);
val32 = rtl8xxxu_read32(priv, REG_EFUSE_CTRL);
*data = val32 & 0xff;
return 0;
}
int rtl8xxxu_read_efuse(struct rtl8xxxu_priv *priv)
{
struct device *dev = &priv->udev->dev;
int i, ret = 0;
u8 val8, word_mask, header, extheader;
u16 val16, efuse_addr, offset;
u32 val32;
val16 = rtl8xxxu_read16(priv, REG_9346CR);
if (val16 & EEPROM_ENABLE)
priv->has_eeprom = 1;
if (val16 & EEPROM_BOOT)
priv->boot_eeprom = 1;
if (priv->is_multi_func) {
val32 = rtl8xxxu_read32(priv, REG_EFUSE_TEST);
val32 = (val32 & ~EFUSE_SELECT_MASK) | EFUSE_WIFI_SELECT;
rtl8xxxu_write32(priv, REG_EFUSE_TEST, val32);
}
dev_dbg(dev, "Booting from %s\n",
priv->boot_eeprom ? "EEPROM" : "EFUSE");
rtl8xxxu_write8(priv, REG_EFUSE_ACCESS, EFUSE_ACCESS_ENABLE);
/* 1.2V Power: From VDDON with Power Cut(0x0000[15]), default valid */
val16 = rtl8xxxu_read16(priv, REG_SYS_ISO_CTRL);
if (!(val16 & SYS_ISO_PWC_EV12V)) {
val16 |= SYS_ISO_PWC_EV12V;
rtl8xxxu_write16(priv, REG_SYS_ISO_CTRL, val16);
}
/* Reset: 0x0000[28], default valid */
val16 = rtl8xxxu_read16(priv, REG_SYS_FUNC);
if (!(val16 & SYS_FUNC_ELDR)) {
val16 |= SYS_FUNC_ELDR;
rtl8xxxu_write16(priv, REG_SYS_FUNC, val16);
}
/*
* Clock: Gated(0x0008[5]) 8M(0x0008[1]) clock from ANA, default valid
*/
val16 = rtl8xxxu_read16(priv, REG_SYS_CLKR);
if (!(val16 & SYS_CLK_LOADER_ENABLE) || !(val16 & SYS_CLK_ANA8M)) {
val16 |= (SYS_CLK_LOADER_ENABLE | SYS_CLK_ANA8M);
rtl8xxxu_write16(priv, REG_SYS_CLKR, val16);
}
/* Default value is 0xff */
memset(priv->efuse_wifi.raw, 0xff, EFUSE_MAP_LEN);
efuse_addr = 0;
while (efuse_addr < EFUSE_REAL_CONTENT_LEN_8723A) {
u16 map_addr;
ret = rtl8xxxu_read_efuse8(priv, efuse_addr++, &header);
if (ret || header == 0xff)
goto exit;
if ((header & 0x1f) == 0x0f) { /* extended header */
offset = (header & 0xe0) >> 5;
ret = rtl8xxxu_read_efuse8(priv, efuse_addr++,
&extheader);
if (ret)
goto exit;
/* All words disabled */
if ((extheader & 0x0f) == 0x0f)
continue;
offset |= ((extheader & 0xf0) >> 1);
word_mask = extheader & 0x0f;
} else {
offset = (header >> 4) & 0x0f;
word_mask = header & 0x0f;
}
/* Get word enable value from PG header */
/* We have 8 bits to indicate validity */
map_addr = offset * 8;
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
/* Check word enable condition in the section */
if (word_mask & BIT(i)) {
map_addr += 2;
continue;
}
ret = rtl8xxxu_read_efuse8(priv, efuse_addr++, &val8);
if (ret)
goto exit;
if (map_addr >= EFUSE_MAP_LEN - 1) {
dev_warn(dev, "%s: Illegal map_addr (%04x), "
"efuse corrupt!\n",
__func__, map_addr);
ret = -EINVAL;
goto exit;
}
priv->efuse_wifi.raw[map_addr++] = val8;
ret = rtl8xxxu_read_efuse8(priv, efuse_addr++, &val8);
if (ret)
goto exit;
priv->efuse_wifi.raw[map_addr++] = val8;
}
}
exit:
rtl8xxxu_write8(priv, REG_EFUSE_ACCESS, EFUSE_ACCESS_DISABLE);
return ret;
}
static void rtl8xxxu_dump_efuse(struct rtl8xxxu_priv *priv)
{
dev_info(&priv->udev->dev,
"Dumping efuse for RTL%s (0x%02x bytes):\n",
priv->chip_name, EFUSE_MAP_LEN);
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1,
priv->efuse_wifi.raw, EFUSE_MAP_LEN, true);
}
void rtl8xxxu_reset_8051(struct rtl8xxxu_priv *priv)
{
u8 val8;
u16 sys_func;
val8 = rtl8xxxu_read8(priv, REG_RSV_CTRL + 1);
val8 &= ~BIT(0);
rtl8xxxu_write8(priv, REG_RSV_CTRL + 1, val8);
sys_func = rtl8xxxu_read16(priv, REG_SYS_FUNC);
sys_func &= ~SYS_FUNC_CPU_ENABLE;
rtl8xxxu_write16(priv, REG_SYS_FUNC, sys_func);
val8 = rtl8xxxu_read8(priv, REG_RSV_CTRL + 1);
val8 |= BIT(0);
rtl8xxxu_write8(priv, REG_RSV_CTRL + 1, val8);
sys_func |= SYS_FUNC_CPU_ENABLE;
rtl8xxxu_write16(priv, REG_SYS_FUNC, sys_func);
}
static int rtl8xxxu_start_firmware(struct rtl8xxxu_priv *priv)
{
struct device *dev = &priv->udev->dev;
u16 reg_mcu_fw_dl;
int ret = 0, i;
u32 val32;
if (priv->rtl_chip == RTL8710B)
reg_mcu_fw_dl = REG_8051FW_CTRL_V1_8710B;
else
reg_mcu_fw_dl = REG_MCU_FW_DL;
/* Poll checksum report */
for (i = 0; i < RTL8XXXU_FIRMWARE_POLL_MAX; i++) {
val32 = rtl8xxxu_read32(priv, reg_mcu_fw_dl);
if (val32 & MCU_FW_DL_CSUM_REPORT)
break;
}
if (i == RTL8XXXU_FIRMWARE_POLL_MAX) {
dev_warn(dev, "Firmware checksum poll timed out\n");
ret = -EAGAIN;
goto exit;
}
val32 = rtl8xxxu_read32(priv, reg_mcu_fw_dl);
val32 |= MCU_FW_DL_READY;
val32 &= ~MCU_WINT_INIT_READY;
rtl8xxxu_write32(priv, reg_mcu_fw_dl, val32);
/*
* Reset the 8051 in order for the firmware to start running,
* otherwise it won't come up on the 8192eu
*/
priv->fops->reset_8051(priv);
/* Wait for firmware to become ready */
for (i = 0; i < RTL8XXXU_FIRMWARE_POLL_MAX; i++) {
val32 = rtl8xxxu_read32(priv, reg_mcu_fw_dl);
if (val32 & MCU_WINT_INIT_READY)
break;
udelay(100);
}
if (i == RTL8XXXU_FIRMWARE_POLL_MAX) {
dev_warn(dev, "Firmware failed to start\n");
ret = -EAGAIN;
goto exit;
}
/*
* Init H2C command
*/
if (priv->fops->init_reg_hmtfr)
rtl8xxxu_write8(priv, REG_HMTFR, 0x0f);
exit:
return ret;
}
static int rtl8xxxu_download_firmware(struct rtl8xxxu_priv *priv)
{
int pages, remainder, i, ret;
u16 reg_fw_start_address;
u16 reg_mcu_fw_dl;
u8 val8;
u16 val16;
u32 val32;
u8 *fwptr;
if (priv->rtl_chip == RTL8192F)
reg_fw_start_address = REG_FW_START_ADDRESS_8192F;
else
reg_fw_start_address = REG_FW_START_ADDRESS;
if (priv->rtl_chip == RTL8710B) {
reg_mcu_fw_dl = REG_8051FW_CTRL_V1_8710B;
} else {
reg_mcu_fw_dl = REG_MCU_FW_DL;
val8 = rtl8xxxu_read8(priv, REG_SYS_FUNC + 1);
val8 |= 4;
rtl8xxxu_write8(priv, REG_SYS_FUNC + 1, val8);
/* 8051 enable */
val16 = rtl8xxxu_read16(priv, REG_SYS_FUNC);
val16 |= SYS_FUNC_CPU_ENABLE;
rtl8xxxu_write16(priv, REG_SYS_FUNC, val16);
}
val8 = rtl8xxxu_read8(priv, reg_mcu_fw_dl);
if (val8 & MCU_FW_RAM_SEL) {
dev_info(&priv->udev->dev,
"Firmware is already running, resetting the MCU.\n");
rtl8xxxu_write8(priv, reg_mcu_fw_dl, 0x00);
priv->fops->reset_8051(priv);
}
/* MCU firmware download enable */
val8 = rtl8xxxu_read8(priv, reg_mcu_fw_dl);
val8 |= MCU_FW_DL_ENABLE;
rtl8xxxu_write8(priv, reg_mcu_fw_dl, val8);
/* 8051 reset */
val32 = rtl8xxxu_read32(priv, reg_mcu_fw_dl);
val32 &= ~BIT(19);
rtl8xxxu_write32(priv, reg_mcu_fw_dl, val32);
if (priv->rtl_chip == RTL8710B) {
/* We must set 0x8090[8]=1 before download FW. */
val8 = rtl8xxxu_read8(priv, reg_mcu_fw_dl + 1);
val8 |= BIT(0);
rtl8xxxu_write8(priv, reg_mcu_fw_dl + 1, val8);
}
/* Reset firmware download checksum */
val8 = rtl8xxxu_read8(priv, reg_mcu_fw_dl);
val8 |= MCU_FW_DL_CSUM_REPORT;
rtl8xxxu_write8(priv, reg_mcu_fw_dl, val8);
pages = priv->fw_size / RTL_FW_PAGE_SIZE;
remainder = priv->fw_size % RTL_FW_PAGE_SIZE;
fwptr = priv->fw_data->data;
for (i = 0; i < pages; i++) {
val8 = rtl8xxxu_read8(priv, reg_mcu_fw_dl + 2) & 0xF8;
val8 |= i;
rtl8xxxu_write8(priv, reg_mcu_fw_dl + 2, val8);
ret = rtl8xxxu_writeN(priv, reg_fw_start_address,
fwptr, RTL_FW_PAGE_SIZE);
if (ret != RTL_FW_PAGE_SIZE) {
ret = -EAGAIN;
goto fw_abort;
}
fwptr += RTL_FW_PAGE_SIZE;
}
if (remainder) {
val8 = rtl8xxxu_read8(priv, reg_mcu_fw_dl + 2) & 0xF8;
val8 |= i;
rtl8xxxu_write8(priv, reg_mcu_fw_dl + 2, val8);
ret = rtl8xxxu_writeN(priv, reg_fw_start_address,
fwptr, remainder);
if (ret != remainder) {
ret = -EAGAIN;
goto fw_abort;
}
}
ret = 0;
fw_abort:
/* MCU firmware download disable */
val16 = rtl8xxxu_read16(priv, reg_mcu_fw_dl);
val16 &= ~MCU_FW_DL_ENABLE;
rtl8xxxu_write16(priv, reg_mcu_fw_dl, val16);
return ret;
}
int rtl8xxxu_load_firmware(struct rtl8xxxu_priv *priv, const char *fw_name)
{
struct device *dev = &priv->udev->dev;
const struct firmware *fw;
int ret = 0;
u16 signature;
dev_info(dev, "%s: Loading firmware %s\n", DRIVER_NAME, fw_name);
if (request_firmware(&fw, fw_name, &priv->udev->dev)) {
dev_warn(dev, "request_firmware(%s) failed\n", fw_name);
ret = -EAGAIN;
goto exit;
}
if (!fw) {
dev_warn(dev, "Firmware data not available\n");
ret = -EINVAL;
goto exit;
}
priv->fw_data = kmemdup(fw->data, fw->size, GFP_KERNEL);
if (!priv->fw_data) {
ret = -ENOMEM;
goto exit;
}
priv->fw_size = fw->size - sizeof(struct rtl8xxxu_firmware_header);
signature = le16_to_cpu(priv->fw_data->signature);
switch (signature & 0xfff0) {
case 0x92e0:
case 0x92c0:
case 0x88e0:
case 0x88c0:
case 0x5300:
case 0x2300:
case 0x88f0:
case 0x10b0:
case 0x92f0:
break;
default:
ret = -EINVAL;
dev_warn(dev, "%s: Invalid firmware signature: 0x%04x\n",
__func__, signature);
}
dev_info(dev, "Firmware revision %i.%i (signature 0x%04x)\n",
le16_to_cpu(priv->fw_data->major_version),
priv->fw_data->minor_version, signature);
exit:
release_firmware(fw);
return ret;
}
void rtl8xxxu_firmware_self_reset(struct rtl8xxxu_priv *priv)
{
u16 val16;
int i = 100;
/* Inform 8051 to perform reset */
rtl8xxxu_write8(priv, REG_HMTFR + 3, 0x20);
for (i = 100; i > 0; i--) {
val16 = rtl8xxxu_read16(priv, REG_SYS_FUNC);
if (!(val16 & SYS_FUNC_CPU_ENABLE)) {
dev_dbg(&priv->udev->dev,
"%s: Firmware self reset success!\n", __func__);
break;
}
udelay(50);
}
if (!i) {
/* Force firmware reset */
val16 = rtl8xxxu_read16(priv, REG_SYS_FUNC);
val16 &= ~SYS_FUNC_CPU_ENABLE;
rtl8xxxu_write16(priv, REG_SYS_FUNC, val16);
}
}
static int
rtl8xxxu_init_mac(struct rtl8xxxu_priv *priv)
{
const struct rtl8xxxu_reg8val *array = priv->fops->mactable;
int i, ret;
u16 reg;
u8 val;
for (i = 0; ; i++) {
reg = array[i].reg;
val = array[i].val;
if (reg == 0xffff && val == 0xff)
break;
ret = rtl8xxxu_write8(priv, reg, val);
if (ret != 1) {
dev_warn(&priv->udev->dev,
"Failed to initialize MAC "
"(reg: %04x, val %02x)\n", reg, val);
return -EAGAIN;
}
}
switch (priv->rtl_chip) {
case RTL8188C:
case RTL8188R:
case RTL8191C:
case RTL8192C:
case RTL8723A:
rtl8xxxu_write8(priv, REG_MAX_AGGR_NUM, 0x0a);
break;
case RTL8188E:
rtl8xxxu_write16(priv, REG_MAX_AGGR_NUM, 0x0707);
break;
default:
break;
}
return 0;
}
int rtl8xxxu_init_phy_regs(struct rtl8xxxu_priv *priv,
const struct rtl8xxxu_reg32val *array)
{
int i, ret;
u16 reg;
u32 val;
for (i = 0; ; i++) {
reg = array[i].reg;
val = array[i].val;
if (reg == 0xffff && val == 0xffffffff)
break;
ret = rtl8xxxu_write32(priv, reg, val);
if (ret != sizeof(val)) {
dev_warn(&priv->udev->dev,
"Failed to initialize PHY\n");
return -EAGAIN;
}
udelay(1);
}
return 0;
}
void rtl8xxxu_gen1_init_phy_bb(struct rtl8xxxu_priv *priv)
{
u8 val8, ldoa15, ldov12d, lpldo, ldohci12;
u16 val16;
u32 val32;
val8 = rtl8xxxu_read8(priv, REG_AFE_PLL_CTRL);
udelay(2);
val8 |= AFE_PLL_320_ENABLE;
rtl8xxxu_write8(priv, REG_AFE_PLL_CTRL, val8);
udelay(2);
rtl8xxxu_write8(priv, REG_AFE_PLL_CTRL + 1, 0xff);
udelay(2);
val16 = rtl8xxxu_read16(priv, REG_SYS_FUNC);
val16 |= SYS_FUNC_BB_GLB_RSTN | SYS_FUNC_BBRSTB;
rtl8xxxu_write16(priv, REG_SYS_FUNC, val16);
val32 = rtl8xxxu_read32(priv, REG_AFE_XTAL_CTRL);
val32 &= ~AFE_XTAL_RF_GATE;
if (priv->has_bluetooth)
val32 &= ~AFE_XTAL_BT_GATE;
rtl8xxxu_write32(priv, REG_AFE_XTAL_CTRL, val32);
/* 6. 0x1f[7:0] = 0x07 */
val8 = RF_ENABLE | RF_RSTB | RF_SDMRSTB;
rtl8xxxu_write8(priv, REG_RF_CTRL, val8);
if (priv->hi_pa)
rtl8xxxu_init_phy_regs(priv, rtl8188ru_phy_1t_highpa_table);
else if (priv->tx_paths == 2)
rtl8xxxu_init_phy_regs(priv, rtl8192cu_phy_2t_init_table);
else
rtl8xxxu_init_phy_regs(priv, rtl8723a_phy_1t_init_table);
if (priv->rtl_chip == RTL8188R && priv->hi_pa &&
priv->vendor_umc && priv->chip_cut == 1)
rtl8xxxu_write8(priv, REG_OFDM0_AGC_PARM1 + 2, 0x50);
if (priv->hi_pa)
rtl8xxxu_init_phy_regs(priv, rtl8xxx_agc_highpa_table);
else
rtl8xxxu_init_phy_regs(priv, rtl8xxx_agc_standard_table);
ldoa15 = LDOA15_ENABLE | LDOA15_OBUF;
ldov12d = LDOV12D_ENABLE | BIT(2) | (2 << LDOV12D_VADJ_SHIFT);
ldohci12 = 0x57;
lpldo = 1;
val32 = (lpldo << 24) | (ldohci12 << 16) | (ldov12d << 8) | ldoa15;
rtl8xxxu_write32(priv, REG_LDOA15_CTRL, val32);
}
/*
* Most of this is black magic retrieved from the old rtl8723au driver
*/
static int rtl8xxxu_init_phy_bb(struct rtl8xxxu_priv *priv)
{
u32 val32;
priv->fops->init_phy_bb(priv);
if (priv->tx_paths == 1 && priv->rx_paths == 2) {
/*
* For 1T2R boards, patch the registers.
*
* It looks like 8191/2 1T2R boards use path B for TX
*/
val32 = rtl8xxxu_read32(priv, REG_FPGA0_TX_INFO);
val32 &= ~(BIT(0) | BIT(1));
val32 |= BIT(1);
rtl8xxxu_write32(priv, REG_FPGA0_TX_INFO, val32);
val32 = rtl8xxxu_read32(priv, REG_FPGA1_TX_INFO);
val32 &= ~0x300033;
val32 |= 0x200022;
rtl8xxxu_write32(priv, REG_FPGA1_TX_INFO, val32);
val32 = rtl8xxxu_read32(priv, REG_CCK0_AFE_SETTING);
val32 &= ~CCK0_AFE_RX_MASK;
val32 &= 0x00ffffff;
val32 |= 0x40000000;
val32 |= CCK0_AFE_RX_ANT_B;
rtl8xxxu_write32(priv, REG_CCK0_AFE_SETTING, val32);
val32 = rtl8xxxu_read32(priv, REG_OFDM0_TRX_PATH_ENABLE);
val32 &= ~(OFDM_RF_PATH_RX_MASK | OFDM_RF_PATH_TX_MASK);
val32 |= (OFDM_RF_PATH_RX_A | OFDM_RF_PATH_RX_B |
OFDM_RF_PATH_TX_B);
rtl8xxxu_write32(priv, REG_OFDM0_TRX_PATH_ENABLE, val32);
val32 = rtl8xxxu_read32(priv, REG_OFDM0_AGC_PARM1);
val32 &= ~(BIT(4) | BIT(5));
val32 |= BIT(4);
rtl8xxxu_write32(priv, REG_OFDM0_AGC_PARM1, val32);
val32 = rtl8xxxu_read32(priv, REG_TX_CCK_RFON);
val32 &= ~(BIT(27) | BIT(26));
val32 |= BIT(27);
rtl8xxxu_write32(priv, REG_TX_CCK_RFON, val32);
val32 = rtl8xxxu_read32(priv, REG_TX_CCK_BBON);
val32 &= ~(BIT(27) | BIT(26));
val32 |= BIT(27);
rtl8xxxu_write32(priv, REG_TX_CCK_BBON, val32);
val32 = rtl8xxxu_read32(priv, REG_TX_OFDM_RFON);
val32 &= ~(BIT(27) | BIT(26));
val32 |= BIT(27);
rtl8xxxu_write32(priv, REG_TX_OFDM_RFON, val32);
val32 = rtl8xxxu_read32(priv, REG_TX_OFDM_BBON);
val32 &= ~(BIT(27) | BIT(26));
val32 |= BIT(27);
rtl8xxxu_write32(priv, REG_TX_OFDM_BBON, val32);
val32 = rtl8xxxu_read32(priv, REG_TX_TO_TX);
val32 &= ~(BIT(27) | BIT(26));
val32 |= BIT(27);
rtl8xxxu_write32(priv, REG_TX_TO_TX, val32);
}
if (priv->fops->set_crystal_cap)
priv->fops->set_crystal_cap(priv, priv->default_crystal_cap);
if (priv->rtl_chip == RTL8192E)
rtl8xxxu_write32(priv, REG_AFE_XTAL_CTRL, 0x000f81fb);
return 0;
}
static int rtl8xxxu_init_rf_regs(struct rtl8xxxu_priv *priv,
const struct rtl8xxxu_rfregval *array,
enum rtl8xxxu_rfpath path)
{
int i, ret;
u8 reg;
u32 val;
for (i = 0; ; i++) {
reg = array[i].reg;
val = array[i].val;
if (reg == 0xff && val == 0xffffffff)
break;
switch (reg) {
case 0xfe:
msleep(50);
continue;
case 0xfd:
mdelay(5);
continue;
case 0xfc:
mdelay(1);
continue;
case 0xfb:
udelay(50);
continue;
case 0xfa:
udelay(5);
continue;
case 0xf9:
udelay(1);
continue;
}
ret = rtl8xxxu_write_rfreg(priv, path, reg, val);
if (ret) {
dev_warn(&priv->udev->dev,
"Failed to initialize RF\n");
return -EAGAIN;
}
udelay(1);
}
return 0;
}
int rtl8xxxu_init_phy_rf(struct rtl8xxxu_priv *priv,
const struct rtl8xxxu_rfregval *table,
enum rtl8xxxu_rfpath path)
{
u32 val32;
u16 val16, rfsi_rfenv;
u16 reg_sw_ctrl, reg_int_oe, reg_hssi_parm2;
switch (path) {
case RF_A:
reg_sw_ctrl = REG_FPGA0_XA_RF_SW_CTRL;
reg_int_oe = REG_FPGA0_XA_RF_INT_OE;
reg_hssi_parm2 = REG_FPGA0_XA_HSSI_PARM2;
break;
case RF_B:
reg_sw_ctrl = REG_FPGA0_XB_RF_SW_CTRL;
reg_int_oe = REG_FPGA0_XB_RF_INT_OE;
reg_hssi_parm2 = REG_FPGA0_XB_HSSI_PARM2;
break;
default:
dev_err(&priv->udev->dev, "%s:Unsupported RF path %c\n",
__func__, path + 'A');
return -EINVAL;
}
/* For path B, use XB */
rfsi_rfenv = rtl8xxxu_read16(priv, reg_sw_ctrl);
rfsi_rfenv &= FPGA0_RF_RFENV;
/*
* These two we might be able to optimize into one
*/
val32 = rtl8xxxu_read32(priv, reg_int_oe);
val32 |= BIT(20); /* 0x10 << 16 */
rtl8xxxu_write32(priv, reg_int_oe, val32);
udelay(1);
val32 = rtl8xxxu_read32(priv, reg_int_oe);
val32 |= BIT(4);
rtl8xxxu_write32(priv, reg_int_oe, val32);
udelay(1);
/*
* These two we might be able to optimize into one
*/
val32 = rtl8xxxu_read32(priv, reg_hssi_parm2);
val32 &= ~FPGA0_HSSI_3WIRE_ADDR_LEN;
rtl8xxxu_write32(priv, reg_hssi_parm2, val32);
udelay(1);
val32 = rtl8xxxu_read32(priv, reg_hssi_parm2);
val32 &= ~FPGA0_HSSI_3WIRE_DATA_LEN;
rtl8xxxu_write32(priv, reg_hssi_parm2, val32);
udelay(1);
rtl8xxxu_init_rf_regs(priv, table, path);
/* For path B, use XB */
val16 = rtl8xxxu_read16(priv, reg_sw_ctrl);
val16 &= ~FPGA0_RF_RFENV;
val16 |= rfsi_rfenv;
rtl8xxxu_write16(priv, reg_sw_ctrl, val16);
return 0;
}
static int rtl8xxxu_llt_write(struct rtl8xxxu_priv *priv, u8 address, u8 data)
{
int ret = -EBUSY;
int count = 0;
u32 value;
value = LLT_OP_WRITE | address << 8 | data;
rtl8xxxu_write32(priv, REG_LLT_INIT, value);
do {
value = rtl8xxxu_read32(priv, REG_LLT_INIT);
if ((value & LLT_OP_MASK) == LLT_OP_INACTIVE) {
ret = 0;
break;
}
} while (count++ < 20);
return ret;
}
int rtl8xxxu_init_llt_table(struct rtl8xxxu_priv *priv)
{
int ret;
int i, last_entry;
u8 last_tx_page;
last_tx_page = priv->fops->total_page_num;
if (priv->fops->last_llt_entry)
last_entry = priv->fops->last_llt_entry;
else
last_entry = 255;
for (i = 0; i < last_tx_page; i++) {
ret = rtl8xxxu_llt_write(priv, i, i + 1);
if (ret)
goto exit;
}
ret = rtl8xxxu_llt_write(priv, last_tx_page, 0xff);
if (ret)
goto exit;
/* Mark remaining pages as a ring buffer */
for (i = last_tx_page + 1; i < last_entry; i++) {
ret = rtl8xxxu_llt_write(priv, i, (i + 1));
if (ret)
goto exit;
}
/* Let last entry point to the start entry of ring buffer */
ret = rtl8xxxu_llt_write(priv, last_entry, last_tx_page + 1);
if (ret)
goto exit;
exit:
return ret;
}
int rtl8xxxu_auto_llt_table(struct rtl8xxxu_priv *priv)
{
u32 val32;
int ret = 0;
int i;
val32 = rtl8xxxu_read32(priv, REG_AUTO_LLT);
val32 |= AUTO_LLT_INIT_LLT;
rtl8xxxu_write32(priv, REG_AUTO_LLT, val32);
for (i = 500; i; i--) {
val32 = rtl8xxxu_read32(priv, REG_AUTO_LLT);
if (!(val32 & AUTO_LLT_INIT_LLT))
break;
usleep_range(2, 4);
}
if (!i) {
ret = -EBUSY;
dev_warn(&priv->udev->dev, "LLT table init failed\n");
}
return ret;
}
static int rtl8xxxu_init_queue_priority(struct rtl8xxxu_priv *priv)
{
u16 val16, hi, lo;
u16 hiq, mgq, bkq, beq, viq, voq;
int hip, mgp, bkp, bep, vip, vop;
int ret = 0;
u32 val32;
switch (priv->ep_tx_count) {
case 1:
if (priv->ep_tx_high_queue) {
hi = TRXDMA_QUEUE_HIGH;
} else if (priv->ep_tx_low_queue) {
hi = TRXDMA_QUEUE_LOW;
} else if (priv->ep_tx_normal_queue) {
hi = TRXDMA_QUEUE_NORMAL;
} else {
hi = 0;
ret = -EINVAL;
}
hiq = hi;
mgq = hi;
bkq = hi;
beq = hi;
viq = hi;
voq = hi;
hip = 0;
mgp = 0;
bkp = 0;
bep = 0;
vip = 0;
vop = 0;
break;
case 2:
if (priv->ep_tx_high_queue && priv->ep_tx_low_queue) {
hi = TRXDMA_QUEUE_HIGH;
lo = TRXDMA_QUEUE_LOW;
} else if (priv->ep_tx_normal_queue && priv->ep_tx_low_queue) {
hi = TRXDMA_QUEUE_NORMAL;
lo = TRXDMA_QUEUE_LOW;
} else if (priv->ep_tx_high_queue && priv->ep_tx_normal_queue) {
hi = TRXDMA_QUEUE_HIGH;
lo = TRXDMA_QUEUE_NORMAL;
} else {
ret = -EINVAL;
hi = 0;
lo = 0;
}
hiq = hi;
mgq = hi;
bkq = lo;
beq = lo;
viq = hi;
voq = hi;
hip = 0;
mgp = 0;
bkp = 1;
bep = 1;
vip = 0;
vop = 0;
break;
case 3:
beq = TRXDMA_QUEUE_LOW;
bkq = TRXDMA_QUEUE_LOW;
viq = TRXDMA_QUEUE_NORMAL;
voq = TRXDMA_QUEUE_HIGH;
mgq = TRXDMA_QUEUE_HIGH;
hiq = TRXDMA_QUEUE_HIGH;
hip = hiq ^ 3;
mgp = mgq ^ 3;
bkp = bkq ^ 3;
bep = beq ^ 3;
vip = viq ^ 3;
vop = viq ^ 3;
break;
default:
ret = -EINVAL;
}
/*
* None of the vendor drivers are configuring the beacon
* queue here .... why?
*/
if (!ret) {
/* Only RTL8192F seems to do it like this. */
if (priv->rtl_chip == RTL8192F) {
val32 = rtl8xxxu_read32(priv, REG_TRXDMA_CTRL);
val32 &= 0x7;
val32 |= (voq << TRXDMA_CTRL_VOQ_SHIFT_8192F) |
(viq << TRXDMA_CTRL_VIQ_SHIFT_8192F) |
(beq << TRXDMA_CTRL_BEQ_SHIFT_8192F) |
(bkq << TRXDMA_CTRL_BKQ_SHIFT_8192F) |
(mgq << TRXDMA_CTRL_MGQ_SHIFT_8192F) |
(hiq << TRXDMA_CTRL_HIQ_SHIFT_8192F);
rtl8xxxu_write32(priv, REG_TRXDMA_CTRL, val32);
} else {
val16 = rtl8xxxu_read16(priv, REG_TRXDMA_CTRL);
val16 &= 0x7;
val16 |= (voq << TRXDMA_CTRL_VOQ_SHIFT) |
(viq << TRXDMA_CTRL_VIQ_SHIFT) |
(beq << TRXDMA_CTRL_BEQ_SHIFT) |
(bkq << TRXDMA_CTRL_BKQ_SHIFT) |
(mgq << TRXDMA_CTRL_MGQ_SHIFT) |
(hiq << TRXDMA_CTRL_HIQ_SHIFT);
rtl8xxxu_write16(priv, REG_TRXDMA_CTRL, val16);
}
priv->pipe_out[TXDESC_QUEUE_VO] =
usb_sndbulkpipe(priv->udev, priv->out_ep[vop]);
priv->pipe_out[TXDESC_QUEUE_VI] =
usb_sndbulkpipe(priv->udev, priv->out_ep[vip]);
priv->pipe_out[TXDESC_QUEUE_BE] =
usb_sndbulkpipe(priv->udev, priv->out_ep[bep]);
priv->pipe_out[TXDESC_QUEUE_BK] =
usb_sndbulkpipe(priv->udev, priv->out_ep[bkp]);
priv->pipe_out[TXDESC_QUEUE_BEACON] =
usb_sndbulkpipe(priv->udev, priv->out_ep[0]);
priv->pipe_out[TXDESC_QUEUE_MGNT] =
usb_sndbulkpipe(priv->udev, priv->out_ep[mgp]);
priv->pipe_out[TXDESC_QUEUE_HIGH] =
usb_sndbulkpipe(priv->udev, priv->out_ep[hip]);
priv->pipe_out[TXDESC_QUEUE_CMD] =
usb_sndbulkpipe(priv->udev, priv->out_ep[0]);
}
return ret;
}
void rtl8xxxu_fill_iqk_matrix_a(struct rtl8xxxu_priv *priv, bool iqk_ok,
int result[][8], int candidate, bool tx_only)
{
u32 oldval, x, tx0_a, reg;
int y, tx0_c;
u32 val32;
if (!iqk_ok)
return;
val32 = rtl8xxxu_read32(priv, REG_OFDM0_XA_TX_IQ_IMBALANCE);
oldval = val32 >> 22;
x = result[candidate][0];
if ((x & 0x00000200) != 0)
x = x | 0xfffffc00;
tx0_a = (x * oldval) >> 8;
val32 = rtl8xxxu_read32(priv, REG_OFDM0_XA_TX_IQ_IMBALANCE);
val32 &= ~0x3ff;
val32 |= tx0_a;
rtl8xxxu_write32(priv, REG_OFDM0_XA_TX_IQ_IMBALANCE, val32);
val32 = rtl8xxxu_read32(priv, REG_OFDM0_ENERGY_CCA_THRES);
val32 &= ~BIT(31);
if ((x * oldval >> 7) & 0x1)
val32 |= BIT(31);
rtl8xxxu_write32(priv, REG_OFDM0_ENERGY_CCA_THRES, val32);
y = result[candidate][1];
if ((y & 0x00000200) != 0)
y = y | 0xfffffc00;
tx0_c = (y * oldval) >> 8;
val32 = rtl8xxxu_read32(priv, REG_OFDM0_XC_TX_AFE);
val32 &= ~0xf0000000;
val32 |= (((tx0_c & 0x3c0) >> 6) << 28);
rtl8xxxu_write32(priv, REG_OFDM0_XC_TX_AFE, val32);
val32 = rtl8xxxu_read32(priv, REG_OFDM0_XA_TX_IQ_IMBALANCE);
val32 &= ~0x003f0000;
val32 |= ((tx0_c & 0x3f) << 16);
rtl8xxxu_write32(priv, REG_OFDM0_XA_TX_IQ_IMBALANCE, val32);
val32 = rtl8xxxu_read32(priv, REG_OFDM0_ENERGY_CCA_THRES);
val32 &= ~BIT(29);
if ((y * oldval >> 7) & 0x1)
val32 |= BIT(29);
rtl8xxxu_write32(priv, REG_OFDM0_ENERGY_CCA_THRES, val32);
if (tx_only) {
dev_dbg(&priv->udev->dev, "%s: only TX\n", __func__);
return;
}
reg = result[candidate][2];
val32 = rtl8xxxu_read32(priv, REG_OFDM0_XA_RX_IQ_IMBALANCE);
val32 &= ~0x3ff;
val32 |= (reg & 0x3ff);
rtl8xxxu_write32(priv, REG_OFDM0_XA_RX_IQ_IMBALANCE, val32);
reg = result[candidate][3] & 0x3F;
val32 = rtl8xxxu_read32(priv, REG_OFDM0_XA_RX_IQ_IMBALANCE);
val32 &= ~0xfc00;
val32 |= ((reg << 10) & 0xfc00);
rtl8xxxu_write32(priv, REG_OFDM0_XA_RX_IQ_IMBALANCE, val32);
reg = (result[candidate][3] >> 6) & 0xF;
val32 = rtl8xxxu_read32(priv, REG_OFDM0_RX_IQ_EXT_ANTA);
val32 &= ~0xf0000000;
val32 |= (reg << 28);
rtl8xxxu_write32(priv, REG_OFDM0_RX_IQ_EXT_ANTA, val32);
}
void rtl8xxxu_fill_iqk_matrix_b(struct rtl8xxxu_priv *priv, bool iqk_ok,
int result[][8], int candidate, bool tx_only)
{
u32 oldval, x, tx1_a, reg;
int y, tx1_c;
u32 val32;
if (!iqk_ok)
return;
val32 = rtl8xxxu_read32(priv, REG_OFDM0_XB_TX_IQ_IMBALANCE);
oldval = val32 >> 22;
x = result[candidate][4];
if ((x & 0x00000200) != 0)
x = x | 0xfffffc00;
tx1_a = (x * oldval) >> 8;
val32 = rtl8xxxu_read32(priv, REG_OFDM0_XB_TX_IQ_IMBALANCE);
val32 &= ~0x3ff;
val32 |= tx1_a;
rtl8xxxu_write32(priv, REG_OFDM0_XB_TX_IQ_IMBALANCE, val32);
val32 = rtl8xxxu_read32(priv, REG_OFDM0_ENERGY_CCA_THRES);
val32 &= ~BIT(27);
if ((x * oldval >> 7) & 0x1)
val32 |= BIT(27);
rtl8xxxu_write32(priv, REG_OFDM0_ENERGY_CCA_THRES, val32);
y = result[candidate][5];
if ((y & 0x00000200) != 0)
y = y | 0xfffffc00;
tx1_c = (y * oldval) >> 8;
val32 = rtl8xxxu_read32(priv, REG_OFDM0_XD_TX_AFE);
val32 &= ~0xf0000000;
val32 |= (((tx1_c & 0x3c0) >> 6) << 28);
rtl8xxxu_write32(priv, REG_OFDM0_XD_TX_AFE, val32);
val32 = rtl8xxxu_read32(priv, REG_OFDM0_XB_TX_IQ_IMBALANCE);
val32 &= ~0x003f0000;
val32 |= ((tx1_c & 0x3f) << 16);
rtl8xxxu_write32(priv, REG_OFDM0_XB_TX_IQ_IMBALANCE, val32);
val32 = rtl8xxxu_read32(priv, REG_OFDM0_ENERGY_CCA_THRES);
val32 &= ~BIT(25);
if ((y * oldval >> 7) & 0x1)
val32 |= BIT(25);
rtl8xxxu_write32(priv, REG_OFDM0_ENERGY_CCA_THRES, val32);
if (tx_only) {
dev_dbg(&priv->udev->dev, "%s: only TX\n", __func__);
return;
}
reg = result[candidate][6];
val32 = rtl8xxxu_read32(priv, REG_OFDM0_XB_RX_IQ_IMBALANCE);
val32 &= ~0x3ff;
val32 |= (reg & 0x3ff);
rtl8xxxu_write32(priv, REG_OFDM0_XB_RX_IQ_IMBALANCE, val32);
reg = result[candidate][7] & 0x3f;
val32 = rtl8xxxu_read32(priv, REG_OFDM0_XB_RX_IQ_IMBALANCE);
val32 &= ~0xfc00;
val32 |= ((reg << 10) & 0xfc00);
rtl8xxxu_write32(priv, REG_OFDM0_XB_RX_IQ_IMBALANCE, val32);
reg = (result[candidate][7] >> 6) & 0xf;
if (priv->rtl_chip == RTL8192F) {
rtl8xxxu_write32_mask(priv, REG_RXIQB_EXT, 0x000000f0, reg);
} else {
val32 = rtl8xxxu_read32(priv, REG_OFDM0_AGC_RSSI_TABLE);
val32 &= ~0x0000f000;
val32 |= (reg << 12);
rtl8xxxu_write32(priv, REG_OFDM0_AGC_RSSI_TABLE, val32);
}
}
#define MAX_TOLERANCE 5
bool rtl8xxxu_simularity_compare(struct rtl8xxxu_priv *priv,
int result[][8], int c1, int c2)
{
u32 i, j, diff, simubitmap, bound = 0;
int candidate[2] = {-1, -1}; /* for path A and path B */
bool retval = true;
if (priv->tx_paths > 1)
bound = 8;
else
bound = 4;
simubitmap = 0;
for (i = 0; i < bound; i++) {
diff = (result[c1][i] > result[c2][i]) ?
(result[c1][i] - result[c2][i]) :
(result[c2][i] - result[c1][i]);
if (diff > MAX_TOLERANCE) {
if ((i == 2 || i == 6) && !simubitmap) {
if (result[c1][i] + result[c1][i + 1] == 0)
candidate[(i / 4)] = c2;
else if (result[c2][i] + result[c2][i + 1] == 0)
candidate[(i / 4)] = c1;
else
simubitmap = simubitmap | (1 << i);
} else {
simubitmap = simubitmap | (1 << i);
}
}
}
if (simubitmap == 0) {
for (i = 0; i < (bound / 4); i++) {
if (candidate[i] >= 0) {
for (j = i * 4; j < (i + 1) * 4 - 2; j++)
result[3][j] = result[candidate[i]][j];
retval = false;
}
}
return retval;
} else if (!(simubitmap & 0x0f)) {
/* path A OK */
for (i = 0; i < 4; i++)
result[3][i] = result[c1][i];
} else if (!(simubitmap & 0xf0) && priv->tx_paths > 1) {
/* path B OK */
for (i = 4; i < 8; i++)
result[3][i] = result[c1][i];
}
return false;
}
bool rtl8xxxu_gen2_simularity_compare(struct rtl8xxxu_priv *priv,
int result[][8], int c1, int c2)
{
u32 i, j, diff, simubitmap, bound = 0;
int candidate[2] = {-1, -1}; /* for path A and path B */
int tmp1, tmp2;
bool retval = true;
if (priv->tx_paths > 1)
bound = 8;
else
bound = 4;
simubitmap = 0;
for (i = 0; i < bound; i++) {
if (i & 1) {
if ((result[c1][i] & 0x00000200))
tmp1 = result[c1][i] | 0xfffffc00;
else
tmp1 = result[c1][i];
if ((result[c2][i]& 0x00000200))
tmp2 = result[c2][i] | 0xfffffc00;
else
tmp2 = result[c2][i];
} else {
tmp1 = result[c1][i];
tmp2 = result[c2][i];
}
diff = (tmp1 > tmp2) ? (tmp1 - tmp2) : (tmp2 - tmp1);
if (diff > MAX_TOLERANCE) {
if ((i == 2 || i == 6) && !simubitmap) {
if (result[c1][i] + result[c1][i + 1] == 0)
candidate[(i / 4)] = c2;
else if (result[c2][i] + result[c2][i + 1] == 0)
candidate[(i / 4)] = c1;
else
simubitmap = simubitmap | (1 << i);
} else {
simubitmap = simubitmap | (1 << i);
}
}
}
if (simubitmap == 0) {
for (i = 0; i < (bound / 4); i++) {
if (candidate[i] >= 0) {
for (j = i * 4; j < (i + 1) * 4 - 2; j++)
result[3][j] = result[candidate[i]][j];
retval = false;
}
}
return retval;
} else {
if (!(simubitmap & 0x03)) {
/* path A TX OK */
for (i = 0; i < 2; i++)
result[3][i] = result[c1][i];
}
if (!(simubitmap & 0x0c)) {
/* path A RX OK */
for (i = 2; i < 4; i++)
result[3][i] = result[c1][i];
}
if (!(simubitmap & 0x30) && priv->tx_paths > 1) {
/* path B TX OK */
for (i = 4; i < 6; i++)
result[3][i] = result[c1][i];
}
if (!(simubitmap & 0xc0) && priv->tx_paths > 1) {
/* path B RX OK */
for (i = 6; i < 8; i++)
result[3][i] = result[c1][i];
}
}
return false;
}
void
rtl8xxxu_save_mac_regs(struct rtl8xxxu_priv *priv, const u32 *reg, u32 *backup)
{
int i;
for (i = 0; i < (RTL8XXXU_MAC_REGS - 1); i++)
backup[i] = rtl8xxxu_read8(priv, reg[i]);
backup[i] = rtl8xxxu_read32(priv, reg[i]);
}
void rtl8xxxu_restore_mac_regs(struct rtl8xxxu_priv *priv,
const u32 *reg, u32 *backup)
{
int i;
for (i = 0; i < (RTL8XXXU_MAC_REGS - 1); i++)
rtl8xxxu_write8(priv, reg[i], backup[i]);
rtl8xxxu_write32(priv, reg[i], backup[i]);
}
void rtl8xxxu_save_regs(struct rtl8xxxu_priv *priv, const u32 *regs,
u32 *backup, int count)
{
int i;
for (i = 0; i < count; i++)
backup[i] = rtl8xxxu_read32(priv, regs[i]);
}
void rtl8xxxu_restore_regs(struct rtl8xxxu_priv *priv, const u32 *regs,
u32 *backup, int count)
{
int i;
for (i = 0; i < count; i++)
rtl8xxxu_write32(priv, regs[i], backup[i]);
}
void rtl8xxxu_path_adda_on(struct rtl8xxxu_priv *priv, const u32 *regs,
bool path_a_on)
{
u32 path_on;
int i;
if (priv->tx_paths == 1) {
path_on = priv->fops->adda_1t_path_on;
rtl8xxxu_write32(priv, regs[0], priv->fops->adda_1t_init);
} else {
path_on = path_a_on ? priv->fops->adda_2t_path_on_a :
priv->fops->adda_2t_path_on_b;
rtl8xxxu_write32(priv, regs[0], path_on);
}
for (i = 1 ; i < RTL8XXXU_ADDA_REGS ; i++)
rtl8xxxu_write32(priv, regs[i], path_on);
}
void rtl8xxxu_mac_calibration(struct rtl8xxxu_priv *priv,
const u32 *regs, u32 *backup)
{
int i = 0;
rtl8xxxu_write8(priv, regs[i], 0x3f);
for (i = 1 ; i < (RTL8XXXU_MAC_REGS - 1); i++)
rtl8xxxu_write8(priv, regs[i], (u8)(backup[i] & ~BIT(3)));
rtl8xxxu_write8(priv, regs[i], (u8)(backup[i] & ~BIT(5)));
}
static int rtl8xxxu_iqk_path_a(struct rtl8xxxu_priv *priv)
{
u32 reg_eac, reg_e94, reg_e9c, reg_ea4, val32;
int result = 0;
/* path-A IQK setting */
rtl8xxxu_write32(priv, REG_TX_IQK_TONE_A, 0x10008c1f);
rtl8xxxu_write32(priv, REG_RX_IQK_TONE_A, 0x10008c1f);
rtl8xxxu_write32(priv, REG_TX_IQK_PI_A, 0x82140102);
val32 = (priv->rf_paths > 1) ? 0x28160202 :
/*IS_81xxC_VENDOR_UMC_B_CUT(pHalData->VersionID)?0x28160202: */
0x28160502;
rtl8xxxu_write32(priv, REG_RX_IQK_PI_A, val32);
/* path-B IQK setting */
if (priv->rf_paths > 1) {
rtl8xxxu_write32(priv, REG_TX_IQK_TONE_B, 0x10008c22);
rtl8xxxu_write32(priv, REG_RX_IQK_TONE_B, 0x10008c22);
rtl8xxxu_write32(priv, REG_TX_IQK_PI_B, 0x82140102);
rtl8xxxu_write32(priv, REG_RX_IQK_PI_B, 0x28160202);
}
/* LO calibration setting */
rtl8xxxu_write32(priv, REG_IQK_AGC_RSP, 0x001028d1);
/* One shot, path A LOK & IQK */
rtl8xxxu_write32(priv, REG_IQK_AGC_PTS, 0xf9000000);
rtl8xxxu_write32(priv, REG_IQK_AGC_PTS, 0xf8000000);
mdelay(1);
/* Check failed */
reg_eac = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_A_2);
reg_e94 = rtl8xxxu_read32(priv, REG_TX_POWER_BEFORE_IQK_A);
reg_e9c = rtl8xxxu_read32(priv, REG_TX_POWER_AFTER_IQK_A);
reg_ea4 = rtl8xxxu_read32(priv, REG_RX_POWER_BEFORE_IQK_A_2);
if (!(reg_eac & BIT(28)) &&
((reg_e94 & 0x03ff0000) != 0x01420000) &&
((reg_e9c & 0x03ff0000) != 0x00420000))
result |= 0x01;
else /* If TX not OK, ignore RX */
goto out;
/* If TX is OK, check whether RX is OK */
if (!(reg_eac & BIT(27)) &&
((reg_ea4 & 0x03ff0000) != 0x01320000) &&
((reg_eac & 0x03ff0000) != 0x00360000))
result |= 0x02;
else
dev_warn(&priv->udev->dev, "%s: Path A RX IQK failed!\n",
__func__);
out:
return result;
}
static int rtl8xxxu_iqk_path_b(struct rtl8xxxu_priv *priv)
{
u32 reg_eac, reg_eb4, reg_ebc, reg_ec4, reg_ecc;
int result = 0;
/* One shot, path B LOK & IQK */
rtl8xxxu_write32(priv, REG_IQK_AGC_CONT, 0x00000002);
rtl8xxxu_write32(priv, REG_IQK_AGC_CONT, 0x00000000);
mdelay(1);
/* Check failed */
reg_eac = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_A_2);
reg_eb4 = rtl8xxxu_read32(priv, REG_TX_POWER_BEFORE_IQK_B);
reg_ebc = rtl8xxxu_read32(priv, REG_TX_POWER_AFTER_IQK_B);
reg_ec4 = rtl8xxxu_read32(priv, REG_RX_POWER_BEFORE_IQK_B_2);
reg_ecc = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_B_2);
if (!(reg_eac & BIT(31)) &&
((reg_eb4 & 0x03ff0000) != 0x01420000) &&
((reg_ebc & 0x03ff0000) != 0x00420000))
result |= 0x01;
else
goto out;
if (!(reg_eac & BIT(30)) &&
(((reg_ec4 & 0x03ff0000) >> 16) != 0x132) &&
(((reg_ecc & 0x03ff0000) >> 16) != 0x36))
result |= 0x02;
else
dev_warn(&priv->udev->dev, "%s: Path B RX IQK failed!\n",
__func__);
out:
return result;
}
static void rtl8xxxu_phy_iqcalibrate(struct rtl8xxxu_priv *priv,
int result[][8], int t)
{
struct device *dev = &priv->udev->dev;
u32 i, val32;
int path_a_ok, path_b_ok;
int retry = 2;
static const u32 adda_regs[RTL8XXXU_ADDA_REGS] = {
REG_FPGA0_XCD_SWITCH_CTRL, REG_BLUETOOTH,
REG_RX_WAIT_CCA, REG_TX_CCK_RFON,
REG_TX_CCK_BBON, REG_TX_OFDM_RFON,
REG_TX_OFDM_BBON, REG_TX_TO_RX,
REG_TX_TO_TX, REG_RX_CCK,
REG_RX_OFDM, REG_RX_WAIT_RIFS,
REG_RX_TO_RX, REG_STANDBY,
REG_SLEEP, REG_PMPD_ANAEN
};
static const u32 iqk_mac_regs[RTL8XXXU_MAC_REGS] = {
REG_TXPAUSE, REG_BEACON_CTRL,
REG_BEACON_CTRL_1, REG_GPIO_MUXCFG
};
static const u32 iqk_bb_regs[RTL8XXXU_BB_REGS] = {
REG_OFDM0_TRX_PATH_ENABLE, REG_OFDM0_TR_MUX_PAR,
REG_FPGA0_XCD_RF_SW_CTRL, REG_CONFIG_ANT_A, REG_CONFIG_ANT_B,
REG_FPGA0_XAB_RF_SW_CTRL, REG_FPGA0_XA_RF_INT_OE,
REG_FPGA0_XB_RF_INT_OE, REG_FPGA0_RF_MODE
};
/*
* Note: IQ calibration must be performed after loading
* PHY_REG.txt , and radio_a, radio_b.txt
*/
if (t == 0) {
/* Save ADDA parameters, turn Path A ADDA on */
rtl8xxxu_save_regs(priv, adda_regs, priv->adda_backup,
RTL8XXXU_ADDA_REGS);
rtl8xxxu_save_mac_regs(priv, iqk_mac_regs, priv->mac_backup);
rtl8xxxu_save_regs(priv, iqk_bb_regs,
priv->bb_backup, RTL8XXXU_BB_REGS);
}
rtl8xxxu_path_adda_on(priv, adda_regs, true);
if (t == 0) {
val32 = rtl8xxxu_read32(priv, REG_FPGA0_XA_HSSI_PARM1);
if (val32 & FPGA0_HSSI_PARM1_PI)
priv->pi_enabled = 1;
}
if (!priv->pi_enabled) {
/* Switch BB to PI mode to do IQ Calibration. */
rtl8xxxu_write32(priv, REG_FPGA0_XA_HSSI_PARM1, 0x01000100);
rtl8xxxu_write32(priv, REG_FPGA0_XB_HSSI_PARM1, 0x01000100);
}
val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE);
val32 &= ~FPGA_RF_MODE_CCK;
rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32);
rtl8xxxu_write32(priv, REG_OFDM0_TRX_PATH_ENABLE, 0x03a05600);
rtl8xxxu_write32(priv, REG_OFDM0_TR_MUX_PAR, 0x000800e4);
rtl8xxxu_write32(priv, REG_FPGA0_XCD_RF_SW_CTRL, 0x22204000);
if (!priv->no_pape) {
val32 = rtl8xxxu_read32(priv, REG_FPGA0_XAB_RF_SW_CTRL);
val32 |= (FPGA0_RF_PAPE |
(FPGA0_RF_PAPE << FPGA0_RF_BD_CTRL_SHIFT));
rtl8xxxu_write32(priv, REG_FPGA0_XAB_RF_SW_CTRL, val32);
}
val32 = rtl8xxxu_read32(priv, REG_FPGA0_XA_RF_INT_OE);
val32 &= ~BIT(10);
rtl8xxxu_write32(priv, REG_FPGA0_XA_RF_INT_OE, val32);
val32 = rtl8xxxu_read32(priv, REG_FPGA0_XB_RF_INT_OE);
val32 &= ~BIT(10);
rtl8xxxu_write32(priv, REG_FPGA0_XB_RF_INT_OE, val32);
if (priv->tx_paths > 1) {
rtl8xxxu_write32(priv, REG_FPGA0_XA_LSSI_PARM, 0x00010000);
rtl8xxxu_write32(priv, REG_FPGA0_XB_LSSI_PARM, 0x00010000);
}
/* MAC settings */
rtl8xxxu_mac_calibration(priv, iqk_mac_regs, priv->mac_backup);
/* Page B init */
rtl8xxxu_write32(priv, REG_CONFIG_ANT_A, 0x00080000);
if (priv->tx_paths > 1)
rtl8xxxu_write32(priv, REG_CONFIG_ANT_B, 0x00080000);
/* IQ calibration setting */
rtl8xxxu_write32(priv, REG_FPGA0_IQK, 0x80800000);
rtl8xxxu_write32(priv, REG_TX_IQK, 0x01007c00);
rtl8xxxu_write32(priv, REG_RX_IQK, 0x01004800);
for (i = 0; i < retry; i++) {
path_a_ok = rtl8xxxu_iqk_path_a(priv);
if (path_a_ok == 0x03) {
val32 = rtl8xxxu_read32(priv,
REG_TX_POWER_BEFORE_IQK_A);
result[t][0] = (val32 >> 16) & 0x3ff;
val32 = rtl8xxxu_read32(priv,
REG_TX_POWER_AFTER_IQK_A);
result[t][1] = (val32 >> 16) & 0x3ff;
val32 = rtl8xxxu_read32(priv,
REG_RX_POWER_BEFORE_IQK_A_2);
result[t][2] = (val32 >> 16) & 0x3ff;
val32 = rtl8xxxu_read32(priv,
REG_RX_POWER_AFTER_IQK_A_2);
result[t][3] = (val32 >> 16) & 0x3ff;
break;
} else if (i == (retry - 1) && path_a_ok == 0x01) {
/* TX IQK OK */
dev_dbg(dev, "%s: Path A IQK Only Tx Success!!\n",
__func__);
val32 = rtl8xxxu_read32(priv,
REG_TX_POWER_BEFORE_IQK_A);
result[t][0] = (val32 >> 16) & 0x3ff;
val32 = rtl8xxxu_read32(priv,
REG_TX_POWER_AFTER_IQK_A);
result[t][1] = (val32 >> 16) & 0x3ff;
}
}
if (!path_a_ok)
dev_dbg(dev, "%s: Path A IQK failed!\n", __func__);
if (priv->tx_paths > 1) {
/*
* Path A into standby
*/
rtl8xxxu_write32(priv, REG_FPGA0_IQK, 0x0);
rtl8xxxu_write32(priv, REG_FPGA0_XA_LSSI_PARM, 0x00010000);
rtl8xxxu_write32(priv, REG_FPGA0_IQK, 0x80800000);
/* Turn Path B ADDA on */
rtl8xxxu_path_adda_on(priv, adda_regs, false);
for (i = 0; i < retry; i++) {
path_b_ok = rtl8xxxu_iqk_path_b(priv);
if (path_b_ok == 0x03) {
val32 = rtl8xxxu_read32(priv, REG_TX_POWER_BEFORE_IQK_B);
result[t][4] = (val32 >> 16) & 0x3ff;
val32 = rtl8xxxu_read32(priv, REG_TX_POWER_AFTER_IQK_B);
result[t][5] = (val32 >> 16) & 0x3ff;
val32 = rtl8xxxu_read32(priv, REG_RX_POWER_BEFORE_IQK_B_2);
result[t][6] = (val32 >> 16) & 0x3ff;
val32 = rtl8xxxu_read32(priv, REG_RX_POWER_AFTER_IQK_B_2);
result[t][7] = (val32 >> 16) & 0x3ff;
break;
} else if (i == (retry - 1) && path_b_ok == 0x01) {
/* TX IQK OK */
val32 = rtl8xxxu_read32(priv, REG_TX_POWER_BEFORE_IQK_B);
result[t][4] = (val32 >> 16) & 0x3ff;
val32 = rtl8xxxu_read32(priv, REG_TX_POWER_AFTER_IQK_B);
result[t][5] = (val32 >> 16) & 0x3ff;
}
}
if (!path_b_ok)
dev_dbg(dev, "%s: Path B IQK failed!\n", __func__);
}
/* Back to BB mode, load original value */
rtl8xxxu_write32(priv, REG_FPGA0_IQK, 0);
if (t) {
if (!priv->pi_enabled) {
/*
* Switch back BB to SI mode after finishing
* IQ Calibration
*/
val32 = 0x01000000;
rtl8xxxu_write32(priv, REG_FPGA0_XA_HSSI_PARM1, val32);
rtl8xxxu_write32(priv, REG_FPGA0_XB_HSSI_PARM1, val32);
}
/* Reload ADDA power saving parameters */
rtl8xxxu_restore_regs(priv, adda_regs, priv->adda_backup,
RTL8XXXU_ADDA_REGS);
/* Reload MAC parameters */
rtl8xxxu_restore_mac_regs(priv, iqk_mac_regs, priv->mac_backup);
/* Reload BB parameters */
rtl8xxxu_restore_regs(priv, iqk_bb_regs,
priv->bb_backup, RTL8XXXU_BB_REGS);
/* Restore RX initial gain */
rtl8xxxu_write32(priv, REG_FPGA0_XA_LSSI_PARM, 0x00032ed3);
if (priv->tx_paths > 1) {
rtl8xxxu_write32(priv, REG_FPGA0_XB_LSSI_PARM,
0x00032ed3);
}
/* Load 0xe30 IQC default value */
rtl8xxxu_write32(priv, REG_TX_IQK_TONE_A, 0x01008c00);
rtl8xxxu_write32(priv, REG_RX_IQK_TONE_A, 0x01008c00);
}
}
void rtl8xxxu_gen2_prepare_calibrate(struct rtl8xxxu_priv *priv, u8 start)
{
struct h2c_cmd h2c;
memset(&h2c, 0, sizeof(struct h2c_cmd));
h2c.bt_wlan_calibration.cmd = H2C_8723B_BT_WLAN_CALIBRATION;
h2c.bt_wlan_calibration.data = start;
rtl8xxxu_gen2_h2c_cmd(priv, &h2c, sizeof(h2c.bt_wlan_calibration));
}
void rtl8xxxu_gen1_phy_iq_calibrate(struct rtl8xxxu_priv *priv)
{
struct device *dev = &priv->udev->dev;
int result[4][8]; /* last is final result */
int i, candidate;
bool path_a_ok, path_b_ok;
u32 reg_e94, reg_e9c, reg_ea4, reg_eac;
u32 reg_eb4, reg_ebc, reg_ec4, reg_ecc;
s32 reg_tmp = 0;
bool simu;
memset(result, 0, sizeof(result));
candidate = -1;
path_a_ok = false;
path_b_ok = false;
rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE);
for (i = 0; i < 3; i++) {
rtl8xxxu_phy_iqcalibrate(priv, result, i);
if (i == 1) {
simu = rtl8xxxu_simularity_compare(priv, result, 0, 1);
if (simu) {
candidate = 0;
break;
}
}
if (i == 2) {
simu = rtl8xxxu_simularity_compare(priv, result, 0, 2);
if (simu) {
candidate = 0;
break;
}
simu = rtl8xxxu_simularity_compare(priv, result, 1, 2);
if (simu) {
candidate = 1;
} else {
for (i = 0; i < 8; i++)
reg_tmp += result[3][i];
if (reg_tmp)
candidate = 3;
else
candidate = -1;
}
}
}
for (i = 0; i < 4; i++) {
reg_e94 = result[i][0];
reg_e9c = result[i][1];
reg_ea4 = result[i][2];
reg_eac = result[i][3];
reg_eb4 = result[i][4];
reg_ebc = result[i][5];
reg_ec4 = result[i][6];
reg_ecc = result[i][7];
}
if (candidate >= 0) {
reg_e94 = result[candidate][0];
priv->rege94 = reg_e94;
reg_e9c = result[candidate][1];
priv->rege9c = reg_e9c;
reg_ea4 = result[candidate][2];
reg_eac = result[candidate][3];
reg_eb4 = result[candidate][4];
priv->regeb4 = reg_eb4;
reg_ebc = result[candidate][5];
priv->regebc = reg_ebc;
reg_ec4 = result[candidate][6];
reg_ecc = result[candidate][7];
dev_dbg(dev, "%s: candidate is %x\n", __func__, candidate);
dev_dbg(dev,
"%s: e94 =%x e9c=%x ea4=%x eac=%x eb4=%x ebc=%x ec4=%x ecc=%x\n",
__func__, reg_e94, reg_e9c,
reg_ea4, reg_eac, reg_eb4, reg_ebc, reg_ec4, reg_ecc);
path_a_ok = true;
path_b_ok = true;
} else {
reg_e94 = reg_eb4 = priv->rege94 = priv->regeb4 = 0x100;
reg_e9c = reg_ebc = priv->rege9c = priv->regebc = 0x0;
}
if (reg_e94 && candidate >= 0)
rtl8xxxu_fill_iqk_matrix_a(priv, path_a_ok, result,
candidate, (reg_ea4 == 0));
if (priv->tx_paths > 1 && reg_eb4)
rtl8xxxu_fill_iqk_matrix_b(priv, path_b_ok, result,
candidate, (reg_ec4 == 0));
rtl8xxxu_save_regs(priv, rtl8xxxu_iqk_phy_iq_bb_reg,
priv->bb_recovery_backup, RTL8XXXU_BB_REGS);
}
void rtl8723a_phy_lc_calibrate(struct rtl8xxxu_priv *priv)
{
u32 val32;
u32 rf_amode, rf_bmode = 0, lstf;
/* Check continuous TX and Packet TX */
lstf = rtl8xxxu_read32(priv, REG_OFDM1_LSTF);
if (lstf & OFDM_LSTF_MASK) {
/* Disable all continuous TX */
val32 = lstf & ~OFDM_LSTF_MASK;
rtl8xxxu_write32(priv, REG_OFDM1_LSTF, val32);
/* Read original RF mode Path A */
rf_amode = rtl8xxxu_read_rfreg(priv, RF_A, RF6052_REG_AC);
/* Set RF mode to standby Path A */
rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_AC,
(rf_amode & 0x8ffff) | 0x10000);
/* Path-B */
if (priv->tx_paths > 1) {
rf_bmode = rtl8xxxu_read_rfreg(priv, RF_B,
RF6052_REG_AC);
rtl8xxxu_write_rfreg(priv, RF_B, RF6052_REG_AC,
(rf_bmode & 0x8ffff) | 0x10000);
}
} else {
/* Deal with Packet TX case */
/* block all queues */
rtl8xxxu_write8(priv, REG_TXPAUSE, 0xff);
}
/* Start LC calibration */
if (priv->fops->has_s0s1)
rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_S0S1, 0xdfbe0);
val32 = rtl8xxxu_read_rfreg(priv, RF_A, RF6052_REG_MODE_AG);
val32 |= 0x08000;
rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_MODE_AG, val32);
msleep(100);
if (priv->fops->has_s0s1)
rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_S0S1, 0xdffe0);
/* Restore original parameters */
if (lstf & OFDM_LSTF_MASK) {
/* Path-A */
rtl8xxxu_write32(priv, REG_OFDM1_LSTF, lstf);
rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_AC, rf_amode);
/* Path-B */
if (priv->tx_paths > 1)
rtl8xxxu_write_rfreg(priv, RF_B, RF6052_REG_AC,
rf_bmode);
} else /* Deal with Packet TX case */
rtl8xxxu_write8(priv, REG_TXPAUSE, 0x00);
}
static int rtl8xxxu_set_mac(struct rtl8xxxu_priv *priv, int port_num)
{
int i;
u16 reg;
switch (port_num) {
case 0:
reg = REG_MACID;
break;
case 1:
reg = REG_MACID1;
break;
default:
WARN_ONCE(1, "%s: invalid port_num\n", __func__);
return -EINVAL;
}
for (i = 0; i < ETH_ALEN; i++)
rtl8xxxu_write8(priv, reg + i, priv->vifs[port_num]->addr[i]);
return 0;
}
static int rtl8xxxu_set_bssid(struct rtl8xxxu_priv *priv, const u8 *bssid, int port_num)
{
int i;
u16 reg;
dev_dbg(&priv->udev->dev, "%s: (%pM)\n", __func__, bssid);
switch (port_num) {
case 0:
reg = REG_BSSID;
break;
case 1:
reg = REG_BSSID1;
break;
default:
WARN_ONCE(1, "%s: invalid port_num\n", __func__);
return -EINVAL;
}
for (i = 0; i < ETH_ALEN; i++)
rtl8xxxu_write8(priv, reg + i, bssid[i]);
return 0;
}
static void
rtl8xxxu_set_ampdu_factor(struct rtl8xxxu_priv *priv, u8 ampdu_factor)
{
u8 vals[4] = { 0x41, 0xa8, 0x72, 0xb9 };
u8 max_agg = 0xf;
int i;
ampdu_factor = 1 << (ampdu_factor + 2);
if (ampdu_factor > max_agg)
ampdu_factor = max_agg;
for (i = 0; i < 4; i++) {
if ((vals[i] & 0xf0) > (ampdu_factor << 4))
vals[i] = (vals[i] & 0x0f) | (ampdu_factor << 4);
if ((vals[i] & 0x0f) > ampdu_factor)
vals[i] = (vals[i] & 0xf0) | ampdu_factor;
rtl8xxxu_write8(priv, REG_AGGLEN_LMT + i, vals[i]);
}
}
static void rtl8xxxu_set_ampdu_min_space(struct rtl8xxxu_priv *priv, u8 density)
{
u8 val8;
val8 = rtl8xxxu_read8(priv, REG_AMPDU_MIN_SPACE);
val8 &= 0xf8;
val8 |= density;
rtl8xxxu_write8(priv, REG_AMPDU_MIN_SPACE, val8);
}
static int rtl8xxxu_active_to_emu(struct rtl8xxxu_priv *priv)
{
u8 val8;
int count, ret = 0;
/* Start of rtl8723AU_card_enable_flow */
/* Act to Cardemu sequence*/
/* Turn off RF */
rtl8xxxu_write8(priv, REG_RF_CTRL, 0);
/* 0x004E[7] = 0, switch DPDT_SEL_P output from register 0x0065[2] */
val8 = rtl8xxxu_read8(priv, REG_LEDCFG2);
val8 &= ~LEDCFG2_DPDT_SELECT;
rtl8xxxu_write8(priv, REG_LEDCFG2, val8);
/* 0x0005[1] = 1 turn off MAC by HW state machine*/
val8 = rtl8xxxu_read8(priv, REG_APS_FSMCO + 1);
val8 |= BIT(1);
rtl8xxxu_write8(priv, REG_APS_FSMCO + 1, val8);
for (count = RTL8XXXU_MAX_REG_POLL; count; count--) {
val8 = rtl8xxxu_read8(priv, REG_APS_FSMCO + 1);
if ((val8 & BIT(1)) == 0)
break;
udelay(10);
}
if (!count) {
dev_warn(&priv->udev->dev, "%s: Disabling MAC timed out\n",
__func__);
ret = -EBUSY;
goto exit;
}
/* 0x0000[5] = 1 analog Ips to digital, 1:isolation */
val8 = rtl8xxxu_read8(priv, REG_SYS_ISO_CTRL);
val8 |= SYS_ISO_ANALOG_IPS;
rtl8xxxu_write8(priv, REG_SYS_ISO_CTRL, val8);
/* 0x0020[0] = 0 disable LDOA12 MACRO block*/
val8 = rtl8xxxu_read8(priv, REG_LDOA15_CTRL);
val8 &= ~LDOA15_ENABLE;
rtl8xxxu_write8(priv, REG_LDOA15_CTRL, val8);
exit:
return ret;
}
int rtl8xxxu_active_to_lps(struct rtl8xxxu_priv *priv)
{
u8 val8;
u8 val32;
int count, ret = 0;
rtl8xxxu_write8(priv, REG_TXPAUSE, 0xff);
/*
* Poll - wait for RX packet to complete
*/
for (count = RTL8XXXU_MAX_REG_POLL; count; count--) {
val32 = rtl8xxxu_read32(priv, 0x5f8);
if (!val32)
break;
udelay(10);
}
if (!count) {
dev_warn(&priv->udev->dev,
"%s: RX poll timed out (0x05f8)\n", __func__);
ret = -EBUSY;
goto exit;
}
/* Disable CCK and OFDM, clock gated */
val8 = rtl8xxxu_read8(priv, REG_SYS_FUNC);
val8 &= ~SYS_FUNC_BBRSTB;
rtl8xxxu_write8(priv, REG_SYS_FUNC, val8);
udelay(2);
/* Reset baseband */
val8 = rtl8xxxu_read8(priv, REG_SYS_FUNC);
val8 &= ~SYS_FUNC_BB_GLB_RSTN;
rtl8xxxu_write8(priv, REG_SYS_FUNC, val8);
/* Reset MAC TRX */
val8 = rtl8xxxu_read8(priv, REG_CR);
val8 = CR_HCI_TXDMA_ENABLE | CR_HCI_RXDMA_ENABLE;
rtl8xxxu_write8(priv, REG_CR, val8);
/* Reset MAC TRX */
val8 = rtl8xxxu_read8(priv, REG_CR + 1);
val8 &= ~BIT(1); /* CR_SECURITY_ENABLE */
rtl8xxxu_write8(priv, REG_CR + 1, val8);
/* Respond TX OK to scheduler */
val8 = rtl8xxxu_read8(priv, REG_DUAL_TSF_RST);
val8 |= DUAL_TSF_TX_OK;
rtl8xxxu_write8(priv, REG_DUAL_TSF_RST, val8);
exit:
return ret;
}
void rtl8xxxu_disabled_to_emu(struct rtl8xxxu_priv *priv)
{
u8 val8;
/* Clear suspend enable and power down enable*/
val8 = rtl8xxxu_read8(priv, REG_APS_FSMCO + 1);
val8 &= ~(BIT(3) | BIT(7));
rtl8xxxu_write8(priv, REG_APS_FSMCO + 1, val8);
/* 0x48[16] = 0 to disable GPIO9 as EXT WAKEUP*/
val8 = rtl8xxxu_read8(priv, REG_GPIO_INTM + 2);
val8 &= ~BIT(0);
rtl8xxxu_write8(priv, REG_GPIO_INTM + 2, val8);
/* 0x04[12:11] = 11 enable WL suspend*/
val8 = rtl8xxxu_read8(priv, REG_APS_FSMCO + 1);
val8 &= ~(BIT(3) | BIT(4));
rtl8xxxu_write8(priv, REG_APS_FSMCO + 1, val8);
}
static int rtl8xxxu_emu_to_disabled(struct rtl8xxxu_priv *priv)
{
u8 val8;
/* 0x0007[7:0] = 0x20 SOP option to disable BG/MB */
rtl8xxxu_write8(priv, REG_APS_FSMCO + 3, 0x20);
/* 0x04[12:11] = 01 enable WL suspend */
val8 = rtl8xxxu_read8(priv, REG_APS_FSMCO + 1);
val8 &= ~BIT(4);
val8 |= BIT(3);
rtl8xxxu_write8(priv, REG_APS_FSMCO + 1, val8);
val8 = rtl8xxxu_read8(priv, REG_APS_FSMCO + 1);
val8 |= BIT(7);
rtl8xxxu_write8(priv, REG_APS_FSMCO + 1, val8);
/* 0x48[16] = 1 to enable GPIO9 as EXT wakeup */
val8 = rtl8xxxu_read8(priv, REG_GPIO_INTM + 2);
val8 |= BIT(0);
rtl8xxxu_write8(priv, REG_GPIO_INTM + 2, val8);
return 0;
}
int rtl8xxxu_flush_fifo(struct rtl8xxxu_priv *priv)
{
struct device *dev = &priv->udev->dev;
u32 val32;
int retry, retval;
rtl8xxxu_write8(priv, REG_TXPAUSE, 0xff);
val32 = rtl8xxxu_read32(priv, REG_RXPKT_NUM);
val32 |= RXPKT_NUM_RW_RELEASE_EN;
rtl8xxxu_write32(priv, REG_RXPKT_NUM, val32);
retry = 100;
retval = -EBUSY;
do {
val32 = rtl8xxxu_read32(priv, REG_RXPKT_NUM);
if (val32 & RXPKT_NUM_RXDMA_IDLE) {
retval = 0;
break;
}
} while (retry--);
rtl8xxxu_write16(priv, REG_RQPN_NPQ, 0);
rtl8xxxu_write32(priv, REG_RQPN, 0x80000000);
mdelay(2);
if (!retry)
dev_warn(dev, "Failed to flush FIFO\n");
return retval;
}
void rtl8xxxu_gen1_usb_quirks(struct rtl8xxxu_priv *priv)
{
/* Fix USB interface interference issue */
rtl8xxxu_write8(priv, 0xfe40, 0xe0);
rtl8xxxu_write8(priv, 0xfe41, 0x8d);
rtl8xxxu_write8(priv, 0xfe42, 0x80);
/*
* This sets TXDMA_OFFSET_DROP_DATA_EN (bit 9) as well as bits
* 8 and 5, for which I have found no documentation.
*/
rtl8xxxu_write32(priv, REG_TXDMA_OFFSET_CHK, 0xfd0320);
/*
* Solve too many protocol error on USB bus.
* Can't do this for 8188/8192 UMC A cut parts
*/
if (!(!priv->chip_cut && priv->vendor_umc)) {
rtl8xxxu_write8(priv, 0xfe40, 0xe6);
rtl8xxxu_write8(priv, 0xfe41, 0x94);
rtl8xxxu_write8(priv, 0xfe42, 0x80);
rtl8xxxu_write8(priv, 0xfe40, 0xe0);
rtl8xxxu_write8(priv, 0xfe41, 0x19);
rtl8xxxu_write8(priv, 0xfe42, 0x80);
rtl8xxxu_write8(priv, 0xfe40, 0xe5);
rtl8xxxu_write8(priv, 0xfe41, 0x91);
rtl8xxxu_write8(priv, 0xfe42, 0x80);
rtl8xxxu_write8(priv, 0xfe40, 0xe2);
rtl8xxxu_write8(priv, 0xfe41, 0x81);
rtl8xxxu_write8(priv, 0xfe42, 0x80);
}
}
void rtl8xxxu_gen2_usb_quirks(struct rtl8xxxu_priv *priv)
{
u32 val32;
val32 = rtl8xxxu_read32(priv, REG_TXDMA_OFFSET_CHK);
val32 |= TXDMA_OFFSET_DROP_DATA_EN;
rtl8xxxu_write32(priv, REG_TXDMA_OFFSET_CHK, val32);
}
void rtl8xxxu_power_off(struct rtl8xxxu_priv *priv)
{
u8 val8;
u16 val16;
u32 val32;
/*
* Workaround for 8188RU LNA power leakage problem.
*/
if (priv->rtl_chip == RTL8188R) {
val32 = rtl8xxxu_read32(priv, REG_FPGA0_XCD_RF_PARM);
val32 |= BIT(1);
rtl8xxxu_write32(priv, REG_FPGA0_XCD_RF_PARM, val32);
}
rtl8xxxu_flush_fifo(priv);
rtl8xxxu_active_to_lps(priv);
/* Turn off RF */
rtl8xxxu_write8(priv, REG_RF_CTRL, 0x00);
/* Reset Firmware if running in RAM */
if (rtl8xxxu_read8(priv, REG_MCU_FW_DL) & MCU_FW_RAM_SEL)
rtl8xxxu_firmware_self_reset(priv);
/* Reset MCU */
val16 = rtl8xxxu_read16(priv, REG_SYS_FUNC);
val16 &= ~SYS_FUNC_CPU_ENABLE;
rtl8xxxu_write16(priv, REG_SYS_FUNC, val16);
/* Reset MCU ready status */
rtl8xxxu_write8(priv, REG_MCU_FW_DL, 0x00);
rtl8xxxu_active_to_emu(priv);
rtl8xxxu_emu_to_disabled(priv);
/* Reset MCU IO Wrapper */
val8 = rtl8xxxu_read8(priv, REG_RSV_CTRL + 1);
val8 &= ~BIT(0);
rtl8xxxu_write8(priv, REG_RSV_CTRL + 1, val8);
val8 = rtl8xxxu_read8(priv, REG_RSV_CTRL + 1);
val8 |= BIT(0);
rtl8xxxu_write8(priv, REG_RSV_CTRL + 1, val8);
/* RSV_CTRL 0x1C[7:0] = 0x0e lock ISO/CLK/Power control register */
rtl8xxxu_write8(priv, REG_RSV_CTRL, 0x0e);
}
void rtl8723bu_set_ps_tdma(struct rtl8xxxu_priv *priv,
u8 arg1, u8 arg2, u8 arg3, u8 arg4, u8 arg5)
{
struct h2c_cmd h2c;
memset(&h2c, 0, sizeof(struct h2c_cmd));
h2c.b_type_dma.cmd = H2C_8723B_B_TYPE_TDMA;
h2c.b_type_dma.data1 = arg1;
h2c.b_type_dma.data2 = arg2;
h2c.b_type_dma.data3 = arg3;
h2c.b_type_dma.data4 = arg4;
h2c.b_type_dma.data5 = arg5;
rtl8xxxu_gen2_h2c_cmd(priv, &h2c, sizeof(h2c.b_type_dma));
}
void rtl8xxxu_gen2_disable_rf(struct rtl8xxxu_priv *priv)
{
u32 val32;
val32 = rtl8xxxu_read32(priv, REG_RX_WAIT_CCA);
val32 &= ~(BIT(22) | BIT(23));
rtl8xxxu_write32(priv, REG_RX_WAIT_CCA, val32);
}
static void rtl8xxxu_init_queue_reserved_page(struct rtl8xxxu_priv *priv)
{
struct rtl8xxxu_fileops *fops = priv->fops;
u32 hq, lq, nq, eq, pubq;
u32 val32;
hq = 0;
lq = 0;
nq = 0;
eq = 0;
pubq = 0;
if (priv->ep_tx_high_queue)
hq = fops->page_num_hi;
if (priv->ep_tx_low_queue)
lq = fops->page_num_lo;
if (priv->ep_tx_normal_queue)
nq = fops->page_num_norm;
val32 = (nq << RQPN_NPQ_SHIFT) | (eq << RQPN_EPQ_SHIFT);
rtl8xxxu_write32(priv, REG_RQPN_NPQ, val32);
pubq = fops->total_page_num - hq - lq - nq - 1;
val32 = RQPN_LOAD;
val32 |= (hq << RQPN_HI_PQ_SHIFT);
val32 |= (lq << RQPN_LO_PQ_SHIFT);
val32 |= (pubq << RQPN_PUB_PQ_SHIFT);
rtl8xxxu_write32(priv, REG_RQPN, val32);
}
void rtl8xxxu_init_burst(struct rtl8xxxu_priv *priv)
{
u8 val8;
/*
* For USB high speed set 512B packets
*/
val8 = rtl8xxxu_read8(priv, REG_RXDMA_PRO_8723B);
u8p_replace_bits(&val8, 1, RXDMA_PRO_DMA_BURST_SIZE);
u8p_replace_bits(&val8, 3, RXDMA_PRO_DMA_BURST_CNT);
val8 |= RXDMA_PRO_DMA_MODE;
rtl8xxxu_write8(priv, REG_RXDMA_PRO_8723B, val8);
/*
* Enable single packet AMPDU
*/
val8 = rtl8xxxu_read8(priv, REG_HT_SINGLE_AMPDU_8723B);
val8 |= HT_SINGLE_AMPDU_ENABLE;
rtl8xxxu_write8(priv, REG_HT_SINGLE_AMPDU_8723B, val8);
rtl8xxxu_write16(priv, REG_MAX_AGGR_NUM, priv->fops->max_aggr_num);
rtl8xxxu_write8(priv, REG_AMPDU_MAX_TIME_8723B,
priv->fops->ampdu_max_time);
rtl8xxxu_write32(priv, REG_AGGLEN_LMT, 0xffffffff);
rtl8xxxu_write8(priv, REG_RX_PKT_LIMIT, 0x18);
rtl8xxxu_write8(priv, REG_PIFS, 0x00);
if (priv->rtl_chip == RTL8188F || priv->rtl_chip == RTL8710B ||
priv->rtl_chip == RTL8192F) {
rtl8xxxu_write8(priv, REG_FWHW_TXQ_CTRL, FWHW_TXQ_CTRL_AMPDU_RETRY);
rtl8xxxu_write32(priv, REG_FAST_EDCA_CTRL, 0x03086666);
}
rtl8xxxu_write8(priv, REG_USTIME_TSF_8723B, priv->fops->ustime_tsf_edca);
rtl8xxxu_write8(priv, REG_USTIME_EDCA, priv->fops->ustime_tsf_edca);
/* to prevent mac is reseted by bus. */
val8 = rtl8xxxu_read8(priv, REG_RSV_CTRL);
val8 |= RSV_CTRL_WLOCK_1C | RSV_CTRL_DIS_PRST;
rtl8xxxu_write8(priv, REG_RSV_CTRL, val8);
}
static u8 rtl8xxxu_acquire_macid(struct rtl8xxxu_priv *priv)
{
u8 macid;
macid = find_first_zero_bit(priv->mac_id_map, RTL8XXXU_MAX_MAC_ID_NUM);
if (macid < RTL8XXXU_MAX_MAC_ID_NUM)
set_bit(macid, priv->mac_id_map);
return macid;
}
static void rtl8xxxu_release_macid(struct rtl8xxxu_priv *priv, u8 macid)
{
clear_bit(macid, priv->mac_id_map);
}
static inline u8 rtl8xxxu_get_macid(struct rtl8xxxu_priv *priv,
struct ieee80211_sta *sta)
{
struct rtl8xxxu_sta_info *sta_info;
if (!sta)
return 0;
sta_info = (struct rtl8xxxu_sta_info *)sta->drv_priv;
if (!sta_info)
return 0;
return sta_info->macid;
}
static int rtl8xxxu_init_device(struct ieee80211_hw *hw)
{
struct rtl8xxxu_priv *priv = hw->priv;
struct device *dev = &priv->udev->dev;
struct rtl8xxxu_fileops *fops = priv->fops;
bool macpower;
int ret;
u8 val8;
u16 val16;
u32 val32;
/* Check if MAC is already powered on */
val8 = rtl8xxxu_read8(priv, REG_CR);
val16 = rtl8xxxu_read16(priv, REG_SYS_CLKR);
/*
* Fix 92DU-VC S3 hang with the reason is that secondary mac is not
* initialized. First MAC returns 0xea, second MAC returns 0x00
*/
if (val8 == 0xea || !(val16 & SYS_CLK_MAC_CLK_ENABLE))
macpower = false;
else
macpower = true;
if (fops->needs_full_init)
macpower = false;
ret = fops->power_on(priv);
if (ret < 0) {
dev_warn(dev, "%s: Failed power on\n", __func__);
goto exit;
}
if (!macpower)
rtl8xxxu_init_queue_reserved_page(priv);
ret = rtl8xxxu_init_queue_priority(priv);
dev_dbg(dev, "%s: init_queue_priority %i\n", __func__, ret);
if (ret)
goto exit;
/*
* Set RX page boundary
*/
rtl8xxxu_write16(priv, REG_TRXFF_BNDY + 2, fops->trxff_boundary);
ret = rtl8xxxu_download_firmware(priv);
dev_dbg(dev, "%s: download_firmware %i\n", __func__, ret);
if (ret)
goto exit;
ret = rtl8xxxu_start_firmware(priv);
dev_dbg(dev, "%s: start_firmware %i\n", __func__, ret);
if (ret)
goto exit;
if (fops->phy_init_antenna_selection)
fops->phy_init_antenna_selection(priv);
ret = rtl8xxxu_init_mac(priv);
dev_dbg(dev, "%s: init_mac %i\n", __func__, ret);
if (ret)
goto exit;
ret = rtl8xxxu_init_phy_bb(priv);
dev_dbg(dev, "%s: init_phy_bb %i\n", __func__, ret);
if (ret)
goto exit;
ret = fops->init_phy_rf(priv);
if (ret)
goto exit;
/* Mac APLL Setting */
if (priv->rtl_chip == RTL8192F)
rtl8xxxu_write16_set(priv, REG_AFE_CTRL4, BIT(4) | BIT(15));
/* RFSW Control - clear bit 14 ?? */
if (priv->rtl_chip != RTL8723B && priv->rtl_chip != RTL8192E &&
priv->rtl_chip != RTL8188E && priv->rtl_chip != RTL8710B &&
priv->rtl_chip != RTL8192F)
rtl8xxxu_write32(priv, REG_FPGA0_TX_INFO, 0x00000003);
val32 = FPGA0_RF_TRSW | FPGA0_RF_TRSWB | FPGA0_RF_ANTSW |
FPGA0_RF_ANTSWB |
((FPGA0_RF_ANTSW | FPGA0_RF_ANTSWB) << FPGA0_RF_BD_CTRL_SHIFT);
if (!priv->no_pape) {
val32 |= (FPGA0_RF_PAPE |
(FPGA0_RF_PAPE << FPGA0_RF_BD_CTRL_SHIFT));
}
rtl8xxxu_write32(priv, REG_FPGA0_XAB_RF_SW_CTRL, val32);
/* 0x860[6:5]= 00 - why? - this sets antenna B */
if (priv->rtl_chip != RTL8192E && priv->rtl_chip != RTL8188E &&
priv->rtl_chip != RTL8710B && priv->rtl_chip != RTL8192F)
rtl8xxxu_write32(priv, REG_FPGA0_XA_RF_INT_OE, 0x66f60210);
if (!macpower) {
/*
* Set TX buffer boundary
*/
val8 = fops->total_page_num + 1;
rtl8xxxu_write8(priv, REG_TXPKTBUF_BCNQ_BDNY, val8);
rtl8xxxu_write8(priv, REG_TXPKTBUF_MGQ_BDNY, val8);
rtl8xxxu_write8(priv, REG_TXPKTBUF_WMAC_LBK_BF_HD, val8);
rtl8xxxu_write8(priv, REG_TRXFF_BNDY, val8);
rtl8xxxu_write8(priv, REG_TDECTRL + 1, val8);
}
/*
* The vendor drivers set PBP for all devices, except 8192e.
* There is no explanation for this in any of the sources.
*/
val8 = (fops->pbp_rx << PBP_PAGE_SIZE_RX_SHIFT) |
(fops->pbp_tx << PBP_PAGE_SIZE_TX_SHIFT);
if (priv->rtl_chip != RTL8192E)
rtl8xxxu_write8(priv, REG_PBP, val8);
dev_dbg(dev, "%s: macpower %i\n", __func__, macpower);
if (!macpower) {
ret = fops->llt_init(priv);
if (ret) {
dev_warn(dev, "%s: LLT table init failed\n", __func__);
goto exit;
}
/*
* Chip specific quirks
*/
fops->usb_quirks(priv);
/*
* Enable TX report and TX report timer for 8723bu/8188eu/...
*/
if (fops->has_tx_report) {
/*
* The RTL8188EU has two types of TX reports:
* rpt_sel=1:
* One report for one frame. We can use this for frames
* with IEEE80211_TX_CTL_REQ_TX_STATUS.
* rpt_sel=2:
* One report for many frames transmitted over a period
* of time. (This is what REG_TX_REPORT_TIME is for.) The
* report includes the number of frames transmitted
* successfully, and the number of unsuccessful
* transmissions. We use this for software rate control.
*
* Bit 0 of REG_TX_REPORT_CTRL is required for both types.
* Bit 1 (TX_REPORT_CTRL_TIMER_ENABLE) is required for
* type 2.
*/
val8 = rtl8xxxu_read8(priv, REG_TX_REPORT_CTRL);
if (priv->rtl_chip == RTL8188E)
val8 |= BIT(0);
val8 |= TX_REPORT_CTRL_TIMER_ENABLE;
rtl8xxxu_write8(priv, REG_TX_REPORT_CTRL, val8);
/* Set MAX RPT MACID */
rtl8xxxu_write8(priv, REG_TX_REPORT_CTRL + 1, 0x02);
/* TX report Timer. Unit: 32us */
rtl8xxxu_write16(priv, REG_TX_REPORT_TIME, 0xcdf0);
/* tmp ps ? */
val8 = rtl8xxxu_read8(priv, 0xa3);
val8 &= 0xf8;
rtl8xxxu_write8(priv, 0xa3, val8);
}
if (priv->rtl_chip == RTL8710B || priv->rtl_chip == RTL8192F)
rtl8xxxu_write8(priv, REG_EARLY_MODE_CONTROL_8710B, 0);
}
/*
* Unit in 8 bytes.
* Get Rx PHY status in order to report RSSI and others.
*/
rtl8xxxu_write8(priv, REG_RX_DRVINFO_SZ, 4);
if (priv->rtl_chip == RTL8192E) {
rtl8xxxu_write32(priv, REG_HIMR0, 0x00);
rtl8xxxu_write32(priv, REG_HIMR1, 0x00);
} else if (priv->rtl_chip == RTL8188F) {
rtl8xxxu_write32(priv, REG_HISR0, 0xffffffff);
rtl8xxxu_write32(priv, REG_HISR1, 0xffffffff);
} else if (priv->rtl_chip == RTL8188E) {
rtl8xxxu_write32(priv, REG_HISR0, 0xffffffff);
val32 = IMR0_PSTIMEOUT | IMR0_TBDER | IMR0_CPWM | IMR0_CPWM2;
rtl8xxxu_write32(priv, REG_HIMR0, val32);
val32 = IMR1_TXERR | IMR1_RXERR | IMR1_TXFOVW | IMR1_RXFOVW;
rtl8xxxu_write32(priv, REG_HIMR1, val32);
val8 = rtl8xxxu_read8(priv, REG_USB_SPECIAL_OPTION);
val8 |= USB_SPEC_INT_BULK_SELECT;
rtl8xxxu_write8(priv, REG_USB_SPECIAL_OPTION, val8);
} else if (priv->rtl_chip == RTL8710B) {
rtl8xxxu_write32(priv, REG_HIMR0_8710B, 0);
} else if (priv->rtl_chip != RTL8192F) {
/*
* Enable all interrupts - not obvious USB needs to do this
*/
rtl8xxxu_write32(priv, REG_HISR, 0xffffffff);
rtl8xxxu_write32(priv, REG_HIMR, 0xffffffff);
}
/*
* Configure initial WMAC settings
*/
val32 = RCR_ACCEPT_PHYS_MATCH | RCR_ACCEPT_MCAST | RCR_ACCEPT_BCAST |
RCR_ACCEPT_MGMT_FRAME | RCR_HTC_LOC_CTRL |
RCR_APPEND_PHYSTAT | RCR_APPEND_ICV | RCR_APPEND_MIC;
rtl8xxxu_write32(priv, REG_RCR, val32);
priv->regrcr = val32;
if (fops->init_reg_rxfltmap) {
/* Accept all data frames */
rtl8xxxu_write16(priv, REG_RXFLTMAP2, 0xffff);
/*
* Since ADF is removed from RCR, ps-poll will not be indicate to driver,
* RxFilterMap should mask ps-poll to gurantee AP mode can rx ps-poll.
*/
rtl8xxxu_write16(priv, REG_RXFLTMAP1, 0x400);
/* Accept all management frames */
rtl8xxxu_write16(priv, REG_RXFLTMAP0, 0xffff);
} else {
/*
* Accept all multicast
*/
rtl8xxxu_write32(priv, REG_MAR, 0xffffffff);
rtl8xxxu_write32(priv, REG_MAR + 4, 0xffffffff);
}
/*
* Init adaptive controls
*/
val32 = rtl8xxxu_read32(priv, REG_RESPONSE_RATE_SET);
val32 &= ~RESPONSE_RATE_BITMAP_ALL;
val32 |= RESPONSE_RATE_RRSR_CCK_ONLY_1M;
rtl8xxxu_write32(priv, REG_RESPONSE_RATE_SET, val32);
/* CCK = 0x0a, OFDM = 0x10 */
rtl8xxxu_set_spec_sifs(priv, 0x10, 0x10);
rtl8xxxu_set_retry(priv, 0x30, 0x30);
rtl8xxxu_set_spec_sifs(priv, 0x0a, 0x10);
/*
* Init EDCA
*/
rtl8xxxu_write16(priv, REG_MAC_SPEC_SIFS, 0x100a);
/* Set CCK SIFS */
rtl8xxxu_write16(priv, REG_SIFS_CCK, 0x100a);
/* Set OFDM SIFS */
rtl8xxxu_write16(priv, REG_SIFS_OFDM, 0x100a);
/* TXOP */
rtl8xxxu_write32(priv, REG_EDCA_BE_PARAM, 0x005ea42b);
rtl8xxxu_write32(priv, REG_EDCA_BK_PARAM, 0x0000a44f);
rtl8xxxu_write32(priv, REG_EDCA_VI_PARAM, 0x005ea324);
rtl8xxxu_write32(priv, REG_EDCA_VO_PARAM, 0x002fa226);
/* Set data auto rate fallback retry count */
rtl8xxxu_write32(priv, REG_DARFRC, 0x00000000);
rtl8xxxu_write32(priv, REG_DARFRC + 4, 0x10080404);
rtl8xxxu_write32(priv, REG_RARFRC, 0x04030201);
rtl8xxxu_write32(priv, REG_RARFRC + 4, 0x08070605);
val8 = rtl8xxxu_read8(priv, REG_FWHW_TXQ_CTRL);
val8 |= FWHW_TXQ_CTRL_AMPDU_RETRY;
rtl8xxxu_write8(priv, REG_FWHW_TXQ_CTRL, val8);
/* Set ACK timeout */
rtl8xxxu_write8(priv, REG_ACKTO, 0x40);
/*
* Initialize beacon parameters
*/
val16 = BEACON_DISABLE_TSF_UPDATE | (BEACON_DISABLE_TSF_UPDATE << 8);
rtl8xxxu_write16(priv, REG_BEACON_CTRL, val16);
rtl8xxxu_write16(priv, REG_TBTT_PROHIBIT, 0x6404);
if (priv->rtl_chip != RTL8188F && priv->rtl_chip != RTL8710B &&
priv->rtl_chip != RTL8192F)
/* Firmware will control REG_DRVERLYINT when power saving is enable, */
/* so don't set this register on STA mode. */
rtl8xxxu_write8(priv, REG_DRIVER_EARLY_INT, DRIVER_EARLY_INT_TIME);
rtl8xxxu_write8(priv, REG_BEACON_DMA_TIME, BEACON_DMA_ATIME_INT_TIME);
rtl8xxxu_write16(priv, REG_BEACON_TCFG, 0x660F);
/*
* Initialize burst parameters
*/
if (priv->fops->init_burst)
priv->fops->init_burst(priv);
if (fops->init_aggregation)
fops->init_aggregation(priv);
if (fops->init_reg_pkt_life_time) {
rtl8xxxu_write16(priv, REG_PKT_VO_VI_LIFE_TIME, 0x0400); /* unit: 256us. 256ms */
rtl8xxxu_write16(priv, REG_PKT_BE_BK_LIFE_TIME, 0x0400); /* unit: 256us. 256ms */
}
/*
* Enable CCK and OFDM block
*/
val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE);
val32 |= (FPGA_RF_MODE_CCK | FPGA_RF_MODE_OFDM);
rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32);
/*
* Invalidate all CAM entries - bit 30 is undocumented
*/
rtl8xxxu_write32(priv, REG_CAM_CMD, CAM_CMD_POLLING | BIT(30));
/*
* Start out with default power levels for channel 6, 20MHz
*/
fops->set_tx_power(priv, 1, false);
/* Let the 8051 take control of antenna setting */
if (priv->rtl_chip != RTL8192E && priv->rtl_chip != RTL8188F &&
priv->rtl_chip != RTL8710B && priv->rtl_chip != RTL8192C) {
val8 = rtl8xxxu_read8(priv, REG_LEDCFG2);
val8 |= LEDCFG2_DPDT_SELECT;
rtl8xxxu_write8(priv, REG_LEDCFG2, val8);
}
rtl8xxxu_write8(priv, REG_HWSEQ_CTRL, 0xff);
/* Disable BAR - not sure if this has any effect on USB */
rtl8xxxu_write32(priv, REG_BAR_MODE_CTRL, 0x0201ffff);
if (priv->rtl_chip != RTL8188F && priv->rtl_chip != RTL8188E &&
priv->rtl_chip != RTL8710B && priv->rtl_chip != RTL8192F)
rtl8xxxu_write16(priv, REG_FAST_EDCA_CTRL, 0);
if (fops->init_statistics)
fops->init_statistics(priv);
if (priv->rtl_chip == RTL8192E) {
/*
* 0x4c6[3] 1: RTS BW = Data BW
* 0: RTS BW depends on CCA / secondary CCA result.
*/
val8 = rtl8xxxu_read8(priv, REG_QUEUE_CTRL);
val8 &= ~BIT(3);
rtl8xxxu_write8(priv, REG_QUEUE_CTRL, val8);
/*
* Reset USB mode switch setting
*/
rtl8xxxu_write8(priv, REG_ACLK_MON, 0x00);
} else if (priv->rtl_chip == RTL8188F || priv->rtl_chip == RTL8188E ||
priv->rtl_chip == RTL8192F) {
/*
* Init GPIO settings for 8188f, 8188e, 8192f
*/
val8 = rtl8xxxu_read8(priv, REG_GPIO_MUXCFG);
val8 &= ~GPIO_MUXCFG_IO_SEL_ENBT;
rtl8xxxu_write8(priv, REG_GPIO_MUXCFG, val8);
}
if (priv->rtl_chip == RTL8188F)
/* CCK PD */
rtl8xxxu_write8(priv, REG_CCK_PD_THRESH, CCK_PD_TYPE1_LV1_TH);
fops->phy_lc_calibrate(priv);
fops->phy_iq_calibrate(priv);
/*
* This should enable thermal meter
*/
if (fops->gen2_thermal_meter) {
if (priv->rtl_chip == RTL8188F || priv->rtl_chip == RTL8710B) {
val32 = rtl8xxxu_read_rfreg(priv, RF_A, RF6052_REG_T_METER_8723B);
val32 |= 0x30000;
rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_T_METER_8723B, val32);
} else {
rtl8xxxu_write_rfreg(priv,
RF_A, RF6052_REG_T_METER_8723B, 0x37cf8);
}
} else {
rtl8xxxu_write_rfreg(priv, RF_A, RF6052_REG_T_METER, 0x60);
}
/* Set NAV_UPPER to 30000us */
val8 = ((30000 + NAV_UPPER_UNIT - 1) / NAV_UPPER_UNIT);
rtl8xxxu_write8(priv, REG_NAV_UPPER, val8);
if (priv->rtl_chip == RTL8723A) {
/*
* 2011/03/09 MH debug only, UMC-B cut pass 2500 S5 test,
* but we need to find root cause.
* This is 8723au only.
*/
val32 = rtl8xxxu_read32(priv, REG_FPGA0_RF_MODE);
if ((val32 & 0xff000000) != 0x83000000) {
val32 |= FPGA_RF_MODE_CCK;
rtl8xxxu_write32(priv, REG_FPGA0_RF_MODE, val32);
}
} else if (priv->rtl_chip == RTL8192E || priv->rtl_chip == RTL8188E) {
rtl8xxxu_write8(priv, REG_USB_HRPWM, 0x00);
}
val32 = rtl8xxxu_read32(priv, REG_FWHW_TXQ_CTRL);
val32 |= FWHW_TXQ_CTRL_XMIT_MGMT_ACK;
/* ack for xmit mgmt frames. */
rtl8xxxu_write32(priv, REG_FWHW_TXQ_CTRL, val32);
if (priv->rtl_chip == RTL8192E) {
/*
* Fix LDPC rx hang issue.
*/
val32 = rtl8xxxu_read32(priv, REG_AFE_MISC);
rtl8xxxu_write8(priv, REG_8192E_LDOV12_CTRL, 0x75);
val32 &= 0xfff00fff;
val32 |= 0x0007e000;
rtl8xxxu_write32(priv, REG_AFE_MISC, val32);
/*
* 0x824[9] = 0x82C[9] = 0xA80[7] those registers setting
* should be equal or CCK RSSI report may be incorrect
*/
val32 = rtl8xxxu_read32(priv, REG_FPGA0_XA_HSSI_PARM2);
priv->cck_agc_report_type =
u32_get_bits(val32, FPGA0_HSSI_PARM2_CCK_HIGH_PWR);
val32 = rtl8xxxu_read32(priv, REG_FPGA0_XB_HSSI_PARM2);
if (priv->cck_agc_report_type !=
u32_get_bits(val32, FPGA0_HSSI_PARM2_CCK_HIGH_PWR)) {
if (priv->cck_agc_report_type)
val32 |= FPGA0_HSSI_PARM2_CCK_HIGH_PWR;
else
val32 &= ~FPGA0_HSSI_PARM2_CCK_HIGH_PWR;
rtl8xxxu_write32(priv, REG_FPGA0_XB_HSSI_PARM2, val32);
}
val32 = rtl8xxxu_read32(priv, REG_AGC_RPT);
if (priv->cck_agc_report_type)
val32 |= AGC_RPT_CCK;
else
val32 &= ~AGC_RPT_CCK;
rtl8xxxu_write32(priv, REG_AGC_RPT, val32);
}
if (priv->rtl_chip == RTL8710B) {
/*
* 0x76D[5:4] is Port0,Port1 Enable Bit.
* This is only for 8710B, 2b'00 for MP and 2b'11 for Normal Driver
*/
val8 = rtl8xxxu_read8(priv, REG_PORT_CONTROL_8710B);
val8 |= BIT(5) | BIT(4);
rtl8xxxu_write8(priv, REG_PORT_CONTROL_8710B, val8);
/* Set 0x5c[8] and [2:0] = 1, LDO mode */
val32 = rtl8xxxu_read32(priv, REG_WL_RF_PSS_8710B);
val32 |= 0x107;
rtl8xxxu_write32(priv, REG_WL_RF_PSS_8710B, val32);
}
val32 = rtl8xxxu_read32(priv, 0xa9c);
priv->cck_new_agc = u32_get_bits(val32, BIT(17));
/* Initialise the center frequency offset tracking */
if (priv->fops->set_crystal_cap) {
val32 = rtl8xxxu_read32(priv, REG_OFDM1_CFO_TRACKING);
priv->cfo_tracking.atc_status = val32 & CFO_TRACKING_ATC_STATUS;
priv->cfo_tracking.adjust = true;
priv->cfo_tracking.crystal_cap = priv->default_crystal_cap;
}
if (priv->rtl_chip == RTL8188E)
rtl8188e_ra_info_init_all(&priv->ra_info);
set_bit(RTL8XXXU_BC_MC_MACID, priv->mac_id_map);
set_bit(RTL8XXXU_BC_MC_MACID1, priv->mac_id_map);
exit:
return ret;
}
static void rtl8xxxu_cam_write(struct rtl8xxxu_priv *priv,
struct ieee80211_key_conf *key, const u8 *mac)
{
u32 cmd, val32, addr, ctrl;
int j, i, tmp_debug;
tmp_debug = rtl8xxxu_debug;
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_KEY)
rtl8xxxu_debug |= RTL8XXXU_DEBUG_REG_WRITE;
/*
* This is a bit of a hack - the lower bits of the cipher
* suite selector happens to match the cipher index in the CAM
*/
addr = key->hw_key_idx << CAM_CMD_KEY_SHIFT;
ctrl = (key->cipher & 0x0f) << 2 | key->keyidx | CAM_WRITE_VALID;
if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
ctrl |= BIT(6);
for (j = 5; j >= 0; j--) {
switch (j) {
case 0:
val32 = ctrl | (mac[0] << 16) | (mac[1] << 24);
break;
case 1:
val32 = mac[2] | (mac[3] << 8) |
(mac[4] << 16) | (mac[5] << 24);
break;
default:
i = (j - 2) << 2;
val32 = key->key[i] | (key->key[i + 1] << 8) |
key->key[i + 2] << 16 | key->key[i + 3] << 24;
break;
}
rtl8xxxu_write32(priv, REG_CAM_WRITE, val32);
cmd = CAM_CMD_POLLING | CAM_CMD_WRITE | (addr + j);
rtl8xxxu_write32(priv, REG_CAM_CMD, cmd);
udelay(100);
}
rtl8xxxu_debug = tmp_debug;
}
static
int rtl8xxxu_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant)
{
struct rtl8xxxu_priv *priv = hw->priv;
*tx_ant = BIT(priv->tx_paths) - 1;
*rx_ant = BIT(priv->rx_paths) - 1;
return 0;
}
static int rtl8xxxu_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
bool set)
{
struct rtl8xxxu_priv *priv = hw->priv;
schedule_delayed_work(&priv->update_beacon_work, 0);
return 0;
}
static void rtl8xxxu_sw_scan_start(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, const u8 *mac)
{
struct rtl8xxxu_priv *priv = hw->priv;
u8 val8;
val8 = rtl8xxxu_read8(priv, REG_BEACON_CTRL);
val8 |= BEACON_DISABLE_TSF_UPDATE;
rtl8xxxu_write8(priv, REG_BEACON_CTRL, val8);
}
static void rtl8xxxu_sw_scan_complete(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct rtl8xxxu_priv *priv = hw->priv;
u8 val8;
val8 = rtl8xxxu_read8(priv, REG_BEACON_CTRL);
val8 &= ~BEACON_DISABLE_TSF_UPDATE;
rtl8xxxu_write8(priv, REG_BEACON_CTRL, val8);
}
void rtl8xxxu_update_rate_mask(struct rtl8xxxu_priv *priv,
u32 ramask, u8 rateid, int sgi, int txbw_40mhz,
u8 macid)
{
struct h2c_cmd h2c;
memset(&h2c, 0, sizeof(struct h2c_cmd));
h2c.ramask.cmd = H2C_SET_RATE_MASK;
h2c.ramask.mask_lo = cpu_to_le16(ramask & 0xffff);
h2c.ramask.mask_hi = cpu_to_le16(ramask >> 16);
h2c.ramask.arg = 0x80;
if (sgi)
h2c.ramask.arg |= 0x20;
dev_dbg(&priv->udev->dev, "%s: rate mask %08x, arg %02x, size %zi\n",
__func__, ramask, h2c.ramask.arg, sizeof(h2c.ramask));
rtl8xxxu_gen1_h2c_cmd(priv, &h2c, sizeof(h2c.ramask));
}
void rtl8xxxu_gen2_update_rate_mask(struct rtl8xxxu_priv *priv,
u32 ramask, u8 rateid, int sgi, int txbw_40mhz,
u8 macid)
{
struct h2c_cmd h2c;
u8 bw;
if (txbw_40mhz)
bw = RTL8XXXU_CHANNEL_WIDTH_40;
else
bw = RTL8XXXU_CHANNEL_WIDTH_20;
memset(&h2c, 0, sizeof(struct h2c_cmd));
h2c.b_macid_cfg.cmd = H2C_8723B_MACID_CFG_RAID;
h2c.b_macid_cfg.ramask0 = ramask & 0xff;
h2c.b_macid_cfg.ramask1 = (ramask >> 8) & 0xff;
h2c.b_macid_cfg.ramask2 = (ramask >> 16) & 0xff;
h2c.b_macid_cfg.ramask3 = (ramask >> 24) & 0xff;
h2c.b_macid_cfg.macid = macid;
h2c.b_macid_cfg.data1 = rateid;
if (sgi)
h2c.b_macid_cfg.data1 |= BIT(7);
h2c.b_macid_cfg.data2 = bw;
dev_dbg(&priv->udev->dev, "%s: rate mask %08x, rateid %02x, sgi %d, size %zi\n",
__func__, ramask, rateid, sgi, sizeof(h2c.b_macid_cfg));
rtl8xxxu_gen2_h2c_cmd(priv, &h2c, sizeof(h2c.b_macid_cfg));
}
void rtl8xxxu_gen1_report_connect(struct rtl8xxxu_priv *priv,
u8 macid, u8 role, bool connect)
{
struct h2c_cmd h2c;
memset(&h2c, 0, sizeof(struct h2c_cmd));
h2c.joinbss.cmd = H2C_JOIN_BSS_REPORT;
if (connect)
h2c.joinbss.data = H2C_JOIN_BSS_CONNECT;
else
h2c.joinbss.data = H2C_JOIN_BSS_DISCONNECT;
rtl8xxxu_gen1_h2c_cmd(priv, &h2c, sizeof(h2c.joinbss));
}
void rtl8xxxu_gen2_report_connect(struct rtl8xxxu_priv *priv,
u8 macid, u8 role, bool connect)
{
/*
* The firmware turns on the rate control when it knows it's
* connected to a network.
*/
struct h2c_cmd h2c;
memset(&h2c, 0, sizeof(struct h2c_cmd));
h2c.media_status_rpt.cmd = H2C_8723B_MEDIA_STATUS_RPT;
if (connect)
h2c.media_status_rpt.parm |= BIT(0);
else
h2c.media_status_rpt.parm &= ~BIT(0);
h2c.media_status_rpt.parm |= ((role << 4) & 0xf0);
h2c.media_status_rpt.macid = macid;
rtl8xxxu_gen2_h2c_cmd(priv, &h2c, sizeof(h2c.media_status_rpt));
}
void rtl8xxxu_gen1_report_rssi(struct rtl8xxxu_priv *priv, u8 macid, u8 rssi)
{
struct h2c_cmd h2c;
const int h2c_size = 4;
memset(&h2c, 0, sizeof(struct h2c_cmd));
h2c.rssi_report.cmd = H2C_SET_RSSI;
h2c.rssi_report.macid = macid;
h2c.rssi_report.rssi = rssi;
rtl8xxxu_gen1_h2c_cmd(priv, &h2c, h2c_size);
}
void rtl8xxxu_gen2_report_rssi(struct rtl8xxxu_priv *priv, u8 macid, u8 rssi)
{
struct h2c_cmd h2c;
int h2c_size = sizeof(h2c.rssi_report);
if (priv->rtl_chip == RTL8723B)
h2c_size = 4;
memset(&h2c, 0, sizeof(struct h2c_cmd));
h2c.rssi_report.cmd = H2C_8723B_RSSI_SETTING;
h2c.rssi_report.macid = macid;
h2c.rssi_report.rssi = rssi;
rtl8xxxu_gen2_h2c_cmd(priv, &h2c, h2c_size);
}
void rtl8xxxu_gen1_init_aggregation(struct rtl8xxxu_priv *priv)
{
u8 agg_ctrl, usb_spec, page_thresh, timeout;
usb_spec = rtl8xxxu_read8(priv, REG_USB_SPECIAL_OPTION);
usb_spec &= ~USB_SPEC_USB_AGG_ENABLE;
rtl8xxxu_write8(priv, REG_USB_SPECIAL_OPTION, usb_spec);
agg_ctrl = rtl8xxxu_read8(priv, REG_TRXDMA_CTRL);
agg_ctrl &= ~TRXDMA_CTRL_RXDMA_AGG_EN;
if (!rtl8xxxu_dma_aggregation) {
rtl8xxxu_write8(priv, REG_TRXDMA_CTRL, agg_ctrl);
return;
}
agg_ctrl |= TRXDMA_CTRL_RXDMA_AGG_EN;
rtl8xxxu_write8(priv, REG_TRXDMA_CTRL, agg_ctrl);
/*
* The number of packets we can take looks to be buffer size / 512
* which matches the 512 byte rounding we have to do when de-muxing
* the packets.
*
* Sample numbers from the vendor driver:
* USB High-Speed mode values:
* RxAggBlockCount = 8 : 512 byte unit
* RxAggBlockTimeout = 6
* RxAggPageCount = 48 : 128 byte unit
* RxAggPageTimeout = 4 or 6 (absolute time 34ms/(2^6))
*/
page_thresh = (priv->fops->rx_agg_buf_size / 512);
if (rtl8xxxu_dma_agg_pages >= 0) {
if (rtl8xxxu_dma_agg_pages <= page_thresh)
timeout = page_thresh;
else if (rtl8xxxu_dma_agg_pages <= 6)
dev_err(&priv->udev->dev,
"%s: dma_agg_pages=%i too small, minimum is 6\n",
__func__, rtl8xxxu_dma_agg_pages);
else
dev_err(&priv->udev->dev,
"%s: dma_agg_pages=%i larger than limit %i\n",
__func__, rtl8xxxu_dma_agg_pages, page_thresh);
}
rtl8xxxu_write8(priv, REG_RXDMA_AGG_PG_TH, page_thresh);
/*
* REG_RXDMA_AGG_PG_TH + 1 seems to be the timeout register on
* gen2 chips and rtl8188eu. The rtl8723au seems unhappy if we
* don't set it, so better set both.
*/
timeout = 4;
if (rtl8xxxu_dma_agg_timeout >= 0) {
if (rtl8xxxu_dma_agg_timeout <= 127)
timeout = rtl8xxxu_dma_agg_timeout;
else
dev_err(&priv->udev->dev,
"%s: Invalid dma_agg_timeout: %i\n",
__func__, rtl8xxxu_dma_agg_timeout);
}
rtl8xxxu_write8(priv, REG_RXDMA_AGG_PG_TH + 1, timeout);
rtl8xxxu_write8(priv, REG_USB_DMA_AGG_TO, timeout);
priv->rx_buf_aggregation = 1;
}
static const struct ieee80211_rate rtl8xxxu_legacy_ratetable[] = {
{.bitrate = 10, .hw_value = 0x00,},
{.bitrate = 20, .hw_value = 0x01,},
{.bitrate = 55, .hw_value = 0x02,},
{.bitrate = 110, .hw_value = 0x03,},
{.bitrate = 60, .hw_value = 0x04,},
{.bitrate = 90, .hw_value = 0x05,},
{.bitrate = 120, .hw_value = 0x06,},
{.bitrate = 180, .hw_value = 0x07,},
{.bitrate = 240, .hw_value = 0x08,},
{.bitrate = 360, .hw_value = 0x09,},
{.bitrate = 480, .hw_value = 0x0a,},
{.bitrate = 540, .hw_value = 0x0b,},
};
static void rtl8xxxu_desc_to_mcsrate(u16 rate, u8 *mcs, u8 *nss)
{
if (rate <= DESC_RATE_54M)
return;
if (rate >= DESC_RATE_MCS0 && rate <= DESC_RATE_MCS15) {
if (rate < DESC_RATE_MCS8)
*nss = 1;
else
*nss = 2;
*mcs = rate - DESC_RATE_MCS0;
}
}
static void rtl8xxxu_set_basic_rates(struct rtl8xxxu_priv *priv, u32 rate_cfg)
{
struct ieee80211_hw *hw = priv->hw;
u32 val32;
u8 rate_idx = 0;
rate_cfg &= RESPONSE_RATE_BITMAP_ALL;
val32 = rtl8xxxu_read32(priv, REG_RESPONSE_RATE_SET);
if (hw->conf.chandef.chan->band == NL80211_BAND_5GHZ)
val32 &= RESPONSE_RATE_RRSR_INIT_5G;
else
val32 &= RESPONSE_RATE_RRSR_INIT_2G;
val32 |= rate_cfg;
rtl8xxxu_write32(priv, REG_RESPONSE_RATE_SET, val32);
dev_dbg(&priv->udev->dev, "%s: rates %08x\n", __func__, rate_cfg);
if (rate_cfg)
rate_idx = __fls(rate_cfg);
rtl8xxxu_write8(priv, REG_INIRTS_RATE_SEL, rate_idx);
}
static u16
rtl8xxxu_wireless_mode(struct ieee80211_hw *hw, struct ieee80211_sta *sta)
{
u16 network_type = WIRELESS_MODE_UNKNOWN;
if (hw->conf.chandef.chan->band == NL80211_BAND_5GHZ) {
if (sta->deflink.vht_cap.vht_supported)
network_type = WIRELESS_MODE_AC;
else if (sta->deflink.ht_cap.ht_supported)
network_type = WIRELESS_MODE_N_5G;
network_type |= WIRELESS_MODE_A;
} else {
if (sta->deflink.vht_cap.vht_supported)
network_type = WIRELESS_MODE_AC;
else if (sta->deflink.ht_cap.ht_supported)
network_type = WIRELESS_MODE_N_24G;
if (sta->deflink.supp_rates[0] <= 0xf)
network_type |= WIRELESS_MODE_B;
else if (sta->deflink.supp_rates[0] & 0xf)
network_type |= (WIRELESS_MODE_B | WIRELESS_MODE_G);
else
network_type |= WIRELESS_MODE_G;
}
return network_type;
}
static void rtl8xxxu_set_aifs(struct rtl8xxxu_priv *priv, u8 slot_time)
{
u32 reg_edca_param[IEEE80211_NUM_ACS] = {
[IEEE80211_AC_VO] = REG_EDCA_VO_PARAM,
[IEEE80211_AC_VI] = REG_EDCA_VI_PARAM,
[IEEE80211_AC_BE] = REG_EDCA_BE_PARAM,
[IEEE80211_AC_BK] = REG_EDCA_BK_PARAM,
};
u32 val32;
u16 wireless_mode = 0;
u8 aifs, aifsn, sifs;
int i;
for (i = 0; i < ARRAY_SIZE(priv->vifs); i++) {
struct ieee80211_sta *sta;
if (!priv->vifs[i])
continue;
rcu_read_lock();
sta = ieee80211_find_sta(priv->vifs[i], priv->vifs[i]->bss_conf.bssid);
if (sta)
wireless_mode = rtl8xxxu_wireless_mode(priv->hw, sta);
rcu_read_unlock();
if (wireless_mode)
break;
}
if (priv->hw->conf.chandef.chan->band == NL80211_BAND_5GHZ ||
(wireless_mode & WIRELESS_MODE_N_24G))
sifs = 16;
else
sifs = 10;
for (i = 0; i < IEEE80211_NUM_ACS; i++) {
val32 = rtl8xxxu_read32(priv, reg_edca_param[i]);
/* It was set in conf_tx. */
aifsn = val32 & 0xff;
/* aifsn not set yet or already fixed */
if (aifsn < 2 || aifsn > 15)
continue;
aifs = aifsn * slot_time + sifs;
val32 &= ~0xff;
val32 |= aifs;
rtl8xxxu_write32(priv, reg_edca_param[i], val32);
}
}
void rtl8xxxu_update_ra_report(struct rtl8xxxu_ra_report *rarpt,
u8 rate, u8 sgi, u8 bw)
{
u8 mcs, nss;
rarpt->txrate.flags = 0;
if (rate <= DESC_RATE_54M) {
rarpt->txrate.legacy = rtl8xxxu_legacy_ratetable[rate].bitrate;
} else {
rtl8xxxu_desc_to_mcsrate(rate, &mcs, &nss);
rarpt->txrate.flags |= RATE_INFO_FLAGS_MCS;
rarpt->txrate.mcs = mcs;
rarpt->txrate.nss = nss;
if (sgi)
rarpt->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
rarpt->txrate.bw = bw;
}
rarpt->bit_rate = cfg80211_calculate_bitrate(&rarpt->txrate);
rarpt->desc_rate = rate;
}
static void
rtl8xxxu_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf, u64 changed)
{
struct rtl8xxxu_vif *rtlvif = (struct rtl8xxxu_vif *)vif->drv_priv;
struct rtl8xxxu_priv *priv = hw->priv;
struct device *dev = &priv->udev->dev;
struct rtl8xxxu_sta_info *sta_info;
struct ieee80211_sta *sta;
struct rtl8xxxu_ra_report *rarpt;
u8 val8, macid;
u32 val32;
rarpt = &priv->ra_report;
if (changed & BSS_CHANGED_ASSOC) {
dev_dbg(dev, "Changed ASSOC: %i!\n", vif->cfg.assoc);
rtl8xxxu_set_linktype(priv, vif->type, rtlvif->port_num);
if (vif->cfg.assoc) {
u32 ramask;
int sgi = 0;
u8 highest_rate;
u8 bw;
rcu_read_lock();
sta = ieee80211_find_sta(vif, bss_conf->bssid);
if (!sta) {
dev_info(dev, "%s: ASSOC no sta found\n",
__func__);
rcu_read_unlock();
goto error;
}
macid = rtl8xxxu_get_macid(priv, sta);
if (sta->deflink.ht_cap.ht_supported)
dev_info(dev, "%s: HT supported\n", __func__);
if (sta->deflink.vht_cap.vht_supported)
dev_info(dev, "%s: VHT supported\n", __func__);
/* TODO: Set bits 28-31 for rate adaptive id */
ramask = (sta->deflink.supp_rates[0] & 0xfff) |
sta->deflink.ht_cap.mcs.rx_mask[0] << 12 |
sta->deflink.ht_cap.mcs.rx_mask[1] << 20;
if (sta->deflink.ht_cap.cap &
(IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_SGI_20))
sgi = 1;
highest_rate = fls(ramask) - 1;
if (rtl8xxxu_ht40_2g &&
(sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40))
bw = RATE_INFO_BW_40;
else
bw = RATE_INFO_BW_20;
sta_info = (struct rtl8xxxu_sta_info *)sta->drv_priv;
sta_info->rssi_level = RTL8XXXU_RATR_STA_INIT;
rcu_read_unlock();
rtl8xxxu_update_ra_report(rarpt, highest_rate, sgi, bw);
priv->fops->update_rate_mask(priv, ramask, 0, sgi,
bw == RATE_INFO_BW_40, macid);
rtl8xxxu_write8(priv, REG_BCN_MAX_ERR, 0xff);
if (rtlvif->port_num == 0)
rtl8xxxu_stop_tx_beacon(priv);
/* joinbss sequence */
rtl8xxxu_write16(priv, REG_BCN_PSR_RPT,
0xc000 | vif->cfg.aid);
priv->fops->report_connect(priv, 0, H2C_MACID_ROLE_AP, true);
} else {
val8 = rtl8xxxu_read8(priv, REG_BEACON_CTRL);
val8 |= BEACON_DISABLE_TSF_UPDATE;
rtl8xxxu_write8(priv, REG_BEACON_CTRL, val8);
priv->fops->report_connect(priv, 0, H2C_MACID_ROLE_AP, false);
}
}
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
dev_dbg(dev, "Changed ERP_PREAMBLE: Use short preamble %i\n",
bss_conf->use_short_preamble);
val32 = rtl8xxxu_read32(priv, REG_RESPONSE_RATE_SET);
if (bss_conf->use_short_preamble)
val32 |= RSR_ACK_SHORT_PREAMBLE;
else
val32 &= ~RSR_ACK_SHORT_PREAMBLE;
rtl8xxxu_write32(priv, REG_RESPONSE_RATE_SET, val32);
}
if (changed & BSS_CHANGED_ERP_SLOT) {
dev_dbg(dev, "Changed ERP_SLOT: short_slot_time %i\n",
bss_conf->use_short_slot);
if (bss_conf->use_short_slot)
val8 = 9;
else
val8 = 20;
rtl8xxxu_write8(priv, REG_SLOT, val8);
rtl8xxxu_set_aifs(priv, val8);
}
if (changed & BSS_CHANGED_BSSID) {
dev_dbg(dev, "Changed BSSID!\n");
rtl8xxxu_set_bssid(priv, bss_conf->bssid, rtlvif->port_num);
}
if (changed & BSS_CHANGED_BASIC_RATES) {
dev_dbg(dev, "Changed BASIC_RATES!\n");
rtl8xxxu_set_basic_rates(priv, bss_conf->basic_rates);
}
if (changed & BSS_CHANGED_BEACON_ENABLED) {
if (bss_conf->enable_beacon)
rtl8xxxu_start_tx_beacon(priv);
else
rtl8xxxu_stop_tx_beacon(priv);
}
if (changed & BSS_CHANGED_BEACON)
schedule_delayed_work(&priv->update_beacon_work, 0);
error:
return;
}
static int rtl8xxxu_start_ap(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_bss_conf *link_conf)
{
struct rtl8xxxu_vif *rtlvif = (struct rtl8xxxu_vif *)vif->drv_priv;
struct rtl8xxxu_priv *priv = hw->priv;
struct device *dev = &priv->udev->dev;
dev_dbg(dev, "Start AP mode\n");
rtl8xxxu_set_bssid(priv, vif->bss_conf.bssid, rtlvif->port_num);
rtl8xxxu_write16(priv, REG_BCN_INTERVAL, vif->bss_conf.beacon_int);
priv->fops->report_connect(priv, RTL8XXXU_BC_MC_MACID, 0, true);
return 0;
}
static u32 rtl8xxxu_80211_to_rtl_queue(u32 queue)
{
u32 rtlqueue;
switch (queue) {
case IEEE80211_AC_VO:
rtlqueue = TXDESC_QUEUE_VO;
break;
case IEEE80211_AC_VI:
rtlqueue = TXDESC_QUEUE_VI;
break;
case IEEE80211_AC_BE:
rtlqueue = TXDESC_QUEUE_BE;
break;
case IEEE80211_AC_BK:
rtlqueue = TXDESC_QUEUE_BK;
break;
default:
rtlqueue = TXDESC_QUEUE_BE;
}
return rtlqueue;
}
static u32 rtl8xxxu_queue_select(struct ieee80211_hdr *hdr, struct sk_buff *skb)
{
u32 queue;
if (unlikely(ieee80211_is_beacon(hdr->frame_control)))
queue = TXDESC_QUEUE_BEACON;
else if (ieee80211_is_mgmt(hdr->frame_control))
queue = TXDESC_QUEUE_MGNT;
else
queue = rtl8xxxu_80211_to_rtl_queue(skb_get_queue_mapping(skb));
return queue;
}
/*
* Despite newer chips 8723b/8812/8821 having a larger TX descriptor
* format. The descriptor checksum is still only calculated over the
* initial 32 bytes of the descriptor!
*/
static void rtl8xxxu_calc_tx_desc_csum(struct rtl8xxxu_txdesc32 *tx_desc)
{
__le16 *ptr = (__le16 *)tx_desc;
u16 csum = 0;
int i;
/*
* Clear csum field before calculation, as the csum field is
* in the middle of the struct.
*/
tx_desc->csum = cpu_to_le16(0);
for (i = 0; i < (sizeof(struct rtl8xxxu_txdesc32) / sizeof(u16)); i++)
csum = csum ^ le16_to_cpu(ptr[i]);
tx_desc->csum |= cpu_to_le16(csum);
}
static void rtl8xxxu_free_tx_resources(struct rtl8xxxu_priv *priv)
{
struct rtl8xxxu_tx_urb *tx_urb, *tmp;
unsigned long flags;
spin_lock_irqsave(&priv->tx_urb_lock, flags);
list_for_each_entry_safe(tx_urb, tmp, &priv->tx_urb_free_list, list) {
list_del(&tx_urb->list);
priv->tx_urb_free_count--;
usb_free_urb(&tx_urb->urb);
}
spin_unlock_irqrestore(&priv->tx_urb_lock, flags);
}
static struct rtl8xxxu_tx_urb *
rtl8xxxu_alloc_tx_urb(struct rtl8xxxu_priv *priv)
{
struct rtl8xxxu_tx_urb *tx_urb;
unsigned long flags;
spin_lock_irqsave(&priv->tx_urb_lock, flags);
tx_urb = list_first_entry_or_null(&priv->tx_urb_free_list,
struct rtl8xxxu_tx_urb, list);
if (tx_urb) {
list_del(&tx_urb->list);
priv->tx_urb_free_count--;
if (priv->tx_urb_free_count < RTL8XXXU_TX_URB_LOW_WATER &&
!priv->tx_stopped) {
priv->tx_stopped = true;
ieee80211_stop_queues(priv->hw);
}
}
spin_unlock_irqrestore(&priv->tx_urb_lock, flags);
return tx_urb;
}
static void rtl8xxxu_free_tx_urb(struct rtl8xxxu_priv *priv,
struct rtl8xxxu_tx_urb *tx_urb)
{
unsigned long flags;
INIT_LIST_HEAD(&tx_urb->list);
spin_lock_irqsave(&priv->tx_urb_lock, flags);
list_add(&tx_urb->list, &priv->tx_urb_free_list);
priv->tx_urb_free_count++;
if (priv->tx_urb_free_count > RTL8XXXU_TX_URB_HIGH_WATER &&
priv->tx_stopped) {
priv->tx_stopped = false;
ieee80211_wake_queues(priv->hw);
}
spin_unlock_irqrestore(&priv->tx_urb_lock, flags);
}
static void rtl8xxxu_tx_complete(struct urb *urb)
{
struct sk_buff *skb = (struct sk_buff *)urb->context;
struct ieee80211_tx_info *tx_info;
struct ieee80211_hw *hw;
struct rtl8xxxu_priv *priv;
struct rtl8xxxu_tx_urb *tx_urb =
container_of(urb, struct rtl8xxxu_tx_urb, urb);
tx_info = IEEE80211_SKB_CB(skb);
hw = tx_info->rate_driver_data[0];
priv = hw->priv;
skb_pull(skb, priv->fops->tx_desc_size);
ieee80211_tx_info_clear_status(tx_info);
tx_info->status.rates[0].idx = -1;
tx_info->status.rates[0].count = 0;
if (!urb->status)
tx_info->flags |= IEEE80211_TX_STAT_ACK;
ieee80211_tx_status_irqsafe(hw, skb);
rtl8xxxu_free_tx_urb(priv, tx_urb);
}
static void rtl8xxxu_dump_action(struct device *dev,
struct ieee80211_hdr *hdr)
{
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)hdr;
u16 cap, timeout;
if (!(rtl8xxxu_debug & RTL8XXXU_DEBUG_ACTION))
return;
switch (mgmt->u.action.u.addba_resp.action_code) {
case WLAN_ACTION_ADDBA_RESP:
cap = le16_to_cpu(mgmt->u.action.u.addba_resp.capab);
timeout = le16_to_cpu(mgmt->u.action.u.addba_resp.timeout);
dev_info(dev, "WLAN_ACTION_ADDBA_RESP: "
"timeout %i, tid %02x, buf_size %02x, policy %02x, "
"status %02x\n",
timeout,
(cap & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2,
(cap & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6,
(cap >> 1) & 0x1,
le16_to_cpu(mgmt->u.action.u.addba_resp.status));
break;
case WLAN_ACTION_ADDBA_REQ:
cap = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
dev_info(dev, "WLAN_ACTION_ADDBA_REQ: "
"timeout %i, tid %02x, buf_size %02x, policy %02x\n",
timeout,
(cap & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2,
(cap & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6,
(cap >> 1) & 0x1);
break;
default:
dev_info(dev, "action frame %02x\n",
mgmt->u.action.u.addba_resp.action_code);
break;
}
}
/*
* Fill in v1 (gen1) specific TX descriptor bits.
* This format is used on 8188cu/8192cu/8723au
*/
void
rtl8xxxu_fill_txdesc_v1(struct ieee80211_hw *hw, struct ieee80211_hdr *hdr,
struct ieee80211_tx_info *tx_info,
struct rtl8xxxu_txdesc32 *tx_desc, bool sgi,
bool short_preamble, bool ampdu_enable, u32 rts_rate,
u8 macid)
{
struct rtl8xxxu_priv *priv = hw->priv;
struct device *dev = &priv->udev->dev;
u8 *qc = ieee80211_get_qos_ctl(hdr);
u8 tid = qc[0] & IEEE80211_QOS_CTL_TID_MASK;
u32 rate = 0;
u16 seq_number;
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_TX)
dev_info(dev, "%s: TX rate: %d, pkt size %u\n",
__func__, rate, le16_to_cpu(tx_desc->pkt_size));
seq_number = IEEE80211_SEQ_TO_SN(le16_to_cpu(hdr->seq_ctrl));
tx_desc->txdw5 = cpu_to_le32(rate);
if (ieee80211_is_data(hdr->frame_control))
tx_desc->txdw5 |= cpu_to_le32(0x0001ff00);
tx_desc->txdw3 = cpu_to_le32((u32)seq_number << TXDESC32_SEQ_SHIFT);
if (ampdu_enable && test_bit(tid, priv->tid_tx_operational))
tx_desc->txdw1 |= cpu_to_le32(TXDESC32_AGG_ENABLE);
else
tx_desc->txdw1 |= cpu_to_le32(TXDESC32_AGG_BREAK);
if (ieee80211_is_mgmt(hdr->frame_control)) {
tx_desc->txdw5 = cpu_to_le32(rate);
tx_desc->txdw4 |= cpu_to_le32(TXDESC32_USE_DRIVER_RATE);
tx_desc->txdw5 |= cpu_to_le32(6 << TXDESC32_RETRY_LIMIT_SHIFT);
tx_desc->txdw5 |= cpu_to_le32(TXDESC32_RETRY_LIMIT_ENABLE);
}
if (ieee80211_is_data_qos(hdr->frame_control))
tx_desc->txdw4 |= cpu_to_le32(TXDESC32_QOS);
if (short_preamble)
tx_desc->txdw4 |= cpu_to_le32(TXDESC32_SHORT_PREAMBLE);
if (sgi)
tx_desc->txdw5 |= cpu_to_le32(TXDESC32_SHORT_GI);
/*
* rts_rate is zero if RTS/CTS or CTS to SELF are not enabled
*/
tx_desc->txdw4 |= cpu_to_le32(rts_rate << TXDESC32_RTS_RATE_SHIFT);
if (ampdu_enable || tx_info->control.use_rts) {
tx_desc->txdw4 |= cpu_to_le32(TXDESC32_RTS_CTS_ENABLE);
tx_desc->txdw4 |= cpu_to_le32(TXDESC32_HW_RTS_ENABLE);
} else if (tx_info->control.use_cts_prot) {
tx_desc->txdw4 |= cpu_to_le32(TXDESC32_CTS_SELF_ENABLE);
tx_desc->txdw4 |= cpu_to_le32(TXDESC32_HW_RTS_ENABLE);
}
}
/*
* Fill in v2 (gen2) specific TX descriptor bits.
* This format is used on 8192eu/8723bu
*/
void
rtl8xxxu_fill_txdesc_v2(struct ieee80211_hw *hw, struct ieee80211_hdr *hdr,
struct ieee80211_tx_info *tx_info,
struct rtl8xxxu_txdesc32 *tx_desc32, bool sgi,
bool short_preamble, bool ampdu_enable, u32 rts_rate,
u8 macid)
{
struct rtl8xxxu_priv *priv = hw->priv;
struct device *dev = &priv->udev->dev;
struct rtl8xxxu_txdesc40 *tx_desc40;
u8 *qc = ieee80211_get_qos_ctl(hdr);
u8 tid = qc[0] & IEEE80211_QOS_CTL_TID_MASK;
u32 rate = 0;
u16 seq_number;
tx_desc40 = (struct rtl8xxxu_txdesc40 *)tx_desc32;
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_TX)
dev_info(dev, "%s: TX rate: %d, pkt size %u\n",
__func__, rate, le16_to_cpu(tx_desc40->pkt_size));
tx_desc40->txdw1 |= cpu_to_le32(macid << TXDESC40_MACID_SHIFT);
seq_number = IEEE80211_SEQ_TO_SN(le16_to_cpu(hdr->seq_ctrl));
tx_desc40->txdw4 = cpu_to_le32(rate);
if (ieee80211_is_data(hdr->frame_control)) {
tx_desc40->txdw4 |= cpu_to_le32(0x1f <<
TXDESC40_DATA_RATE_FB_SHIFT);
}
tx_desc40->txdw9 = cpu_to_le32((u32)seq_number << TXDESC40_SEQ_SHIFT);
if (ampdu_enable && test_bit(tid, priv->tid_tx_operational))
tx_desc40->txdw2 |= cpu_to_le32(TXDESC40_AGG_ENABLE);
else
tx_desc40->txdw2 |= cpu_to_le32(TXDESC40_AGG_BREAK);
if (ieee80211_is_mgmt(hdr->frame_control)) {
tx_desc40->txdw4 = cpu_to_le32(rate);
tx_desc40->txdw3 |= cpu_to_le32(TXDESC40_USE_DRIVER_RATE);
tx_desc40->txdw4 |=
cpu_to_le32(6 << TXDESC40_RETRY_LIMIT_SHIFT);
tx_desc40->txdw4 |= cpu_to_le32(TXDESC40_RETRY_LIMIT_ENABLE);
}
if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)
tx_desc40->txdw8 |= cpu_to_le32(TXDESC40_HW_SEQ_ENABLE);
if (short_preamble)
tx_desc40->txdw5 |= cpu_to_le32(TXDESC40_SHORT_PREAMBLE);
tx_desc40->txdw4 |= cpu_to_le32(rts_rate << TXDESC40_RTS_RATE_SHIFT);
/*
* rts_rate is zero if RTS/CTS or CTS to SELF are not enabled
*/
if (ampdu_enable || tx_info->control.use_rts) {
tx_desc40->txdw3 |= cpu_to_le32(TXDESC40_RTS_CTS_ENABLE);
tx_desc40->txdw3 |= cpu_to_le32(TXDESC40_HW_RTS_ENABLE);
} else if (tx_info->control.use_cts_prot) {
/*
* For some reason the vendor driver doesn't set
* TXDESC40_HW_RTS_ENABLE for CTS to SELF
*/
tx_desc40->txdw3 |= cpu_to_le32(TXDESC40_CTS_SELF_ENABLE);
}
}
/*
* Fill in v3 (gen1) specific TX descriptor bits.
* This format is a hybrid between the v1 and v2 formats, only seen
* on 8188eu devices so far.
*/
void
rtl8xxxu_fill_txdesc_v3(struct ieee80211_hw *hw, struct ieee80211_hdr *hdr,
struct ieee80211_tx_info *tx_info,
struct rtl8xxxu_txdesc32 *tx_desc, bool sgi,
bool short_preamble, bool ampdu_enable, u32 rts_rate,
u8 macid)
{
struct rtl8xxxu_priv *priv = hw->priv;
struct device *dev = &priv->udev->dev;
struct rtl8xxxu_ra_info *ra = &priv->ra_info;
u8 *qc = ieee80211_get_qos_ctl(hdr);
u8 tid = qc[0] & IEEE80211_QOS_CTL_TID_MASK;
u32 rate = 0;
u16 seq_number;
seq_number = IEEE80211_SEQ_TO_SN(le16_to_cpu(hdr->seq_ctrl));
if (ieee80211_is_data(hdr->frame_control)) {
rate = ra->decision_rate;
tx_desc->txdw5 = cpu_to_le32(rate);
tx_desc->txdw4 |= cpu_to_le32(TXDESC32_USE_DRIVER_RATE);
tx_desc->txdw4 |= le32_encode_bits(ra->pt_stage, TXDESC32_PT_STAGE_MASK);
/* Data/RTS rate FB limit */
tx_desc->txdw5 |= cpu_to_le32(0x0001ff00);
}
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_TX)
dev_info(dev, "%s: TX rate: %d, pkt size %d\n",
__func__, rate, le16_to_cpu(tx_desc->pkt_size));
tx_desc->txdw3 = cpu_to_le32((u32)seq_number << TXDESC32_SEQ_SHIFT);
if (ampdu_enable && test_bit(tid, priv->tid_tx_operational))
tx_desc->txdw2 |= cpu_to_le32(TXDESC40_AGG_ENABLE);
else
tx_desc->txdw2 |= cpu_to_le32(TXDESC40_AGG_BREAK);
if (ieee80211_is_mgmt(hdr->frame_control)) {
tx_desc->txdw5 = cpu_to_le32(rate);
tx_desc->txdw4 |= cpu_to_le32(TXDESC32_USE_DRIVER_RATE);
tx_desc->txdw5 |= cpu_to_le32(6 << TXDESC32_RETRY_LIMIT_SHIFT);
tx_desc->txdw5 |= cpu_to_le32(TXDESC32_RETRY_LIMIT_ENABLE);
}
if (ieee80211_is_data_qos(hdr->frame_control)) {
tx_desc->txdw4 |= cpu_to_le32(TXDESC32_QOS);
if (conf_is_ht40(&hw->conf)) {
tx_desc->txdw4 |= cpu_to_le32(TXDESC_DATA_BW);
if (conf_is_ht40_minus(&hw->conf))
tx_desc->txdw4 |= cpu_to_le32(TXDESC_PRIME_CH_OFF_UPPER);
else
tx_desc->txdw4 |= cpu_to_le32(TXDESC_PRIME_CH_OFF_LOWER);
}
}
if (short_preamble)
tx_desc->txdw4 |= cpu_to_le32(TXDESC32_SHORT_PREAMBLE);
if (sgi && ra->rate_sgi)
tx_desc->txdw5 |= cpu_to_le32(TXDESC32_SHORT_GI);
/*
* rts_rate is zero if RTS/CTS or CTS to SELF are not enabled
*/
tx_desc->txdw4 |= cpu_to_le32(rts_rate << TXDESC32_RTS_RATE_SHIFT);
if (ampdu_enable || tx_info->control.use_rts) {
tx_desc->txdw4 |= cpu_to_le32(TXDESC32_RTS_CTS_ENABLE);
tx_desc->txdw4 |= cpu_to_le32(TXDESC32_HW_RTS_ENABLE);
} else if (tx_info->control.use_cts_prot) {
tx_desc->txdw4 |= cpu_to_le32(TXDESC32_CTS_SELF_ENABLE);
tx_desc->txdw4 |= cpu_to_le32(TXDESC32_HW_RTS_ENABLE);
}
tx_desc->txdw2 |= cpu_to_le32(TXDESC_ANTENNA_SELECT_A |
TXDESC_ANTENNA_SELECT_B);
tx_desc->txdw7 |= cpu_to_le16(TXDESC_ANTENNA_SELECT_C >> 16);
}
static void rtl8xxxu_tx(struct ieee80211_hw *hw,
struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct rtl8xxxu_priv *priv = hw->priv;
struct rtl8xxxu_txdesc32 *tx_desc;
struct rtl8xxxu_tx_urb *tx_urb;
struct ieee80211_sta *sta = NULL;
struct ieee80211_vif *vif = tx_info->control.vif;
struct rtl8xxxu_vif *rtlvif = vif ? (struct rtl8xxxu_vif *)vif->drv_priv : NULL;
struct device *dev = &priv->udev->dev;
u32 queue, rts_rate;
u16 pktlen = skb->len;
int tx_desc_size = priv->fops->tx_desc_size;
u8 macid;
int ret;
bool ampdu_enable, sgi = false, short_preamble = false, bmc = false;
if (skb_headroom(skb) < tx_desc_size) {
dev_warn(dev,
"%s: Not enough headroom (%i) for tx descriptor\n",
__func__, skb_headroom(skb));
goto error;
}
if (unlikely(skb->len > (65535 - tx_desc_size))) {
dev_warn(dev, "%s: Trying to send over-sized skb (%i)\n",
__func__, skb->len);
goto error;
}
tx_urb = rtl8xxxu_alloc_tx_urb(priv);
if (!tx_urb) {
dev_warn(dev, "%s: Unable to allocate tx urb\n", __func__);
goto error;
}
if (ieee80211_is_action(hdr->frame_control))
rtl8xxxu_dump_action(dev, hdr);
tx_info->rate_driver_data[0] = hw;
if (control && control->sta)
sta = control->sta;
queue = rtl8xxxu_queue_select(hdr, skb);
tx_desc = skb_push(skb, tx_desc_size);
memset(tx_desc, 0, tx_desc_size);
tx_desc->pkt_size = cpu_to_le16(pktlen);
tx_desc->pkt_offset = tx_desc_size;
/* These bits mean different things to the RTL8192F. */
if (priv->rtl_chip != RTL8192F)
tx_desc->txdw0 =
TXDESC_OWN | TXDESC_FIRST_SEGMENT | TXDESC_LAST_SEGMENT;
if (is_multicast_ether_addr(ieee80211_get_DA(hdr)) ||
is_broadcast_ether_addr(ieee80211_get_DA(hdr))) {
tx_desc->txdw0 |= TXDESC_BROADMULTICAST;
bmc = true;
}
tx_desc->txdw1 = cpu_to_le32(queue << TXDESC_QUEUE_SHIFT);
macid = rtl8xxxu_get_macid(priv, sta);
if (tx_info->control.hw_key) {
switch (tx_info->control.hw_key->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
case WLAN_CIPHER_SUITE_TKIP:
tx_desc->txdw1 |= cpu_to_le32(TXDESC_SEC_RC4);
break;
case WLAN_CIPHER_SUITE_CCMP:
tx_desc->txdw1 |= cpu_to_le32(TXDESC_SEC_AES);
break;
default:
break;
}
if (bmc && rtlvif && rtlvif->hw_key_idx != 0xff) {
tx_desc->txdw1 |= cpu_to_le32(TXDESC_EN_DESC_ID);
macid = rtlvif->hw_key_idx;
}
}
/* (tx_info->flags & IEEE80211_TX_CTL_AMPDU) && */
ampdu_enable = false;
if (ieee80211_is_data_qos(hdr->frame_control) && sta) {
if (sta->deflink.ht_cap.ht_supported) {
u32 ampdu, val32;
u8 *qc = ieee80211_get_qos_ctl(hdr);
u8 tid = qc[0] & IEEE80211_QOS_CTL_TID_MASK;
ampdu = (u32)sta->deflink.ht_cap.ampdu_density;
val32 = ampdu << TXDESC_AMPDU_DENSITY_SHIFT;
tx_desc->txdw2 |= cpu_to_le32(val32);
ampdu_enable = true;
if (!test_bit(tid, priv->tx_aggr_started) &&
!(skb->protocol == cpu_to_be16(ETH_P_PAE)))
if (!ieee80211_start_tx_ba_session(sta, tid, 0))
set_bit(tid, priv->tx_aggr_started);
}
}
if (ieee80211_is_data_qos(hdr->frame_control) &&
sta && sta->deflink.ht_cap.cap &
(IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_SGI_20))
sgi = true;
if (sta && vif && vif->bss_conf.use_short_preamble)
short_preamble = true;
if (skb->len > hw->wiphy->rts_threshold)
tx_info->control.use_rts = true;
if (sta && vif && vif->bss_conf.use_cts_prot)
tx_info->control.use_cts_prot = true;
if (ampdu_enable || tx_info->control.use_rts ||
tx_info->control.use_cts_prot)
rts_rate = DESC_RATE_24M;
else
rts_rate = 0;
priv->fops->fill_txdesc(hw, hdr, tx_info, tx_desc, sgi, short_preamble,
ampdu_enable, rts_rate, macid);
rtl8xxxu_calc_tx_desc_csum(tx_desc);
/* avoid zero checksum make tx hang */
if (priv->rtl_chip == RTL8710B || priv->rtl_chip == RTL8192F)
tx_desc->csum = ~tx_desc->csum;
usb_fill_bulk_urb(&tx_urb->urb, priv->udev, priv->pipe_out[queue],
skb->data, skb->len, rtl8xxxu_tx_complete, skb);
usb_anchor_urb(&tx_urb->urb, &priv->tx_anchor);
ret = usb_submit_urb(&tx_urb->urb, GFP_ATOMIC);
if (ret) {
usb_unanchor_urb(&tx_urb->urb);
rtl8xxxu_free_tx_urb(priv, tx_urb);
goto error;
}
return;
error:
dev_kfree_skb(skb);
}
static void rtl8xxxu_send_beacon_frame(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct rtl8xxxu_priv *priv = hw->priv;
struct sk_buff *skb = ieee80211_beacon_get(hw, vif, 0);
struct device *dev = &priv->udev->dev;
int retry;
u8 val8;
/* BCN_VALID, write 1 to clear, cleared by SW */
val8 = rtl8xxxu_read8(priv, REG_TDECTRL + 2);
val8 |= BIT_BCN_VALID >> 16;
rtl8xxxu_write8(priv, REG_TDECTRL + 2, val8);
/* SW_BCN_SEL - Port0 */
val8 = rtl8xxxu_read8(priv, REG_DWBCN1_CTRL_8723B + 2);
val8 &= ~(BIT_SW_BCN_SEL >> 16);
rtl8xxxu_write8(priv, REG_DWBCN1_CTRL_8723B + 2, val8);
if (skb)
rtl8xxxu_tx(hw, NULL, skb);
retry = 100;
do {
val8 = rtl8xxxu_read8(priv, REG_TDECTRL + 2);
if (val8 & (BIT_BCN_VALID >> 16))
break;
usleep_range(10, 20);
} while (--retry);
if (!retry)
dev_err(dev, "%s: Failed to read beacon valid bit\n", __func__);
}
static void rtl8xxxu_update_beacon_work_callback(struct work_struct *work)
{
struct rtl8xxxu_priv *priv =
container_of(work, struct rtl8xxxu_priv, update_beacon_work.work);
struct ieee80211_hw *hw = priv->hw;
struct ieee80211_vif *vif = priv->vifs[0];
if (!vif) {
WARN_ONCE(true, "no vif to update beacon\n");
return;
}
if (vif->bss_conf.csa_active) {
if (ieee80211_beacon_cntdwn_is_complete(vif, 0)) {
ieee80211_csa_finish(vif, 0);
return;
}
schedule_delayed_work(&priv->update_beacon_work,
msecs_to_jiffies(vif->bss_conf.beacon_int));
}
rtl8xxxu_send_beacon_frame(hw, vif);
}
static inline bool rtl8xxxu_is_packet_match_bssid(struct rtl8xxxu_priv *priv,
struct ieee80211_hdr *hdr,
int port_num)
{
return priv->vifs[port_num] &&
priv->vifs[port_num]->type == NL80211_IFTYPE_STATION &&
priv->vifs[port_num]->cfg.assoc &&
ether_addr_equal(priv->vifs[port_num]->bss_conf.bssid, hdr->addr2);
}
static inline bool rtl8xxxu_is_sta_sta(struct rtl8xxxu_priv *priv)
{
return (priv->vifs[0] && priv->vifs[0]->cfg.assoc &&
priv->vifs[0]->type == NL80211_IFTYPE_STATION) &&
(priv->vifs[1] && priv->vifs[1]->cfg.assoc &&
priv->vifs[1]->type == NL80211_IFTYPE_STATION);
}
void rtl8723au_rx_parse_phystats(struct rtl8xxxu_priv *priv,
struct ieee80211_rx_status *rx_status,
struct rtl8723au_phy_stats *phy_stats,
u32 rxmcs, struct ieee80211_hdr *hdr,
bool crc_icv_err)
{
if (phy_stats->sgi_en)
rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
if (rxmcs < DESC_RATE_6M) {
/*
* Handle PHY stats for CCK rates
*/
rx_status->signal = priv->fops->cck_rssi(priv, phy_stats);
} else {
bool parse_cfo = priv->fops->set_crystal_cap &&
!crc_icv_err &&
!ieee80211_is_ctl(hdr->frame_control) &&
!rtl8xxxu_is_sta_sta(priv) &&
(rtl8xxxu_is_packet_match_bssid(priv, hdr, 0) ||
rtl8xxxu_is_packet_match_bssid(priv, hdr, 1));
if (parse_cfo) {
priv->cfo_tracking.cfo_tail[0] = phy_stats->path_cfotail[0];
priv->cfo_tracking.cfo_tail[1] = phy_stats->path_cfotail[1];
priv->cfo_tracking.packet_count++;
}
rx_status->signal =
(phy_stats->cck_sig_qual_ofdm_pwdb_all >> 1) - 110;
}
}
static void jaguar2_rx_parse_phystats_type0(struct rtl8xxxu_priv *priv,
struct ieee80211_rx_status *rx_status,
struct jaguar2_phy_stats_type0 *phy_stats0,
u32 rxmcs, struct ieee80211_hdr *hdr,
bool crc_icv_err)
{
s8 rx_power = phy_stats0->pwdb - 110;
if (!priv->cck_new_agc)
rx_power = priv->fops->cck_rssi(priv, (struct rtl8723au_phy_stats *)phy_stats0);
rx_status->signal = rx_power;
}
static void jaguar2_rx_parse_phystats_type1(struct rtl8xxxu_priv *priv,
struct ieee80211_rx_status *rx_status,
struct jaguar2_phy_stats_type1 *phy_stats1,
u32 rxmcs, struct ieee80211_hdr *hdr,
bool crc_icv_err)
{
bool parse_cfo = priv->fops->set_crystal_cap &&
!crc_icv_err &&
!ieee80211_is_ctl(hdr->frame_control) &&
!rtl8xxxu_is_sta_sta(priv) &&
(rtl8xxxu_is_packet_match_bssid(priv, hdr, 0) ||
rtl8xxxu_is_packet_match_bssid(priv, hdr, 1));
u8 pwdb_max = 0;
int rx_path;
if (parse_cfo) {
/* Only path-A and path-B have CFO tail and short CFO */
priv->cfo_tracking.cfo_tail[RF_A] = phy_stats1->cfo_tail[RF_A];
priv->cfo_tracking.cfo_tail[RF_B] = phy_stats1->cfo_tail[RF_B];
priv->cfo_tracking.packet_count++;
}
for (rx_path = 0; rx_path < priv->rx_paths; rx_path++)
pwdb_max = max(pwdb_max, phy_stats1->pwdb[rx_path]);
rx_status->signal = pwdb_max - 110;
}
static void jaguar2_rx_parse_phystats_type2(struct rtl8xxxu_priv *priv,
struct ieee80211_rx_status *rx_status,
struct jaguar2_phy_stats_type2 *phy_stats2,
u32 rxmcs, struct ieee80211_hdr *hdr,
bool crc_icv_err)
{
u8 pwdb_max = 0;
int rx_path;
for (rx_path = 0; rx_path < priv->rx_paths; rx_path++)
pwdb_max = max(pwdb_max, phy_stats2->pwdb[rx_path]);
rx_status->signal = pwdb_max - 110;
}
void jaguar2_rx_parse_phystats(struct rtl8xxxu_priv *priv,
struct ieee80211_rx_status *rx_status,
struct rtl8723au_phy_stats *phy_stats,
u32 rxmcs, struct ieee80211_hdr *hdr,
bool crc_icv_err)
{
struct jaguar2_phy_stats_type0 *phy_stats0 = (struct jaguar2_phy_stats_type0 *)phy_stats;
struct jaguar2_phy_stats_type1 *phy_stats1 = (struct jaguar2_phy_stats_type1 *)phy_stats;
struct jaguar2_phy_stats_type2 *phy_stats2 = (struct jaguar2_phy_stats_type2 *)phy_stats;
switch (phy_stats0->page_num) {
case 0:
/* CCK */
jaguar2_rx_parse_phystats_type0(priv, rx_status, phy_stats0,
rxmcs, hdr, crc_icv_err);
break;
case 1:
/* OFDM */
jaguar2_rx_parse_phystats_type1(priv, rx_status, phy_stats1,
rxmcs, hdr, crc_icv_err);
break;
case 2:
/* Also OFDM but different (how?) */
jaguar2_rx_parse_phystats_type2(priv, rx_status, phy_stats2,
rxmcs, hdr, crc_icv_err);
break;
default:
return;
}
}
static void rtl8xxxu_free_rx_resources(struct rtl8xxxu_priv *priv)
{
struct rtl8xxxu_rx_urb *rx_urb, *tmp;
unsigned long flags;
spin_lock_irqsave(&priv->rx_urb_lock, flags);
list_for_each_entry_safe(rx_urb, tmp,
&priv->rx_urb_pending_list, list) {
list_del(&rx_urb->list);
priv->rx_urb_pending_count--;
usb_free_urb(&rx_urb->urb);
}
spin_unlock_irqrestore(&priv->rx_urb_lock, flags);
}
static void rtl8xxxu_queue_rx_urb(struct rtl8xxxu_priv *priv,
struct rtl8xxxu_rx_urb *rx_urb)
{
struct sk_buff *skb;
unsigned long flags;
int pending = 0;
spin_lock_irqsave(&priv->rx_urb_lock, flags);
if (!priv->shutdown) {
list_add_tail(&rx_urb->list, &priv->rx_urb_pending_list);
priv->rx_urb_pending_count++;
pending = priv->rx_urb_pending_count;
} else {
skb = (struct sk_buff *)rx_urb->urb.context;
dev_kfree_skb_irq(skb);
usb_free_urb(&rx_urb->urb);
}
spin_unlock_irqrestore(&priv->rx_urb_lock, flags);
if (pending > RTL8XXXU_RX_URB_PENDING_WATER)
schedule_work(&priv->rx_urb_wq);
}
static void rtl8xxxu_rx_urb_work(struct work_struct *work)
{
struct rtl8xxxu_priv *priv;
struct rtl8xxxu_rx_urb *rx_urb, *tmp;
struct list_head local;
struct sk_buff *skb;
unsigned long flags;
int ret;
priv = container_of(work, struct rtl8xxxu_priv, rx_urb_wq);
INIT_LIST_HEAD(&local);
spin_lock_irqsave(&priv->rx_urb_lock, flags);
list_splice_init(&priv->rx_urb_pending_list, &local);
priv->rx_urb_pending_count = 0;
spin_unlock_irqrestore(&priv->rx_urb_lock, flags);
list_for_each_entry_safe(rx_urb, tmp, &local, list) {
list_del_init(&rx_urb->list);
ret = rtl8xxxu_submit_rx_urb(priv, rx_urb);
/*
* If out of memory or temporary error, put it back on the
* queue and try again. Otherwise the device is dead/gone
* and we should drop it.
*/
switch (ret) {
case 0:
break;
case -ENOMEM:
case -EAGAIN:
rtl8xxxu_queue_rx_urb(priv, rx_urb);
break;
default:
dev_warn(&priv->udev->dev,
"failed to requeue urb with error %i\n", ret);
skb = (struct sk_buff *)rx_urb->urb.context;
dev_kfree_skb(skb);
usb_free_urb(&rx_urb->urb);
}
}
}
/*
* The RTL8723BU/RTL8192EU vendor driver use coexistence table type
* 0-7 to represent writing different combinations of register values
* to REG_BT_COEX_TABLEs. It's for different kinds of coexistence use
* cases which Realtek doesn't provide detail for these settings. Keep
* this aligned with vendor driver for easier maintenance.
*/
static
void rtl8723bu_set_coex_with_type(struct rtl8xxxu_priv *priv, u8 type)
{
switch (type) {
case 0:
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE1, 0x55555555);
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE2, 0x55555555);
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE3, 0x00ffffff);
rtl8xxxu_write8(priv, REG_BT_COEX_TABLE4, 0x03);
break;
case 1:
case 3:
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE1, 0x55555555);
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE2, 0x5a5a5a5a);
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE3, 0x00ffffff);
rtl8xxxu_write8(priv, REG_BT_COEX_TABLE4, 0x03);
break;
case 2:
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE1, 0x5a5a5a5a);
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE2, 0x5a5a5a5a);
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE3, 0x00ffffff);
rtl8xxxu_write8(priv, REG_BT_COEX_TABLE4, 0x03);
break;
case 4:
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE1, 0x5a5a5a5a);
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE2, 0xaaaa5a5a);
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE3, 0x00ffffff);
rtl8xxxu_write8(priv, REG_BT_COEX_TABLE4, 0x03);
break;
case 5:
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE1, 0x5a5a5a5a);
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE2, 0xaa5a5a5a);
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE3, 0x00ffffff);
rtl8xxxu_write8(priv, REG_BT_COEX_TABLE4, 0x03);
break;
case 6:
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE1, 0x55555555);
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE2, 0xaaaaaaaa);
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE3, 0x00ffffff);
rtl8xxxu_write8(priv, REG_BT_COEX_TABLE4, 0x03);
break;
case 7:
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE1, 0xaaaaaaaa);
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE2, 0xaaaaaaaa);
rtl8xxxu_write32(priv, REG_BT_COEX_TABLE3, 0x00ffffff);
rtl8xxxu_write8(priv, REG_BT_COEX_TABLE4, 0x03);
break;
default:
break;
}
}
static
void rtl8723bu_update_bt_link_info(struct rtl8xxxu_priv *priv, u8 bt_info)
{
struct rtl8xxxu_btcoex *btcoex = &priv->bt_coex;
if (bt_info & BT_INFO_8723B_1ANT_B_INQ_PAGE)
btcoex->c2h_bt_inquiry = true;
else
btcoex->c2h_bt_inquiry = false;
if (!(bt_info & BT_INFO_8723B_1ANT_B_CONNECTION)) {
btcoex->bt_status = BT_8723B_1ANT_STATUS_NON_CONNECTED_IDLE;
btcoex->has_sco = false;
btcoex->has_hid = false;
btcoex->has_pan = false;
btcoex->has_a2dp = false;
} else {
if ((bt_info & 0x1f) == BT_INFO_8723B_1ANT_B_CONNECTION)
btcoex->bt_status = BT_8723B_1ANT_STATUS_CONNECTED_IDLE;
else if ((bt_info & BT_INFO_8723B_1ANT_B_SCO_ESCO) ||
(bt_info & BT_INFO_8723B_1ANT_B_SCO_BUSY))
btcoex->bt_status = BT_8723B_1ANT_STATUS_SCO_BUSY;
else if (bt_info & BT_INFO_8723B_1ANT_B_ACL_BUSY)
btcoex->bt_status = BT_8723B_1ANT_STATUS_ACL_BUSY;
else
btcoex->bt_status = BT_8723B_1ANT_STATUS_MAX;
if (bt_info & BT_INFO_8723B_1ANT_B_FTP)
btcoex->has_pan = true;
else
btcoex->has_pan = false;
if (bt_info & BT_INFO_8723B_1ANT_B_A2DP)
btcoex->has_a2dp = true;
else
btcoex->has_a2dp = false;
if (bt_info & BT_INFO_8723B_1ANT_B_HID)
btcoex->has_hid = true;
else
btcoex->has_hid = false;
if (bt_info & BT_INFO_8723B_1ANT_B_SCO_ESCO)
btcoex->has_sco = true;
else
btcoex->has_sco = false;
}
if (!btcoex->has_a2dp && !btcoex->has_sco &&
!btcoex->has_pan && btcoex->has_hid)
btcoex->hid_only = true;
else
btcoex->hid_only = false;
if (!btcoex->has_sco && !btcoex->has_pan &&
!btcoex->has_hid && btcoex->has_a2dp)
btcoex->has_a2dp = true;
else
btcoex->has_a2dp = false;
if (btcoex->bt_status == BT_8723B_1ANT_STATUS_SCO_BUSY ||
btcoex->bt_status == BT_8723B_1ANT_STATUS_ACL_BUSY)
btcoex->bt_busy = true;
else
btcoex->bt_busy = false;
}
static inline bool rtl8xxxu_is_assoc(struct rtl8xxxu_priv *priv)
{
return (priv->vifs[0] && priv->vifs[0]->cfg.assoc) ||
(priv->vifs[1] && priv->vifs[1]->cfg.assoc);
}
static
void rtl8723bu_handle_bt_inquiry(struct rtl8xxxu_priv *priv)
{
struct rtl8xxxu_btcoex *btcoex;
btcoex = &priv->bt_coex;
if (!rtl8xxxu_is_assoc(priv)) {
rtl8723bu_set_ps_tdma(priv, 0x8, 0x0, 0x0, 0x0, 0x0);
rtl8723bu_set_coex_with_type(priv, 0);
} else if (btcoex->has_sco || btcoex->has_hid || btcoex->has_a2dp) {
rtl8723bu_set_ps_tdma(priv, 0x61, 0x35, 0x3, 0x11, 0x11);
rtl8723bu_set_coex_with_type(priv, 4);
} else if (btcoex->has_pan) {
rtl8723bu_set_ps_tdma(priv, 0x61, 0x3f, 0x3, 0x11, 0x11);
rtl8723bu_set_coex_with_type(priv, 4);
} else {
rtl8723bu_set_ps_tdma(priv, 0x8, 0x0, 0x0, 0x0, 0x0);
rtl8723bu_set_coex_with_type(priv, 7);
}
}
static
void rtl8723bu_handle_bt_info(struct rtl8xxxu_priv *priv)
{
struct rtl8xxxu_btcoex *btcoex;
btcoex = &priv->bt_coex;
if (rtl8xxxu_is_assoc(priv)) {
u32 val32 = 0;
u32 high_prio_tx = 0, high_prio_rx = 0;
val32 = rtl8xxxu_read32(priv, 0x770);
high_prio_tx = val32 & 0x0000ffff;
high_prio_rx = (val32 & 0xffff0000) >> 16;
if (btcoex->bt_busy) {
if (btcoex->hid_only) {
rtl8723bu_set_ps_tdma(priv, 0x61, 0x20,
0x3, 0x11, 0x11);
rtl8723bu_set_coex_with_type(priv, 5);
} else if (btcoex->a2dp_only) {
rtl8723bu_set_ps_tdma(priv, 0x61, 0x35,
0x3, 0x11, 0x11);
rtl8723bu_set_coex_with_type(priv, 4);
} else if ((btcoex->has_a2dp && btcoex->has_pan) ||
(btcoex->has_hid && btcoex->has_a2dp &&
btcoex->has_pan)) {
rtl8723bu_set_ps_tdma(priv, 0x51, 0x21,
0x3, 0x10, 0x10);
rtl8723bu_set_coex_with_type(priv, 4);
} else if (btcoex->has_hid && btcoex->has_a2dp) {
rtl8723bu_set_ps_tdma(priv, 0x51, 0x21,
0x3, 0x10, 0x10);
rtl8723bu_set_coex_with_type(priv, 3);
} else {
rtl8723bu_set_ps_tdma(priv, 0x61, 0x35,
0x3, 0x11, 0x11);
rtl8723bu_set_coex_with_type(priv, 4);
}
} else {
rtl8723bu_set_ps_tdma(priv, 0x8, 0x0, 0x0, 0x0, 0x0);
if (high_prio_tx + high_prio_rx <= 60)
rtl8723bu_set_coex_with_type(priv, 2);
else
rtl8723bu_set_coex_with_type(priv, 7);
}
} else {
rtl8723bu_set_ps_tdma(priv, 0x8, 0x0, 0x0, 0x0, 0x0);
rtl8723bu_set_coex_with_type(priv, 0);
}
}
static void rtl8xxxu_c2hcmd_callback(struct work_struct *work)
{
struct rtl8xxxu_priv *priv;
struct rtl8723bu_c2h *c2h;
struct sk_buff *skb = NULL;
u8 bt_info = 0;
struct rtl8xxxu_btcoex *btcoex;
struct rtl8xxxu_ra_report *rarpt;
u8 bw;
priv = container_of(work, struct rtl8xxxu_priv, c2hcmd_work);
btcoex = &priv->bt_coex;
rarpt = &priv->ra_report;
while (!skb_queue_empty(&priv->c2hcmd_queue)) {
skb = skb_dequeue(&priv->c2hcmd_queue);
c2h = (struct rtl8723bu_c2h *)skb->data;
switch (c2h->id) {
case C2H_8723B_BT_INFO:
bt_info = c2h->bt_info.bt_info;
rtl8723bu_update_bt_link_info(priv, bt_info);
if (btcoex->c2h_bt_inquiry) {
rtl8723bu_handle_bt_inquiry(priv);
break;
}
rtl8723bu_handle_bt_info(priv);
break;
case C2H_8723B_RA_REPORT:
bw = rarpt->txrate.bw;
if (skb->len >= offsetofend(typeof(*c2h), ra_report.bw)) {
if (c2h->ra_report.bw == RTL8XXXU_CHANNEL_WIDTH_40)
bw = RATE_INFO_BW_40;
else
bw = RATE_INFO_BW_20;
}
rtl8xxxu_update_ra_report(rarpt, c2h->ra_report.rate,
c2h->ra_report.sgi, bw);
break;
default:
break;
}
dev_kfree_skb(skb);
}
}
static void rtl8723bu_handle_c2h(struct rtl8xxxu_priv *priv,
struct sk_buff *skb)
{
struct rtl8723bu_c2h *c2h = (struct rtl8723bu_c2h *)skb->data;
struct device *dev = &priv->udev->dev;
int len;
len = skb->len - 2;
dev_dbg(dev, "C2H ID %02x seq %02x, len %02x source %02x\n",
c2h->id, c2h->seq, len, c2h->bt_info.response_source);
switch(c2h->id) {
case C2H_8723B_BT_INFO:
if (c2h->bt_info.response_source >
BT_INFO_SRC_8723B_BT_ACTIVE_SEND)
dev_dbg(dev, "C2H_BT_INFO WiFi only firmware\n");
else
dev_dbg(dev, "C2H_BT_INFO BT/WiFi coexist firmware\n");
if (c2h->bt_info.bt_has_reset)
dev_dbg(dev, "BT has been reset\n");
if (c2h->bt_info.tx_rx_mask)
dev_dbg(dev, "BT TRx mask\n");
break;
case C2H_8723B_BT_MP_INFO:
dev_dbg(dev, "C2H_MP_INFO ext ID %02x, status %02x\n",
c2h->bt_mp_info.ext_id, c2h->bt_mp_info.status);
break;
case C2H_8723B_RA_REPORT:
dev_dbg(dev,
"C2H RA RPT: rate %02x, unk %i, macid %02x, noise %i\n",
c2h->ra_report.rate, c2h->ra_report.sgi,
c2h->ra_report.macid, c2h->ra_report.noisy_state);
break;
default:
dev_info(dev, "Unhandled C2H event %02x seq %02x\n",
c2h->id, c2h->seq);
print_hex_dump(KERN_INFO, "C2H content: ", DUMP_PREFIX_NONE,
16, 1, c2h->raw.payload, len, false);
break;
}
skb_queue_tail(&priv->c2hcmd_queue, skb);
schedule_work(&priv->c2hcmd_work);
}
static void rtl8188e_c2hcmd_callback(struct work_struct *work)
{
struct rtl8xxxu_priv *priv = container_of(work, struct rtl8xxxu_priv, c2hcmd_work);
struct device *dev = &priv->udev->dev;
struct sk_buff *skb = NULL;
struct rtl8xxxu_rxdesc16 *rx_desc;
while (!skb_queue_empty(&priv->c2hcmd_queue)) {
skb = skb_dequeue(&priv->c2hcmd_queue);
rx_desc = (struct rtl8xxxu_rxdesc16 *)(skb->data - sizeof(struct rtl8xxxu_rxdesc16));
switch (rx_desc->rpt_sel) {
case 1:
dev_dbg(dev, "C2H TX report type 1\n");
break;
case 2:
dev_dbg(dev, "C2H TX report type 2\n");
rtl8188e_handle_ra_tx_report2(priv, skb);
break;
case 3:
dev_dbg(dev, "C2H USB interrupt report\n");
break;
default:
dev_warn(dev, "%s: rpt_sel should not be %d\n",
__func__, rx_desc->rpt_sel);
break;
}
dev_kfree_skb(skb);
}
}
#define rtl8xxxu_iterate_vifs_atomic(priv, iterator, data) \
ieee80211_iterate_active_interfaces_atomic((priv)->hw, \
IEEE80211_IFACE_ITER_NORMAL, iterator, data)
struct rtl8xxxu_rx_update_rssi_data {
struct rtl8xxxu_priv *priv;
struct ieee80211_hdr *hdr;
struct ieee80211_rx_status *rx_status;
u8 *bssid;
};
static void rtl8xxxu_rx_update_rssi_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct rtl8xxxu_rx_update_rssi_data *iter_data = data;
struct ieee80211_sta *sta;
struct ieee80211_hdr *hdr = iter_data->hdr;
struct rtl8xxxu_priv *priv = iter_data->priv;
struct rtl8xxxu_sta_info *sta_info;
struct ieee80211_rx_status *rx_status = iter_data->rx_status;
u8 *bssid = iter_data->bssid;
if (!ether_addr_equal(vif->bss_conf.bssid, bssid))
return;
if (!(ether_addr_equal(vif->addr, hdr->addr1) ||
ieee80211_is_beacon(hdr->frame_control)))
return;
sta = ieee80211_find_sta_by_ifaddr(priv->hw, hdr->addr2,
vif->addr);
if (!sta)
return;
sta_info = (struct rtl8xxxu_sta_info *)sta->drv_priv;
ewma_rssi_add(&sta_info->avg_rssi, -rx_status->signal);
}
static inline u8 *get_hdr_bssid(struct ieee80211_hdr *hdr)
{
__le16 fc = hdr->frame_control;
u8 *bssid;
if (ieee80211_has_tods(fc))
bssid = hdr->addr1;
else if (ieee80211_has_fromds(fc))
bssid = hdr->addr2;
else
bssid = hdr->addr3;
return bssid;
}
static void rtl8xxxu_rx_update_rssi(struct rtl8xxxu_priv *priv,
struct ieee80211_rx_status *rx_status,
struct ieee80211_hdr *hdr)
{
struct rtl8xxxu_rx_update_rssi_data data = {};
if (ieee80211_is_ctl(hdr->frame_control))
return;
data.priv = priv;
data.hdr = hdr;
data.rx_status = rx_status;
data.bssid = get_hdr_bssid(hdr);
rtl8xxxu_iterate_vifs_atomic(priv, rtl8xxxu_rx_update_rssi_iter, &data);
}
int rtl8xxxu_parse_rxdesc16(struct rtl8xxxu_priv *priv, struct sk_buff *skb)
{
struct ieee80211_hw *hw = priv->hw;
struct ieee80211_rx_status *rx_status;
struct rtl8xxxu_rxdesc16 *rx_desc;
struct rtl8723au_phy_stats *phy_stats;
struct sk_buff *next_skb = NULL;
__le32 *_rx_desc_le;
u32 *_rx_desc;
int drvinfo_sz, desc_shift;
int i, pkt_cnt, pkt_len, urb_len, pkt_offset;
urb_len = skb->len;
pkt_cnt = 0;
if (urb_len < sizeof(struct rtl8xxxu_rxdesc16)) {
kfree_skb(skb);
return RX_TYPE_ERROR;
}
do {
rx_desc = (struct rtl8xxxu_rxdesc16 *)skb->data;
_rx_desc_le = (__le32 *)skb->data;
_rx_desc = (u32 *)skb->data;
for (i = 0;
i < (sizeof(struct rtl8xxxu_rxdesc16) / sizeof(u32)); i++)
_rx_desc[i] = le32_to_cpu(_rx_desc_le[i]);
/*
* Only read pkt_cnt from the header if we're parsing the
* first packet
*/
if (!pkt_cnt)
pkt_cnt = rx_desc->pkt_cnt;
pkt_len = rx_desc->pktlen;
drvinfo_sz = rx_desc->drvinfo_sz * 8;
desc_shift = rx_desc->shift;
pkt_offset = roundup(pkt_len + drvinfo_sz + desc_shift +
sizeof(struct rtl8xxxu_rxdesc16), 128);
/*
* Only clone the skb if there's enough data at the end to
* at least cover the rx descriptor
*/
if (pkt_cnt > 1 &&
urb_len >= (pkt_offset + sizeof(struct rtl8xxxu_rxdesc16)))
next_skb = skb_clone(skb, GFP_ATOMIC);
rx_status = IEEE80211_SKB_RXCB(skb);
memset(rx_status, 0, sizeof(struct ieee80211_rx_status));
skb_pull(skb, sizeof(struct rtl8xxxu_rxdesc16));
if (rx_desc->rpt_sel) {
skb_queue_tail(&priv->c2hcmd_queue, skb);
schedule_work(&priv->c2hcmd_work);
} else {
struct ieee80211_hdr *hdr;
phy_stats = (struct rtl8723au_phy_stats *)skb->data;
skb_pull(skb, drvinfo_sz + desc_shift);
skb_trim(skb, pkt_len);
hdr = (struct ieee80211_hdr *)skb->data;
if (rx_desc->phy_stats) {
priv->fops->parse_phystats(
priv, rx_status, phy_stats,
rx_desc->rxmcs,
hdr,
rx_desc->crc32 || rx_desc->icverr);
if (!rx_desc->crc32 && !rx_desc->icverr)
rtl8xxxu_rx_update_rssi(priv,
rx_status,
hdr);
}
rx_status->mactime = rx_desc->tsfl;
rx_status->flag |= RX_FLAG_MACTIME_START;
if (!rx_desc->swdec &&
rx_desc->security != RX_DESC_ENC_NONE)
rx_status->flag |= RX_FLAG_DECRYPTED;
if (rx_desc->crc32)
rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
if (rx_desc->bw)
rx_status->bw = RATE_INFO_BW_40;
if (rx_desc->rxht) {
rx_status->encoding = RX_ENC_HT;
rx_status->rate_idx = rx_desc->rxmcs - DESC_RATE_MCS0;
} else {
rx_status->rate_idx = rx_desc->rxmcs;
}
rx_status->freq = hw->conf.chandef.chan->center_freq;
rx_status->band = hw->conf.chandef.chan->band;
ieee80211_rx_irqsafe(hw, skb);
}
skb = next_skb;
if (skb)
skb_pull(next_skb, pkt_offset);
pkt_cnt--;
urb_len -= pkt_offset;
next_skb = NULL;
} while (skb && pkt_cnt > 0 &&
urb_len >= sizeof(struct rtl8xxxu_rxdesc16));
return RX_TYPE_DATA_PKT;
}
int rtl8xxxu_parse_rxdesc24(struct rtl8xxxu_priv *priv, struct sk_buff *skb)
{
struct ieee80211_hw *hw = priv->hw;
struct ieee80211_rx_status *rx_status;
struct rtl8xxxu_rxdesc24 *rx_desc;
struct rtl8723au_phy_stats *phy_stats;
struct sk_buff *next_skb = NULL;
__le32 *_rx_desc_le;
u32 *_rx_desc;
int drvinfo_sz, desc_shift;
int i, pkt_len, urb_len, pkt_offset;
urb_len = skb->len;
if (urb_len < sizeof(struct rtl8xxxu_rxdesc24)) {
kfree_skb(skb);
return RX_TYPE_ERROR;
}
do {
rx_desc = (struct rtl8xxxu_rxdesc24 *)skb->data;
_rx_desc_le = (__le32 *)skb->data;
_rx_desc = (u32 *)skb->data;
for (i = 0; i < (sizeof(struct rtl8xxxu_rxdesc24) / sizeof(u32)); i++)
_rx_desc[i] = le32_to_cpu(_rx_desc_le[i]);
pkt_len = rx_desc->pktlen;
drvinfo_sz = rx_desc->drvinfo_sz * 8;
desc_shift = rx_desc->shift;
pkt_offset = roundup(pkt_len + drvinfo_sz + desc_shift +
sizeof(struct rtl8xxxu_rxdesc24), 8);
/*
* Only clone the skb if there's enough data at the end to
* at least cover the rx descriptor
*/
if (urb_len >= (pkt_offset + sizeof(struct rtl8xxxu_rxdesc24)))
next_skb = skb_clone(skb, GFP_ATOMIC);
rx_status = IEEE80211_SKB_RXCB(skb);
memset(rx_status, 0, sizeof(struct ieee80211_rx_status));
skb_pull(skb, sizeof(struct rtl8xxxu_rxdesc24));
phy_stats = (struct rtl8723au_phy_stats *)skb->data;
skb_pull(skb, drvinfo_sz + desc_shift);
skb_trim(skb, pkt_len);
if (rx_desc->rpt_sel) {
struct device *dev = &priv->udev->dev;
dev_dbg(dev, "%s: C2H packet\n", __func__);
rtl8723bu_handle_c2h(priv, skb);
} else {
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
if (rx_desc->phy_stats) {
priv->fops->parse_phystats(priv, rx_status, phy_stats,
rx_desc->rxmcs, hdr,
rx_desc->crc32 || rx_desc->icverr);
if (!rx_desc->crc32 && !rx_desc->icverr)
rtl8xxxu_rx_update_rssi(priv,
rx_status,
hdr);
}
rx_status->mactime = rx_desc->tsfl;
rx_status->flag |= RX_FLAG_MACTIME_START;
if (!rx_desc->swdec &&
rx_desc->security != RX_DESC_ENC_NONE)
rx_status->flag |= RX_FLAG_DECRYPTED;
if (rx_desc->crc32)
rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
if (rx_desc->bw)
rx_status->bw = RATE_INFO_BW_40;
if (rx_desc->rxmcs >= DESC_RATE_MCS0) {
rx_status->encoding = RX_ENC_HT;
rx_status->rate_idx = rx_desc->rxmcs - DESC_RATE_MCS0;
} else {
rx_status->rate_idx = rx_desc->rxmcs;
}
rx_status->freq = hw->conf.chandef.chan->center_freq;
rx_status->band = hw->conf.chandef.chan->band;
ieee80211_rx_irqsafe(hw, skb);
}
skb = next_skb;
if (skb)
skb_pull(next_skb, pkt_offset);
urb_len -= pkt_offset;
next_skb = NULL;
} while (skb && urb_len >= sizeof(struct rtl8xxxu_rxdesc24));
return RX_TYPE_DATA_PKT;
}
static void rtl8xxxu_rx_complete(struct urb *urb)
{
struct rtl8xxxu_rx_urb *rx_urb =
container_of(urb, struct rtl8xxxu_rx_urb, urb);
struct ieee80211_hw *hw = rx_urb->hw;
struct rtl8xxxu_priv *priv = hw->priv;
struct sk_buff *skb = (struct sk_buff *)urb->context;
struct device *dev = &priv->udev->dev;
skb_put(skb, urb->actual_length);
if (urb->status == 0) {
priv->fops->parse_rx_desc(priv, skb);
skb = NULL;
rx_urb->urb.context = NULL;
rtl8xxxu_queue_rx_urb(priv, rx_urb);
} else {
dev_dbg(dev, "%s: status %i\n", __func__, urb->status);
goto cleanup;
}
return;
cleanup:
usb_free_urb(urb);
dev_kfree_skb(skb);
}
static int rtl8xxxu_submit_rx_urb(struct rtl8xxxu_priv *priv,
struct rtl8xxxu_rx_urb *rx_urb)
{
struct rtl8xxxu_fileops *fops = priv->fops;
struct sk_buff *skb;
int skb_size;
int ret, rx_desc_sz;
rx_desc_sz = fops->rx_desc_size;
if (priv->rx_buf_aggregation && fops->rx_agg_buf_size) {
skb_size = fops->rx_agg_buf_size;
skb_size += (rx_desc_sz + sizeof(struct rtl8723au_phy_stats));
} else {
skb_size = IEEE80211_MAX_FRAME_LEN;
}
skb = __netdev_alloc_skb(NULL, skb_size, GFP_KERNEL);
if (!skb)
return -ENOMEM;
memset(skb->data, 0, rx_desc_sz);
usb_fill_bulk_urb(&rx_urb->urb, priv->udev, priv->pipe_in, skb->data,
skb_size, rtl8xxxu_rx_complete, skb);
usb_anchor_urb(&rx_urb->urb, &priv->rx_anchor);
ret = usb_submit_urb(&rx_urb->urb, GFP_ATOMIC);
if (ret)
usb_unanchor_urb(&rx_urb->urb);
return ret;
}
static void rtl8xxxu_int_complete(struct urb *urb)
{
struct rtl8xxxu_priv *priv = (struct rtl8xxxu_priv *)urb->context;
struct device *dev = &priv->udev->dev;
int ret;
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_INTERRUPT)
dev_dbg(dev, "%s: status %i\n", __func__, urb->status);
if (urb->status == 0) {
usb_anchor_urb(urb, &priv->int_anchor);
ret = usb_submit_urb(urb, GFP_ATOMIC);
if (ret)
usb_unanchor_urb(urb);
} else {
dev_dbg(dev, "%s: Error %i\n", __func__, urb->status);
}
}
static int rtl8xxxu_submit_int_urb(struct ieee80211_hw *hw)
{
struct rtl8xxxu_priv *priv = hw->priv;
struct urb *urb;
u32 val32;
int ret;
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb)
return -ENOMEM;
usb_fill_int_urb(urb, priv->udev, priv->pipe_interrupt,
priv->int_buf, USB_INTR_CONTENT_LENGTH,
rtl8xxxu_int_complete, priv, 1);
usb_anchor_urb(urb, &priv->int_anchor);
ret = usb_submit_urb(urb, GFP_KERNEL);
if (ret) {
usb_unanchor_urb(urb);
goto error;
}
val32 = rtl8xxxu_read32(priv, REG_USB_HIMR);
val32 |= USB_HIMR_CPWM;
rtl8xxxu_write32(priv, REG_USB_HIMR, val32);
error:
usb_free_urb(urb);
return ret;
}
static void rtl8xxxu_switch_ports(struct rtl8xxxu_priv *priv)
{
u8 macid[ETH_ALEN], bssid[ETH_ALEN], macid_1[ETH_ALEN], bssid_1[ETH_ALEN];
u8 msr, bcn_ctrl, bcn_ctrl_1, atimwnd[2], atimwnd_1[2];
struct rtl8xxxu_vif *rtlvif;
u8 tsftr[8], tsftr_1[8];
int i;
msr = rtl8xxxu_read8(priv, REG_MSR);
bcn_ctrl = rtl8xxxu_read8(priv, REG_BEACON_CTRL);
bcn_ctrl_1 = rtl8xxxu_read8(priv, REG_BEACON_CTRL_1);
for (i = 0; i < ARRAY_SIZE(atimwnd); i++)
atimwnd[i] = rtl8xxxu_read8(priv, REG_ATIMWND + i);
for (i = 0; i < ARRAY_SIZE(atimwnd_1); i++)
atimwnd_1[i] = rtl8xxxu_read8(priv, REG_ATIMWND_1 + i);
for (i = 0; i < ARRAY_SIZE(tsftr); i++)
tsftr[i] = rtl8xxxu_read8(priv, REG_TSFTR + i);
for (i = 0; i < ARRAY_SIZE(tsftr); i++)
tsftr_1[i] = rtl8xxxu_read8(priv, REG_TSFTR1 + i);
for (i = 0; i < ARRAY_SIZE(macid); i++)
macid[i] = rtl8xxxu_read8(priv, REG_MACID + i);
for (i = 0; i < ARRAY_SIZE(bssid); i++)
bssid[i] = rtl8xxxu_read8(priv, REG_BSSID + i);
for (i = 0; i < ARRAY_SIZE(macid_1); i++)
macid_1[i] = rtl8xxxu_read8(priv, REG_MACID1 + i);
for (i = 0; i < ARRAY_SIZE(bssid_1); i++)
bssid_1[i] = rtl8xxxu_read8(priv, REG_BSSID1 + i);
/* disable bcn function, disable update TSF */
rtl8xxxu_write8(priv, REG_BEACON_CTRL, (bcn_ctrl &
(~BEACON_FUNCTION_ENABLE)) | BEACON_DISABLE_TSF_UPDATE);
rtl8xxxu_write8(priv, REG_BEACON_CTRL_1, (bcn_ctrl_1 &
(~BEACON_FUNCTION_ENABLE)) | BEACON_DISABLE_TSF_UPDATE);
/* switch msr */
msr = (msr & 0xf0) | ((msr & 0x03) << 2) | ((msr & 0x0c) >> 2);
rtl8xxxu_write8(priv, REG_MSR, msr);
/* write port0 */
rtl8xxxu_write8(priv, REG_BEACON_CTRL, bcn_ctrl_1 & ~BEACON_FUNCTION_ENABLE);
for (i = 0; i < ARRAY_SIZE(atimwnd_1); i++)
rtl8xxxu_write8(priv, REG_ATIMWND + i, atimwnd_1[i]);
for (i = 0; i < ARRAY_SIZE(tsftr_1); i++)
rtl8xxxu_write8(priv, REG_TSFTR + i, tsftr_1[i]);
for (i = 0; i < ARRAY_SIZE(macid_1); i++)
rtl8xxxu_write8(priv, REG_MACID + i, macid_1[i]);
for (i = 0; i < ARRAY_SIZE(bssid_1); i++)
rtl8xxxu_write8(priv, REG_BSSID + i, bssid_1[i]);
/* write port1 */
rtl8xxxu_write8(priv, REG_BEACON_CTRL_1, bcn_ctrl & ~BEACON_FUNCTION_ENABLE);
for (i = 0; i < ARRAY_SIZE(atimwnd); i++)
rtl8xxxu_write8(priv, REG_ATIMWND_1 + i, atimwnd[i]);
for (i = 0; i < ARRAY_SIZE(tsftr); i++)
rtl8xxxu_write8(priv, REG_TSFTR1 + i, tsftr[i]);
for (i = 0; i < ARRAY_SIZE(macid); i++)
rtl8xxxu_write8(priv, REG_MACID1 + i, macid[i]);
for (i = 0; i < ARRAY_SIZE(bssid); i++)
rtl8xxxu_write8(priv, REG_BSSID1 + i, bssid[i]);
/* write bcn ctl */
rtl8xxxu_write8(priv, REG_BEACON_CTRL, bcn_ctrl_1);
rtl8xxxu_write8(priv, REG_BEACON_CTRL_1, bcn_ctrl);
swap(priv->vifs[0], priv->vifs[1]);
/* priv->vifs[0] is NULL here, based on how this function is currently
* called from rtl8xxxu_add_interface().
* When this function will be used in the future for a different
* scenario, please check whether vifs[0] or vifs[1] can be NULL and if
* necessary add code to set port_num = 1.
*/
rtlvif = (struct rtl8xxxu_vif *)priv->vifs[1]->drv_priv;
rtlvif->port_num = 1;
}
static int rtl8xxxu_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct rtl8xxxu_vif *rtlvif = (struct rtl8xxxu_vif *)vif->drv_priv;
struct rtl8xxxu_priv *priv = hw->priv;
int port_num;
u8 val8;
if (!priv->vifs[0])
port_num = 0;
else if (!priv->vifs[1])
port_num = 1;
else
return -EOPNOTSUPP;
switch (vif->type) {
case NL80211_IFTYPE_STATION:
if (port_num == 0) {
rtl8xxxu_stop_tx_beacon(priv);
val8 = rtl8xxxu_read8(priv, REG_BEACON_CTRL);
val8 |= BEACON_ATIM | BEACON_FUNCTION_ENABLE |
BEACON_DISABLE_TSF_UPDATE;
rtl8xxxu_write8(priv, REG_BEACON_CTRL, val8);
}
break;
case NL80211_IFTYPE_AP:
if (port_num == 1) {
rtl8xxxu_switch_ports(priv);
port_num = 0;
}
rtl8xxxu_write8(priv, REG_BEACON_CTRL,
BEACON_DISABLE_TSF_UPDATE | BEACON_CTRL_MBSSID);
rtl8xxxu_write8(priv, REG_ATIMWND, 0x0c); /* 12ms */
rtl8xxxu_write16(priv, REG_TSFTR_SYN_OFFSET, 0x7fff); /* ~32ms */
rtl8xxxu_write8(priv, REG_DUAL_TSF_RST, DUAL_TSF_RESET_TSF0);
/* enable BCN0 function */
rtl8xxxu_write8(priv, REG_BEACON_CTRL,
BEACON_DISABLE_TSF_UPDATE |
BEACON_FUNCTION_ENABLE | BEACON_CTRL_MBSSID |
BEACON_CTRL_TX_BEACON_RPT);
/* select BCN on port 0 */
val8 = rtl8xxxu_read8(priv, REG_CCK_CHECK);
val8 &= ~BIT_BCN_PORT_SEL;
rtl8xxxu_write8(priv, REG_CCK_CHECK, val8);
break;
default:
return -EOPNOTSUPP;
}
priv->vifs[port_num] = vif;
rtlvif->port_num = port_num;
rtlvif->hw_key_idx = 0xff;
rtl8xxxu_set_linktype(priv, vif->type, port_num);
ether_addr_copy(priv->mac_addr, vif->addr);
rtl8xxxu_set_mac(priv, port_num);
return 0;
}
static void rtl8xxxu_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct rtl8xxxu_vif *rtlvif = (struct rtl8xxxu_vif *)vif->drv_priv;
struct rtl8xxxu_priv *priv = hw->priv;
dev_dbg(&priv->udev->dev, "%s\n", __func__);
priv->vifs[rtlvif->port_num] = NULL;
}
static int rtl8xxxu_config(struct ieee80211_hw *hw, u32 changed)
{
struct rtl8xxxu_priv *priv = hw->priv;
struct device *dev = &priv->udev->dev;
int ret = 0, channel;
bool ht40;
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_CHANNEL)
dev_info(dev,
"%s: channel: %i (changed %08x chandef.width %02x)\n",
__func__, hw->conf.chandef.chan->hw_value,
changed, hw->conf.chandef.width);
if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
switch (hw->conf.chandef.width) {
case NL80211_CHAN_WIDTH_20_NOHT:
case NL80211_CHAN_WIDTH_20:
ht40 = false;
break;
case NL80211_CHAN_WIDTH_40:
ht40 = true;
break;
default:
ret = -ENOTSUPP;
goto exit;
}
channel = hw->conf.chandef.chan->hw_value;
priv->fops->set_tx_power(priv, channel, ht40);
priv->fops->config_channel(hw);
}
exit:
return ret;
}
static int rtl8xxxu_conf_tx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
unsigned int link_id, u16 queue,
const struct ieee80211_tx_queue_params *param)
{
struct rtl8xxxu_priv *priv = hw->priv;
struct device *dev = &priv->udev->dev;
u32 val32;
u8 aifs, acm_ctrl, acm_bit;
aifs = param->aifs;
val32 = aifs |
fls(param->cw_min) << EDCA_PARAM_ECW_MIN_SHIFT |
fls(param->cw_max) << EDCA_PARAM_ECW_MAX_SHIFT |
(u32)param->txop << EDCA_PARAM_TXOP_SHIFT;
acm_ctrl = rtl8xxxu_read8(priv, REG_ACM_HW_CTRL);
dev_dbg(dev,
"%s: IEEE80211 queue %02x val %08x, acm %i, acm_ctrl %02x\n",
__func__, queue, val32, param->acm, acm_ctrl);
switch (queue) {
case IEEE80211_AC_VO:
acm_bit = ACM_HW_CTRL_VO;
rtl8xxxu_write32(priv, REG_EDCA_VO_PARAM, val32);
break;
case IEEE80211_AC_VI:
acm_bit = ACM_HW_CTRL_VI;
rtl8xxxu_write32(priv, REG_EDCA_VI_PARAM, val32);
break;
case IEEE80211_AC_BE:
acm_bit = ACM_HW_CTRL_BE;
rtl8xxxu_write32(priv, REG_EDCA_BE_PARAM, val32);
break;
case IEEE80211_AC_BK:
acm_bit = ACM_HW_CTRL_BK;
rtl8xxxu_write32(priv, REG_EDCA_BK_PARAM, val32);
break;
default:
acm_bit = 0;
break;
}
if (param->acm)
acm_ctrl |= acm_bit;
else
acm_ctrl &= ~acm_bit;
rtl8xxxu_write8(priv, REG_ACM_HW_CTRL, acm_ctrl);
return 0;
}
static void rtl8xxxu_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags, u64 multicast)
{
struct rtl8xxxu_priv *priv = hw->priv;
u32 rcr = priv->regrcr;
dev_dbg(&priv->udev->dev, "%s: changed_flags %08x, total_flags %08x\n",
__func__, changed_flags, *total_flags);
/*
* FIF_ALLMULTI ignored as all multicast frames are accepted (REG_MAR)
*/
if (*total_flags & FIF_FCSFAIL)
rcr |= RCR_ACCEPT_CRC32;
else
rcr &= ~RCR_ACCEPT_CRC32;
/*
* FIF_PLCPFAIL not supported?
*/
if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
rcr &= ~(RCR_CHECK_BSSID_BEACON | RCR_CHECK_BSSID_MATCH);
else
rcr |= RCR_CHECK_BSSID_BEACON | RCR_CHECK_BSSID_MATCH;
if (priv->vifs[0] && priv->vifs[0]->type == NL80211_IFTYPE_AP)
rcr &= ~(RCR_CHECK_BSSID_MATCH | RCR_CHECK_BSSID_BEACON);
if (*total_flags & FIF_CONTROL)
rcr |= RCR_ACCEPT_CTRL_FRAME;
else
rcr &= ~RCR_ACCEPT_CTRL_FRAME;
if (*total_flags & FIF_OTHER_BSS)
rcr |= RCR_ACCEPT_AP;
else
rcr &= ~RCR_ACCEPT_AP;
if (*total_flags & FIF_PSPOLL)
rcr |= RCR_ACCEPT_PM;
else
rcr &= ~RCR_ACCEPT_PM;
/*
* FIF_PROBE_REQ ignored as probe requests always seem to be accepted
*/
rtl8xxxu_write32(priv, REG_RCR, rcr);
priv->regrcr = rcr;
*total_flags &= (FIF_ALLMULTI | FIF_FCSFAIL | FIF_BCN_PRBRESP_PROMISC |
FIF_CONTROL | FIF_OTHER_BSS | FIF_PSPOLL |
FIF_PROBE_REQ);
}
static int rtl8xxxu_set_rts_threshold(struct ieee80211_hw *hw, u32 rts)
{
if (rts > 2347 && rts != (u32)-1)
return -EINVAL;
return 0;
}
static int rtl8xxxu_get_free_sec_cam(struct ieee80211_hw *hw)
{
struct rtl8xxxu_priv *priv = hw->priv;
return find_first_zero_bit(priv->cam_map, priv->fops->max_sec_cam_num);
}
static int rtl8xxxu_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct rtl8xxxu_vif *rtlvif = (struct rtl8xxxu_vif *)vif->drv_priv;
struct rtl8xxxu_priv *priv = hw->priv;
struct device *dev = &priv->udev->dev;
u8 mac_addr[ETH_ALEN];
u8 val8;
u16 val16;
u32 val32;
int retval = -EOPNOTSUPP;
dev_dbg(dev, "%s: cmd %02x, cipher %08x, index %i\n",
__func__, cmd, key->cipher, key->keyidx);
if (key->keyidx > 3)
return -EOPNOTSUPP;
switch (key->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
break;
case WLAN_CIPHER_SUITE_CCMP:
key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX;
break;
case WLAN_CIPHER_SUITE_TKIP:
key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
break;
default:
return -EOPNOTSUPP;
}
if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) {
dev_dbg(dev, "%s: pairwise key\n", __func__);
ether_addr_copy(mac_addr, sta->addr);
} else {
dev_dbg(dev, "%s: group key\n", __func__);
ether_addr_copy(mac_addr, vif->bss_conf.bssid);
}
val16 = rtl8xxxu_read16(priv, REG_CR);
val16 |= CR_SECURITY_ENABLE;
rtl8xxxu_write16(priv, REG_CR, val16);
val8 = SEC_CFG_TX_SEC_ENABLE | SEC_CFG_TXBC_USE_DEFKEY |
SEC_CFG_RX_SEC_ENABLE | SEC_CFG_RXBC_USE_DEFKEY;
val8 |= SEC_CFG_TX_USE_DEFKEY | SEC_CFG_RX_USE_DEFKEY;
rtl8xxxu_write8(priv, REG_SECURITY_CFG, val8);
switch (cmd) {
case SET_KEY:
retval = rtl8xxxu_get_free_sec_cam(hw);
if (retval < 0)
return -EOPNOTSUPP;
key->hw_key_idx = retval;
if (vif->type == NL80211_IFTYPE_AP && !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
rtlvif->hw_key_idx = key->hw_key_idx;
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
rtl8xxxu_cam_write(priv, key, mac_addr);
set_bit(key->hw_key_idx, priv->cam_map);
retval = 0;
break;
case DISABLE_KEY:
rtl8xxxu_write32(priv, REG_CAM_WRITE, 0x00000000);
val32 = CAM_CMD_POLLING | CAM_CMD_WRITE |
key->hw_key_idx << CAM_CMD_KEY_SHIFT;
rtl8xxxu_write32(priv, REG_CAM_CMD, val32);
rtlvif->hw_key_idx = 0xff;
clear_bit(key->hw_key_idx, priv->cam_map);
retval = 0;
break;
default:
dev_warn(dev, "%s: Unsupported command %02x\n", __func__, cmd);
}
return retval;
}
static int
rtl8xxxu_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_ampdu_params *params)
{
struct rtl8xxxu_priv *priv = hw->priv;
struct device *dev = &priv->udev->dev;
u8 ampdu_factor, ampdu_density;
struct ieee80211_sta *sta = params->sta;
u16 tid = params->tid;
enum ieee80211_ampdu_mlme_action action = params->action;
switch (action) {
case IEEE80211_AMPDU_TX_START:
dev_dbg(dev, "%s: IEEE80211_AMPDU_TX_START\n", __func__);
ampdu_factor = sta->deflink.ht_cap.ampdu_factor;
ampdu_density = sta->deflink.ht_cap.ampdu_density;
rtl8xxxu_set_ampdu_factor(priv, ampdu_factor);
rtl8xxxu_set_ampdu_min_space(priv, ampdu_density);
dev_dbg(dev,
"Changed HT: ampdu_factor %02x, ampdu_density %02x\n",
ampdu_factor, ampdu_density);
return IEEE80211_AMPDU_TX_START_IMMEDIATE;
case IEEE80211_AMPDU_TX_STOP_CONT:
case IEEE80211_AMPDU_TX_STOP_FLUSH:
case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
dev_dbg(dev, "%s: IEEE80211_AMPDU_TX_STOP\n", __func__);
rtl8xxxu_set_ampdu_factor(priv, 0);
rtl8xxxu_set_ampdu_min_space(priv, 0);
clear_bit(tid, priv->tx_aggr_started);
clear_bit(tid, priv->tid_tx_operational);
ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
break;
case IEEE80211_AMPDU_TX_OPERATIONAL:
dev_dbg(dev, "%s: IEEE80211_AMPDU_TX_OPERATIONAL\n", __func__);
set_bit(tid, priv->tid_tx_operational);
break;
case IEEE80211_AMPDU_RX_START:
dev_dbg(dev, "%s: IEEE80211_AMPDU_RX_START\n", __func__);
break;
case IEEE80211_AMPDU_RX_STOP:
dev_dbg(dev, "%s: IEEE80211_AMPDU_RX_STOP\n", __func__);
break;
default:
break;
}
return 0;
}
static void
rtl8xxxu_sta_statistics(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta, struct station_info *sinfo)
{
struct rtl8xxxu_priv *priv = hw->priv;
sinfo->txrate = priv->ra_report.txrate;
sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
}
static u8 rtl8xxxu_signal_to_snr(int signal)
{
if (signal < RTL8XXXU_NOISE_FLOOR_MIN)
signal = RTL8XXXU_NOISE_FLOOR_MIN;
else if (signal > 0)
signal = 0;
return (u8)(signal - RTL8XXXU_NOISE_FLOOR_MIN);
}
static void rtl8xxxu_refresh_rate_mask(struct rtl8xxxu_priv *priv,
int signal, struct ieee80211_sta *sta,
bool force)
{
struct rtl8xxxu_sta_info *sta_info = (struct rtl8xxxu_sta_info *)sta->drv_priv;
struct ieee80211_hw *hw = priv->hw;
u16 wireless_mode;
u8 rssi_level, ratr_idx;
u8 txbw_40mhz;
u8 snr, snr_thresh_high, snr_thresh_low;
u8 go_up_gap = 5;
u8 macid = rtl8xxxu_get_macid(priv, sta);
rssi_level = sta_info->rssi_level;
snr = rtl8xxxu_signal_to_snr(signal);
snr_thresh_high = RTL8XXXU_SNR_THRESH_HIGH;
snr_thresh_low = RTL8XXXU_SNR_THRESH_LOW;
txbw_40mhz = (hw->conf.chandef.width == NL80211_CHAN_WIDTH_40) ? 1 : 0;
switch (rssi_level) {
case RTL8XXXU_RATR_STA_MID:
snr_thresh_high += go_up_gap;
break;
case RTL8XXXU_RATR_STA_LOW:
snr_thresh_high += go_up_gap;
snr_thresh_low += go_up_gap;
break;
default:
break;
}
if (snr > snr_thresh_high)
rssi_level = RTL8XXXU_RATR_STA_HIGH;
else if (snr > snr_thresh_low)
rssi_level = RTL8XXXU_RATR_STA_MID;
else
rssi_level = RTL8XXXU_RATR_STA_LOW;
if (rssi_level != sta_info->rssi_level || force) {
int sgi = 0;
u32 rate_bitmap = 0;
rate_bitmap = (sta->deflink.supp_rates[0] & 0xfff) |
(sta->deflink.ht_cap.mcs.rx_mask[0] << 12) |
(sta->deflink.ht_cap.mcs.rx_mask[1] << 20);
if (sta->deflink.ht_cap.cap &
(IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_SGI_20))
sgi = 1;
wireless_mode = rtl8xxxu_wireless_mode(hw, sta);
switch (wireless_mode) {
case WIRELESS_MODE_B:
ratr_idx = RATEID_IDX_B;
if (rate_bitmap & 0x0000000c)
rate_bitmap &= 0x0000000d;
else
rate_bitmap &= 0x0000000f;
break;
case WIRELESS_MODE_A:
case WIRELESS_MODE_G:
ratr_idx = RATEID_IDX_G;
if (rssi_level == RTL8XXXU_RATR_STA_HIGH)
rate_bitmap &= 0x00000f00;
else
rate_bitmap &= 0x00000ff0;
break;
case (WIRELESS_MODE_B | WIRELESS_MODE_G):
ratr_idx = RATEID_IDX_BG;
if (rssi_level == RTL8XXXU_RATR_STA_HIGH)
rate_bitmap &= 0x00000f00;
else if (rssi_level == RTL8XXXU_RATR_STA_MID)
rate_bitmap &= 0x00000ff0;
else
rate_bitmap &= 0x00000ff5;
break;
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
case (WIRELESS_MODE_G | WIRELESS_MODE_N_24G):
case (WIRELESS_MODE_A | WIRELESS_MODE_N_5G):
if (priv->tx_paths == 2 && priv->rx_paths == 2)
ratr_idx = RATEID_IDX_GN_N2SS;
else
ratr_idx = RATEID_IDX_GN_N1SS;
break;
case (WIRELESS_MODE_B | WIRELESS_MODE_G | WIRELESS_MODE_N_24G):
case (WIRELESS_MODE_B | WIRELESS_MODE_N_24G):
if (txbw_40mhz) {
if (priv->tx_paths == 2 && priv->rx_paths == 2)
ratr_idx = RATEID_IDX_BGN_40M_2SS;
else
ratr_idx = RATEID_IDX_BGN_40M_1SS;
} else {
if (priv->tx_paths == 2 && priv->rx_paths == 2)
ratr_idx = RATEID_IDX_BGN_20M_2SS_BN;
else
ratr_idx = RATEID_IDX_BGN_20M_1SS_BN;
}
if (priv->tx_paths == 2 && priv->rx_paths == 2) {
if (rssi_level == RTL8XXXU_RATR_STA_HIGH) {
rate_bitmap &= 0x0f8f0000;
} else if (rssi_level == RTL8XXXU_RATR_STA_MID) {
rate_bitmap &= 0x0f8ff000;
} else {
if (txbw_40mhz)
rate_bitmap &= 0x0f8ff015;
else
rate_bitmap &= 0x0f8ff005;
}
} else {
if (rssi_level == RTL8XXXU_RATR_STA_HIGH) {
rate_bitmap &= 0x000f0000;
} else if (rssi_level == RTL8XXXU_RATR_STA_MID) {
rate_bitmap &= 0x000ff000;
} else {
if (txbw_40mhz)
rate_bitmap &= 0x000ff015;
else
rate_bitmap &= 0x000ff005;
}
}
break;
default:
ratr_idx = RATEID_IDX_BGN_40M_2SS;
rate_bitmap &= 0x0fffffff;
break;
}
sta_info->rssi_level = rssi_level;
priv->fops->update_rate_mask(priv, rate_bitmap, ratr_idx, sgi, txbw_40mhz, macid);
}
}
static void rtl8xxxu_set_atc_status(struct rtl8xxxu_priv *priv, bool atc_status)
{
struct rtl8xxxu_cfo_tracking *cfo = &priv->cfo_tracking;
u32 val32;
if (atc_status == cfo->atc_status)
return;
cfo->atc_status = atc_status;
val32 = rtl8xxxu_read32(priv, REG_OFDM1_CFO_TRACKING);
if (atc_status)
val32 |= CFO_TRACKING_ATC_STATUS;
else
val32 &= ~CFO_TRACKING_ATC_STATUS;
rtl8xxxu_write32(priv, REG_OFDM1_CFO_TRACKING, val32);
}
/* Central frequency offset correction */
static void rtl8xxxu_track_cfo(struct rtl8xxxu_priv *priv)
{
struct rtl8xxxu_cfo_tracking *cfo = &priv->cfo_tracking;
int cfo_khz_a, cfo_khz_b, cfo_average;
int crystal_cap;
if (!rtl8xxxu_is_assoc(priv)) {
/* Reset */
cfo->adjust = true;
if (cfo->crystal_cap > priv->default_crystal_cap)
priv->fops->set_crystal_cap(priv, cfo->crystal_cap - 1);
else if (cfo->crystal_cap < priv->default_crystal_cap)
priv->fops->set_crystal_cap(priv, cfo->crystal_cap + 1);
rtl8xxxu_set_atc_status(priv, true);
return;
}
if (cfo->packet_count == cfo->packet_count_pre)
/* No new information. */
return;
cfo->packet_count_pre = cfo->packet_count;
/* CFO_tail[1:0] is S(8,7), (num_subcarrier>>7) x 312.5K = CFO value(K Hz) */
cfo_khz_a = (int)((cfo->cfo_tail[0] * 3125) / 10) >> 7;
cfo_khz_b = (int)((cfo->cfo_tail[1] * 3125) / 10) >> 7;
if (priv->tx_paths == 1)
cfo_average = cfo_khz_a;
else
cfo_average = (cfo_khz_a + cfo_khz_b) / 2;
dev_dbg(&priv->udev->dev, "cfo_average: %d\n", cfo_average);
if (cfo->adjust) {
if (abs(cfo_average) < CFO_TH_XTAL_LOW)
cfo->adjust = false;
} else {
if (abs(cfo_average) > CFO_TH_XTAL_HIGH)
cfo->adjust = true;
}
/*
* TODO: We should return here only if bluetooth is enabled.
* See the vendor drivers for how to determine that.
*/
if (priv->has_bluetooth)
return;
if (!cfo->adjust)
return;
crystal_cap = cfo->crystal_cap;
if (cfo_average > CFO_TH_XTAL_LOW)
crystal_cap++;
else if (cfo_average < -CFO_TH_XTAL_LOW)
crystal_cap--;
crystal_cap = clamp(crystal_cap, 0, 0x3f);
priv->fops->set_crystal_cap(priv, crystal_cap);
rtl8xxxu_set_atc_status(priv, abs(cfo_average) >= CFO_TH_ATC);
}
static void rtl8xxxu_ra_iter(void *data, struct ieee80211_sta *sta)
{
struct rtl8xxxu_sta_info *sta_info = (struct rtl8xxxu_sta_info *)sta->drv_priv;
struct rtl8xxxu_priv *priv = data;
int signal = -ewma_rssi_read(&sta_info->avg_rssi);
priv->fops->report_rssi(priv, rtl8xxxu_get_macid(priv, sta),
rtl8xxxu_signal_to_snr(signal));
rtl8xxxu_refresh_rate_mask(priv, signal, sta, false);
}
struct rtl8xxxu_stas_entry {
struct list_head list;
struct ieee80211_sta *sta;
};
struct rtl8xxxu_iter_stas_data {
struct rtl8xxxu_priv *priv;
struct list_head list;
};
static void rtl8xxxu_collect_sta_iter(void *data, struct ieee80211_sta *sta)
{
struct rtl8xxxu_iter_stas_data *iter_stas = data;
struct rtl8xxxu_stas_entry *stas_entry;
stas_entry = kmalloc(sizeof(*stas_entry), GFP_ATOMIC);
if (!stas_entry)
return;
stas_entry->sta = sta;
list_add_tail(&stas_entry->list, &iter_stas->list);
}
static void rtl8xxxu_watchdog_callback(struct work_struct *work)
{
struct rtl8xxxu_iter_stas_data iter_data;
struct rtl8xxxu_stas_entry *sta_entry, *tmp;
struct rtl8xxxu_priv *priv;
priv = container_of(work, struct rtl8xxxu_priv, ra_watchdog.work);
iter_data.priv = priv;
INIT_LIST_HEAD(&iter_data.list);
mutex_lock(&priv->sta_mutex);
ieee80211_iterate_stations_atomic(priv->hw, rtl8xxxu_collect_sta_iter,
&iter_data);
list_for_each_entry_safe(sta_entry, tmp, &iter_data.list, list) {
list_del_init(&sta_entry->list);
rtl8xxxu_ra_iter(priv, sta_entry->sta);
kfree(sta_entry);
}
mutex_unlock(&priv->sta_mutex);
if (priv->fops->set_crystal_cap)
rtl8xxxu_track_cfo(priv);
schedule_delayed_work(&priv->ra_watchdog, 2 * HZ);
}
static int rtl8xxxu_start(struct ieee80211_hw *hw)
{
struct rtl8xxxu_priv *priv = hw->priv;
struct rtl8xxxu_rx_urb *rx_urb;
struct rtl8xxxu_tx_urb *tx_urb;
struct sk_buff *skb;
unsigned long flags;
int ret, i;
ret = 0;
init_usb_anchor(&priv->rx_anchor);
init_usb_anchor(&priv->tx_anchor);
init_usb_anchor(&priv->int_anchor);
priv->fops->enable_rf(priv);
if (priv->usb_interrupts) {
ret = rtl8xxxu_submit_int_urb(hw);
if (ret)
goto exit;
}
for (i = 0; i < RTL8XXXU_TX_URBS; i++) {
tx_urb = kmalloc(sizeof(struct rtl8xxxu_tx_urb), GFP_KERNEL);
if (!tx_urb) {
if (!i)
ret = -ENOMEM;
goto error_out;
}
usb_init_urb(&tx_urb->urb);
INIT_LIST_HEAD(&tx_urb->list);
tx_urb->hw = hw;
list_add(&tx_urb->list, &priv->tx_urb_free_list);
priv->tx_urb_free_count++;
}
priv->tx_stopped = false;
spin_lock_irqsave(&priv->rx_urb_lock, flags);
priv->shutdown = false;
spin_unlock_irqrestore(&priv->rx_urb_lock, flags);
for (i = 0; i < RTL8XXXU_RX_URBS; i++) {
rx_urb = kmalloc(sizeof(struct rtl8xxxu_rx_urb), GFP_KERNEL);
if (!rx_urb) {
if (!i)
ret = -ENOMEM;
goto error_out;
}
usb_init_urb(&rx_urb->urb);
INIT_LIST_HEAD(&rx_urb->list);
rx_urb->hw = hw;
ret = rtl8xxxu_submit_rx_urb(priv, rx_urb);
if (ret) {
if (ret != -ENOMEM) {
skb = (struct sk_buff *)rx_urb->urb.context;
dev_kfree_skb(skb);
}
rtl8xxxu_queue_rx_urb(priv, rx_urb);
}
}
schedule_delayed_work(&priv->ra_watchdog, 2 * HZ);
exit:
/*
* Accept all data and mgmt frames
*/
rtl8xxxu_write16(priv, REG_RXFLTMAP2, 0xffff);
rtl8xxxu_write16(priv, REG_RXFLTMAP0, 0xffff);
rtl8xxxu_write32_mask(priv, REG_OFDM0_XA_AGC_CORE1,
OFDM0_X_AGC_CORE1_IGI_MASK, 0x1e);
return ret;
error_out:
rtl8xxxu_free_tx_resources(priv);
/*
* Disable all data and mgmt frames
*/
rtl8xxxu_write16(priv, REG_RXFLTMAP2, 0x0000);
rtl8xxxu_write16(priv, REG_RXFLTMAP0, 0x0000);
return ret;
}
static void rtl8xxxu_stop(struct ieee80211_hw *hw, bool suspend)
{
struct rtl8xxxu_priv *priv = hw->priv;
unsigned long flags;
rtl8xxxu_write8(priv, REG_TXPAUSE, 0xff);
rtl8xxxu_write16(priv, REG_RXFLTMAP0, 0x0000);
rtl8xxxu_write16(priv, REG_RXFLTMAP2, 0x0000);
spin_lock_irqsave(&priv->rx_urb_lock, flags);
priv->shutdown = true;
spin_unlock_irqrestore(&priv->rx_urb_lock, flags);
usb_kill_anchored_urbs(&priv->rx_anchor);
usb_kill_anchored_urbs(&priv->tx_anchor);
if (priv->usb_interrupts)
usb_kill_anchored_urbs(&priv->int_anchor);
rtl8xxxu_write8(priv, REG_TXPAUSE, 0xff);
priv->fops->disable_rf(priv);
/*
* Disable interrupts
*/
if (priv->usb_interrupts)
rtl8xxxu_write32(priv, REG_USB_HIMR, 0);
cancel_work_sync(&priv->c2hcmd_work);
cancel_delayed_work_sync(&priv->ra_watchdog);
cancel_delayed_work_sync(&priv->update_beacon_work);
rtl8xxxu_free_rx_resources(priv);
rtl8xxxu_free_tx_resources(priv);
}
static int rtl8xxxu_sta_add(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct rtl8xxxu_sta_info *sta_info = (struct rtl8xxxu_sta_info *)sta->drv_priv;
struct rtl8xxxu_vif *rtlvif = (struct rtl8xxxu_vif *)vif->drv_priv;
struct rtl8xxxu_priv *priv = hw->priv;
mutex_lock(&priv->sta_mutex);
ewma_rssi_init(&sta_info->avg_rssi);
if (vif->type == NL80211_IFTYPE_AP) {
sta_info->rssi_level = RTL8XXXU_RATR_STA_INIT;
sta_info->macid = rtl8xxxu_acquire_macid(priv);
if (sta_info->macid >= RTL8XXXU_MAX_MAC_ID_NUM) {
mutex_unlock(&priv->sta_mutex);
return -ENOSPC;
}
rtl8xxxu_refresh_rate_mask(priv, 0, sta, true);
priv->fops->report_connect(priv, sta_info->macid, H2C_MACID_ROLE_STA, true);
} else {
switch (rtlvif->port_num) {
case 0:
sta_info->macid = RTL8XXXU_BC_MC_MACID;
break;
case 1:
sta_info->macid = RTL8XXXU_BC_MC_MACID1;
break;
default:
break;
}
}
mutex_unlock(&priv->sta_mutex);
return 0;
}
static int rtl8xxxu_sta_remove(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct rtl8xxxu_sta_info *sta_info = (struct rtl8xxxu_sta_info *)sta->drv_priv;
struct rtl8xxxu_priv *priv = hw->priv;
mutex_lock(&priv->sta_mutex);
if (vif->type == NL80211_IFTYPE_AP)
rtl8xxxu_release_macid(priv, sta_info->macid);
mutex_unlock(&priv->sta_mutex);
return 0;
}
static const struct ieee80211_ops rtl8xxxu_ops = {
.add_chanctx = ieee80211_emulate_add_chanctx,
.remove_chanctx = ieee80211_emulate_remove_chanctx,
.change_chanctx = ieee80211_emulate_change_chanctx,
.switch_vif_chanctx = ieee80211_emulate_switch_vif_chanctx,
.tx = rtl8xxxu_tx,
.wake_tx_queue = ieee80211_handle_wake_tx_queue,
.add_interface = rtl8xxxu_add_interface,
.remove_interface = rtl8xxxu_remove_interface,
.config = rtl8xxxu_config,
.conf_tx = rtl8xxxu_conf_tx,
.bss_info_changed = rtl8xxxu_bss_info_changed,
.start_ap = rtl8xxxu_start_ap,
.configure_filter = rtl8xxxu_configure_filter,
.set_rts_threshold = rtl8xxxu_set_rts_threshold,
.start = rtl8xxxu_start,
.stop = rtl8xxxu_stop,
.sw_scan_start = rtl8xxxu_sw_scan_start,
.sw_scan_complete = rtl8xxxu_sw_scan_complete,
.set_key = rtl8xxxu_set_key,
.ampdu_action = rtl8xxxu_ampdu_action,
.sta_statistics = rtl8xxxu_sta_statistics,
.get_antenna = rtl8xxxu_get_antenna,
.set_tim = rtl8xxxu_set_tim,
.sta_add = rtl8xxxu_sta_add,
.sta_remove = rtl8xxxu_sta_remove,
};
static int rtl8xxxu_parse_usb(struct rtl8xxxu_priv *priv,
struct usb_interface *interface)
{
struct usb_interface_descriptor *interface_desc;
struct usb_host_interface *host_interface;
struct usb_endpoint_descriptor *endpoint;
struct device *dev = &priv->udev->dev;
int i, j = 0, endpoints;
u8 dir, xtype, num;
int ret = 0;
host_interface = interface->cur_altsetting;
interface_desc = &host_interface->desc;
endpoints = interface_desc->bNumEndpoints;
for (i = 0; i < endpoints; i++) {
endpoint = &host_interface->endpoint[i].desc;
dir = endpoint->bEndpointAddress & USB_ENDPOINT_DIR_MASK;
num = usb_endpoint_num(endpoint);
xtype = usb_endpoint_type(endpoint);
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_USB)
dev_dbg(dev,
"%s: endpoint: dir %02x, # %02x, type %02x\n",
__func__, dir, num, xtype);
if (usb_endpoint_dir_in(endpoint) &&
usb_endpoint_xfer_bulk(endpoint)) {
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_USB)
dev_dbg(dev, "%s: in endpoint num %i\n",
__func__, num);
if (priv->pipe_in) {
dev_warn(dev,
"%s: Too many IN pipes\n", __func__);
ret = -EINVAL;
goto exit;
}
priv->pipe_in = usb_rcvbulkpipe(priv->udev, num);
}
if (usb_endpoint_dir_in(endpoint) &&
usb_endpoint_xfer_int(endpoint)) {
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_USB)
dev_dbg(dev, "%s: interrupt endpoint num %i\n",
__func__, num);
if (priv->pipe_interrupt) {
dev_warn(dev, "%s: Too many INTERRUPT pipes\n",
__func__);
ret = -EINVAL;
goto exit;
}
priv->pipe_interrupt = usb_rcvintpipe(priv->udev, num);
}
if (usb_endpoint_dir_out(endpoint) &&
usb_endpoint_xfer_bulk(endpoint)) {
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_USB)
dev_dbg(dev, "%s: out endpoint num %i\n",
__func__, num);
if (j >= RTL8XXXU_OUT_ENDPOINTS) {
dev_warn(dev,
"%s: Too many OUT pipes\n", __func__);
ret = -EINVAL;
goto exit;
}
priv->out_ep[j++] = num;
}
}
exit:
priv->nr_out_eps = j;
return ret;
}
static void rtl8xxxu_init_led(struct rtl8xxxu_priv *priv)
{
struct led_classdev *led = &priv->led_cdev;
if (!priv->fops->led_classdev_brightness_set)
return;
led->brightness_set_blocking = priv->fops->led_classdev_brightness_set;
snprintf(priv->led_name, sizeof(priv->led_name),
"rtl8xxxu-usb%s", dev_name(&priv->udev->dev));
led->name = priv->led_name;
led->max_brightness = RTL8XXXU_HW_LED_CONTROL;
if (led_classdev_register(&priv->udev->dev, led))
return;
priv->led_registered = true;
led->brightness = led->max_brightness;
priv->fops->led_classdev_brightness_set(led, led->brightness);
}
static void rtl8xxxu_deinit_led(struct rtl8xxxu_priv *priv)
{
struct led_classdev *led = &priv->led_cdev;
if (!priv->led_registered)
return;
priv->fops->led_classdev_brightness_set(led, LED_OFF);
led_classdev_unregister(led);
}
static const struct ieee80211_iface_limit rtl8xxxu_limits[] = {
{ .max = 2, .types = BIT(NL80211_IFTYPE_STATION), },
{ .max = 1, .types = BIT(NL80211_IFTYPE_AP), },
};
static const struct ieee80211_iface_combination rtl8xxxu_combinations[] = {
{
.limits = rtl8xxxu_limits,
.n_limits = ARRAY_SIZE(rtl8xxxu_limits),
.max_interfaces = 2,
.num_different_channels = 1,
},
};
static int rtl8xxxu_probe(struct usb_interface *interface,
const struct usb_device_id *id)
{
struct rtl8xxxu_priv *priv;
struct ieee80211_hw *hw;
struct usb_device *udev;
struct ieee80211_supported_band *sband;
int ret;
int untested = 1;
udev = usb_get_dev(interface_to_usbdev(interface));
switch (id->idVendor) {
case USB_VENDOR_ID_REALTEK:
switch(id->idProduct) {
case 0x1724:
case 0x8176:
case 0x8178:
case 0x817f:
case 0x818b:
case 0xf179:
case 0x8179:
case 0xb711:
case 0xf192:
case 0x2005:
untested = 0;
break;
}
break;
case 0x7392:
if (id->idProduct == 0x7811 || id->idProduct == 0xa611 || id->idProduct == 0xb811)
untested = 0;
break;
case 0x050d:
if (id->idProduct == 0x1004)
untested = 0;
break;
case 0x20f4:
if (id->idProduct == 0x648b)
untested = 0;
break;
case 0x2001:
if (id->idProduct == 0x3308)
untested = 0;
break;
case 0x2357:
if (id->idProduct == 0x0109 || id->idProduct == 0x0135)
untested = 0;
break;
case 0x0b05:
if (id->idProduct == 0x18f1)
untested = 0;
break;
default:
break;
}
if (untested) {
rtl8xxxu_debug |= RTL8XXXU_DEBUG_EFUSE;
dev_info(&udev->dev,
"This Realtek USB WiFi dongle (0x%04x:0x%04x) is untested!\n",
id->idVendor, id->idProduct);
dev_info(&udev->dev,
"Please report results to [email protected]\n");
}
hw = ieee80211_alloc_hw(sizeof(struct rtl8xxxu_priv), &rtl8xxxu_ops);
if (!hw) {
ret = -ENOMEM;
goto err_put_dev;
}
priv = hw->priv;
priv->hw = hw;
priv->udev = udev;
priv->fops = (struct rtl8xxxu_fileops *)id->driver_info;
mutex_init(&priv->usb_buf_mutex);
mutex_init(&priv->syson_indirect_access_mutex);
mutex_init(&priv->h2c_mutex);
mutex_init(&priv->sta_mutex);
INIT_LIST_HEAD(&priv->tx_urb_free_list);
spin_lock_init(&priv->tx_urb_lock);
INIT_LIST_HEAD(&priv->rx_urb_pending_list);
spin_lock_init(&priv->rx_urb_lock);
INIT_WORK(&priv->rx_urb_wq, rtl8xxxu_rx_urb_work);
INIT_DELAYED_WORK(&priv->ra_watchdog, rtl8xxxu_watchdog_callback);
INIT_DELAYED_WORK(&priv->update_beacon_work, rtl8xxxu_update_beacon_work_callback);
skb_queue_head_init(&priv->c2hcmd_queue);
usb_set_intfdata(interface, hw);
ret = rtl8xxxu_parse_usb(priv, interface);
if (ret)
goto err_set_intfdata;
ret = priv->fops->identify_chip(priv);
if (ret) {
dev_err(&udev->dev, "Fatal - failed to identify chip\n");
goto err_set_intfdata;
}
hw->wiphy->available_antennas_tx = BIT(priv->tx_paths) - 1;
hw->wiphy->available_antennas_rx = BIT(priv->rx_paths) - 1;
if (priv->rtl_chip == RTL8188E)
INIT_WORK(&priv->c2hcmd_work, rtl8188e_c2hcmd_callback);
else
INIT_WORK(&priv->c2hcmd_work, rtl8xxxu_c2hcmd_callback);
ret = priv->fops->read_efuse(priv);
if (ret) {
dev_err(&udev->dev, "Fatal - failed to read EFuse\n");
goto err_set_intfdata;
}
ret = priv->fops->parse_efuse(priv);
if (ret) {
dev_err(&udev->dev, "Fatal - failed to parse EFuse\n");
goto err_set_intfdata;
}
if (rtl8xxxu_debug & RTL8XXXU_DEBUG_EFUSE)
rtl8xxxu_dump_efuse(priv);
rtl8xxxu_print_chipinfo(priv);
ret = priv->fops->load_firmware(priv);
if (ret) {
dev_err(&udev->dev, "Fatal - failed to load firmware\n");
goto err_set_intfdata;
}
ret = rtl8xxxu_init_device(hw);
if (ret)
goto err_set_intfdata;
hw->vif_data_size = sizeof(struct rtl8xxxu_vif);
hw->wiphy->max_scan_ssids = 1;
hw->wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN;
if (priv->fops->max_macid_num)
hw->wiphy->max_ap_assoc_sta = priv->fops->max_macid_num - 1;
hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
if (priv->fops->supports_ap)
hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_AP);
hw->queues = 4;
hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
if (priv->fops->supports_concurrent) {
hw->wiphy->iface_combinations = rtl8xxxu_combinations;
hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtl8xxxu_combinations);
}
sband = &rtl8xxxu_supported_band;
sband->ht_cap.ht_supported = true;
sband->ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
sband->ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
sband->ht_cap.cap = IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_SGI_40;
memset(&sband->ht_cap.mcs, 0, sizeof(sband->ht_cap.mcs));
sband->ht_cap.mcs.rx_mask[0] = 0xff;
sband->ht_cap.mcs.rx_mask[4] = 0x01;
if (priv->rf_paths > 1) {
sband->ht_cap.mcs.rx_mask[1] = 0xff;
sband->ht_cap.cap |= IEEE80211_HT_CAP_SGI_40;
}
sband->ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
/*
* Some APs will negotiate HT20_40 in a noisy environment leading
* to miserable performance. Rather than defaulting to this, only
* enable it if explicitly requested at module load time.
*/
if (rtl8xxxu_ht40_2g) {
dev_info(&udev->dev, "Enabling HT_20_40 on the 2.4GHz band\n");
sband->ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
}
hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
hw->wiphy->rts_threshold = 2347;
SET_IEEE80211_DEV(priv->hw, &interface->dev);
SET_IEEE80211_PERM_ADDR(hw, priv->mac_addr);
hw->extra_tx_headroom = priv->fops->tx_desc_size;
ieee80211_hw_set(hw, SIGNAL_DBM);
/*
* The firmware handles rate control, except for RTL8188EU,
* where we handle the rate control in the driver.
*/
ieee80211_hw_set(hw, HAS_RATE_CONTROL);
ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
ieee80211_hw_set(hw, AMPDU_AGGREGATION);
ieee80211_hw_set(hw, MFP_CAPABLE);
wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
ret = ieee80211_register_hw(priv->hw);
if (ret) {
dev_err(&udev->dev, "%s: Failed to register: %i\n",
__func__, ret);
goto err_set_intfdata;
}
rtl8xxxu_init_led(priv);
return 0;
err_set_intfdata:
usb_set_intfdata(interface, NULL);
kfree(priv->fw_data);
mutex_destroy(&priv->usb_buf_mutex);
mutex_destroy(&priv->syson_indirect_access_mutex);
mutex_destroy(&priv->h2c_mutex);
ieee80211_free_hw(hw);
err_put_dev:
usb_put_dev(udev);
return ret;
}
static void rtl8xxxu_disconnect(struct usb_interface *interface)
{
struct rtl8xxxu_priv *priv;
struct ieee80211_hw *hw;
hw = usb_get_intfdata(interface);
priv = hw->priv;
rtl8xxxu_deinit_led(priv);
ieee80211_unregister_hw(hw);
priv->fops->power_off(priv);
usb_set_intfdata(interface, NULL);
dev_info(&priv->udev->dev, "disconnecting\n");
kfree(priv->fw_data);
mutex_destroy(&priv->usb_buf_mutex);
mutex_destroy(&priv->syson_indirect_access_mutex);
mutex_destroy(&priv->h2c_mutex);
if (priv->udev->state != USB_STATE_NOTATTACHED) {
dev_info(&priv->udev->dev,
"Device still attached, trying to reset\n");
usb_reset_device(priv->udev);
}
usb_put_dev(priv->udev);
ieee80211_free_hw(hw);
}
static const struct usb_device_id dev_table[] = {
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x8724, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8723au_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x1724, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8723au_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x0724, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8723au_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x818b, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192eu_fops},
/* TP-Link TL-WN822N v4 */
{USB_DEVICE_AND_INTERFACE_INFO(0x2357, 0x0108, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192eu_fops},
/* D-Link DWA-131 rev E1, tested by David PatiƱo */
{USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x3319, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192eu_fops},
/* Tested by Myckel Habets */
{USB_DEVICE_AND_INTERFACE_INFO(0x2357, 0x0109, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192eu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0xb720, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8723bu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x7392, 0xa611, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8723bu_fops},
/* RTL8188FU */
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0xf179, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8188fu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x8179, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8188eu_fops},
/* Tested by Hans de Goede - rtl8188etv */
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x0179, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8188eu_fops},
/* Sitecom rtl8188eus */
{USB_DEVICE_AND_INTERFACE_INFO(0x0df6, 0x0076, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8188eu_fops},
/* D-Link USB-GO-N150 */
{USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x3311, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8188eu_fops},
/* D-Link DWA-125 REV D1 */
{USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x330f, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8188eu_fops},
/* D-Link DWA-123 REV D1 */
{USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x3310, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8188eu_fops},
/* D-Link DWA-121 rev B1 */
{USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x331b, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8188eu_fops},
/* Abocom - Abocom */
{USB_DEVICE_AND_INTERFACE_INFO(0x07b8, 0x8179, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8188eu_fops},
/* Elecom WDC-150SU2M */
{USB_DEVICE_AND_INTERFACE_INFO(0x056e, 0x4008, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8188eu_fops},
/* TP-Link TL-WN722N v2 */
{USB_DEVICE_AND_INTERFACE_INFO(0x2357, 0x010c, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8188eu_fops},
/* TP-Link TL-WN727N v5.21 */
{USB_DEVICE_AND_INTERFACE_INFO(0x2357, 0x0111, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8188eu_fops},
/* MERCUSYS MW150US v2 */
{USB_DEVICE_AND_INTERFACE_INFO(0x2c4e, 0x0102, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8188eu_fops},
/* ASUS USB-N10 Nano B1 */
{USB_DEVICE_AND_INTERFACE_INFO(0x0b05, 0x18f0, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8188eu_fops},
/* Edimax EW-7811Un V2 */
{USB_DEVICE_AND_INTERFACE_INFO(0x7392, 0xb811, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8188eu_fops},
/* Rosewill USB-N150 Nano */
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0xffef, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8188eu_fops},
/* RTL8710BU aka RTL8188GU (not to be confused with RTL8188GTVU) */
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0xb711, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8710bu_fops},
/* TOTOLINK N150UA V5 / N150UA-B */
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x2005, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8710bu_fops},
/* Comfast CF-826F */
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0xf192, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192fu_fops},
/* Asus USB-N13 rev C1 */
{USB_DEVICE_AND_INTERFACE_INFO(0x0b05, 0x18f1, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192fu_fops},
/* EDIMAX EW-7722UTn V3 */
{USB_DEVICE_AND_INTERFACE_INFO(0x7392, 0xb722, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192fu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x318b, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192fu_fops},
/* TP-Link TL-WN823N V2 */
{USB_DEVICE_AND_INTERFACE_INFO(0x2357, 0x0135, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192fu_fops},
#ifdef CONFIG_RTL8XXXU_UNTESTED
/* Still supported by rtlwifi */
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x8176, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x8178, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x817f, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x819a, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x8754, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x817c, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
/* Tested by Larry Finger */
{USB_DEVICE_AND_INTERFACE_INFO(0x7392, 0x7811, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
/* Tested by Andrea Merello */
{USB_DEVICE_AND_INTERFACE_INFO(0x050d, 0x1004, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
/* Tested by Jocelyn Mayer */
{USB_DEVICE_AND_INTERFACE_INFO(0x20f4, 0x648b, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
/* Tested by Stefano Bravi */
{USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x3308, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
/* Currently untested 8188 series devices */
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x018a, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x8191, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x8170, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x8177, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x817a, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x817b, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x817d, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x817e, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x818a, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x317f, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x1058, 0x0631, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x04bb, 0x094c, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x050d, 0x1102, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x06f8, 0xe033, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x07b8, 0x8189, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x0846, 0x9041, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x0b05, 0x17ba, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x1e1e, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x5088, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x0df6, 0x0052, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x0df6, 0x005c, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x0eb0, 0x9071, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x103c, 0x1629, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x13d3, 0x3357, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x330b, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x2019, 0x4902, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x2019, 0xab2a, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x2019, 0xab2e, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x2019, 0xed17, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x4855, 0x0090, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x4856, 0x0091, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0xcdab, 0x8010, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x04f2, 0xaff7, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x04f2, 0xaff9, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x04f2, 0xaffa, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x04f2, 0xaff8, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x04f2, 0xaffb, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x04f2, 0xaffc, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x2019, 0x1201, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
/* Currently untested 8192 series devices */
{USB_DEVICE_AND_INTERFACE_INFO(0x04bb, 0x0950, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x050d, 0x2102, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x050d, 0x2103, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x0586, 0x341f, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x06f8, 0xe035, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x0b05, 0x17ab, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x0df6, 0x0061, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x0df6, 0x0070, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x0789, 0x016d, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x07aa, 0x0056, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x07b8, 0x8178, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x0846, 0x9021, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x0846, 0xf001, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x2e2e, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x0e66, 0x0019, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x0e66, 0x0020, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x3307, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x3309, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x330a, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x2019, 0xab2b, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x20f4, 0x624d, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x2357, 0x0100, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x4855, 0x0091, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x7392, 0x7822, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192cu_fops},
/* found in rtl8192eu vendor driver */
{USB_DEVICE_AND_INTERFACE_INFO(0x2357, 0x0107, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192eu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(0x2019, 0xab33, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192eu_fops},
{USB_DEVICE_AND_INTERFACE_INFO(USB_VENDOR_ID_REALTEK, 0x818c, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192eu_fops},
/* D-Link DWA-131 rev C1 */
{USB_DEVICE_AND_INTERFACE_INFO(0x2001, 0x3312, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192eu_fops},
/* TP-Link TL-WN8200ND V2 */
{USB_DEVICE_AND_INTERFACE_INFO(0x2357, 0x0126, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192eu_fops},
/* Mercusys MW300UM */
{USB_DEVICE_AND_INTERFACE_INFO(0x2c4e, 0x0100, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192eu_fops},
/* Mercusys MW300UH */
{USB_DEVICE_AND_INTERFACE_INFO(0x2c4e, 0x0104, 0xff, 0xff, 0xff),
.driver_info = (unsigned long)&rtl8192eu_fops},
#endif
{ }
};
static struct usb_driver rtl8xxxu_driver = {
.name = DRIVER_NAME,
.probe = rtl8xxxu_probe,
.disconnect = rtl8xxxu_disconnect,
.id_table = dev_table,
.no_dynamic_id = 1,
.disable_hub_initiated_lpm = 1,
};
MODULE_DEVICE_TABLE(usb, dev_table);
module_usb_driver(rtl8xxxu_driver);