// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2024 NanjingTianyihexin Electronics Ltd.
* http://www.tianyihexin.com
*
* Driver for NanjingTianyihexin HX9023S Cap Sensor.
* Datasheet available at:
* http://www.tianyihexin.com/ueditor/php/upload/file/20240614/1718336303992081.pdf
*/
#include <linux/array_size.h>
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/cleanup.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/irqreturn.h>
#include <linux/math64.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/pm.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/types.h>
#include <linux/units.h>
#include <asm/byteorder.h>
#include <linux/unaligned.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/iio.h>
#include <linux/iio/trigger.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/types.h>
#define HX9023S_CHIP_ID 0x1D
#define HX9023S_CH_NUM 5
#define HX9023S_POS 0x03
#define HX9023S_NEG 0x02
#define HX9023S_NOT_CONNECTED 16
#define HX9023S_GLOBAL_CTRL0 0x00
#define HX9023S_PRF_CFG 0x02
#define HX9023S_CH0_CFG_7_0 0x03
#define HX9023S_CH4_CFG_9_8 0x0C
#define HX9023S_RANGE_7_0 0x0D
#define HX9023S_RANGE_9_8 0x0E
#define HX9023S_RANGE_18_16 0x0F
#define HX9023S_AVG0_NOSR0_CFG 0x10
#define HX9023S_NOSR12_CFG 0x11
#define HX9023S_NOSR34_CFG 0x12
#define HX9023S_AVG12_CFG 0x13
#define HX9023S_AVG34_CFG 0x14
#define HX9023S_OFFSET_DAC0_7_0 0x15
#define HX9023S_OFFSET_DAC4_9_8 0x1E
#define HX9023S_SAMPLE_NUM_7_0 0x1F
#define HX9023S_INTEGRATION_NUM_7_0 0x21
#define HX9023S_CH_NUM_CFG 0x24
#define HX9023S_LP_ALP_4_CFG 0x29
#define HX9023S_LP_ALP_1_0_CFG 0x2A
#define HX9023S_LP_ALP_3_2_CFG 0x2B
#define HX9023S_UP_ALP_1_0_CFG 0x2C
#define HX9023S_UP_ALP_3_2_CFG 0x2D
#define HX9023S_DN_UP_ALP_0_4_CFG 0x2E
#define HX9023S_DN_ALP_2_1_CFG 0x2F
#define HX9023S_DN_ALP_4_3_CFG 0x30
#define HX9023S_RAW_BL_RD_CFG 0x38
#define HX9023S_INTERRUPT_CFG 0x39
#define HX9023S_INTERRUPT_CFG1 0x3A
#define HX9023S_CALI_DIFF_CFG 0x3B
#define HX9023S_DITHER_CFG 0x3C
#define HX9023S_DEVICE_ID 0x60
#define HX9023S_PROX_STATUS 0x6B
#define HX9023S_PROX_INT_HIGH_CFG 0x6C
#define HX9023S_PROX_INT_LOW_CFG 0x6D
#define HX9023S_PROX_HIGH_DIFF_CFG_CH0_0 0x80
#define HX9023S_PROX_LOW_DIFF_CFG_CH0_0 0x88
#define HX9023S_PROX_LOW_DIFF_CFG_CH3_1 0x8F
#define HX9023S_PROX_HIGH_DIFF_CFG_CH4_0 0x9E
#define HX9023S_PROX_HIGH_DIFF_CFG_CH4_1 0x9F
#define HX9023S_PROX_LOW_DIFF_CFG_CH4_0 0xA2
#define HX9023S_PROX_LOW_DIFF_CFG_CH4_1 0xA3
#define HX9023S_CAP_INI_CH4_0 0xB3
#define HX9023S_LP_DIFF_CH4_2 0xBA
#define HX9023S_RAW_BL_CH4_0 0xB5
#define HX9023S_LP_DIFF_CH4_0 0xB8
#define HX9023S_DSP_CONFIG_CTRL1 0xC8
#define HX9023S_CAP_INI_CH0_0 0xE0
#define HX9023S_RAW_BL_CH0_0 0xE8
#define HX9023S_LP_DIFF_CH0_0 0xF4
#define HX9023S_LP_DIFF_CH3_2 0xFF
#define HX9023S_DATA_LOCK_MASK BIT(4)
#define HX9023S_INTERRUPT_MASK GENMASK(9, 0)
#define HX9023S_PROX_DEBOUNCE_MASK GENMASK(3, 0)
struct hx9023s_ch_data {
s16 raw; /* Raw Data*/
s16 lp; /* Low Pass Filter Data*/
s16 bl; /* Base Line Data */
s16 diff; /* Difference of Low Pass Data and Base Line Data */
struct {
unsigned int near;
unsigned int far;
} thres;
u16 dac;
u8 channel_positive;
u8 channel_negative;
bool sel_bl;
bool sel_raw;
bool sel_diff;
bool sel_lp;
bool enable;
};
struct hx9023s_data {
struct iio_trigger *trig;
struct regmap *regmap;
unsigned long chan_prox_stat;
unsigned long chan_read;
unsigned long chan_event;
unsigned long ch_en_stat;
unsigned long chan_in_use;
unsigned int prox_state_reg;
bool trigger_enabled;
struct {
__le16 channels[HX9023S_CH_NUM];
s64 ts __aligned(8);
} buffer;
/*
* Serialize access to registers below:
* HX9023S_PROX_INT_LOW_CFG,
* HX9023S_PROX_INT_HIGH_CFG,
* HX9023S_INTERRUPT_CFG,
* HX9023S_CH_NUM_CFG
* Serialize access to channel configuration in
* hx9023s_push_events and hx9023s_trigger_handler.
*/
struct mutex mutex;
struct hx9023s_ch_data ch_data[HX9023S_CH_NUM];
};
static const struct reg_sequence hx9023s_reg_init_list[] = {
/* scan period */
REG_SEQ0(HX9023S_PRF_CFG, 0x17),
/* full scale of conversion phase of each channel */
REG_SEQ0(HX9023S_RANGE_7_0, 0x11),
REG_SEQ0(HX9023S_RANGE_9_8, 0x02),
REG_SEQ0(HX9023S_RANGE_18_16, 0x00),
/* ADC average number and OSR number of each channel */
REG_SEQ0(HX9023S_AVG0_NOSR0_CFG, 0x71),
REG_SEQ0(HX9023S_NOSR12_CFG, 0x44),
REG_SEQ0(HX9023S_NOSR34_CFG, 0x00),
REG_SEQ0(HX9023S_AVG12_CFG, 0x33),
REG_SEQ0(HX9023S_AVG34_CFG, 0x00),
/* sample & integration frequency of the ADC */
REG_SEQ0(HX9023S_SAMPLE_NUM_7_0, 0x65),
REG_SEQ0(HX9023S_INTEGRATION_NUM_7_0, 0x65),
/* coefficient of the first order low pass filter during each channel */
REG_SEQ0(HX9023S_LP_ALP_1_0_CFG, 0x22),
REG_SEQ0(HX9023S_LP_ALP_3_2_CFG, 0x22),
REG_SEQ0(HX9023S_LP_ALP_4_CFG, 0x02),
/* up coefficient of the first order low pass filter during each channel */
REG_SEQ0(HX9023S_UP_ALP_1_0_CFG, 0x88),
REG_SEQ0(HX9023S_UP_ALP_3_2_CFG, 0x88),
REG_SEQ0(HX9023S_DN_UP_ALP_0_4_CFG, 0x18),
/* down coefficient of the first order low pass filter during each channel */
REG_SEQ0(HX9023S_DN_ALP_2_1_CFG, 0x11),
REG_SEQ0(HX9023S_DN_ALP_4_3_CFG, 0x11),
/* selection of data for the Data Mux Register to output data */
REG_SEQ0(HX9023S_RAW_BL_RD_CFG, 0xF0),
/* enable the interrupt function */
REG_SEQ0(HX9023S_INTERRUPT_CFG, 0xFF),
REG_SEQ0(HX9023S_INTERRUPT_CFG1, 0x3B),
REG_SEQ0(HX9023S_DITHER_CFG, 0x21),
/* threshold of the offset compensation */
REG_SEQ0(HX9023S_CALI_DIFF_CFG, 0x07),
/* proximity persistency number(near & far) */
REG_SEQ0(HX9023S_PROX_INT_HIGH_CFG, 0x01),
REG_SEQ0(HX9023S_PROX_INT_LOW_CFG, 0x01),
/* disable the data lock */
REG_SEQ0(HX9023S_DSP_CONFIG_CTRL1, 0x00),
};
static const struct iio_event_spec hx9023s_events[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_shared_by_all = BIT(IIO_EV_INFO_PERIOD),
.mask_separate = BIT(IIO_EV_INFO_VALUE),
},
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
.mask_shared_by_all = BIT(IIO_EV_INFO_PERIOD),
.mask_separate = BIT(IIO_EV_INFO_VALUE),
},
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_EITHER,
.mask_separate = BIT(IIO_EV_INFO_ENABLE),
},
};
#define HX9023S_CHANNEL(idx) \
{ \
.type = IIO_PROXIMITY, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
.indexed = 1, \
.channel = idx, \
.address = 0, \
.event_spec = hx9023s_events, \
.num_event_specs = ARRAY_SIZE(hx9023s_events), \
.scan_index = idx, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_BE, \
}, \
}
static const struct iio_chan_spec hx9023s_channels[] = {
HX9023S_CHANNEL(0),
HX9023S_CHANNEL(1),
HX9023S_CHANNEL(2),
HX9023S_CHANNEL(3),
HX9023S_CHANNEL(4),
IIO_CHAN_SOFT_TIMESTAMP(5),
};
static const unsigned int hx9023s_samp_freq_table[] = {
2, 2, 4, 6, 8, 10, 14, 18, 22, 26,
30, 34, 38, 42, 46, 50, 56, 62, 68, 74,
80, 90, 100, 200, 300, 400, 600, 800, 1000, 2000,
3000, 4000,
};
static const struct regmap_range hx9023s_rd_reg_ranges[] = {
regmap_reg_range(HX9023S_GLOBAL_CTRL0, HX9023S_LP_DIFF_CH3_2),
};
static const struct regmap_range hx9023s_wr_reg_ranges[] = {
regmap_reg_range(HX9023S_GLOBAL_CTRL0, HX9023S_LP_DIFF_CH3_2),
};
static const struct regmap_range hx9023s_volatile_reg_ranges[] = {
regmap_reg_range(HX9023S_CAP_INI_CH4_0, HX9023S_LP_DIFF_CH4_2),
regmap_reg_range(HX9023S_CAP_INI_CH0_0, HX9023S_LP_DIFF_CH3_2),
regmap_reg_range(HX9023S_PROX_STATUS, HX9023S_PROX_STATUS),
};
static const struct regmap_access_table hx9023s_rd_regs = {
.yes_ranges = hx9023s_rd_reg_ranges,
.n_yes_ranges = ARRAY_SIZE(hx9023s_rd_reg_ranges),
};
static const struct regmap_access_table hx9023s_wr_regs = {
.yes_ranges = hx9023s_wr_reg_ranges,
.n_yes_ranges = ARRAY_SIZE(hx9023s_wr_reg_ranges),
};
static const struct regmap_access_table hx9023s_volatile_regs = {
.yes_ranges = hx9023s_volatile_reg_ranges,
.n_yes_ranges = ARRAY_SIZE(hx9023s_volatile_reg_ranges),
};
static const struct regmap_config hx9023s_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.cache_type = REGCACHE_MAPLE,
.rd_table = &hx9023s_rd_regs,
.wr_table = &hx9023s_wr_regs,
.volatile_table = &hx9023s_volatile_regs,
};
static int hx9023s_interrupt_enable(struct hx9023s_data *data)
{
return regmap_update_bits(data->regmap, HX9023S_INTERRUPT_CFG,
HX9023S_INTERRUPT_MASK, HX9023S_INTERRUPT_MASK);
}
static int hx9023s_interrupt_disable(struct hx9023s_data *data)
{
return regmap_update_bits(data->regmap, HX9023S_INTERRUPT_CFG,
HX9023S_INTERRUPT_MASK, 0x00);
}
static int hx9023s_data_lock(struct hx9023s_data *data, bool locked)
{
if (locked)
return regmap_update_bits(data->regmap,
HX9023S_DSP_CONFIG_CTRL1,
HX9023S_DATA_LOCK_MASK,
HX9023S_DATA_LOCK_MASK);
else
return regmap_update_bits(data->regmap,
HX9023S_DSP_CONFIG_CTRL1,
HX9023S_DATA_LOCK_MASK, 0);
}
static int hx9023s_ch_cfg(struct hx9023s_data *data)
{
__le16 reg_list[HX9023S_CH_NUM];
u8 ch_pos[HX9023S_CH_NUM];
u8 ch_neg[HX9023S_CH_NUM];
/* Bit positions corresponding to input pin connections */
u8 conn_cs[HX9023S_CH_NUM] = { 0, 2, 4, 6, 8 };
unsigned int i;
u16 reg;
for (i = 0; i < HX9023S_CH_NUM; i++) {
ch_pos[i] = data->ch_data[i].channel_positive == HX9023S_NOT_CONNECTED ?
HX9023S_NOT_CONNECTED : conn_cs[data->ch_data[i].channel_positive];
ch_neg[i] = data->ch_data[i].channel_negative == HX9023S_NOT_CONNECTED ?
HX9023S_NOT_CONNECTED : conn_cs[data->ch_data[i].channel_negative];
reg = (HX9023S_POS << ch_pos[i]) | (HX9023S_NEG << ch_neg[i]);
reg_list[i] = cpu_to_le16(reg);
}
return regmap_bulk_write(data->regmap, HX9023S_CH0_CFG_7_0, reg_list,
sizeof(reg_list));
}
static int hx9023s_write_far_debounce(struct hx9023s_data *data, int val)
{
guard(mutex)(&data->mutex);
return regmap_update_bits(data->regmap, HX9023S_PROX_INT_LOW_CFG,
HX9023S_PROX_DEBOUNCE_MASK,
FIELD_GET(HX9023S_PROX_DEBOUNCE_MASK, val));
}
static int hx9023s_write_near_debounce(struct hx9023s_data *data, int val)
{
guard(mutex)(&data->mutex);
return regmap_update_bits(data->regmap, HX9023S_PROX_INT_HIGH_CFG,
HX9023S_PROX_DEBOUNCE_MASK,
FIELD_GET(HX9023S_PROX_DEBOUNCE_MASK, val));
}
static int hx9023s_read_far_debounce(struct hx9023s_data *data, int *val)
{
int ret;
ret = regmap_read(data->regmap, HX9023S_PROX_INT_LOW_CFG, val);
if (ret)
return ret;
*val = FIELD_GET(HX9023S_PROX_DEBOUNCE_MASK, *val);
return IIO_VAL_INT;
}
static int hx9023s_read_near_debounce(struct hx9023s_data *data, int *val)
{
int ret;
ret = regmap_read(data->regmap, HX9023S_PROX_INT_HIGH_CFG, val);
if (ret)
return ret;
*val = FIELD_GET(HX9023S_PROX_DEBOUNCE_MASK, *val);
return IIO_VAL_INT;
}
static int hx9023s_get_thres_near(struct hx9023s_data *data, u8 ch, int *val)
{
int ret;
__le16 buf;
unsigned int reg, tmp;
reg = (ch == 4) ? HX9023S_PROX_HIGH_DIFF_CFG_CH4_0 :
HX9023S_PROX_HIGH_DIFF_CFG_CH0_0 + (ch * 2);
ret = regmap_bulk_read(data->regmap, reg, &buf, sizeof(buf));
if (ret)
return ret;
tmp = (le16_to_cpu(buf) & GENMASK(9, 0)) * 32;
data->ch_data[ch].thres.near = tmp;
*val = tmp;
return IIO_VAL_INT;
}
static int hx9023s_get_thres_far(struct hx9023s_data *data, u8 ch, int *val)
{
int ret;
__le16 buf;
unsigned int reg, tmp;
reg = (ch == 4) ? HX9023S_PROX_LOW_DIFF_CFG_CH4_0 :
HX9023S_PROX_LOW_DIFF_CFG_CH0_0 + (ch * 2);
ret = regmap_bulk_read(data->regmap, reg, &buf, sizeof(buf));
if (ret)
return ret;
tmp = (le16_to_cpu(buf) & GENMASK(9, 0)) * 32;
data->ch_data[ch].thres.far = tmp;
*val = tmp;
return IIO_VAL_INT;
}
static int hx9023s_set_thres_near(struct hx9023s_data *data, u8 ch, int val)
{
__le16 val_le16 = cpu_to_le16((val / 32) & GENMASK(9, 0));
unsigned int reg;
data->ch_data[ch].thres.near = ((val / 32) & GENMASK(9, 0)) * 32;
reg = (ch == 4) ? HX9023S_PROX_HIGH_DIFF_CFG_CH4_0 :
HX9023S_PROX_HIGH_DIFF_CFG_CH0_0 + (ch * 2);
return regmap_bulk_write(data->regmap, reg, &val_le16, sizeof(val_le16));
}
static int hx9023s_set_thres_far(struct hx9023s_data *data, u8 ch, int val)
{
__le16 val_le16 = cpu_to_le16((val / 32) & GENMASK(9, 0));
unsigned int reg;
data->ch_data[ch].thres.far = ((val / 32) & GENMASK(9, 0)) * 32;
reg = (ch == 4) ? HX9023S_PROX_LOW_DIFF_CFG_CH4_0 :
HX9023S_PROX_LOW_DIFF_CFG_CH0_0 + (ch * 2);
return regmap_bulk_write(data->regmap, reg, &val_le16, sizeof(val_le16));
}
static int hx9023s_get_prox_state(struct hx9023s_data *data)
{
return regmap_read(data->regmap, HX9023S_PROX_STATUS, &data->prox_state_reg);
}
static int hx9023s_data_select(struct hx9023s_data *data)
{
int ret;
unsigned int i, buf;
unsigned long tmp;
ret = regmap_read(data->regmap, HX9023S_RAW_BL_RD_CFG, &buf);
if (ret)
return ret;
tmp = buf;
for (i = 0; i < 4; i++) {
data->ch_data[i].sel_diff = test_bit(i, &tmp);
data->ch_data[i].sel_lp = !data->ch_data[i].sel_diff;
data->ch_data[i].sel_bl = test_bit(i + 4, &tmp);
data->ch_data[i].sel_raw = !data->ch_data[i].sel_bl;
}
ret = regmap_read(data->regmap, HX9023S_INTERRUPT_CFG1, &buf);
if (ret)
return ret;
tmp = buf;
data->ch_data[4].sel_diff = test_bit(2, &tmp);
data->ch_data[4].sel_lp = !data->ch_data[4].sel_diff;
data->ch_data[4].sel_bl = test_bit(3, &tmp);
data->ch_data[4].sel_raw = !data->ch_data[4].sel_bl;
return 0;
}
static int hx9023s_sample(struct hx9023s_data *data)
{
int ret;
unsigned int i;
u8 buf[HX9023S_CH_NUM * 3];
u16 value;
ret = hx9023s_data_lock(data, true);
if (ret)
return ret;
ret = hx9023s_data_select(data);
if (ret)
goto err;
/* 3 bytes for each of channels 0 to 3 which have contiguous registers */
ret = regmap_bulk_read(data->regmap, HX9023S_RAW_BL_CH0_0, buf, 12);
if (ret)
goto err;
/* 3 bytes for channel 4 */
ret = regmap_bulk_read(data->regmap, HX9023S_RAW_BL_CH4_0, buf + 12, 3);
if (ret)
goto err;
for (i = 0; i < HX9023S_CH_NUM; i++) {
value = get_unaligned_le16(&buf[i * 3 + 1]);
data->ch_data[i].raw = 0;
data->ch_data[i].bl = 0;
if (data->ch_data[i].sel_raw)
data->ch_data[i].raw = value;
if (data->ch_data[i].sel_bl)
data->ch_data[i].bl = value;
}
/* 3 bytes for each of channels 0 to 3 which have contiguous registers */
ret = regmap_bulk_read(data->regmap, HX9023S_LP_DIFF_CH0_0, buf, 12);
if (ret)
goto err;
/* 3 bytes for channel 4 */
ret = regmap_bulk_read(data->regmap, HX9023S_LP_DIFF_CH4_0, buf + 12, 3);
if (ret)
goto err;
for (i = 0; i < HX9023S_CH_NUM; i++) {
value = get_unaligned_le16(&buf[i * 3 + 1]);
data->ch_data[i].lp = 0;
data->ch_data[i].diff = 0;
if (data->ch_data[i].sel_lp)
data->ch_data[i].lp = value;
if (data->ch_data[i].sel_diff)
data->ch_data[i].diff = value;
}
for (i = 0; i < HX9023S_CH_NUM; i++) {
if (data->ch_data[i].sel_lp && data->ch_data[i].sel_bl)
data->ch_data[i].diff = data->ch_data[i].lp - data->ch_data[i].bl;
}
/* 2 bytes for each of channels 0 to 4 which have contiguous registers */
ret = regmap_bulk_read(data->regmap, HX9023S_OFFSET_DAC0_7_0, buf, 10);
if (ret)
goto err;
for (i = 0; i < HX9023S_CH_NUM; i++) {
value = get_unaligned_le16(&buf[i * 2]);
value = FIELD_GET(GENMASK(11, 0), value);
data->ch_data[i].dac = value;
}
err:
return hx9023s_data_lock(data, false);
}
static int hx9023s_ch_en(struct hx9023s_data *data, u8 ch_id, bool en)
{
int ret;
unsigned int buf;
ret = regmap_read(data->regmap, HX9023S_CH_NUM_CFG, &buf);
if (ret)
return ret;
data->ch_en_stat = buf;
if (en && data->ch_en_stat == 0)
data->prox_state_reg = 0;
data->ch_data[ch_id].enable = en;
__assign_bit(ch_id, &data->ch_en_stat, en);
return regmap_write(data->regmap, HX9023S_CH_NUM_CFG, data->ch_en_stat);
}
static int hx9023s_property_get(struct hx9023s_data *data)
{
struct device *dev = regmap_get_device(data->regmap);
u32 array[2];
u32 i, reg, temp;
int ret;
data->chan_in_use = 0;
for (i = 0; i < HX9023S_CH_NUM; i++) {
data->ch_data[i].channel_positive = HX9023S_NOT_CONNECTED;
data->ch_data[i].channel_negative = HX9023S_NOT_CONNECTED;
}
device_for_each_child_node_scoped(dev, child) {
ret = fwnode_property_read_u32(child, "reg", ®);
if (ret || reg >= HX9023S_CH_NUM)
return dev_err_probe(dev, ret < 0 ? ret : -EINVAL,
"Failed to read reg\n");
__set_bit(reg, &data->chan_in_use);
ret = fwnode_property_read_u32(child, "single-channel", &temp);
if (ret == 0) {
data->ch_data[reg].channel_positive = temp;
data->ch_data[reg].channel_negative = HX9023S_NOT_CONNECTED;
} else {
ret = fwnode_property_read_u32_array(child, "diff-channels",
array, ARRAY_SIZE(array));
if (ret == 0) {
data->ch_data[reg].channel_positive = array[0];
data->ch_data[reg].channel_negative = array[1];
} else {
return dev_err_probe(dev, ret,
"Property read failed: %d\n",
reg);
}
}
}
return 0;
}
static int hx9023s_update_chan_en(struct hx9023s_data *data,
unsigned long chan_read,
unsigned long chan_event)
{
unsigned int i;
unsigned long channels = chan_read | chan_event;
if ((data->chan_read | data->chan_event) != channels) {
for_each_set_bit(i, &channels, HX9023S_CH_NUM)
hx9023s_ch_en(data, i, test_bit(i, &data->chan_in_use));
for_each_clear_bit(i, &channels, HX9023S_CH_NUM)
hx9023s_ch_en(data, i, false);
}
data->chan_read = chan_read;
data->chan_event = chan_event;
return 0;
}
static int hx9023s_get_proximity(struct hx9023s_data *data,
const struct iio_chan_spec *chan,
int *val)
{
int ret;
ret = hx9023s_sample(data);
if (ret)
return ret;
ret = hx9023s_get_prox_state(data);
if (ret)
return ret;
*val = data->ch_data[chan->channel].diff;
return IIO_VAL_INT;
}
static int hx9023s_get_samp_freq(struct hx9023s_data *data, int *val, int *val2)
{
int ret;
unsigned int odr, index;
ret = regmap_read(data->regmap, HX9023S_PRF_CFG, &index);
if (ret)
return ret;
odr = hx9023s_samp_freq_table[index];
*val = KILO / odr;
*val2 = div_u64((KILO % odr) * MICRO, odr);
return IIO_VAL_INT_PLUS_MICRO;
}
static int hx9023s_read_raw(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
int *val, int *val2, long mask)
{
struct hx9023s_data *data = iio_priv(indio_dev);
int ret;
if (chan->type != IIO_PROXIMITY)
return -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
ret = hx9023s_get_proximity(data, chan, val);
iio_device_release_direct_mode(indio_dev);
return ret;
case IIO_CHAN_INFO_SAMP_FREQ:
return hx9023s_get_samp_freq(data, val, val2);
default:
return -EINVAL;
}
}
static int hx9023s_set_samp_freq(struct hx9023s_data *data, int val, int val2)
{
struct device *dev = regmap_get_device(data->regmap);
unsigned int i, period_ms;
period_ms = div_u64(NANO, (val * MEGA + val2));
for (i = 0; i < ARRAY_SIZE(hx9023s_samp_freq_table); i++) {
if (period_ms == hx9023s_samp_freq_table[i])
break;
}
if (i == ARRAY_SIZE(hx9023s_samp_freq_table)) {
dev_err(dev, "Period:%dms NOT found!\n", period_ms);
return -EINVAL;
}
return regmap_write(data->regmap, HX9023S_PRF_CFG, i);
}
static int hx9023s_write_raw(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
int val, int val2, long mask)
{
struct hx9023s_data *data = iio_priv(indio_dev);
if (chan->type != IIO_PROXIMITY)
return -EINVAL;
if (mask != IIO_CHAN_INFO_SAMP_FREQ)
return -EINVAL;
return hx9023s_set_samp_freq(data, val, val2);
}
static irqreturn_t hx9023s_irq_handler(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct hx9023s_data *data = iio_priv(indio_dev);
if (data->trigger_enabled)
iio_trigger_poll(data->trig);
return IRQ_WAKE_THREAD;
}
static void hx9023s_push_events(struct iio_dev *indio_dev)
{
struct hx9023s_data *data = iio_priv(indio_dev);
s64 timestamp = iio_get_time_ns(indio_dev);
unsigned long prox_changed;
unsigned int chan;
int ret;
ret = hx9023s_sample(data);
if (ret)
return;
ret = hx9023s_get_prox_state(data);
if (ret)
return;
prox_changed = (data->chan_prox_stat ^ data->prox_state_reg) & data->chan_event;
for_each_set_bit(chan, &prox_changed, HX9023S_CH_NUM) {
unsigned int dir;
dir = (data->prox_state_reg & BIT(chan)) ?
IIO_EV_DIR_FALLING : IIO_EV_DIR_RISING;
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, chan,
IIO_EV_TYPE_THRESH, dir),
timestamp);
}
data->chan_prox_stat = data->prox_state_reg;
}
static irqreturn_t hx9023s_irq_thread_handler(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct hx9023s_data *data = iio_priv(indio_dev);
guard(mutex)(&data->mutex);
hx9023s_push_events(indio_dev);
return IRQ_HANDLED;
}
static int hx9023s_read_event_val(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info, int *val, int *val2)
{
struct hx9023s_data *data = iio_priv(indio_dev);
if (chan->type != IIO_PROXIMITY)
return -EINVAL;
switch (info) {
case IIO_EV_INFO_VALUE:
switch (dir) {
case IIO_EV_DIR_RISING:
return hx9023s_get_thres_far(data, chan->channel, val);
case IIO_EV_DIR_FALLING:
return hx9023s_get_thres_near(data, chan->channel, val);
default:
return -EINVAL;
}
case IIO_EV_INFO_PERIOD:
switch (dir) {
case IIO_EV_DIR_RISING:
return hx9023s_read_far_debounce(data, val);
case IIO_EV_DIR_FALLING:
return hx9023s_read_near_debounce(data, val);
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int hx9023s_write_event_val(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info, int val, int val2)
{
struct hx9023s_data *data = iio_priv(indio_dev);
if (chan->type != IIO_PROXIMITY)
return -EINVAL;
switch (info) {
case IIO_EV_INFO_VALUE:
switch (dir) {
case IIO_EV_DIR_RISING:
return hx9023s_set_thres_far(data, chan->channel, val);
case IIO_EV_DIR_FALLING:
return hx9023s_set_thres_near(data, chan->channel, val);
default:
return -EINVAL;
}
case IIO_EV_INFO_PERIOD:
switch (dir) {
case IIO_EV_DIR_RISING:
return hx9023s_write_far_debounce(data, val);
case IIO_EV_DIR_FALLING:
return hx9023s_write_near_debounce(data, val);
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int hx9023s_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir)
{
struct hx9023s_data *data = iio_priv(indio_dev);
return test_bit(chan->channel, &data->chan_event);
}
static int hx9023s_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
int state)
{
struct hx9023s_data *data = iio_priv(indio_dev);
if (test_bit(chan->channel, &data->chan_in_use)) {
hx9023s_ch_en(data, chan->channel, !!state);
__assign_bit(chan->channel, &data->chan_event,
data->ch_data[chan->channel].enable);
}
return 0;
}
static const struct iio_info hx9023s_info = {
.read_raw = hx9023s_read_raw,
.write_raw = hx9023s_write_raw,
.read_event_value = hx9023s_read_event_val,
.write_event_value = hx9023s_write_event_val,
.read_event_config = hx9023s_read_event_config,
.write_event_config = hx9023s_write_event_config,
};
static int hx9023s_set_trigger_state(struct iio_trigger *trig, bool state)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct hx9023s_data *data = iio_priv(indio_dev);
guard(mutex)(&data->mutex);
if (state)
hx9023s_interrupt_enable(data);
else if (!data->chan_read)
hx9023s_interrupt_disable(data);
data->trigger_enabled = state;
return 0;
}
static const struct iio_trigger_ops hx9023s_trigger_ops = {
.set_trigger_state = hx9023s_set_trigger_state,
};
static irqreturn_t hx9023s_trigger_handler(int irq, void *private)
{
struct iio_poll_func *pf = private;
struct iio_dev *indio_dev = pf->indio_dev;
struct hx9023s_data *data = iio_priv(indio_dev);
struct device *dev = regmap_get_device(data->regmap);
unsigned int bit, index, i = 0;
int ret;
guard(mutex)(&data->mutex);
ret = hx9023s_sample(data);
if (ret) {
dev_warn(dev, "sampling failed\n");
goto out;
}
ret = hx9023s_get_prox_state(data);
if (ret) {
dev_warn(dev, "get prox failed\n");
goto out;
}
iio_for_each_active_channel(indio_dev, bit) {
index = indio_dev->channels[bit].channel;
data->buffer.channels[i++] = cpu_to_le16(data->ch_data[index].diff);
}
iio_push_to_buffers_with_timestamp(indio_dev, &data->buffer,
pf->timestamp);
out:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int hx9023s_buffer_preenable(struct iio_dev *indio_dev)
{
struct hx9023s_data *data = iio_priv(indio_dev);
unsigned long channels = 0;
unsigned int bit;
guard(mutex)(&data->mutex);
iio_for_each_active_channel(indio_dev, bit)
__set_bit(indio_dev->channels[bit].channel, &channels);
hx9023s_update_chan_en(data, channels, data->chan_event);
return 0;
}
static int hx9023s_buffer_postdisable(struct iio_dev *indio_dev)
{
struct hx9023s_data *data = iio_priv(indio_dev);
guard(mutex)(&data->mutex);
hx9023s_update_chan_en(data, 0, data->chan_event);
return 0;
}
static const struct iio_buffer_setup_ops hx9023s_buffer_setup_ops = {
.preenable = hx9023s_buffer_preenable,
.postdisable = hx9023s_buffer_postdisable,
};
static int hx9023s_id_check(struct iio_dev *indio_dev)
{
struct hx9023s_data *data = iio_priv(indio_dev);
struct device *dev = regmap_get_device(data->regmap);
unsigned int id;
int ret;
ret = regmap_read(data->regmap, HX9023S_DEVICE_ID, &id);
if (ret)
return ret;
if (id != HX9023S_CHIP_ID)
dev_warn(dev, "Unexpected chip ID, assuming compatible\n");
return 0;
}
static int hx9023s_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct iio_dev *indio_dev;
struct hx9023s_data *data;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
mutex_init(&data->mutex);
data->regmap = devm_regmap_init_i2c(client, &hx9023s_regmap_config);
if (IS_ERR(data->regmap))
return dev_err_probe(dev, PTR_ERR(data->regmap),
"regmap init failed\n");
ret = hx9023s_property_get(data);
if (ret)
return dev_err_probe(dev, ret, "dts phase failed\n");
ret = devm_regulator_get_enable(dev, "vdd");
if (ret)
return dev_err_probe(dev, ret, "regulator get failed\n");
ret = hx9023s_id_check(indio_dev);
if (ret)
return dev_err_probe(dev, ret, "id check failed\n");
indio_dev->name = "hx9023s";
indio_dev->channels = hx9023s_channels;
indio_dev->num_channels = ARRAY_SIZE(hx9023s_channels);
indio_dev->info = &hx9023s_info;
indio_dev->modes = INDIO_DIRECT_MODE;
i2c_set_clientdata(client, indio_dev);
ret = regmap_multi_reg_write(data->regmap, hx9023s_reg_init_list,
ARRAY_SIZE(hx9023s_reg_init_list));
if (ret)
return dev_err_probe(dev, ret, "device init failed\n");
ret = hx9023s_ch_cfg(data);
if (ret)
return dev_err_probe(dev, ret, "channel config failed\n");
ret = regcache_sync(data->regmap);
if (ret)
return dev_err_probe(dev, ret, "regcache sync failed\n");
if (client->irq) {
ret = devm_request_threaded_irq(dev, client->irq,
hx9023s_irq_handler,
hx9023s_irq_thread_handler,
IRQF_ONESHOT,
"hx9023s_event", indio_dev);
if (ret)
return dev_err_probe(dev, ret, "irq request failed\n");
data->trig = devm_iio_trigger_alloc(dev, "%s-dev%d",
indio_dev->name,
iio_device_id(indio_dev));
if (!data->trig)
return dev_err_probe(dev, -ENOMEM,
"iio trigger alloc failed\n");
data->trig->ops = &hx9023s_trigger_ops;
iio_trigger_set_drvdata(data->trig, indio_dev);
ret = devm_iio_trigger_register(dev, data->trig);
if (ret)
return dev_err_probe(dev, ret,
"iio trigger register failed\n");
}
ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
iio_pollfunc_store_time,
hx9023s_trigger_handler,
&hx9023s_buffer_setup_ops);
if (ret)
return dev_err_probe(dev, ret,
"iio triggered buffer setup failed\n");
return devm_iio_device_register(dev, indio_dev);
}
static int hx9023s_suspend(struct device *dev)
{
struct hx9023s_data *data = iio_priv(dev_get_drvdata(dev));
guard(mutex)(&data->mutex);
hx9023s_interrupt_disable(data);
return 0;
}
static int hx9023s_resume(struct device *dev)
{
struct hx9023s_data *data = iio_priv(dev_get_drvdata(dev));
guard(mutex)(&data->mutex);
if (data->trigger_enabled)
hx9023s_interrupt_enable(data);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(hx9023s_pm_ops, hx9023s_suspend,
hx9023s_resume);
static const struct of_device_id hx9023s_of_match[] = {
{ .compatible = "tyhx,hx9023s" },
{}
};
MODULE_DEVICE_TABLE(of, hx9023s_of_match);
static const struct i2c_device_id hx9023s_id[] = {
{ "hx9023s" },
{}
};
MODULE_DEVICE_TABLE(i2c, hx9023s_id);
static struct i2c_driver hx9023s_driver = {
.driver = {
.name = "hx9023s",
.of_match_table = hx9023s_of_match,
.pm = &hx9023s_pm_ops,
/*
* The I2C operations in hx9023s_reg_init() and hx9023s_ch_cfg()
* are time-consuming. Prefer async so we don't delay boot
* if we're builtin to the kernel.
*/
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
.probe = hx9023s_probe,
.id_table = hx9023s_id,
};
module_i2c_driver(hx9023s_driver);
MODULE_AUTHOR("Yasin Lee <[email protected]>");
MODULE_DESCRIPTION("Driver for TYHX HX9023S SAR sensor");
MODULE_LICENSE("GPL");