// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2009-2012 Realtek Corporation.*/
#include "../wifi.h"
#include "../base.h"
#include "../cam.h"
#include "../efuse.h"
#include "../pci.h"
#include "../regd.h"
#include "def.h"
#include "reg.h"
#include "dm_common.h"
#include "fw_common.h"
#include "hw_common.h"
#include "phy_common.h"
void rtl92d_stop_tx_beacon(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 tmp1byte;
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
tmp1byte &= ~(BIT(0));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
}
EXPORT_SYMBOL_GPL(rtl92d_stop_tx_beacon);
void rtl92d_resume_tx_beacon(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 tmp1byte;
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
tmp1byte |= BIT(0);
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
}
EXPORT_SYMBOL_GPL(rtl92d_resume_tx_beacon);
void rtl92d_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
switch (variable) {
case HW_VAR_RF_STATE:
*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
break;
case HW_VAR_FWLPS_RF_ON:{
enum rf_pwrstate rfstate;
u32 val_rcr;
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
(u8 *)(&rfstate));
if (rfstate == ERFOFF) {
*((bool *)(val)) = true;
} else {
val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
val_rcr &= 0x00070000;
if (val_rcr)
*((bool *)(val)) = false;
else
*((bool *)(val)) = true;
}
break;
}
case HW_VAR_FW_PSMODE_STATUS:
*((bool *)(val)) = ppsc->fw_current_inpsmode;
break;
case HW_VAR_CORRECT_TSF:{
u64 tsf;
u32 *ptsf_low = (u32 *)&tsf;
u32 *ptsf_high = ((u32 *)&tsf) + 1;
*ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
*ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
*((u64 *)(val)) = tsf;
break;
}
case HW_VAR_INT_MIGRATION:
*((bool *)(val)) = rtlpriv->dm.interrupt_migration;
break;
case HW_VAR_INT_AC:
*((bool *)(val)) = rtlpriv->dm.disable_tx_int;
break;
case HAL_DEF_WOWLAN:
break;
default:
pr_err("switch case %#x not processed\n", variable);
break;
}
}
EXPORT_SYMBOL_GPL(rtl92d_get_hw_reg);
void rtl92d_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
u8 idx;
switch (variable) {
case HW_VAR_ETHER_ADDR:
for (idx = 0; idx < ETH_ALEN; idx++) {
rtl_write_byte(rtlpriv, (REG_MACID + idx),
val[idx]);
}
break;
case HW_VAR_BASIC_RATE: {
u16 rate_cfg = ((u16 *)val)[0];
u8 rate_index = 0;
rate_cfg = rate_cfg & 0x15f;
if (mac->vendor == PEER_CISCO &&
((rate_cfg & 0x150) == 0))
rate_cfg |= 0x01;
rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
rtl_write_byte(rtlpriv, REG_RRSR + 1,
(rate_cfg >> 8) & 0xff);
while (rate_cfg > 0x1) {
rate_cfg = (rate_cfg >> 1);
rate_index++;
}
if (rtlhal->fw_version > 0xe)
rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
rate_index);
break;
}
case HW_VAR_BSSID:
for (idx = 0; idx < ETH_ALEN; idx++) {
rtl_write_byte(rtlpriv, (REG_BSSID + idx),
val[idx]);
}
break;
case HW_VAR_SIFS:
rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
if (!mac->ht_enable)
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
0x0e0e);
else
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
*((u16 *)val));
break;
case HW_VAR_SLOT_TIME: {
u8 e_aci;
rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
"HW_VAR_SLOT_TIME %x\n", val[0]);
rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
for (e_aci = 0; e_aci < AC_MAX; e_aci++)
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_AC_PARAM,
(&e_aci));
break;
}
case HW_VAR_ACK_PREAMBLE: {
u8 reg_tmp;
u8 short_preamble = (bool)(*val);
reg_tmp = (mac->cur_40_prime_sc) << 5;
if (short_preamble)
reg_tmp |= 0x80;
rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
break;
}
case HW_VAR_AMPDU_MIN_SPACE: {
u8 min_spacing_to_set;
min_spacing_to_set = *val;
if (min_spacing_to_set <= 7) {
mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) |
min_spacing_to_set);
*val = min_spacing_to_set;
rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
mac->min_space_cfg);
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
mac->min_space_cfg);
}
break;
}
case HW_VAR_SHORTGI_DENSITY: {
u8 density_to_set;
density_to_set = *val;
mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
mac->min_space_cfg |= (density_to_set << 3);
rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_SHORTGI_DENSITY: %#x\n",
mac->min_space_cfg);
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
mac->min_space_cfg);
break;
}
case HW_VAR_AMPDU_FACTOR: {
u8 factor_toset;
u32 regtoset;
u8 *ptmp_byte = NULL;
u8 index;
if (rtlhal->macphymode == DUALMAC_DUALPHY)
regtoset = 0xb9726641;
else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
regtoset = 0x66626641;
else
regtoset = 0xb972a841;
factor_toset = *val;
if (factor_toset <= 3) {
factor_toset = (1 << (factor_toset + 2));
if (factor_toset > 0xf)
factor_toset = 0xf;
for (index = 0; index < 4; index++) {
ptmp_byte = (u8 *)(®toset) + index;
if ((*ptmp_byte & 0xf0) >
(factor_toset << 4))
*ptmp_byte = (*ptmp_byte & 0x0f)
| (factor_toset << 4);
if ((*ptmp_byte & 0x0f) > factor_toset)
*ptmp_byte = (*ptmp_byte & 0xf0)
| (factor_toset);
}
rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, regtoset);
rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_AMPDU_FACTOR: %#x\n",
factor_toset);
}
break;
}
case HW_VAR_RETRY_LIMIT: {
u8 retry_limit = val[0];
rtl_write_word(rtlpriv, REG_RL,
retry_limit << RETRY_LIMIT_SHORT_SHIFT |
retry_limit << RETRY_LIMIT_LONG_SHIFT);
break;
}
case HW_VAR_DUAL_TSF_RST:
rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
break;
case HW_VAR_EFUSE_BYTES:
rtlefuse->efuse_usedbytes = *((u16 *)val);
break;
case HW_VAR_EFUSE_USAGE:
rtlefuse->efuse_usedpercentage = *val;
break;
case HW_VAR_IO_CMD:
rtl92d_phy_set_io_cmd(hw, (*(enum io_type *)val));
break;
case HW_VAR_WPA_CONFIG:
rtl_write_byte(rtlpriv, REG_SECCFG, *val);
break;
case HW_VAR_SET_RPWM:
rtl92d_fill_h2c_cmd(hw, H2C_PWRM, 1, (val));
break;
case HW_VAR_H2C_FW_PWRMODE:
break;
case HW_VAR_FW_PSMODE_STATUS:
ppsc->fw_current_inpsmode = *((bool *)val);
break;
case HW_VAR_AID: {
u16 u2btmp;
u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
u2btmp &= 0xC000;
rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
mac->assoc_id));
break;
}
default:
pr_err("switch case %#x not processed\n", variable);
break;
}
}
EXPORT_SYMBOL_GPL(rtl92d_set_hw_reg);
bool rtl92d_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
bool status = true;
long count = 0;
u32 value = _LLT_INIT_ADDR(address) |
_LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
do {
value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
if (_LLT_OP_VALUE(value) == _LLT_NO_ACTIVE)
break;
if (count > POLLING_LLT_THRESHOLD) {
pr_err("Failed to polling write LLT done at address %d!\n",
address);
status = false;
break;
}
} while (++count);
return status;
}
EXPORT_SYMBOL_GPL(rtl92d_llt_write);
void rtl92d_enable_hw_security_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 sec_reg_value;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
rtlpriv->sec.pairwise_enc_algorithm,
rtlpriv->sec.group_enc_algorithm);
if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"not open hw encryption\n");
return;
}
sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
if (rtlpriv->sec.use_defaultkey) {
sec_reg_value |= SCR_TXUSEDK;
sec_reg_value |= SCR_RXUSEDK;
}
sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD,
"The SECR-value %x\n", sec_reg_value);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
}
EXPORT_SYMBOL_GPL(rtl92d_enable_hw_security_config);
/* don't set REG_EDCA_BE_PARAM here because
* mac80211 will send pkt when scan
*/
void rtl92d_set_qos(struct ieee80211_hw *hw, int aci)
{
rtl92d_dm_init_edca_turbo(hw);
}
EXPORT_SYMBOL_GPL(rtl92d_set_qos);
static enum version_8192d _rtl92d_read_chip_version(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
enum version_8192d version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
u32 value32;
value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
if (!(value32 & 0x000f0000)) {
version = VERSION_TEST_CHIP_92D_SINGLEPHY;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "TEST CHIP!!!\n");
} else {
version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Normal CHIP!!!\n");
}
return version;
}
static void _rtl92d_readpowervalue_fromprom(struct txpower_info *pwrinfo,
u8 *efuse, bool autoloadfail)
{
u32 rfpath, eeaddr, group, offset, offset1, offset2;
u8 i, val8;
memset(pwrinfo, 0, sizeof(struct txpower_info));
if (autoloadfail) {
for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
if (group < CHANNEL_GROUP_MAX_2G) {
pwrinfo->cck_index[rfpath][group] =
EEPROM_DEFAULT_TXPOWERLEVEL_2G;
pwrinfo->ht40_1sindex[rfpath][group] =
EEPROM_DEFAULT_TXPOWERLEVEL_2G;
} else {
pwrinfo->ht40_1sindex[rfpath][group] =
EEPROM_DEFAULT_TXPOWERLEVEL_5G;
}
pwrinfo->ht40_2sindexdiff[rfpath][group] =
EEPROM_DEFAULT_HT40_2SDIFF;
pwrinfo->ht20indexdiff[rfpath][group] =
EEPROM_DEFAULT_HT20_DIFF;
pwrinfo->ofdmindexdiff[rfpath][group] =
EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
pwrinfo->ht40maxoffset[rfpath][group] =
EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
pwrinfo->ht20maxoffset[rfpath][group] =
EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
}
}
for (i = 0; i < 3; i++) {
pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
}
return;
}
/* Maybe autoload OK,buf the tx power index value is not filled.
* If we find it, we set it to default value.
*/
for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
for (group = 0; group < CHANNEL_GROUP_MAX_2G; group++) {
eeaddr = EEPROM_CCK_TX_PWR_INX_2G + (rfpath * 3) + group;
pwrinfo->cck_index[rfpath][group] =
efuse[eeaddr] == 0xFF ?
(eeaddr > 0x7B ?
EEPROM_DEFAULT_TXPOWERLEVEL_5G :
EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
efuse[eeaddr];
}
}
for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
offset1 = group / 3;
offset2 = group % 3;
eeaddr = EEPROM_HT40_1S_TX_PWR_INX_2G + (rfpath * 3);
eeaddr += offset2 + offset1 * 21;
pwrinfo->ht40_1sindex[rfpath][group] =
efuse[eeaddr] == 0xFF ?
(eeaddr > 0x7B ?
EEPROM_DEFAULT_TXPOWERLEVEL_5G :
EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
efuse[eeaddr];
}
}
/* These just for 92D efuse offset. */
for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
offset1 = group / 3;
offset2 = group % 3;
offset = offset2 + offset1 * 21;
val8 = efuse[EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G + offset];
if (val8 != 0xFF)
pwrinfo->ht40_2sindexdiff[rfpath][group] =
(val8 >> (rfpath * 4)) & 0xF;
else
pwrinfo->ht40_2sindexdiff[rfpath][group] =
EEPROM_DEFAULT_HT40_2SDIFF;
val8 = efuse[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset];
if (val8 != 0xFF)
pwrinfo->ht20indexdiff[rfpath][group] =
(val8 >> (rfpath * 4)) & 0xF;
else
pwrinfo->ht20indexdiff[rfpath][group] =
EEPROM_DEFAULT_HT20_DIFF;
val8 = efuse[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset];
if (val8 != 0xFF)
pwrinfo->ofdmindexdiff[rfpath][group] =
(val8 >> (rfpath * 4)) & 0xF;
else
pwrinfo->ofdmindexdiff[rfpath][group] =
EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
val8 = efuse[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset];
if (val8 != 0xFF)
pwrinfo->ht40maxoffset[rfpath][group] =
(val8 >> (rfpath * 4)) & 0xF;
else
pwrinfo->ht40maxoffset[rfpath][group] =
EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
val8 = efuse[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset];
if (val8 != 0xFF)
pwrinfo->ht20maxoffset[rfpath][group] =
(val8 >> (rfpath * 4)) & 0xF;
else
pwrinfo->ht20maxoffset[rfpath][group] =
EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
}
}
if (efuse[EEPROM_TSSI_A_5G] != 0xFF) {
/* 5GL */
pwrinfo->tssi_a[0] = efuse[EEPROM_TSSI_A_5G] & 0x3F;
pwrinfo->tssi_b[0] = efuse[EEPROM_TSSI_B_5G] & 0x3F;
/* 5GM */
pwrinfo->tssi_a[1] = efuse[EEPROM_TSSI_AB_5G] & 0x3F;
pwrinfo->tssi_b[1] = (efuse[EEPROM_TSSI_AB_5G] & 0xC0) >> 6 |
(efuse[EEPROM_TSSI_AB_5G + 1] & 0x0F) << 2;
/* 5GH */
pwrinfo->tssi_a[2] = (efuse[EEPROM_TSSI_AB_5G + 1] & 0xF0) >> 4 |
(efuse[EEPROM_TSSI_AB_5G + 2] & 0x03) << 4;
pwrinfo->tssi_b[2] = (efuse[EEPROM_TSSI_AB_5G + 2] & 0xFC) >> 2;
} else {
for (i = 0; i < 3; i++) {
pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
}
}
}
static void _rtl92d_read_txpower_info(struct ieee80211_hw *hw,
bool autoload_fail, u8 *hwinfo)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct txpower_info pwrinfo;
u8 tempval[2], i, pwr, diff;
u32 ch, rfpath, group;
_rtl92d_readpowervalue_fromprom(&pwrinfo, hwinfo, autoload_fail);
if (!autoload_fail) {
/* bit0~2 */
rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_RF_OPT1] & 0x7);
rtlefuse->eeprom_thermalmeter =
hwinfo[EEPROM_THERMAL_METER] & 0x1f;
rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_K];
tempval[0] = hwinfo[EEPROM_IQK_DELTA] & 0x03;
tempval[1] = (hwinfo[EEPROM_LCK_DELTA] & 0x0C) >> 2;
rtlefuse->txpwr_fromeprom = true;
if (IS_92D_D_CUT(rtlpriv->rtlhal.version) ||
IS_92D_E_CUT(rtlpriv->rtlhal.version)) {
rtlefuse->internal_pa_5g[0] =
!((hwinfo[EEPROM_TSSI_A_5G] & BIT(6)) >> 6);
rtlefuse->internal_pa_5g[1] =
!((hwinfo[EEPROM_TSSI_B_5G] & BIT(6)) >> 6);
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
"Is D cut,Internal PA0 %d Internal PA1 %d\n",
rtlefuse->internal_pa_5g[0],
rtlefuse->internal_pa_5g[1]);
}
rtlefuse->eeprom_c9 = hwinfo[EEPROM_RF_OPT6];
rtlefuse->eeprom_cc = hwinfo[EEPROM_RF_OPT7];
} else {
rtlefuse->eeprom_regulatory = 0;
rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
rtlefuse->crystalcap = EEPROM_DEFAULT_CRYSTALCAP;
tempval[0] = 3;
tempval[1] = tempval[0];
}
/* Use default value to fill parameters if
* efuse is not filled on some place.
*/
/* ThermalMeter from EEPROM */
if (rtlefuse->eeprom_thermalmeter < 0x06 ||
rtlefuse->eeprom_thermalmeter > 0x1c)
rtlefuse->eeprom_thermalmeter = 0x12;
rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
/* check XTAL_K */
if (rtlefuse->crystalcap == 0xFF)
rtlefuse->crystalcap = 0;
if (rtlefuse->eeprom_regulatory > 3)
rtlefuse->eeprom_regulatory = 0;
for (i = 0; i < 2; i++) {
switch (tempval[i]) {
case 0:
tempval[i] = 5;
break;
case 1:
tempval[i] = 4;
break;
case 2:
tempval[i] = 3;
break;
case 3:
default:
tempval[i] = 0;
break;
}
}
rtlefuse->delta_iqk = tempval[0];
if (tempval[1] > 0)
rtlefuse->delta_lck = tempval[1] - 1;
if (rtlefuse->eeprom_c9 == 0xFF)
rtlefuse->eeprom_c9 = 0x00;
rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
"EEPROMRegulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
"ThermalMeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
"CrystalCap = 0x%x\n", rtlefuse->crystalcap);
rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
"Delta_IQK = 0x%x Delta_LCK = 0x%x\n",
rtlefuse->delta_iqk, rtlefuse->delta_lck);
for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
group = rtl92d_get_chnlgroup_fromarray((u8)ch);
if (ch < CHANNEL_MAX_NUMBER_2G)
rtlefuse->txpwrlevel_cck[rfpath][ch] =
pwrinfo.cck_index[rfpath][group];
rtlefuse->txpwrlevel_ht40_1s[rfpath][ch] =
pwrinfo.ht40_1sindex[rfpath][group];
rtlefuse->txpwr_ht20diff[rfpath][ch] =
pwrinfo.ht20indexdiff[rfpath][group];
rtlefuse->txpwr_legacyhtdiff[rfpath][ch] =
pwrinfo.ofdmindexdiff[rfpath][group];
rtlefuse->pwrgroup_ht20[rfpath][ch] =
pwrinfo.ht20maxoffset[rfpath][group];
rtlefuse->pwrgroup_ht40[rfpath][ch] =
pwrinfo.ht40maxoffset[rfpath][group];
pwr = pwrinfo.ht40_1sindex[rfpath][group];
diff = pwrinfo.ht40_2sindexdiff[rfpath][group];
rtlefuse->txpwrlevel_ht40_2s[rfpath][ch] =
(pwr > diff) ? (pwr - diff) : 0;
}
}
}
static void _rtl92d_read_macphymode_from_prom(struct ieee80211_hw *hw,
u8 *content)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
bool is_single_mac = true;
if (rtlhal->interface == INTF_PCI)
is_single_mac = !!(content[EEPROM_MAC_FUNCTION] & BIT(3));
else if (rtlhal->interface == INTF_USB)
is_single_mac = !(content[EEPROM_ENDPOINT_SETTING] & BIT(0));
if (is_single_mac) {
rtlhal->macphymode = SINGLEMAC_SINGLEPHY;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"MacPhyMode SINGLEMAC_SINGLEPHY\n");
} else {
rtlhal->macphymode = DUALMAC_DUALPHY;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"MacPhyMode DUALMAC_DUALPHY\n");
}
}
static void _rtl92d_read_macphymode_and_bandtype(struct ieee80211_hw *hw,
u8 *content)
{
_rtl92d_read_macphymode_from_prom(hw, content);
rtl92d_phy_config_macphymode(hw);
rtl92d_phy_config_macphymode_info(hw);
}
static void _rtl92d_efuse_update_chip_version(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
enum version_8192d chipver = rtlpriv->rtlhal.version;
u8 cutvalue[2];
u16 chipvalue;
read_efuse_byte(hw, EEPROME_CHIP_VERSION_H, &cutvalue[1]);
read_efuse_byte(hw, EEPROME_CHIP_VERSION_L, &cutvalue[0]);
chipvalue = (cutvalue[1] << 8) | cutvalue[0];
switch (chipvalue) {
case 0xAA55:
chipver |= CHIP_92D_C_CUT;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "C-CUT!!!\n");
break;
case 0x9966:
chipver |= CHIP_92D_D_CUT;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "D-CUT!!!\n");
break;
case 0xCC33:
case 0x33CC:
chipver |= CHIP_92D_E_CUT;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "E-CUT!!!\n");
break;
default:
chipver |= CHIP_92D_D_CUT;
pr_err("Unknown CUT!\n");
break;
}
rtlpriv->rtlhal.version = chipver;
}
static void _rtl92d_read_adapter_info(struct ieee80211_hw *hw)
{
static const int params_pci[] = {
RTL8190_EEPROM_ID, EEPROM_VID, EEPROM_DID,
EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR_MAC0_92D,
EEPROM_CHANNEL_PLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID,
COUNTRY_CODE_WORLD_WIDE_13
};
static const int params_usb[] = {
RTL8190_EEPROM_ID, EEPROM_VID_USB, EEPROM_PID_USB,
EEPROM_VID_USB, EEPROM_PID_USB, EEPROM_MAC_ADDR_MAC0_92DU,
EEPROM_CHANNEL_PLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID,
COUNTRY_CODE_WORLD_WIDE_13
};
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
const int *params = params_pci;
u8 *hwinfo;
if (rtlhal->interface == INTF_USB)
params = params_usb;
hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL);
if (!hwinfo)
return;
if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params))
goto exit;
_rtl92d_efuse_update_chip_version(hw);
_rtl92d_read_macphymode_and_bandtype(hw, hwinfo);
/* Read Permanent MAC address for 2nd interface */
if (rtlhal->interfaceindex != 0)
ether_addr_copy(rtlefuse->dev_addr,
&hwinfo[EEPROM_MAC_ADDR_MAC1_92D]);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR,
rtlefuse->dev_addr);
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
_rtl92d_read_txpower_info(hw, rtlefuse->autoload_failflag, hwinfo);
/* Read Channel Plan */
switch (rtlhal->bandset) {
case BAND_ON_2_4G:
rtlefuse->channel_plan = COUNTRY_CODE_TELEC;
break;
case BAND_ON_5G:
rtlefuse->channel_plan = COUNTRY_CODE_FCC;
break;
case BAND_ON_BOTH:
rtlefuse->channel_plan = COUNTRY_CODE_FCC;
break;
default:
rtlefuse->channel_plan = COUNTRY_CODE_FCC;
break;
}
rtlefuse->txpwr_fromeprom = true;
exit:
kfree(hwinfo);
}
void rtl92d_read_eeprom_info(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 tmp_u1b;
rtlhal->version = _rtl92d_read_chip_version(hw);
tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
rtlefuse->autoload_status = tmp_u1b;
if (tmp_u1b & BIT(4)) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
rtlefuse->epromtype = EEPROM_93C46;
} else {
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
}
if (tmp_u1b & BIT(5)) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
rtlefuse->autoload_failflag = false;
_rtl92d_read_adapter_info(hw);
} else {
pr_err("Autoload ERR!!\n");
}
}
EXPORT_SYMBOL_GPL(rtl92d_read_eeprom_info);
static void rtl92d_update_hal_rate_table(struct ieee80211_hw *hw,
struct ieee80211_sta *sta)
{
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
enum wireless_mode wirelessmode;
u8 mimo_ps = IEEE80211_SMPS_OFF;
u8 curtxbw_40mhz = mac->bw_40;
u8 nmode = mac->ht_enable;
u8 curshortgi_40mhz;
u8 curshortgi_20mhz;
u32 tmp_ratr_value;
u8 ratr_index = 0;
u16 shortgi_rate;
u32 ratr_value;
curshortgi_40mhz = !!(sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
curshortgi_20mhz = !!(sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
wirelessmode = mac->mode;
if (rtlhal->current_bandtype == BAND_ON_5G)
ratr_value = sta->deflink.supp_rates[1] << 4;
else
ratr_value = sta->deflink.supp_rates[0];
ratr_value |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 |
sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
switch (wirelessmode) {
case WIRELESS_MODE_A:
ratr_value &= 0x00000FF0;
break;
case WIRELESS_MODE_B:
if (ratr_value & 0x0000000c)
ratr_value &= 0x0000000d;
else
ratr_value &= 0x0000000f;
break;
case WIRELESS_MODE_G:
ratr_value &= 0x00000FF5;
break;
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
nmode = 1;
if (mimo_ps == IEEE80211_SMPS_STATIC) {
ratr_value &= 0x0007F005;
} else {
u32 ratr_mask;
if (get_rf_type(rtlphy) == RF_1T2R ||
get_rf_type(rtlphy) == RF_1T1R) {
ratr_mask = 0x000ff005;
} else {
ratr_mask = 0x0f0ff005;
}
ratr_value &= ratr_mask;
}
break;
default:
if (rtlphy->rf_type == RF_1T2R)
ratr_value &= 0x000ff0ff;
else
ratr_value &= 0x0f0ff0ff;
break;
}
ratr_value &= 0x0FFFFFFF;
if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
(!curtxbw_40mhz && curshortgi_20mhz))) {
ratr_value |= 0x10000000;
tmp_ratr_value = (ratr_value >> 12);
for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
if ((1 << shortgi_rate) & tmp_ratr_value)
break;
}
shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
(shortgi_rate << 4) | (shortgi_rate);
}
rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
rtl_read_dword(rtlpriv, REG_ARFR0));
}
static void rtl92d_update_hal_rate_mask(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
u8 rssi_level, bool update_bw)
{
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl92d_rate_mask_h2c rate_mask = {};
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct rtl_sta_info *sta_entry = NULL;
enum wireless_mode wirelessmode;
bool shortgi = false;
u8 curshortgi_40mhz;
u8 curshortgi_20mhz;
u8 curtxbw_40mhz;
u32 ratr_bitmap;
u8 ratr_index;
u8 macid = 0;
u8 mimo_ps;
curtxbw_40mhz = sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40;
curshortgi_40mhz = !!(sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
curshortgi_20mhz = !!(sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
mimo_ps = sta_entry->mimo_ps;
wirelessmode = sta_entry->wireless_mode;
if (mac->opmode == NL80211_IFTYPE_STATION)
curtxbw_40mhz = mac->bw_40;
else if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_ADHOC)
macid = sta->aid + 1;
if (rtlhal->current_bandtype == BAND_ON_5G)
ratr_bitmap = sta->deflink.supp_rates[1] << 4;
else
ratr_bitmap = sta->deflink.supp_rates[0];
ratr_bitmap |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 |
sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
switch (wirelessmode) {
case WIRELESS_MODE_B:
ratr_index = RATR_INX_WIRELESS_B;
if (ratr_bitmap & 0x0000000c)
ratr_bitmap &= 0x0000000d;
else
ratr_bitmap &= 0x0000000f;
break;
case WIRELESS_MODE_G:
ratr_index = RATR_INX_WIRELESS_GB;
if (rssi_level == 1)
ratr_bitmap &= 0x00000f00;
else if (rssi_level == 2)
ratr_bitmap &= 0x00000ff0;
else
ratr_bitmap &= 0x00000ff5;
break;
case WIRELESS_MODE_A:
ratr_index = RATR_INX_WIRELESS_G;
ratr_bitmap &= 0x00000ff0;
break;
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
if (wirelessmode == WIRELESS_MODE_N_24G)
ratr_index = RATR_INX_WIRELESS_NGB;
else
ratr_index = RATR_INX_WIRELESS_NG;
if (mimo_ps == IEEE80211_SMPS_STATIC) {
if (rssi_level == 1)
ratr_bitmap &= 0x00070000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0007f000;
else
ratr_bitmap &= 0x0007f005;
} else {
if (rtlphy->rf_type == RF_1T2R ||
rtlphy->rf_type == RF_1T1R) {
if (curtxbw_40mhz) {
if (rssi_level == 1)
ratr_bitmap &= 0x000f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x000ff000;
else
ratr_bitmap &= 0x000ff015;
} else {
if (rssi_level == 1)
ratr_bitmap &= 0x000f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x000ff000;
else
ratr_bitmap &= 0x000ff005;
}
} else {
if (curtxbw_40mhz) {
if (rssi_level == 1)
ratr_bitmap &= 0x0f0f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0f0ff000;
else
ratr_bitmap &= 0x0f0ff015;
} else {
if (rssi_level == 1)
ratr_bitmap &= 0x0f0f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0f0ff000;
else
ratr_bitmap &= 0x0f0ff005;
}
}
}
if ((curtxbw_40mhz && curshortgi_40mhz) ||
(!curtxbw_40mhz && curshortgi_20mhz)) {
if (macid == 0)
shortgi = true;
else if (macid == 1)
shortgi = false;
}
break;
default:
ratr_index = RATR_INX_WIRELESS_NGB;
if (rtlphy->rf_type == RF_1T2R)
ratr_bitmap &= 0x000ff0ff;
else
ratr_bitmap &= 0x0f0ff0ff;
break;
}
le32p_replace_bits(&rate_mask.rate_mask_and_raid, ratr_bitmap, RATE_MASK_MASK);
le32p_replace_bits(&rate_mask.rate_mask_and_raid, ratr_index, RAID_MASK);
u8p_replace_bits(&rate_mask.macid_and_short_gi, macid, MACID_MASK);
u8p_replace_bits(&rate_mask.macid_and_short_gi, shortgi, SHORT_GI_MASK);
u8p_replace_bits(&rate_mask.macid_and_short_gi, 1, BIT(7));
rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG,
"Rate_index:%x, ratr_val:%x, %5phC\n",
ratr_index, ratr_bitmap, &rate_mask);
if (rtlhal->interface == INTF_PCI) {
rtl92d_fill_h2c_cmd(hw, H2C_RA_MASK, sizeof(rate_mask),
(u8 *)&rate_mask);
} else {
/* rtl92d_fill_h2c_cmd() does USB I/O and will result in a
* "scheduled while atomic" if called directly
*/
memcpy(rtlpriv->rate_mask, &rate_mask,
sizeof(rtlpriv->rate_mask));
schedule_work(&rtlpriv->works.fill_h2c_cmd);
}
if (macid != 0)
sta_entry->ratr_index = ratr_index;
}
void rtl92d_update_hal_rate_tbl(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
u8 rssi_level, bool update_bw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (rtlpriv->dm.useramask)
rtl92d_update_hal_rate_mask(hw, sta, rssi_level, update_bw);
else
rtl92d_update_hal_rate_table(hw, sta);
}
EXPORT_SYMBOL_GPL(rtl92d_update_hal_rate_tbl);
void rtl92d_update_channel_access_setting(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 sifs_timer;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
&mac->slot_time);
if (!mac->ht_enable)
sifs_timer = 0x0a0a;
else
sifs_timer = 0x1010;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
}
EXPORT_SYMBOL_GPL(rtl92d_update_channel_access_setting);
bool rtl92d_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
enum rf_pwrstate e_rfpowerstate_toset;
u8 u1tmp;
bool actuallyset = false;
unsigned long flag;
if (rtlpriv->rtlhal.interface == INTF_PCI &&
rtlpci->being_init_adapter)
return false;
if (ppsc->swrf_processing)
return false;
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
if (ppsc->rfchange_inprogress) {
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
return false;
}
ppsc->rfchange_inprogress = true;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG,
rtl_read_byte(rtlpriv, REG_MAC_PINMUX_CFG) & ~(BIT(3)));
u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
if (ppsc->hwradiooff && e_rfpowerstate_toset == ERFON) {
rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
"GPIOChangeRF - HW Radio ON, RF ON\n");
e_rfpowerstate_toset = ERFON;
ppsc->hwradiooff = false;
actuallyset = true;
} else if (!ppsc->hwradiooff && e_rfpowerstate_toset == ERFOFF) {
rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
"GPIOChangeRF - HW Radio OFF, RF OFF\n");
e_rfpowerstate_toset = ERFOFF;
ppsc->hwradiooff = true;
actuallyset = true;
}
if (actuallyset) {
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
ppsc->rfchange_inprogress = false;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
} else {
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
ppsc->rfchange_inprogress = false;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
}
*valid = 1;
return !ppsc->hwradiooff;
}
EXPORT_SYMBOL_GPL(rtl92d_gpio_radio_on_off_checking);
void rtl92d_set_key(struct ieee80211_hw *hw, u32 key_index,
u8 *p_macaddr, bool is_group, u8 enc_algo,
bool is_wepkey, bool clear_all)
{
static const u8 cam_const_addr[4][6] = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
};
static const u8 cam_const_broad[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
const u8 *macaddr = p_macaddr;
bool is_pairwise = false;
u32 entry_id;
if (clear_all) {
u8 idx;
u8 cam_offset = 0;
u8 clear_number = 5;
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
for (idx = 0; idx < clear_number; idx++) {
rtl_cam_mark_invalid(hw, cam_offset + idx);
rtl_cam_empty_entry(hw, cam_offset + idx);
if (idx < 5) {
memset(rtlpriv->sec.key_buf[idx], 0,
MAX_KEY_LEN);
rtlpriv->sec.key_len[idx] = 0;
}
}
return;
}
switch (enc_algo) {
case WEP40_ENCRYPTION:
enc_algo = CAM_WEP40;
break;
case WEP104_ENCRYPTION:
enc_algo = CAM_WEP104;
break;
case TKIP_ENCRYPTION:
enc_algo = CAM_TKIP;
break;
case AESCCMP_ENCRYPTION:
enc_algo = CAM_AES;
break;
default:
pr_err("switch case %#x not processed\n",
enc_algo);
enc_algo = CAM_TKIP;
break;
}
if (is_wepkey || rtlpriv->sec.use_defaultkey) {
macaddr = cam_const_addr[key_index];
entry_id = key_index;
} else {
if (is_group) {
macaddr = cam_const_broad;
entry_id = key_index;
} else {
if (mac->opmode == NL80211_IFTYPE_AP) {
entry_id = rtl_cam_get_free_entry(hw, p_macaddr);
if (entry_id >= TOTAL_CAM_ENTRY) {
pr_err("Can not find free hw security cam entry\n");
return;
}
} else {
entry_id = CAM_PAIRWISE_KEY_POSITION;
}
key_index = PAIRWISE_KEYIDX;
is_pairwise = true;
}
}
if (rtlpriv->sec.key_len[key_index] == 0) {
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"delete one entry, entry_id is %d\n",
entry_id);
if (mac->opmode == NL80211_IFTYPE_AP)
rtl_cam_del_entry(hw, p_macaddr);
rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
} else {
rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD,
"The insert KEY length is %d\n",
rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD,
"The insert KEY is %x %x\n",
rtlpriv->sec.key_buf[0][0],
rtlpriv->sec.key_buf[0][1]);
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"add one entry\n");
if (is_pairwise) {
RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
"Pairwise Key content",
rtlpriv->sec.pairwise_key,
rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"set Pairwise key\n");
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[key_index]);
} else {
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"set group key\n");
if (mac->opmode == NL80211_IFTYPE_ADHOC) {
rtl_cam_add_one_entry(hw,
rtlefuse->dev_addr,
PAIRWISE_KEYIDX,
CAM_PAIRWISE_KEY_POSITION,
enc_algo, CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[entry_id]);
}
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf
[entry_id]);
}
}
}
EXPORT_SYMBOL_GPL(rtl92d_set_key);