// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2003 Bernardo Innocenti <[email protected]>
*
* Based on former do_div() implementation from asm-parisc/div64.h:
* Copyright (C) 1999 Hewlett-Packard Co
* Copyright (C) 1999 David Mosberger-Tang <[email protected]>
*
*
* Generic C version of 64bit/32bit division and modulo, with
* 64bit result and 32bit remainder.
*
* The fast case for (n>>32 == 0) is handled inline by do_div().
*
* Code generated for this function might be very inefficient
* for some CPUs. __div64_32() can be overridden by linking arch-specific
* assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
* or by defining a preprocessor macro in arch/include/asm/div64.h.
*/
#include <linux/bitops.h>
#include <linux/export.h>
#include <linux/math.h>
#include <linux/math64.h>
#include <linux/minmax.h>
#include <linux/log2.h>
/* Not needed on 64bit architectures */
#if BITS_PER_LONG == 32
#ifndef __div64_32
uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
{
uint64_t rem = *n;
uint64_t b = base;
uint64_t res, d = 1;
uint32_t high = rem >> 32;
/* Reduce the thing a bit first */
res = 0;
if (high >= base) {
high /= base;
res = (uint64_t) high << 32;
rem -= (uint64_t) (high*base) << 32;
}
while ((int64_t)b > 0 && b < rem) {
b = b+b;
d = d+d;
}
do {
if (rem >= b) {
rem -= b;
res += d;
}
b >>= 1;
d >>= 1;
} while (d);
*n = res;
return rem;
}
EXPORT_SYMBOL(__div64_32);
#endif
#ifndef div_s64_rem
s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
{
u64 quotient;
if (dividend < 0) {
quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
*remainder = -*remainder;
if (divisor > 0)
quotient = -quotient;
} else {
quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
if (divisor < 0)
quotient = -quotient;
}
return quotient;
}
EXPORT_SYMBOL(div_s64_rem);
#endif
/*
* div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
* @dividend: 64bit dividend
* @divisor: 64bit divisor
* @remainder: 64bit remainder
*
* This implementation is a comparable to algorithm used by div64_u64.
* But this operation, which includes math for calculating the remainder,
* is kept distinct to avoid slowing down the div64_u64 operation on 32bit
* systems.
*/
#ifndef div64_u64_rem
u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
{
u32 high = divisor >> 32;
u64 quot;
if (high == 0) {
u32 rem32;
quot = div_u64_rem(dividend, divisor, &rem32);
*remainder = rem32;
} else {
int n = fls(high);
quot = div_u64(dividend >> n, divisor >> n);
if (quot != 0)
quot--;
*remainder = dividend - quot * divisor;
if (*remainder >= divisor) {
quot++;
*remainder -= divisor;
}
}
return quot;
}
EXPORT_SYMBOL(div64_u64_rem);
#endif
/*
* div64_u64 - unsigned 64bit divide with 64bit divisor
* @dividend: 64bit dividend
* @divisor: 64bit divisor
*
* This implementation is a modified version of the algorithm proposed
* by the book 'Hacker's Delight'. The original source and full proof
* can be found here and is available for use without restriction.
*
* 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
*/
#ifndef div64_u64
u64 div64_u64(u64 dividend, u64 divisor)
{
u32 high = divisor >> 32;
u64 quot;
if (high == 0) {
quot = div_u64(dividend, divisor);
} else {
int n = fls(high);
quot = div_u64(dividend >> n, divisor >> n);
if (quot != 0)
quot--;
if ((dividend - quot * divisor) >= divisor)
quot++;
}
return quot;
}
EXPORT_SYMBOL(div64_u64);
#endif
#ifndef div64_s64
s64 div64_s64(s64 dividend, s64 divisor)
{
s64 quot, t;
quot = div64_u64(abs(dividend), abs(divisor));
t = (dividend ^ divisor) >> 63;
return (quot ^ t) - t;
}
EXPORT_SYMBOL(div64_s64);
#endif
#endif /* BITS_PER_LONG == 32 */
/*
* Iterative div/mod for use when dividend is not expected to be much
* bigger than divisor.
*/
u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
{
return __iter_div_u64_rem(dividend, divisor, remainder);
}
EXPORT_SYMBOL(iter_div_u64_rem);
#ifndef mul_u64_u64_div_u64
u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c)
{
if (ilog2(a) + ilog2(b) <= 62)
return div64_u64(a * b, c);
#if defined(__SIZEOF_INT128__)
/* native 64x64=128 bits multiplication */
u128 prod = (u128)a * b;
u64 n_lo = prod, n_hi = prod >> 64;
#else
/* perform a 64x64=128 bits multiplication manually */
u32 a_lo = a, a_hi = a >> 32, b_lo = b, b_hi = b >> 32;
u64 x, y, z;
x = (u64)a_lo * b_lo;
y = (u64)a_lo * b_hi + (u32)(x >> 32);
z = (u64)a_hi * b_hi + (u32)(y >> 32);
y = (u64)a_hi * b_lo + (u32)y;
z += (u32)(y >> 32);
x = (y << 32) + (u32)x;
u64 n_lo = x, n_hi = z;
#endif
/* make sure c is not zero, trigger exception otherwise */
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdiv-by-zero"
if (unlikely(c == 0))
return 1/0;
#pragma GCC diagnostic pop
int shift = __builtin_ctzll(c);
/* try reducing the fraction in case the dividend becomes <= 64 bits */
if ((n_hi >> shift) == 0) {
u64 n = shift ? (n_lo >> shift) | (n_hi << (64 - shift)) : n_lo;
return div64_u64(n, c >> shift);
/*
* The remainder value if needed would be:
* res = div64_u64_rem(n, c >> shift, &rem);
* rem = (rem << shift) + (n_lo - (n << shift));
*/
}
if (n_hi >= c) {
/* overflow: result is unrepresentable in a u64 */
return -1;
}
/* Do the full 128 by 64 bits division */
shift = __builtin_clzll(c);
c <<= shift;
int p = 64 + shift;
u64 res = 0;
bool carry;
do {
carry = n_hi >> 63;
shift = carry ? 1 : __builtin_clzll(n_hi);
if (p < shift)
break;
p -= shift;
n_hi <<= shift;
n_hi |= n_lo >> (64 - shift);
n_lo <<= shift;
if (carry || (n_hi >= c)) {
n_hi -= c;
res |= 1ULL << p;
}
} while (n_hi);
/* The remainder value if needed would be n_hi << p */
return res;
}
EXPORT_SYMBOL(mul_u64_u64_div_u64);
#endif