linux/mm/kasan/kasan_test_c.c

// SPDX-License-Identifier: GPL-2.0-only
/*
 *
 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
 * Author: Andrey Ryabinin <[email protected]>
 */

#define pr_fmt(fmt) "kasan: test: " fmt

#include <kunit/test.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/mempool.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/random.h>
#include <linux/set_memory.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/tracepoint.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include <trace/events/printk.h>

#include <asm/page.h>

#include "kasan.h"

#define OOB_TAG_OFF (IS_ENABLED(CONFIG_KASAN_GENERIC) ? 0 : KASAN_GRANULE_SIZE)

static bool multishot;

/* Fields set based on lines observed in the console. */
static struct {
	bool report_found;
	bool async_fault;
} test_status;

/*
 * Some tests use these global variables to store return values from function
 * calls that could otherwise be eliminated by the compiler as dead code.
 */
void *kasan_ptr_result;
int kasan_int_result;

/* Probe for console output: obtains test_status lines of interest. */
static void probe_console(void *ignore, const char *buf, size_t len)
{
	if (strnstr(buf, "BUG: KASAN: ", len))
		WRITE_ONCE(test_status.report_found, true);
	else if (strnstr(buf, "Asynchronous fault: ", len))
		WRITE_ONCE(test_status.async_fault, true);
}

static int kasan_suite_init(struct kunit_suite *suite)
{
	if (!kasan_enabled()) {
		pr_err("Can't run KASAN tests with KASAN disabled");
		return -1;
	}

	/* Stop failing KUnit tests on KASAN reports. */
	kasan_kunit_test_suite_start();

	/*
	 * Temporarily enable multi-shot mode. Otherwise, KASAN would only
	 * report the first detected bug and panic the kernel if panic_on_warn
	 * is enabled.
	 */
	multishot = kasan_save_enable_multi_shot();

	register_trace_console(probe_console, NULL);
	return 0;
}

static void kasan_suite_exit(struct kunit_suite *suite)
{
	kasan_kunit_test_suite_end();
	kasan_restore_multi_shot(multishot);
	unregister_trace_console(probe_console, NULL);
	tracepoint_synchronize_unregister();
}

static void kasan_test_exit(struct kunit *test)
{
	KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found));
}

/**
 * KUNIT_EXPECT_KASAN_FAIL - check that the executed expression produces a
 * KASAN report; causes a KUnit test failure otherwise.
 *
 * @test: Currently executing KUnit test.
 * @expression: Expression that must produce a KASAN report.
 *
 * For hardware tag-based KASAN, when a synchronous tag fault happens, tag
 * checking is auto-disabled. When this happens, this test handler reenables
 * tag checking. As tag checking can be only disabled or enabled per CPU,
 * this handler disables migration (preemption).
 *
 * Since the compiler doesn't see that the expression can change the test_status
 * fields, it can reorder or optimize away the accesses to those fields.
 * Use READ/WRITE_ONCE() for the accesses and compiler barriers around the
 * expression to prevent that.
 *
 * In between KUNIT_EXPECT_KASAN_FAIL checks, test_status.report_found is kept
 * as false. This allows detecting KASAN reports that happen outside of the
 * checks by asserting !test_status.report_found at the start of
 * KUNIT_EXPECT_KASAN_FAIL and in kasan_test_exit.
 */
#define KUNIT_EXPECT_KASAN_FAIL(test, expression) do {			\
	if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) &&				\
	    kasan_sync_fault_possible())				\
		migrate_disable();					\
	KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found));	\
	barrier();							\
	expression;							\
	barrier();							\
	if (kasan_async_fault_possible())				\
		kasan_force_async_fault();				\
	if (!READ_ONCE(test_status.report_found)) {			\
		KUNIT_FAIL(test, KUNIT_SUBTEST_INDENT "KASAN failure "	\
				"expected in \"" #expression		\
				 "\", but none occurred");		\
	}								\
	if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) &&				\
	    kasan_sync_fault_possible()) {				\
		if (READ_ONCE(test_status.report_found) &&		\
		    !READ_ONCE(test_status.async_fault))		\
			kasan_enable_hw_tags();				\
		migrate_enable();					\
	}								\
	WRITE_ONCE(test_status.report_found, false);			\
	WRITE_ONCE(test_status.async_fault, false);			\
} while (0)

#define KASAN_TEST_NEEDS_CONFIG_ON(test, config) do {			\
	if (!IS_ENABLED(config))					\
		kunit_skip((test), "Test requires " #config "=y");	\
} while (0)

#define KASAN_TEST_NEEDS_CONFIG_OFF(test, config) do {			\
	if (IS_ENABLED(config))						\
		kunit_skip((test), "Test requires " #config "=n");	\
} while (0)

#define KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test) do {		\
	if (IS_ENABLED(CONFIG_KASAN_HW_TAGS))				\
		break;  /* No compiler instrumentation. */		\
	if (IS_ENABLED(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX))	\
		break;  /* Should always be instrumented! */		\
	if (IS_ENABLED(CONFIG_GENERIC_ENTRY))				\
		kunit_skip((test), "Test requires checked mem*()");	\
} while (0)

static void kmalloc_oob_right(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE - 5;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	/*
	 * An unaligned access past the requested kmalloc size.
	 * Only generic KASAN can precisely detect these.
	 */
	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
		KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'x');

	/*
	 * An aligned access into the first out-of-bounds granule that falls
	 * within the aligned kmalloc object.
	 */
	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + 5] = 'y');

	/* Out-of-bounds access past the aligned kmalloc object. */
	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] =
					ptr[size + KASAN_GRANULE_SIZE + 5]);

	kfree(ptr);
}

static void kmalloc_oob_left(struct kunit *test)
{
	char *ptr;
	size_t size = 15;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, *ptr = *(ptr - 1));
	kfree(ptr);
}

static void kmalloc_node_oob_right(struct kunit *test)
{
	char *ptr;
	size_t size = 4096;

	ptr = kmalloc_node(size, GFP_KERNEL, 0);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
	kfree(ptr);
}

/*
 * Check that KASAN detects an out-of-bounds access for a big object allocated
 * via kmalloc(). But not as big as to trigger the page_alloc fallback.
 */
static void kmalloc_big_oob_right(struct kunit *test)
{
	char *ptr;
	size_t size = KMALLOC_MAX_CACHE_SIZE - 256;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0);
	kfree(ptr);
}

/*
 * The kmalloc_large_* tests below use kmalloc() to allocate a memory chunk
 * that does not fit into the largest slab cache and therefore is allocated via
 * the page_alloc fallback.
 */

static void kmalloc_large_oob_right(struct kunit *test)
{
	char *ptr;
	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 0);

	kfree(ptr);
}

static void kmalloc_large_uaf(struct kunit *test)
{
	char *ptr;
	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
	kfree(ptr);

	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
}

static void kmalloc_large_invalid_free(struct kunit *test)
{
	char *ptr;
	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	KUNIT_EXPECT_KASAN_FAIL(test, kfree(ptr + 1));
}

static void page_alloc_oob_right(struct kunit *test)
{
	char *ptr;
	struct page *pages;
	size_t order = 4;
	size_t size = (1UL << (PAGE_SHIFT + order));

	/*
	 * With generic KASAN page allocations have no redzones, thus
	 * out-of-bounds detection is not guaranteed.
	 * See https://bugzilla.kernel.org/show_bug.cgi?id=210503.
	 */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	pages = alloc_pages(GFP_KERNEL, order);
	ptr = page_address(pages);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
	free_pages((unsigned long)ptr, order);
}

static void page_alloc_uaf(struct kunit *test)
{
	char *ptr;
	struct page *pages;
	size_t order = 4;

	pages = alloc_pages(GFP_KERNEL, order);
	ptr = page_address(pages);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
	free_pages((unsigned long)ptr, order);

	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
}

static void krealloc_more_oob_helper(struct kunit *test,
					size_t size1, size_t size2)
{
	char *ptr1, *ptr2;
	size_t middle;

	KUNIT_ASSERT_LT(test, size1, size2);
	middle = size1 + (size2 - size1) / 2;

	ptr1 = kmalloc(size1, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);

	ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);

	/* Suppress -Warray-bounds warnings. */
	OPTIMIZER_HIDE_VAR(ptr2);

	/* All offsets up to size2 must be accessible. */
	ptr2[size1 - 1] = 'x';
	ptr2[size1] = 'x';
	ptr2[middle] = 'x';
	ptr2[size2 - 1] = 'x';

	/* Generic mode is precise, so unaligned size2 must be inaccessible. */
	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
		KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');

	/* For all modes first aligned offset after size2 must be inaccessible. */
	KUNIT_EXPECT_KASAN_FAIL(test,
		ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');

	kfree(ptr2);
}

static void krealloc_less_oob_helper(struct kunit *test,
					size_t size1, size_t size2)
{
	char *ptr1, *ptr2;
	size_t middle;

	KUNIT_ASSERT_LT(test, size2, size1);
	middle = size2 + (size1 - size2) / 2;

	ptr1 = kmalloc(size1, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);

	ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);

	/* Suppress -Warray-bounds warnings. */
	OPTIMIZER_HIDE_VAR(ptr2);

	/* Must be accessible for all modes. */
	ptr2[size2 - 1] = 'x';

	/* Generic mode is precise, so unaligned size2 must be inaccessible. */
	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
		KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');

	/* For all modes first aligned offset after size2 must be inaccessible. */
	KUNIT_EXPECT_KASAN_FAIL(test,
		ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');

	/*
	 * For all modes all size2, middle, and size1 should land in separate
	 * granules and thus the latter two offsets should be inaccessible.
	 */
	KUNIT_EXPECT_LE(test, round_up(size2, KASAN_GRANULE_SIZE),
				round_down(middle, KASAN_GRANULE_SIZE));
	KUNIT_EXPECT_LE(test, round_up(middle, KASAN_GRANULE_SIZE),
				round_down(size1, KASAN_GRANULE_SIZE));
	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[middle] = 'x');
	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1 - 1] = 'x');
	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1] = 'x');

	kfree(ptr2);
}

static void krealloc_more_oob(struct kunit *test)
{
	krealloc_more_oob_helper(test, 201, 235);
}

static void krealloc_less_oob(struct kunit *test)
{
	krealloc_less_oob_helper(test, 235, 201);
}

static void krealloc_large_more_oob(struct kunit *test)
{
	krealloc_more_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 201,
					KMALLOC_MAX_CACHE_SIZE + 235);
}

static void krealloc_large_less_oob(struct kunit *test)
{
	krealloc_less_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 235,
					KMALLOC_MAX_CACHE_SIZE + 201);
}

/*
 * Check that krealloc() detects a use-after-free, returns NULL,
 * and doesn't unpoison the freed object.
 */
static void krealloc_uaf(struct kunit *test)
{
	char *ptr1, *ptr2;
	int size1 = 201;
	int size2 = 235;

	ptr1 = kmalloc(size1, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
	kfree(ptr1);

	KUNIT_EXPECT_KASAN_FAIL(test, ptr2 = krealloc(ptr1, size2, GFP_KERNEL));
	KUNIT_ASSERT_NULL(test, ptr2);
	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)ptr1);
}

static void kmalloc_oob_16(struct kunit *test)
{
	struct {
		u64 words[2];
	} *ptr1, *ptr2;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	/* This test is specifically crafted for the generic mode. */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);

	/* RELOC_HIDE to prevent gcc from warning about short alloc */
	ptr1 = RELOC_HIDE(kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL), 0);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);

	ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);

	OPTIMIZER_HIDE_VAR(ptr1);
	OPTIMIZER_HIDE_VAR(ptr2);
	KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
	kfree(ptr1);
	kfree(ptr2);
}

static void kmalloc_uaf_16(struct kunit *test)
{
	struct {
		u64 words[2];
	} *ptr1, *ptr2;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	ptr1 = kmalloc(sizeof(*ptr1), GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);

	ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
	kfree(ptr2);

	KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
	kfree(ptr1);
}

/*
 * Note: in the memset tests below, the written range touches both valid and
 * invalid memory. This makes sure that the instrumentation does not only check
 * the starting address but the whole range.
 */

static void kmalloc_oob_memset_2(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE;
	size_t memset_size = 2;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(size);
	OPTIMIZER_HIDE_VAR(memset_size);
	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 1, 0, memset_size));
	kfree(ptr);
}

static void kmalloc_oob_memset_4(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE;
	size_t memset_size = 4;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(size);
	OPTIMIZER_HIDE_VAR(memset_size);
	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 3, 0, memset_size));
	kfree(ptr);
}

static void kmalloc_oob_memset_8(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE;
	size_t memset_size = 8;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(size);
	OPTIMIZER_HIDE_VAR(memset_size);
	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 7, 0, memset_size));
	kfree(ptr);
}

static void kmalloc_oob_memset_16(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE;
	size_t memset_size = 16;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(size);
	OPTIMIZER_HIDE_VAR(memset_size);
	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 15, 0, memset_size));
	kfree(ptr);
}

static void kmalloc_oob_in_memset(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(size);
	KUNIT_EXPECT_KASAN_FAIL(test,
				memset(ptr, 0, size + KASAN_GRANULE_SIZE));
	kfree(ptr);
}

static void kmalloc_memmove_negative_size(struct kunit *test)
{
	char *ptr;
	size_t size = 64;
	size_t invalid_size = -2;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	/*
	 * Hardware tag-based mode doesn't check memmove for negative size.
	 * As a result, this test introduces a side-effect memory corruption,
	 * which can result in a crash.
	 */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_HW_TAGS);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	memset((char *)ptr, 0, 64);
	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(invalid_size);
	KUNIT_EXPECT_KASAN_FAIL(test,
		memmove((char *)ptr, (char *)ptr + 4, invalid_size));
	kfree(ptr);
}

static void kmalloc_memmove_invalid_size(struct kunit *test)
{
	char *ptr;
	size_t size = 64;
	size_t invalid_size = size;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	memset((char *)ptr, 0, 64);
	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(invalid_size);
	KUNIT_EXPECT_KASAN_FAIL(test,
		memmove((char *)ptr, (char *)ptr + 4, invalid_size));
	kfree(ptr);
}

static void kmalloc_uaf(struct kunit *test)
{
	char *ptr;
	size_t size = 10;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	kfree(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[8]);
}

static void kmalloc_uaf_memset(struct kunit *test)
{
	char *ptr;
	size_t size = 33;

	KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);

	/*
	 * Only generic KASAN uses quarantine, which is required to avoid a
	 * kernel memory corruption this test causes.
	 */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	kfree(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size));
}

static void kmalloc_uaf2(struct kunit *test)
{
	char *ptr1, *ptr2;
	size_t size = 43;
	int counter = 0;

again:
	ptr1 = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);

	kfree(ptr1);

	ptr2 = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);

	/*
	 * For tag-based KASAN ptr1 and ptr2 tags might happen to be the same.
	 * Allow up to 16 attempts at generating different tags.
	 */
	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && ptr1 == ptr2 && counter++ < 16) {
		kfree(ptr2);
		goto again;
	}

	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[40]);
	KUNIT_EXPECT_PTR_NE(test, ptr1, ptr2);

	kfree(ptr2);
}

/*
 * Check that KASAN detects use-after-free when another object was allocated in
 * the same slot. Relevant for the tag-based modes, which do not use quarantine.
 */
static void kmalloc_uaf3(struct kunit *test)
{
	char *ptr1, *ptr2;
	size_t size = 100;

	/* This test is specifically crafted for tag-based modes. */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	ptr1 = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
	kfree(ptr1);

	ptr2 = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
	kfree(ptr2);

	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[8]);
}

static void kasan_atomics_helper(struct kunit *test, void *unsafe, void *safe)
{
	int *i_unsafe = unsafe;

	KUNIT_EXPECT_KASAN_FAIL(test, READ_ONCE(*i_unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, WRITE_ONCE(*i_unsafe, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, smp_load_acquire(i_unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, smp_store_release(i_unsafe, 42));

	KUNIT_EXPECT_KASAN_FAIL(test, atomic_read(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_set(unsafe, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_add(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_sub(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_and(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_andnot(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_or(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_xor(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_xchg(unsafe, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_cmpxchg(unsafe, 21, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_try_cmpxchg(unsafe, safe, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_try_cmpxchg(safe, unsafe, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_sub_and_test(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_and_test(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_and_test(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_add_negative(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_add_unless(unsafe, 21, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_not_zero(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_unless_negative(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_unless_positive(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_if_positive(unsafe));

	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_read(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_set(unsafe, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_sub(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_and(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_andnot(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_or(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_xor(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_xchg(unsafe, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_cmpxchg(unsafe, 21, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_try_cmpxchg(unsafe, safe, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_try_cmpxchg(safe, unsafe, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_sub_and_test(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_and_test(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_and_test(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add_negative(42, unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add_unless(unsafe, 21, 42));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_not_zero(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_unless_negative(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_unless_positive(unsafe));
	KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_if_positive(unsafe));
}

static void kasan_atomics(struct kunit *test)
{
	void *a1, *a2;

	/*
	 * Just as with kasan_bitops_tags(), we allocate 48 bytes of memory such
	 * that the following 16 bytes will make up the redzone.
	 */
	a1 = kzalloc(48, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a1);
	a2 = kzalloc(sizeof(atomic_long_t), GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a2);

	/* Use atomics to access the redzone. */
	kasan_atomics_helper(test, a1 + 48, a2);

	kfree(a1);
	kfree(a2);
}

static void kmalloc_double_kzfree(struct kunit *test)
{
	char *ptr;
	size_t size = 16;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	kfree_sensitive(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, kfree_sensitive(ptr));
}

/* Check that ksize() does NOT unpoison whole object. */
static void ksize_unpoisons_memory(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE - 5;
	size_t real_size;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	real_size = ksize(ptr);
	KUNIT_EXPECT_GT(test, real_size, size);

	OPTIMIZER_HIDE_VAR(ptr);

	/* These accesses shouldn't trigger a KASAN report. */
	ptr[0] = 'x';
	ptr[size - 1] = 'x';

	/* These must trigger a KASAN report. */
	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
		KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]);
	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size + 5]);
	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[real_size - 1]);

	kfree(ptr);
}

/*
 * Check that a use-after-free is detected by ksize() and via normal accesses
 * after it.
 */
static void ksize_uaf(struct kunit *test)
{
	char *ptr;
	int size = 128 - KASAN_GRANULE_SIZE;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
	kfree(ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, ksize(ptr));
	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]);
}

/*
 * The two tests below check that Generic KASAN prints auxiliary stack traces
 * for RCU callbacks and workqueues. The reports need to be inspected manually.
 *
 * These tests are still enabled for other KASAN modes to make sure that all
 * modes report bad accesses in tested scenarios.
 */

static struct kasan_rcu_info {
	int i;
	struct rcu_head rcu;
} *global_rcu_ptr;

static void rcu_uaf_reclaim(struct rcu_head *rp)
{
	struct kasan_rcu_info *fp =
		container_of(rp, struct kasan_rcu_info, rcu);

	kfree(fp);
	((volatile struct kasan_rcu_info *)fp)->i;
}

static void rcu_uaf(struct kunit *test)
{
	struct kasan_rcu_info *ptr;

	ptr = kmalloc(sizeof(struct kasan_rcu_info), GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	global_rcu_ptr = rcu_dereference_protected(
				(struct kasan_rcu_info __rcu *)ptr, NULL);

	KUNIT_EXPECT_KASAN_FAIL(test,
		call_rcu(&global_rcu_ptr->rcu, rcu_uaf_reclaim);
		rcu_barrier());
}

static void workqueue_uaf_work(struct work_struct *work)
{
	kfree(work);
}

static void workqueue_uaf(struct kunit *test)
{
	struct workqueue_struct *workqueue;
	struct work_struct *work;

	workqueue = create_workqueue("kasan_workqueue_test");
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, workqueue);

	work = kmalloc(sizeof(struct work_struct), GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, work);

	INIT_WORK(work, workqueue_uaf_work);
	queue_work(workqueue, work);
	destroy_workqueue(workqueue);

	KUNIT_EXPECT_KASAN_FAIL(test,
		((volatile struct work_struct *)work)->data);
}

static void kfree_via_page(struct kunit *test)
{
	char *ptr;
	size_t size = 8;
	struct page *page;
	unsigned long offset;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	page = virt_to_page(ptr);
	offset = offset_in_page(ptr);
	kfree(page_address(page) + offset);
}

static void kfree_via_phys(struct kunit *test)
{
	char *ptr;
	size_t size = 8;
	phys_addr_t phys;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	phys = virt_to_phys(ptr);
	kfree(phys_to_virt(phys));
}

static void kmem_cache_oob(struct kunit *test)
{
	char *p;
	size_t size = 200;
	struct kmem_cache *cache;

	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);

	p = kmem_cache_alloc(cache, GFP_KERNEL);
	if (!p) {
		kunit_err(test, "Allocation failed: %s\n", __func__);
		kmem_cache_destroy(cache);
		return;
	}

	KUNIT_EXPECT_KASAN_FAIL(test, *p = p[size + OOB_TAG_OFF]);

	kmem_cache_free(cache, p);
	kmem_cache_destroy(cache);
}

static void kmem_cache_double_free(struct kunit *test)
{
	char *p;
	size_t size = 200;
	struct kmem_cache *cache;

	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);

	p = kmem_cache_alloc(cache, GFP_KERNEL);
	if (!p) {
		kunit_err(test, "Allocation failed: %s\n", __func__);
		kmem_cache_destroy(cache);
		return;
	}

	kmem_cache_free(cache, p);
	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p));
	kmem_cache_destroy(cache);
}

static void kmem_cache_invalid_free(struct kunit *test)
{
	char *p;
	size_t size = 200;
	struct kmem_cache *cache;

	cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU,
				  NULL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);

	p = kmem_cache_alloc(cache, GFP_KERNEL);
	if (!p) {
		kunit_err(test, "Allocation failed: %s\n", __func__);
		kmem_cache_destroy(cache);
		return;
	}

	/* Trigger invalid free, the object doesn't get freed. */
	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p + 1));

	/*
	 * Properly free the object to prevent the "Objects remaining in
	 * test_cache on __kmem_cache_shutdown" BUG failure.
	 */
	kmem_cache_free(cache, p);

	kmem_cache_destroy(cache);
}

static void kmem_cache_rcu_uaf(struct kunit *test)
{
	char *p;
	size_t size = 200;
	struct kmem_cache *cache;

	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB_RCU_DEBUG);

	cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU,
				  NULL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);

	p = kmem_cache_alloc(cache, GFP_KERNEL);
	if (!p) {
		kunit_err(test, "Allocation failed: %s\n", __func__);
		kmem_cache_destroy(cache);
		return;
	}
	*p = 1;

	rcu_read_lock();

	/* Free the object - this will internally schedule an RCU callback. */
	kmem_cache_free(cache, p);

	/*
	 * We should still be allowed to access the object at this point because
	 * the cache is SLAB_TYPESAFE_BY_RCU and we've been in an RCU read-side
	 * critical section since before the kmem_cache_free().
	 */
	READ_ONCE(*p);

	rcu_read_unlock();

	/*
	 * Wait for the RCU callback to execute; after this, the object should
	 * have actually been freed from KASAN's perspective.
	 */
	rcu_barrier();

	KUNIT_EXPECT_KASAN_FAIL(test, READ_ONCE(*p));

	kmem_cache_destroy(cache);
}

static void empty_cache_ctor(void *object) { }

static void kmem_cache_double_destroy(struct kunit *test)
{
	struct kmem_cache *cache;

	/* Provide a constructor to prevent cache merging. */
	cache = kmem_cache_create("test_cache", 200, 0, 0, empty_cache_ctor);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
	kmem_cache_destroy(cache);
	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_destroy(cache));
}

static void kmem_cache_accounted(struct kunit *test)
{
	int i;
	char *p;
	size_t size = 200;
	struct kmem_cache *cache;

	cache = kmem_cache_create("test_cache", size, 0, SLAB_ACCOUNT, NULL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);

	/*
	 * Several allocations with a delay to allow for lazy per memcg kmem
	 * cache creation.
	 */
	for (i = 0; i < 5; i++) {
		p = kmem_cache_alloc(cache, GFP_KERNEL);
		if (!p)
			goto free_cache;

		kmem_cache_free(cache, p);
		msleep(100);
	}

free_cache:
	kmem_cache_destroy(cache);
}

static void kmem_cache_bulk(struct kunit *test)
{
	struct kmem_cache *cache;
	size_t size = 200;
	char *p[10];
	bool ret;
	int i;

	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);

	ret = kmem_cache_alloc_bulk(cache, GFP_KERNEL, ARRAY_SIZE(p), (void **)&p);
	if (!ret) {
		kunit_err(test, "Allocation failed: %s\n", __func__);
		kmem_cache_destroy(cache);
		return;
	}

	for (i = 0; i < ARRAY_SIZE(p); i++)
		p[i][0] = p[i][size - 1] = 42;

	kmem_cache_free_bulk(cache, ARRAY_SIZE(p), (void **)&p);
	kmem_cache_destroy(cache);
}

static void *mempool_prepare_kmalloc(struct kunit *test, mempool_t *pool, size_t size)
{
	int pool_size = 4;
	int ret;
	void *elem;

	memset(pool, 0, sizeof(*pool));
	ret = mempool_init_kmalloc_pool(pool, pool_size, size);
	KUNIT_ASSERT_EQ(test, ret, 0);

	/*
	 * Allocate one element to prevent mempool from freeing elements to the
	 * underlying allocator and instead make it add them to the element
	 * list when the tests trigger double-free and invalid-free bugs.
	 * This allows testing KASAN annotations in add_element().
	 */
	elem = mempool_alloc_preallocated(pool);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);

	return elem;
}

static struct kmem_cache *mempool_prepare_slab(struct kunit *test, mempool_t *pool, size_t size)
{
	struct kmem_cache *cache;
	int pool_size = 4;
	int ret;

	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);

	memset(pool, 0, sizeof(*pool));
	ret = mempool_init_slab_pool(pool, pool_size, cache);
	KUNIT_ASSERT_EQ(test, ret, 0);

	/*
	 * Do not allocate one preallocated element, as we skip the double-free
	 * and invalid-free tests for slab mempool for simplicity.
	 */

	return cache;
}

static void *mempool_prepare_page(struct kunit *test, mempool_t *pool, int order)
{
	int pool_size = 4;
	int ret;
	void *elem;

	memset(pool, 0, sizeof(*pool));
	ret = mempool_init_page_pool(pool, pool_size, order);
	KUNIT_ASSERT_EQ(test, ret, 0);

	elem = mempool_alloc_preallocated(pool);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);

	return elem;
}

static void mempool_oob_right_helper(struct kunit *test, mempool_t *pool, size_t size)
{
	char *elem;

	elem = mempool_alloc_preallocated(pool);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);

	OPTIMIZER_HIDE_VAR(elem);

	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
		KUNIT_EXPECT_KASAN_FAIL(test,
			((volatile char *)&elem[size])[0]);
	else
		KUNIT_EXPECT_KASAN_FAIL(test,
			((volatile char *)&elem[round_up(size, KASAN_GRANULE_SIZE)])[0]);

	mempool_free(elem, pool);
}

static void mempool_kmalloc_oob_right(struct kunit *test)
{
	mempool_t pool;
	size_t size = 128 - KASAN_GRANULE_SIZE - 5;
	void *extra_elem;

	extra_elem = mempool_prepare_kmalloc(test, &pool, size);

	mempool_oob_right_helper(test, &pool, size);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

static void mempool_kmalloc_large_oob_right(struct kunit *test)
{
	mempool_t pool;
	size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
	void *extra_elem;

	extra_elem = mempool_prepare_kmalloc(test, &pool, size);

	mempool_oob_right_helper(test, &pool, size);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

static void mempool_slab_oob_right(struct kunit *test)
{
	mempool_t pool;
	size_t size = 123;
	struct kmem_cache *cache;

	cache = mempool_prepare_slab(test, &pool, size);

	mempool_oob_right_helper(test, &pool, size);

	mempool_exit(&pool);
	kmem_cache_destroy(cache);
}

/*
 * Skip the out-of-bounds test for page mempool. With Generic KASAN, page
 * allocations have no redzones, and thus the out-of-bounds detection is not
 * guaranteed; see https://bugzilla.kernel.org/show_bug.cgi?id=210503. With
 * the tag-based KASAN modes, the neighboring allocation might have the same
 * tag; see https://bugzilla.kernel.org/show_bug.cgi?id=203505.
 */

static void mempool_uaf_helper(struct kunit *test, mempool_t *pool, bool page)
{
	char *elem, *ptr;

	elem = mempool_alloc_preallocated(pool);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);

	mempool_free(elem, pool);

	ptr = page ? page_address((struct page *)elem) : elem;
	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
}

static void mempool_kmalloc_uaf(struct kunit *test)
{
	mempool_t pool;
	size_t size = 128;
	void *extra_elem;

	extra_elem = mempool_prepare_kmalloc(test, &pool, size);

	mempool_uaf_helper(test, &pool, false);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

static void mempool_kmalloc_large_uaf(struct kunit *test)
{
	mempool_t pool;
	size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
	void *extra_elem;

	extra_elem = mempool_prepare_kmalloc(test, &pool, size);

	mempool_uaf_helper(test, &pool, false);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

static void mempool_slab_uaf(struct kunit *test)
{
	mempool_t pool;
	size_t size = 123;
	struct kmem_cache *cache;

	cache = mempool_prepare_slab(test, &pool, size);

	mempool_uaf_helper(test, &pool, false);

	mempool_exit(&pool);
	kmem_cache_destroy(cache);
}

static void mempool_page_alloc_uaf(struct kunit *test)
{
	mempool_t pool;
	int order = 2;
	void *extra_elem;

	extra_elem = mempool_prepare_page(test, &pool, order);

	mempool_uaf_helper(test, &pool, true);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

static void mempool_double_free_helper(struct kunit *test, mempool_t *pool)
{
	char *elem;

	elem = mempool_alloc_preallocated(pool);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);

	mempool_free(elem, pool);

	KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem, pool));
}

static void mempool_kmalloc_double_free(struct kunit *test)
{
	mempool_t pool;
	size_t size = 128;
	char *extra_elem;

	extra_elem = mempool_prepare_kmalloc(test, &pool, size);

	mempool_double_free_helper(test, &pool);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

static void mempool_kmalloc_large_double_free(struct kunit *test)
{
	mempool_t pool;
	size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
	char *extra_elem;

	extra_elem = mempool_prepare_kmalloc(test, &pool, size);

	mempool_double_free_helper(test, &pool);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

static void mempool_page_alloc_double_free(struct kunit *test)
{
	mempool_t pool;
	int order = 2;
	char *extra_elem;

	extra_elem = mempool_prepare_page(test, &pool, order);

	mempool_double_free_helper(test, &pool);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

static void mempool_kmalloc_invalid_free_helper(struct kunit *test, mempool_t *pool)
{
	char *elem;

	elem = mempool_alloc_preallocated(pool);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);

	KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem + 1, pool));

	mempool_free(elem, pool);
}

static void mempool_kmalloc_invalid_free(struct kunit *test)
{
	mempool_t pool;
	size_t size = 128;
	char *extra_elem;

	extra_elem = mempool_prepare_kmalloc(test, &pool, size);

	mempool_kmalloc_invalid_free_helper(test, &pool);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

static void mempool_kmalloc_large_invalid_free(struct kunit *test)
{
	mempool_t pool;
	size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
	char *extra_elem;

	extra_elem = mempool_prepare_kmalloc(test, &pool, size);

	mempool_kmalloc_invalid_free_helper(test, &pool);

	mempool_free(extra_elem, &pool);
	mempool_exit(&pool);
}

/*
 * Skip the invalid-free test for page mempool. The invalid-free detection only
 * works for compound pages and mempool preallocates all page elements without
 * the __GFP_COMP flag.
 */

static char global_array[10];

static void kasan_global_oob_right(struct kunit *test)
{
	/*
	 * Deliberate out-of-bounds access. To prevent CONFIG_UBSAN_LOCAL_BOUNDS
	 * from failing here and panicking the kernel, access the array via a
	 * volatile pointer, which will prevent the compiler from being able to
	 * determine the array bounds.
	 *
	 * This access uses a volatile pointer to char (char *volatile) rather
	 * than the more conventional pointer to volatile char (volatile char *)
	 * because we want to prevent the compiler from making inferences about
	 * the pointer itself (i.e. its array bounds), not the data that it
	 * refers to.
	 */
	char *volatile array = global_array;
	char *p = &array[ARRAY_SIZE(global_array) + 3];

	/* Only generic mode instruments globals. */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);

	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
}

static void kasan_global_oob_left(struct kunit *test)
{
	char *volatile array = global_array;
	char *p = array - 3;

	/*
	 * GCC is known to fail this test, skip it.
	 * See https://bugzilla.kernel.org/show_bug.cgi?id=215051.
	 */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_CC_IS_CLANG);
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
}

static void kasan_stack_oob(struct kunit *test)
{
	char stack_array[10];
	/* See comment in kasan_global_oob_right. */
	char *volatile array = stack_array;
	char *p = &array[ARRAY_SIZE(stack_array) + OOB_TAG_OFF];

	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);

	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
}

static void kasan_alloca_oob_left(struct kunit *test)
{
	volatile int i = 10;
	char alloca_array[i];
	/* See comment in kasan_global_oob_right. */
	char *volatile array = alloca_array;
	char *p = array - 1;

	/* Only generic mode instruments dynamic allocas. */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);

	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
}

static void kasan_alloca_oob_right(struct kunit *test)
{
	volatile int i = 10;
	char alloca_array[i];
	/* See comment in kasan_global_oob_right. */
	char *volatile array = alloca_array;
	char *p = array + i;

	/* Only generic mode instruments dynamic allocas. */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);

	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
}

static void kasan_memchr(struct kunit *test)
{
	char *ptr;
	size_t size = 24;

	/*
	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
	 */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);

	if (OOB_TAG_OFF)
		size = round_up(size, OOB_TAG_OFF);

	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(size);
	KUNIT_EXPECT_KASAN_FAIL(test,
		kasan_ptr_result = memchr(ptr, '1', size + 1));

	kfree(ptr);
}

static void kasan_memcmp(struct kunit *test)
{
	char *ptr;
	size_t size = 24;
	int arr[9];

	/*
	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
	 */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);

	if (OOB_TAG_OFF)
		size = round_up(size, OOB_TAG_OFF);

	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
	memset(arr, 0, sizeof(arr));

	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(size);
	KUNIT_EXPECT_KASAN_FAIL(test,
		kasan_int_result = memcmp(ptr, arr, size+1));
	kfree(ptr);
}

static void kasan_strings(struct kunit *test)
{
	char *ptr;
	size_t size = 24;

	/*
	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
	 */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);

	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	kfree(ptr);

	/*
	 * Try to cause only 1 invalid access (less spam in dmesg).
	 * For that we need ptr to point to zeroed byte.
	 * Skip metadata that could be stored in freed object so ptr
	 * will likely point to zeroed byte.
	 */
	ptr += 16;
	KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strchr(ptr, '1'));

	KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strrchr(ptr, '1'));

	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strcmp(ptr, "2"));

	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strncmp(ptr, "2", 1));

	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strlen(ptr));

	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strnlen(ptr, 1));
}

static void kasan_bitops_modify(struct kunit *test, int nr, void *addr)
{
	KUNIT_EXPECT_KASAN_FAIL(test, set_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __set_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, clear_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, clear_bit_unlock(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit_unlock(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, change_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __change_bit(nr, addr));
}

static void kasan_bitops_test_and_modify(struct kunit *test, int nr, void *addr)
{
	KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_set_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit_lock(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, test_and_clear_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_clear_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, test_and_change_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_change_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = test_bit(nr, addr));
	if (nr < 7)
		KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result =
				xor_unlock_is_negative_byte(1 << nr, addr));
}

static void kasan_bitops_generic(struct kunit *test)
{
	long *bits;

	/* This test is specifically crafted for the generic mode. */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);

	/*
	 * Allocate 1 more byte, which causes kzalloc to round up to 16 bytes;
	 * this way we do not actually corrupt other memory.
	 */
	bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);

	/*
	 * Below calls try to access bit within allocated memory; however, the
	 * below accesses are still out-of-bounds, since bitops are defined to
	 * operate on the whole long the bit is in.
	 */
	kasan_bitops_modify(test, BITS_PER_LONG, bits);

	/*
	 * Below calls try to access bit beyond allocated memory.
	 */
	kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, bits);

	kfree(bits);
}

static void kasan_bitops_tags(struct kunit *test)
{
	long *bits;

	/* This test is specifically crafted for tag-based modes. */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	/* kmalloc-64 cache will be used and the last 16 bytes will be the redzone. */
	bits = kzalloc(48, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);

	/* Do the accesses past the 48 allocated bytes, but within the redone. */
	kasan_bitops_modify(test, BITS_PER_LONG, (void *)bits + 48);
	kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, (void *)bits + 48);

	kfree(bits);
}

static void vmalloc_helpers_tags(struct kunit *test)
{
	void *ptr;

	/* This test is intended for tag-based modes. */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);

	if (!kasan_vmalloc_enabled())
		kunit_skip(test, "Test requires kasan.vmalloc=on");

	ptr = vmalloc(PAGE_SIZE);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	/* Check that the returned pointer is tagged. */
	KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
	KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);

	/* Make sure exported vmalloc helpers handle tagged pointers. */
	KUNIT_ASSERT_TRUE(test, is_vmalloc_addr(ptr));
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, vmalloc_to_page(ptr));

#if !IS_MODULE(CONFIG_KASAN_KUNIT_TEST)
	{
		int rv;

		/* Make sure vmalloc'ed memory permissions can be changed. */
		rv = set_memory_ro((unsigned long)ptr, 1);
		KUNIT_ASSERT_GE(test, rv, 0);
		rv = set_memory_rw((unsigned long)ptr, 1);
		KUNIT_ASSERT_GE(test, rv, 0);
	}
#endif

	vfree(ptr);
}

static void vmalloc_oob(struct kunit *test)
{
	char *v_ptr, *p_ptr;
	struct page *page;
	size_t size = PAGE_SIZE / 2 - KASAN_GRANULE_SIZE - 5;

	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);

	if (!kasan_vmalloc_enabled())
		kunit_skip(test, "Test requires kasan.vmalloc=on");

	v_ptr = vmalloc(size);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);

	OPTIMIZER_HIDE_VAR(v_ptr);

	/*
	 * We have to be careful not to hit the guard page in vmalloc tests.
	 * The MMU will catch that and crash us.
	 */

	/* Make sure in-bounds accesses are valid. */
	v_ptr[0] = 0;
	v_ptr[size - 1] = 0;

	/*
	 * An unaligned access past the requested vmalloc size.
	 * Only generic KASAN can precisely detect these.
	 */
	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
		KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size]);

	/* An aligned access into the first out-of-bounds granule. */
	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size + 5]);

	/* Check that in-bounds accesses to the physical page are valid. */
	page = vmalloc_to_page(v_ptr);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
	p_ptr = page_address(page);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
	p_ptr[0] = 0;

	vfree(v_ptr);

	/*
	 * We can't check for use-after-unmap bugs in this nor in the following
	 * vmalloc tests, as the page might be fully unmapped and accessing it
	 * will crash the kernel.
	 */
}

static void vmap_tags(struct kunit *test)
{
	char *p_ptr, *v_ptr;
	struct page *p_page, *v_page;

	/*
	 * This test is specifically crafted for the software tag-based mode,
	 * the only tag-based mode that poisons vmap mappings.
	 */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);

	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);

	if (!kasan_vmalloc_enabled())
		kunit_skip(test, "Test requires kasan.vmalloc=on");

	p_page = alloc_pages(GFP_KERNEL, 1);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_page);
	p_ptr = page_address(p_page);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);

	v_ptr = vmap(&p_page, 1, VM_MAP, PAGE_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);

	/*
	 * We can't check for out-of-bounds bugs in this nor in the following
	 * vmalloc tests, as allocations have page granularity and accessing
	 * the guard page will crash the kernel.
	 */

	KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
	KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);

	/* Make sure that in-bounds accesses through both pointers work. */
	*p_ptr = 0;
	*v_ptr = 0;

	/* Make sure vmalloc_to_page() correctly recovers the page pointer. */
	v_page = vmalloc_to_page(v_ptr);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_page);
	KUNIT_EXPECT_PTR_EQ(test, p_page, v_page);

	vunmap(v_ptr);
	free_pages((unsigned long)p_ptr, 1);
}

static void vm_map_ram_tags(struct kunit *test)
{
	char *p_ptr, *v_ptr;
	struct page *page;

	/*
	 * This test is specifically crafted for the software tag-based mode,
	 * the only tag-based mode that poisons vm_map_ram mappings.
	 */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);

	page = alloc_pages(GFP_KERNEL, 1);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
	p_ptr = page_address(page);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);

	v_ptr = vm_map_ram(&page, 1, -1);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);

	KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
	KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);

	/* Make sure that in-bounds accesses through both pointers work. */
	*p_ptr = 0;
	*v_ptr = 0;

	vm_unmap_ram(v_ptr, 1);
	free_pages((unsigned long)p_ptr, 1);
}

static void vmalloc_percpu(struct kunit *test)
{
	char __percpu *ptr;
	int cpu;

	/*
	 * This test is specifically crafted for the software tag-based mode,
	 * the only tag-based mode that poisons percpu mappings.
	 */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);

	ptr = __alloc_percpu(PAGE_SIZE, PAGE_SIZE);

	for_each_possible_cpu(cpu) {
		char *c_ptr = per_cpu_ptr(ptr, cpu);

		KUNIT_EXPECT_GE(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_MIN);
		KUNIT_EXPECT_LT(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_KERNEL);

		/* Make sure that in-bounds accesses don't crash the kernel. */
		*c_ptr = 0;
	}

	free_percpu(ptr);
}

/*
 * Check that the assigned pointer tag falls within the [KASAN_TAG_MIN,
 * KASAN_TAG_KERNEL) range (note: excluding the match-all tag) for tag-based
 * modes.
 */
static void match_all_not_assigned(struct kunit *test)
{
	char *ptr;
	struct page *pages;
	int i, size, order;

	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	for (i = 0; i < 256; i++) {
		size = get_random_u32_inclusive(1, 1024);
		ptr = kmalloc(size, GFP_KERNEL);
		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
		kfree(ptr);
	}

	for (i = 0; i < 256; i++) {
		order = get_random_u32_inclusive(1, 4);
		pages = alloc_pages(GFP_KERNEL, order);
		ptr = page_address(pages);
		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
		free_pages((unsigned long)ptr, order);
	}

	if (!kasan_vmalloc_enabled())
		return;

	for (i = 0; i < 256; i++) {
		size = get_random_u32_inclusive(1, 1024);
		ptr = vmalloc(size);
		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
		vfree(ptr);
	}
}

/* Check that 0xff works as a match-all pointer tag for tag-based modes. */
static void match_all_ptr_tag(struct kunit *test)
{
	char *ptr;
	u8 tag;

	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	ptr = kmalloc(128, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	/* Backup the assigned tag. */
	tag = get_tag(ptr);
	KUNIT_EXPECT_NE(test, tag, (u8)KASAN_TAG_KERNEL);

	/* Reset the tag to 0xff.*/
	ptr = set_tag(ptr, KASAN_TAG_KERNEL);

	/* This access shouldn't trigger a KASAN report. */
	*ptr = 0;

	/* Recover the pointer tag and free. */
	ptr = set_tag(ptr, tag);
	kfree(ptr);
}

/* Check that there are no match-all memory tags for tag-based modes. */
static void match_all_mem_tag(struct kunit *test)
{
	char *ptr;
	int tag;

	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	ptr = kmalloc(128, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
	KUNIT_EXPECT_NE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);

	/* For each possible tag value not matching the pointer tag. */
	for (tag = KASAN_TAG_MIN; tag <= KASAN_TAG_KERNEL; tag++) {
		/*
		 * For Software Tag-Based KASAN, skip the majority of tag
		 * values to avoid the test printing too many reports.
		 */
		if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
		    tag >= KASAN_TAG_MIN + 8 && tag <= KASAN_TAG_KERNEL - 8)
			continue;

		if (tag == get_tag(ptr))
			continue;

		/* Mark the first memory granule with the chosen memory tag. */
		kasan_poison(ptr, KASAN_GRANULE_SIZE, (u8)tag, false);

		/* This access must cause a KASAN report. */
		KUNIT_EXPECT_KASAN_FAIL(test, *ptr = 0);
	}

	/* Recover the memory tag and free. */
	kasan_poison(ptr, KASAN_GRANULE_SIZE, get_tag(ptr), false);
	kfree(ptr);
}

/*
 * Check that Rust performing a use-after-free using `unsafe` is detected.
 * This is a smoke test to make sure that Rust is being sanitized properly.
 */
static void rust_uaf(struct kunit *test)
{
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_RUST);
	KUNIT_EXPECT_KASAN_FAIL(test, kasan_test_rust_uaf());
}

static struct kunit_case kasan_kunit_test_cases[] = {
	KUNIT_CASE(kmalloc_oob_right),
	KUNIT_CASE(kmalloc_oob_left),
	KUNIT_CASE(kmalloc_node_oob_right),
	KUNIT_CASE(kmalloc_big_oob_right),
	KUNIT_CASE(kmalloc_large_oob_right),
	KUNIT_CASE(kmalloc_large_uaf),
	KUNIT_CASE(kmalloc_large_invalid_free),
	KUNIT_CASE(page_alloc_oob_right),
	KUNIT_CASE(page_alloc_uaf),
	KUNIT_CASE(krealloc_more_oob),
	KUNIT_CASE(krealloc_less_oob),
	KUNIT_CASE(krealloc_large_more_oob),
	KUNIT_CASE(krealloc_large_less_oob),
	KUNIT_CASE(krealloc_uaf),
	KUNIT_CASE(kmalloc_oob_16),
	KUNIT_CASE(kmalloc_uaf_16),
	KUNIT_CASE(kmalloc_oob_in_memset),
	KUNIT_CASE(kmalloc_oob_memset_2),
	KUNIT_CASE(kmalloc_oob_memset_4),
	KUNIT_CASE(kmalloc_oob_memset_8),
	KUNIT_CASE(kmalloc_oob_memset_16),
	KUNIT_CASE(kmalloc_memmove_negative_size),
	KUNIT_CASE(kmalloc_memmove_invalid_size),
	KUNIT_CASE(kmalloc_uaf),
	KUNIT_CASE(kmalloc_uaf_memset),
	KUNIT_CASE(kmalloc_uaf2),
	KUNIT_CASE(kmalloc_uaf3),
	KUNIT_CASE(kmalloc_double_kzfree),
	KUNIT_CASE(ksize_unpoisons_memory),
	KUNIT_CASE(ksize_uaf),
	KUNIT_CASE(rcu_uaf),
	KUNIT_CASE(workqueue_uaf),
	KUNIT_CASE(kfree_via_page),
	KUNIT_CASE(kfree_via_phys),
	KUNIT_CASE(kmem_cache_oob),
	KUNIT_CASE(kmem_cache_double_free),
	KUNIT_CASE(kmem_cache_invalid_free),
	KUNIT_CASE(kmem_cache_rcu_uaf),
	KUNIT_CASE(kmem_cache_double_destroy),
	KUNIT_CASE(kmem_cache_accounted),
	KUNIT_CASE(kmem_cache_bulk),
	KUNIT_CASE(mempool_kmalloc_oob_right),
	KUNIT_CASE(mempool_kmalloc_large_oob_right),
	KUNIT_CASE(mempool_slab_oob_right),
	KUNIT_CASE(mempool_kmalloc_uaf),
	KUNIT_CASE(mempool_kmalloc_large_uaf),
	KUNIT_CASE(mempool_slab_uaf),
	KUNIT_CASE(mempool_page_alloc_uaf),
	KUNIT_CASE(mempool_kmalloc_double_free),
	KUNIT_CASE(mempool_kmalloc_large_double_free),
	KUNIT_CASE(mempool_page_alloc_double_free),
	KUNIT_CASE(mempool_kmalloc_invalid_free),
	KUNIT_CASE(mempool_kmalloc_large_invalid_free),
	KUNIT_CASE(kasan_global_oob_right),
	KUNIT_CASE(kasan_global_oob_left),
	KUNIT_CASE(kasan_stack_oob),
	KUNIT_CASE(kasan_alloca_oob_left),
	KUNIT_CASE(kasan_alloca_oob_right),
	KUNIT_CASE(kasan_memchr),
	KUNIT_CASE(kasan_memcmp),
	KUNIT_CASE(kasan_strings),
	KUNIT_CASE(kasan_bitops_generic),
	KUNIT_CASE(kasan_bitops_tags),
	KUNIT_CASE(kasan_atomics),
	KUNIT_CASE(vmalloc_helpers_tags),
	KUNIT_CASE(vmalloc_oob),
	KUNIT_CASE(vmap_tags),
	KUNIT_CASE(vm_map_ram_tags),
	KUNIT_CASE(vmalloc_percpu),
	KUNIT_CASE(match_all_not_assigned),
	KUNIT_CASE(match_all_ptr_tag),
	KUNIT_CASE(match_all_mem_tag),
	KUNIT_CASE(rust_uaf),
	{}
};

static struct kunit_suite kasan_kunit_test_suite = {
	.name = "kasan",
	.test_cases = kasan_kunit_test_cases,
	.exit = kasan_test_exit,
	.suite_init = kasan_suite_init,
	.suite_exit = kasan_suite_exit,
};

kunit_test_suite(kasan_kunit_test_suite);

MODULE_LICENSE("GPL");