linux/drivers/net/wireless/realtek/rtw89/efuse_be.c

// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Copyright(c) 2023  Realtek Corporation
 */

#include "debug.h"
#include "efuse.h"
#include "mac.h"
#include "reg.h"

#define EFUSE_EXTERNALPN_ADDR_BE 0x1580
#define EFUSE_B1_MSSDEVTYPE_MASK GENMASK(3, 0)
#define EFUSE_B1_MSSCUSTIDX0_MASK GENMASK(7, 4)
#define EFUSE_SERIALNUM_ADDR_BE 0x1581
#define EFUSE_B2_MSSKEYNUM_MASK GENMASK(3, 0)
#define EFUSE_B2_MSSCUSTIDX1_MASK BIT(6)
#define EFUSE_SB_CRYP_SEL_ADDR 0x1582
#define EFUSE_SB_CRYP_SEL_SIZE 2
#define EFUSE_SB_CRYP_SEL_DEFAULT 0xFFFF
#define SB_SEL_MGN_MAX_SIZE 2
#define EFUSE_SEC_BE_START 0x1580
#define EFUSE_SEC_BE_SIZE 4

enum rtw89_efuse_mss_dev_type {
	MSS_DEV_TYPE_FWSEC_DEF = 0xF,
	MSS_DEV_TYPE_FWSEC_WINLIN_INBOX = 0xC,
	MSS_DEV_TYPE_FWSEC_NONLIN_INBOX_NON_COB = 0xA,
	MSS_DEV_TYPE_FWSEC_NONLIN_INBOX_COB = 0x9,
	MSS_DEV_TYPE_FWSEC_NONWIN_INBOX = 0x6,
};

static const u32 sb_sel_mgn[SB_SEL_MGN_MAX_SIZE] = {
	0x8000100, 0xC000180
};

static void rtw89_enable_efuse_pwr_cut_ddv_be(struct rtw89_dev *rtwdev)
{
	const struct rtw89_chip_info *chip = rtwdev->chip;
	struct rtw89_hal *hal = &rtwdev->hal;
	bool aphy_patch = true;

	if (chip->chip_id == RTL8922A && hal->cv == CHIP_CAV)
		aphy_patch = false;

	rtw89_write8_set(rtwdev, R_BE_PMC_DBG_CTRL2, B_BE_SYSON_DIS_PMCR_BE_WRMSK);

	if (aphy_patch) {
		rtw89_write16_set(rtwdev, R_BE_SYS_ISO_CTRL, B_BE_PWC_EV2EF_S);
		mdelay(1);
		rtw89_write16_set(rtwdev, R_BE_SYS_ISO_CTRL, B_BE_PWC_EV2EF_B);
		rtw89_write16_clr(rtwdev, R_BE_SYS_ISO_CTRL, B_BE_ISO_EB2CORE);
	}

	rtw89_write32_set(rtwdev, R_BE_EFUSE_CTRL_2_V1, B_BE_EF_BURST);
}

static void rtw89_disable_efuse_pwr_cut_ddv_be(struct rtw89_dev *rtwdev)
{
	const struct rtw89_chip_info *chip = rtwdev->chip;
	struct rtw89_hal *hal = &rtwdev->hal;
	bool aphy_patch = true;

	if (chip->chip_id == RTL8922A && hal->cv == CHIP_CAV)
		aphy_patch = false;

	if (aphy_patch) {
		rtw89_write16_set(rtwdev, R_BE_SYS_ISO_CTRL, B_BE_ISO_EB2CORE);
		rtw89_write16_clr(rtwdev, R_BE_SYS_ISO_CTRL, B_BE_PWC_EV2EF_B);
		mdelay(1);
		rtw89_write16_clr(rtwdev, R_BE_SYS_ISO_CTRL, B_BE_PWC_EV2EF_S);
	}

	rtw89_write8_clr(rtwdev, R_BE_PMC_DBG_CTRL2, B_BE_SYSON_DIS_PMCR_BE_WRMSK);
	rtw89_write32_clr(rtwdev, R_BE_EFUSE_CTRL_2_V1, B_BE_EF_BURST);
}

static int rtw89_dump_physical_efuse_map_ddv_be(struct rtw89_dev *rtwdev, u8 *map,
						u32 dump_addr, u32 dump_size)
{
	u32 efuse_ctl;
	u32 addr;
	u32 data;
	int ret;

	if (!IS_ALIGNED(dump_addr, 4) || !IS_ALIGNED(dump_size, 4)) {
		rtw89_err(rtwdev, "Efuse addr 0x%x or size 0x%x not aligned\n",
			  dump_addr, dump_size);
		return -EINVAL;
	}

	rtw89_enable_efuse_pwr_cut_ddv_be(rtwdev);

	for (addr = dump_addr; addr < dump_addr + dump_size; addr += 4, map += 4) {
		efuse_ctl = u32_encode_bits(addr, B_BE_EF_ADDR_MASK);
		rtw89_write32(rtwdev, R_BE_EFUSE_CTRL, efuse_ctl & ~B_BE_EF_RDY);

		ret = read_poll_timeout_atomic(rtw89_read32, efuse_ctl,
					       efuse_ctl & B_BE_EF_RDY, 1, 1000000,
					       true, rtwdev, R_BE_EFUSE_CTRL);
		if (ret)
			return -EBUSY;

		data = rtw89_read32(rtwdev, R_BE_EFUSE_CTRL_1_V1);
		*((__le32 *)map) = cpu_to_le32(data);
	}

	rtw89_disable_efuse_pwr_cut_ddv_be(rtwdev);

	return 0;
}

static int rtw89_dump_physical_efuse_map_dav_be(struct rtw89_dev *rtwdev, u8 *map,
						u32 dump_addr, u32 dump_size)
{
	u32 addr;
	u8 val8;
	int err;
	int ret;

	for (addr = dump_addr; addr < dump_addr + dump_size; addr++) {
		ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, 0x40,
					      FULL_BIT_MASK);
		if (ret)
			return ret;
		ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_LOW_ADDR, addr & 0xff,
					      XTAL_SI_LOW_ADDR_MASK);
		if (ret)
			return ret;
		ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, addr >> 8,
					      XTAL_SI_HIGH_ADDR_MASK);
		if (ret)
			return ret;
		ret = rtw89_mac_write_xtal_si(rtwdev, XTAL_SI_CTRL, 0,
					      XTAL_SI_MODE_SEL_MASK);
		if (ret)
			return ret;

		ret = read_poll_timeout_atomic(rtw89_mac_read_xtal_si, err,
					       !err && (val8 & XTAL_SI_RDY),
					       1, 10000, false,
					       rtwdev, XTAL_SI_CTRL, &val8);
		if (ret) {
			rtw89_warn(rtwdev, "failed to read dav efuse\n");
			return ret;
		}

		ret = rtw89_mac_read_xtal_si(rtwdev, XTAL_SI_READ_VAL, &val8);
		if (ret)
			return ret;
		*map++ = val8;
	}

	return 0;
}

int rtw89_cnv_efuse_state_be(struct rtw89_dev *rtwdev, bool idle)
{
	u32 val;
	int ret = 0;

	if (idle) {
		rtw89_write32_set(rtwdev, R_BE_WL_BT_PWR_CTRL, B_BE_BT_DISN_EN);
	} else {
		rtw89_write32_clr(rtwdev, R_BE_WL_BT_PWR_CTRL, B_BE_BT_DISN_EN);

		ret = read_poll_timeout(rtw89_read32_mask, val,
					val == MAC_AX_SYS_ACT, 50, 5000,
					false, rtwdev, R_BE_IC_PWR_STATE,
					B_BE_WHOLE_SYS_PWR_STE_MASK);
		if (ret)
			rtw89_warn(rtwdev, "failed to convert efuse state\n");
	}

	return ret;
}

static int rtw89_dump_physical_efuse_map_be(struct rtw89_dev *rtwdev, u8 *map,
					    u32 dump_addr, u32 dump_size, bool dav)
{
	int ret;

	if (!map || dump_size == 0)
		return 0;

	rtw89_cnv_efuse_state_be(rtwdev, false);

	if (dav) {
		ret = rtw89_dump_physical_efuse_map_dav_be(rtwdev, map,
							   dump_addr, dump_size);
		if (ret)
			return ret;

		rtw89_hex_dump(rtwdev, RTW89_DBG_FW, "phy_map dav: ", map, dump_size);
	} else {
		ret = rtw89_dump_physical_efuse_map_ddv_be(rtwdev, map,
							   dump_addr, dump_size);
		if (ret)
			return ret;

		rtw89_hex_dump(rtwdev, RTW89_DBG_FW, "phy_map ddv: ", map, dump_size);
	}

	rtw89_cnv_efuse_state_be(rtwdev, true);

	return 0;
}

#define EFUSE_HDR_CONST_MASK GENMASK(23, 20)
#define EFUSE_HDR_PAGE_MASK GENMASK(19, 17)
#define EFUSE_HDR_OFFSET_MASK GENMASK(16, 4)
#define EFUSE_HDR_OFFSET_DAV_MASK GENMASK(11, 4)
#define EFUSE_HDR_WORD_EN_MASK GENMASK(3, 0)

#define invalid_efuse_header_be(hdr1, hdr2, hdr3) \
	((hdr1) == 0xff || (hdr2) == 0xff || (hdr3) == 0xff)
#define invalid_efuse_content_be(word_en, i) \
	(((word_en) & BIT(i)) != 0x0)
#define get_efuse_blk_idx_be(hdr1, hdr2, hdr3) \
	(((hdr1) << 16) | ((hdr2) << 8) | (hdr3))
#define block_idx_to_logical_idx_be(blk_idx, i) \
	(((blk_idx) << 3) + ((i) << 1))

#define invalid_efuse_header_dav_be(hdr1, hdr2) \
	((hdr1) == 0xff || (hdr2) == 0xff)
#define get_efuse_blk_idx_dav_be(hdr1, hdr2) \
	(((hdr1) << 8) | (hdr2))

static int rtw89_eeprom_parser_be(struct rtw89_dev *rtwdev,
				  const u8 *phy_map, u32 phy_size, u8 *log_map,
				  const struct rtw89_efuse_block_cfg *efuse_block)
{
	const struct rtw89_chip_info *chip = rtwdev->chip;
	enum rtw89_efuse_block blk_page, page;
	u32 size = efuse_block->size;
	u32 phy_idx, log_idx;
	u32 hdr, page_offset;
	u8 hdr1, hdr2, hdr3;
	u8 i, val0, val1;
	u32 min, max;
	u16 blk_idx;
	u8 word_en;

	page = u32_get_bits(efuse_block->offset, RTW89_EFUSE_BLOCK_ID_MASK);
	page_offset = u32_get_bits(efuse_block->offset, RTW89_EFUSE_BLOCK_SIZE_MASK);

	min = ALIGN_DOWN(page_offset, 2);
	max = ALIGN(page_offset + size, 2);

	memset(log_map, 0xff, size);

	phy_idx = chip->sec_ctrl_efuse_size;

	do {
		if (page == RTW89_EFUSE_BLOCK_ADIE) {
			hdr1 = phy_map[phy_idx];
			hdr2 = phy_map[phy_idx + 1];
			if (invalid_efuse_header_dav_be(hdr1, hdr2))
				break;

			phy_idx += 2;

			hdr = get_efuse_blk_idx_dav_be(hdr1, hdr2);

			blk_page = RTW89_EFUSE_BLOCK_ADIE;
			blk_idx = u32_get_bits(hdr, EFUSE_HDR_OFFSET_DAV_MASK);
			word_en = u32_get_bits(hdr, EFUSE_HDR_WORD_EN_MASK);
		} else {
			hdr1 = phy_map[phy_idx];
			hdr2 = phy_map[phy_idx + 1];
			hdr3 = phy_map[phy_idx + 2];
			if (invalid_efuse_header_be(hdr1, hdr2, hdr3))
				break;

			phy_idx += 3;

			hdr = get_efuse_blk_idx_be(hdr1, hdr2, hdr3);

			blk_page = u32_get_bits(hdr, EFUSE_HDR_PAGE_MASK);
			blk_idx = u32_get_bits(hdr, EFUSE_HDR_OFFSET_MASK);
			word_en = u32_get_bits(hdr, EFUSE_HDR_WORD_EN_MASK);
		}

		if (blk_idx >= RTW89_EFUSE_MAX_BLOCK_SIZE >> 3) {
			rtw89_err(rtwdev, "[ERR]efuse idx:0x%X\n", phy_idx - 3);
			rtw89_err(rtwdev, "[ERR]read hdr:0x%X\n", hdr);
			return -EINVAL;
		}

		for (i = 0; i < 4; i++) {
			if (invalid_efuse_content_be(word_en, i))
				continue;

			if (phy_idx >= phy_size - 1)
				return -EINVAL;

			log_idx = block_idx_to_logical_idx_be(blk_idx, i);

			if (blk_page == page && log_idx >= min && log_idx < max) {
				val0 = phy_map[phy_idx];
				val1 = phy_map[phy_idx + 1];

				if (log_idx == min && page_offset > min) {
					log_map[log_idx - page_offset + 1] = val1;
				} else if (log_idx + 2 == max &&
					   page_offset + size < max) {
					log_map[log_idx - page_offset] = val0;
				} else {
					log_map[log_idx - page_offset] = val0;
					log_map[log_idx - page_offset + 1] = val1;
				}
			}
			phy_idx += 2;
		}
	} while (phy_idx < phy_size);

	return 0;
}

static int rtw89_parse_logical_efuse_block_be(struct rtw89_dev *rtwdev,
					      const u8 *phy_map, u32 phy_size,
					      enum rtw89_efuse_block block)
{
	const struct rtw89_chip_info *chip = rtwdev->chip;
	const struct rtw89_efuse_block_cfg *efuse_block;
	u8 *log_map;
	int ret;

	efuse_block = &chip->efuse_blocks[block];

	log_map = kmalloc(efuse_block->size, GFP_KERNEL);
	if (!log_map)
		return -ENOMEM;

	ret = rtw89_eeprom_parser_be(rtwdev, phy_map, phy_size, log_map, efuse_block);
	if (ret) {
		rtw89_warn(rtwdev, "failed to dump efuse logical block %d\n", block);
		goto out_free;
	}

	rtw89_hex_dump(rtwdev, RTW89_DBG_FW, "log_map: ", log_map, efuse_block->size);

	ret = rtwdev->chip->ops->read_efuse(rtwdev, log_map, block);
	if (ret) {
		rtw89_warn(rtwdev, "failed to read efuse map\n");
		goto out_free;
	}

out_free:
	kfree(log_map);

	return ret;
}

int rtw89_parse_efuse_map_be(struct rtw89_dev *rtwdev)
{
	u32 phy_size = rtwdev->chip->physical_efuse_size;
	u32 dav_phy_size = rtwdev->chip->dav_phy_efuse_size;
	enum rtw89_efuse_block block;
	u8 *phy_map = NULL;
	u8 *dav_phy_map = NULL;
	int ret;

	if (rtw89_read16(rtwdev, R_BE_SYS_WL_EFUSE_CTRL) & B_BE_AUTOLOAD_SUS)
		rtwdev->efuse.valid = true;
	else
		rtw89_warn(rtwdev, "failed to check efuse autoload\n");

	phy_map = kmalloc(phy_size, GFP_KERNEL);
	if (dav_phy_size)
		dav_phy_map = kmalloc(dav_phy_size, GFP_KERNEL);

	if (!phy_map || (dav_phy_size && !dav_phy_map)) {
		ret = -ENOMEM;
		goto out_free;
	}

	ret = rtw89_dump_physical_efuse_map_be(rtwdev, phy_map, 0, phy_size, false);
	if (ret) {
		rtw89_warn(rtwdev, "failed to dump efuse physical map\n");
		goto out_free;
	}
	ret = rtw89_dump_physical_efuse_map_be(rtwdev, dav_phy_map, 0, dav_phy_size, true);
	if (ret) {
		rtw89_warn(rtwdev, "failed to dump efuse dav physical map\n");
		goto out_free;
	}

	if (rtwdev->hci.type == RTW89_HCI_TYPE_USB)
		block = RTW89_EFUSE_BLOCK_HCI_DIG_USB;
	else
		block = RTW89_EFUSE_BLOCK_HCI_DIG_PCIE_SDIO;

	ret = rtw89_parse_logical_efuse_block_be(rtwdev, phy_map, phy_size, block);
	if (ret) {
		rtw89_warn(rtwdev, "failed to parse efuse logic block %d\n",
			   RTW89_EFUSE_BLOCK_HCI_DIG_PCIE_SDIO);
		goto out_free;
	}

	ret = rtw89_parse_logical_efuse_block_be(rtwdev, phy_map, phy_size,
						 RTW89_EFUSE_BLOCK_RF);
	if (ret) {
		rtw89_warn(rtwdev, "failed to parse efuse logic block %d\n",
			   RTW89_EFUSE_BLOCK_RF);
		goto out_free;
	}

out_free:
	kfree(dav_phy_map);
	kfree(phy_map);

	return ret;
}

int rtw89_parse_phycap_map_be(struct rtw89_dev *rtwdev)
{
	u32 phycap_addr = rtwdev->chip->phycap_addr;
	u32 phycap_size = rtwdev->chip->phycap_size;
	u8 *phycap_map = NULL;
	int ret = 0;

	if (!phycap_size)
		return 0;

	phycap_map = kmalloc(phycap_size, GFP_KERNEL);
	if (!phycap_map)
		return -ENOMEM;

	ret = rtw89_dump_physical_efuse_map_be(rtwdev, phycap_map,
					       phycap_addr, phycap_size, false);
	if (ret) {
		rtw89_warn(rtwdev, "failed to dump phycap map\n");
		goto out_free;
	}

	ret = rtwdev->chip->ops->read_phycap(rtwdev, phycap_map);
	if (ret) {
		rtw89_warn(rtwdev, "failed to read phycap map\n");
		goto out_free;
	}

out_free:
	kfree(phycap_map);

	return ret;
}

static u16 get_sb_cryp_sel_idx(u16 sb_cryp_sel)
{
	u8 low_bit, high_bit, cnt_zero = 0;
	u8 idx, sel_form_v, sel_idx_v;
	u16 sb_cryp_sel_v = 0x0;

	sel_form_v = u16_get_bits(sb_cryp_sel, MASKBYTE0);
	sel_idx_v = u16_get_bits(sb_cryp_sel, MASKBYTE1);

	for (idx = 0; idx < 4; idx++) {
		low_bit = !!(sel_form_v & BIT(idx));
		high_bit = !!(sel_form_v & BIT(7 - idx));
		if (low_bit != high_bit)
			return U16_MAX;
		if (low_bit)
			continue;

		cnt_zero++;
		if (cnt_zero == 1)
			sb_cryp_sel_v = idx * 16;
		else if (cnt_zero > 1)
			return U16_MAX;
	}

	low_bit = u8_get_bits(sel_idx_v, 0x0F);
	high_bit = u8_get_bits(sel_idx_v, 0xF0);

	if ((low_bit ^ high_bit) != 0xF)
		return U16_MAX;

	return sb_cryp_sel_v + low_bit;
}

static u8 get_mss_dev_type_idx(struct rtw89_dev *rtwdev, u8 mss_dev_type)
{
	switch (mss_dev_type) {
	case MSS_DEV_TYPE_FWSEC_WINLIN_INBOX:
		mss_dev_type = 0x0;
		break;
	case MSS_DEV_TYPE_FWSEC_NONLIN_INBOX_NON_COB:
		mss_dev_type = 0x1;
		break;
	case MSS_DEV_TYPE_FWSEC_NONLIN_INBOX_COB:
		mss_dev_type = 0x2;
		break;
	case MSS_DEV_TYPE_FWSEC_NONWIN_INBOX:
		mss_dev_type = 0x3;
		break;
	case MSS_DEV_TYPE_FWSEC_DEF:
		mss_dev_type = RTW89_FW_MSS_DEV_TYPE_FWSEC_DEF;
		break;
	default:
		rtw89_warn(rtwdev, "unknown mss_dev_type %d", mss_dev_type);
		mss_dev_type = RTW89_FW_MSS_DEV_TYPE_FWSEC_INV;
		break;
	}

	return mss_dev_type;
}

int rtw89_efuse_read_fw_secure_be(struct rtw89_dev *rtwdev)
{
	struct rtw89_fw_secure *sec = &rtwdev->fw.sec;
	u32 sec_addr = EFUSE_SEC_BE_START;
	u32 sec_size = EFUSE_SEC_BE_SIZE;
	u16 sb_cryp_sel, sb_cryp_sel_idx;
	u8 sec_map[EFUSE_SEC_BE_SIZE];
	u8 mss_dev_type;
	u8 b1, b2;
	int ret;

	ret = rtw89_dump_physical_efuse_map_be(rtwdev, sec_map,
					       sec_addr, sec_size, false);
	if (ret) {
		rtw89_warn(rtwdev, "failed to dump secsel map\n");
		return ret;
	}

	sb_cryp_sel = sec_map[EFUSE_SB_CRYP_SEL_ADDR - sec_addr] |
		      sec_map[EFUSE_SB_CRYP_SEL_ADDR - sec_addr + 1] << 8;
	if (sb_cryp_sel == EFUSE_SB_CRYP_SEL_DEFAULT)
		goto out;

	sb_cryp_sel_idx = get_sb_cryp_sel_idx(sb_cryp_sel);
	if (sb_cryp_sel_idx >= SB_SEL_MGN_MAX_SIZE) {
		rtw89_warn(rtwdev, "invalid SB cryp sel idx %d\n", sb_cryp_sel_idx);
		goto out;
	}

	sec->sb_sel_mgn = sb_sel_mgn[sb_cryp_sel_idx];

	b1 = sec_map[EFUSE_EXTERNALPN_ADDR_BE - sec_addr];
	b2 = sec_map[EFUSE_SERIALNUM_ADDR_BE - sec_addr];

	mss_dev_type = u8_get_bits(b1, EFUSE_B1_MSSDEVTYPE_MASK);
	sec->mss_cust_idx = 0x1F - (u8_get_bits(b1, EFUSE_B1_MSSCUSTIDX0_MASK) |
				    u8_get_bits(b2, EFUSE_B2_MSSCUSTIDX1_MASK) << 4);
	sec->mss_key_num = 0xF - u8_get_bits(b2, EFUSE_B2_MSSKEYNUM_MASK);

	sec->mss_dev_type = get_mss_dev_type_idx(rtwdev, mss_dev_type);
	if (sec->mss_dev_type == RTW89_FW_MSS_DEV_TYPE_FWSEC_INV) {
		rtw89_warn(rtwdev, "invalid mss_dev_type %d\n", mss_dev_type);
		goto out;
	}

	sec->secure_boot = true;

out:
	rtw89_debug(rtwdev, RTW89_DBG_FW,
		    "MSS secure_boot=%d dev_type=%d cust_idx=%d key_num=%d\n",
		    sec->secure_boot, sec->mss_dev_type, sec->mss_cust_idx,
		    sec->mss_key_num);

	return 0;
}
EXPORT_SYMBOL(rtw89_efuse_read_fw_secure_be);