/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dce/dce_12_0_offset.h"
#include "dce/dce_12_0_sh_mask.h"
#include "soc15_hw_ip.h"
#include "vega10_ip_offset.h"
#include "dc_types.h"
#include "dc_bios_types.h"
#include "include/grph_object_id.h"
#include "include/logger_interface.h"
#include "dce120_timing_generator.h"
#include "timing_generator.h"
#define CRTC_REG_UPDATE_N(reg_name, n, ...) \
generic_reg_update_soc15(tg110->base.ctx, tg110->offsets.crtc, reg_name, n, __VA_ARGS__)
#define CRTC_REG_SET_N(reg_name, n, ...) \
generic_reg_set_soc15(tg110->base.ctx, tg110->offsets.crtc, reg_name, n, __VA_ARGS__)
#define CRTC_REG_UPDATE(reg, field, val) \
CRTC_REG_UPDATE_N(reg, 1, FD(reg##__##field), val)
#define CRTC_REG_UPDATE_2(reg, field1, val1, field2, val2) \
CRTC_REG_UPDATE_N(reg, 2, FD(reg##__##field1), val1, FD(reg##__##field2), val2)
#define CRTC_REG_UPDATE_3(reg, field1, val1, field2, val2, field3, val3) \
CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3)
#define CRTC_REG_UPDATE_4(reg, field1, val1, field2, val2, field3, val3, field4, val4) \
CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3, FD(reg##__##field4), val4)
#define CRTC_REG_UPDATE_5(reg, field1, val1, field2, val2, field3, val3, field4, val4, field5, val5) \
CRTC_REG_UPDATE_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3, FD(reg##__##field4), val4, FD(reg##__##field5), val5)
#define CRTC_REG_SET(reg, field, val) \
CRTC_REG_SET_N(reg, 1, FD(reg##__##field), val)
#define CRTC_REG_SET_2(reg, field1, val1, field2, val2) \
CRTC_REG_SET_N(reg, 2, FD(reg##__##field1), val1, FD(reg##__##field2), val2)
#define CRTC_REG_SET_3(reg, field1, val1, field2, val2, field3, val3) \
CRTC_REG_SET_N(reg, 3, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3)
/*
*****************************************************************************
* Function: is_in_vertical_blank
*
* @brief
* check the current status of CRTC to check if we are in Vertical Blank
* regioneased" state
*
* @return
* true if currently in blank region, false otherwise
*
*****************************************************************************
*/
static bool dce120_timing_generator_is_in_vertical_blank(
struct timing_generator *tg)
{
uint32_t field = 0;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_STATUS,
tg110->offsets.crtc);
field = get_reg_field_value(value, CRTC0_CRTC_STATUS, CRTC_V_BLANK);
return field == 1;
}
/* determine if given timing can be supported by TG */
static bool dce120_timing_generator_validate_timing(
struct timing_generator *tg,
const struct dc_crtc_timing *timing,
enum signal_type signal)
{
uint32_t interlace_factor = timing->flags.INTERLACE ? 2 : 1;
uint32_t v_blank =
(timing->v_total - timing->v_addressable -
timing->v_border_top - timing->v_border_bottom) *
interlace_factor;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
if (!dce110_timing_generator_validate_timing(
tg,
timing,
signal))
return false;
if (v_blank < tg110->min_v_blank ||
timing->h_sync_width < tg110->min_h_sync_width ||
timing->v_sync_width < tg110->min_v_sync_width)
return false;
return true;
}
static bool dce120_tg_validate_timing(struct timing_generator *tg,
const struct dc_crtc_timing *timing)
{
return dce120_timing_generator_validate_timing(tg, timing, SIGNAL_TYPE_NONE);
}
/******** HW programming ************/
/* Disable/Enable Timing Generator */
static bool dce120_timing_generator_enable_crtc(struct timing_generator *tg)
{
enum bp_result result;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
/* Set MASTER_UPDATE_MODE to 0
* This is needed for DRR, and also suggested to be default value by Syed.*/
CRTC_REG_UPDATE(CRTC0_CRTC_MASTER_UPDATE_MODE,
MASTER_UPDATE_MODE, 0);
CRTC_REG_UPDATE(CRTC0_CRTC_MASTER_UPDATE_LOCK,
UNDERFLOW_UPDATE_LOCK, 0);
/* TODO API for AtomFirmware didn't change*/
result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, true);
return result == BP_RESULT_OK;
}
static void dce120_timing_generator_set_early_control(
struct timing_generator *tg,
uint32_t early_cntl)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
CRTC_REG_UPDATE(CRTC0_CRTC_CONTROL,
CRTC_HBLANK_EARLY_CONTROL, early_cntl);
}
/**************** TG current status ******************/
/* return the current frame counter. Used by Linux kernel DRM */
static uint32_t dce120_timing_generator_get_vblank_counter(
struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_STATUS_FRAME_COUNT,
tg110->offsets.crtc);
uint32_t field = get_reg_field_value(
value, CRTC0_CRTC_STATUS_FRAME_COUNT, CRTC_FRAME_COUNT);
return field;
}
/* Get current H and V position */
static void dce120_timing_generator_get_crtc_position(
struct timing_generator *tg,
struct crtc_position *position)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_STATUS_POSITION,
tg110->offsets.crtc);
position->horizontal_count = get_reg_field_value(value,
CRTC0_CRTC_STATUS_POSITION, CRTC_HORZ_COUNT);
position->vertical_count = get_reg_field_value(value,
CRTC0_CRTC_STATUS_POSITION, CRTC_VERT_COUNT);
value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_NOM_VERT_POSITION,
tg110->offsets.crtc);
position->nominal_vcount = get_reg_field_value(value,
CRTC0_CRTC_NOM_VERT_POSITION, CRTC_VERT_COUNT_NOM);
}
/* wait until TG is in beginning of vertical blank region */
static void dce120_timing_generator_wait_for_vblank(struct timing_generator *tg)
{
/* We want to catch beginning of VBlank here, so if the first try are
* in VBlank, we might be very close to Active, in this case wait for
* another frame
*/
while (dce120_timing_generator_is_in_vertical_blank(tg)) {
if (!tg->funcs->is_counter_moving(tg)) {
/* error - no point to wait if counter is not moving */
break;
}
}
while (!dce120_timing_generator_is_in_vertical_blank(tg)) {
if (!tg->funcs->is_counter_moving(tg)) {
/* error - no point to wait if counter is not moving */
break;
}
}
}
/* wait until TG is in beginning of active region */
static void dce120_timing_generator_wait_for_vactive(struct timing_generator *tg)
{
while (dce120_timing_generator_is_in_vertical_blank(tg)) {
if (!tg->funcs->is_counter_moving(tg)) {
/* error - no point to wait if counter is not moving */
break;
}
}
}
/*********** Timing Generator Synchronization routines ****/
/* Setups Global Swap Lock group, TimingServer or TimingClient*/
static void dce120_timing_generator_setup_global_swap_lock(
struct timing_generator *tg,
const struct dcp_gsl_params *gsl_params)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value_crtc_vtotal =
dm_read_reg_soc15(tg->ctx,
mmCRTC0_CRTC_V_TOTAL,
tg110->offsets.crtc);
/* Checkpoint relative to end of frame */
uint32_t check_point =
get_reg_field_value(value_crtc_vtotal,
CRTC0_CRTC_V_TOTAL,
CRTC_V_TOTAL);
dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_GSL_WINDOW, tg110->offsets.crtc, 0);
CRTC_REG_UPDATE_N(DCP0_DCP_GSL_CONTROL, 6,
/* This pipe will belong to GSL Group zero. */
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL0_EN), 1,
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_MASTER_EN), gsl_params->gsl_master == tg->inst,
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_FORCE_DELAY), HFLIP_READY_DELAY,
/* Keep signal low (pending high) during 6 lines.
* Also defines minimum interval before re-checking signal. */
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_CHECK_DELAY), HFLIP_CHECK_DELAY,
/* DCP_GSL_PURPOSE_SURFACE_FLIP */
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_SYNC_SOURCE), 0,
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_DELAY_SURFACE_UPDATE_PENDING), 1);
CRTC_REG_SET_2(
CRTC0_CRTC_GSL_CONTROL,
CRTC_GSL_CHECK_LINE_NUM, check_point - FLIP_READY_BACK_LOOKUP,
CRTC_GSL_FORCE_DELAY, VFLIP_READY_DELAY);
}
/* Clear all the register writes done by setup_global_swap_lock */
static void dce120_timing_generator_tear_down_global_swap_lock(
struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
/* Settig HW default values from reg specs */
CRTC_REG_SET_N(DCP0_DCP_GSL_CONTROL, 6,
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL0_EN), 0,
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_MASTER_EN), 0,
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_FORCE_DELAY), HFLIP_READY_DELAY,
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_HSYNC_FLIP_CHECK_DELAY), HFLIP_CHECK_DELAY,
/* DCP_GSL_PURPOSE_SURFACE_FLIP */
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_SYNC_SOURCE), 0,
FD(DCP0_DCP_GSL_CONTROL__DCP_GSL_DELAY_SURFACE_UPDATE_PENDING), 0);
CRTC_REG_SET_2(CRTC0_CRTC_GSL_CONTROL,
CRTC_GSL_CHECK_LINE_NUM, 0,
CRTC_GSL_FORCE_DELAY, 0x2); /*TODO Why this value here ?*/
}
/* Reset slave controllers on master VSync */
static void dce120_timing_generator_enable_reset_trigger(
struct timing_generator *tg,
int source)
{
enum trigger_source_select trig_src_select = TRIGGER_SOURCE_SELECT_LOGIC_ZERO;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t rising_edge = 0;
uint32_t falling_edge = 0;
/* Setup trigger edge */
uint32_t pol_value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_V_SYNC_A_CNTL,
tg110->offsets.crtc);
/* Register spec has reversed definition:
* 0 for positive, 1 for negative */
if (get_reg_field_value(pol_value,
CRTC0_CRTC_V_SYNC_A_CNTL,
CRTC_V_SYNC_A_POL) == 0) {
rising_edge = 1;
} else {
falling_edge = 1;
}
/* TODO What about other sources ?*/
trig_src_select = TRIGGER_SOURCE_SELECT_GSL_GROUP0;
CRTC_REG_UPDATE_N(CRTC0_CRTC_TRIGB_CNTL, 7,
FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_SOURCE_SELECT), trig_src_select,
FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_POLARITY_SELECT), TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_RISING_EDGE_DETECT_CNTL), rising_edge,
FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL), falling_edge,
/* send every signal */
FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_FREQUENCY_SELECT), 0,
/* no delay */
FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_DELAY), 0,
/* clear trigger status */
FD(CRTC0_CRTC_TRIGB_CNTL__CRTC_TRIGB_CLEAR), 1);
CRTC_REG_UPDATE_3(
CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_MODE, 2,
CRTC_FORCE_COUNT_NOW_TRIG_SEL, 1,
CRTC_FORCE_COUNT_NOW_CLEAR, 1);
}
/* disabling trigger-reset */
static void dce120_timing_generator_disable_reset_trigger(
struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
CRTC_REG_UPDATE_2(
CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_MODE, 0,
CRTC_FORCE_COUNT_NOW_CLEAR, 1);
CRTC_REG_UPDATE_3(
CRTC0_CRTC_TRIGB_CNTL,
CRTC_TRIGB_SOURCE_SELECT, TRIGGER_SOURCE_SELECT_LOGIC_ZERO,
CRTC_TRIGB_POLARITY_SELECT, TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
/* clear trigger status */
CRTC_TRIGB_CLEAR, 1);
}
/* Checks whether CRTC triggered reset occurred */
static bool dce120_timing_generator_did_triggered_reset_occur(
struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
tg110->offsets.crtc);
return get_reg_field_value(value,
CRTC0_CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_OCCURRED) != 0;
}
/******** Stuff to move to other virtual HW objects *****************/
/* Move to enable accelerated mode */
static void dce120_timing_generator_disable_vga(struct timing_generator *tg)
{
uint32_t offset = 0;
uint32_t value = 0;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
switch (tg110->controller_id) {
case CONTROLLER_ID_D0:
offset = 0;
break;
case CONTROLLER_ID_D1:
offset = mmD2VGA_CONTROL - mmD1VGA_CONTROL;
break;
case CONTROLLER_ID_D2:
offset = mmD3VGA_CONTROL - mmD1VGA_CONTROL;
break;
case CONTROLLER_ID_D3:
offset = mmD4VGA_CONTROL - mmD1VGA_CONTROL;
break;
case CONTROLLER_ID_D4:
offset = mmD5VGA_CONTROL - mmD1VGA_CONTROL;
break;
case CONTROLLER_ID_D5:
offset = mmD6VGA_CONTROL - mmD1VGA_CONTROL;
break;
default:
break;
}
value = dm_read_reg_soc15(tg->ctx, mmD1VGA_CONTROL, offset);
set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_MODE_ENABLE);
set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_TIMING_SELECT);
set_reg_field_value(
value, 0, D1VGA_CONTROL, D1VGA_SYNC_POLARITY_SELECT);
set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_OVERSCAN_COLOR_EN);
dm_write_reg_soc15(tg->ctx, mmD1VGA_CONTROL, offset, value);
}
/* TODO: Should we move it to transform */
/* Fully program CRTC timing in timing generator */
static void dce120_timing_generator_program_blanking(
struct timing_generator *tg,
const struct dc_crtc_timing *timing)
{
uint32_t tmp1 = 0;
uint32_t tmp2 = 0;
uint32_t vsync_offset = timing->v_border_bottom +
timing->v_front_porch;
uint32_t v_sync_start = timing->v_addressable + vsync_offset;
uint32_t hsync_offset = timing->h_border_right +
timing->h_front_porch;
uint32_t h_sync_start = timing->h_addressable + hsync_offset;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
CRTC_REG_UPDATE(
CRTC0_CRTC_H_TOTAL,
CRTC_H_TOTAL,
timing->h_total - 1);
CRTC_REG_UPDATE(
CRTC0_CRTC_V_TOTAL,
CRTC_V_TOTAL,
timing->v_total - 1);
/* In case of V_TOTAL_CONTROL is on, make sure V_TOTAL_MAX and
* V_TOTAL_MIN are equal to V_TOTAL.
*/
CRTC_REG_UPDATE(
CRTC0_CRTC_V_TOTAL_MAX,
CRTC_V_TOTAL_MAX,
timing->v_total - 1);
CRTC_REG_UPDATE(
CRTC0_CRTC_V_TOTAL_MIN,
CRTC_V_TOTAL_MIN,
timing->v_total - 1);
tmp1 = timing->h_total -
(h_sync_start + timing->h_border_left);
tmp2 = tmp1 + timing->h_addressable +
timing->h_border_left + timing->h_border_right;
CRTC_REG_UPDATE_2(
CRTC0_CRTC_H_BLANK_START_END,
CRTC_H_BLANK_END, tmp1,
CRTC_H_BLANK_START, tmp2);
tmp1 = timing->v_total - (v_sync_start + timing->v_border_top);
tmp2 = tmp1 + timing->v_addressable + timing->v_border_top +
timing->v_border_bottom;
CRTC_REG_UPDATE_2(
CRTC0_CRTC_V_BLANK_START_END,
CRTC_V_BLANK_END, tmp1,
CRTC_V_BLANK_START, tmp2);
}
/* TODO: Should we move it to opp? */
/* Combine with below and move YUV/RGB color conversion to SW layer */
static void dce120_timing_generator_program_blank_color(
struct timing_generator *tg,
const struct tg_color *black_color)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
CRTC_REG_UPDATE_3(
CRTC0_CRTC_BLACK_COLOR,
CRTC_BLACK_COLOR_B_CB, black_color->color_b_cb,
CRTC_BLACK_COLOR_G_Y, black_color->color_g_y,
CRTC_BLACK_COLOR_R_CR, black_color->color_r_cr);
}
/* Combine with above and move YUV/RGB color conversion to SW layer */
static void dce120_timing_generator_set_overscan_color_black(
struct timing_generator *tg,
const struct tg_color *color)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = 0;
CRTC_REG_SET_3(
CRTC0_CRTC_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_BLUE, color->color_b_cb,
CRTC_OVERSCAN_COLOR_GREEN, color->color_g_y,
CRTC_OVERSCAN_COLOR_RED, color->color_r_cr);
value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_OVERSCAN_COLOR,
tg110->offsets.crtc);
dm_write_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_BLACK_COLOR,
tg110->offsets.crtc,
value);
/* This is desirable to have a constant DAC output voltage during the
* blank time that is higher than the 0 volt reference level that the
* DAC outputs when the NBLANK signal
* is asserted low, such as for output to an analog TV. */
dm_write_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_BLANK_DATA_COLOR,
tg110->offsets.crtc,
value);
/* TO DO we have to program EXT registers and we need to know LB DATA
* format because it is used when more 10 , i.e. 12 bits per color
*
* m_mmDxCRTC_OVERSCAN_COLOR_EXT
* m_mmDxCRTC_BLACK_COLOR_EXT
* m_mmDxCRTC_BLANK_DATA_COLOR_EXT
*/
}
static void dce120_timing_generator_set_drr(
struct timing_generator *tg,
const struct drr_params *params)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
if (params != NULL &&
params->vertical_total_max > 0 &&
params->vertical_total_min > 0) {
CRTC_REG_UPDATE(
CRTC0_CRTC_V_TOTAL_MIN,
CRTC_V_TOTAL_MIN, params->vertical_total_min - 1);
CRTC_REG_UPDATE(
CRTC0_CRTC_V_TOTAL_MAX,
CRTC_V_TOTAL_MAX, params->vertical_total_max - 1);
CRTC_REG_SET_N(CRTC0_CRTC_V_TOTAL_CONTROL, 6,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MIN_SEL), 1,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MAX_SEL), 1,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_ON_EVENT), 0,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_TO_MASTER_VSYNC), 0,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK_EN), 0,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK), 0);
CRTC_REG_UPDATE(
CRTC0_CRTC_STATIC_SCREEN_CONTROL,
CRTC_STATIC_SCREEN_EVENT_MASK,
0x180);
} else {
CRTC_REG_SET_N(CRTC0_CRTC_V_TOTAL_CONTROL, 5,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MIN_SEL), 0,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_V_TOTAL_MAX_SEL), 0,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_ON_EVENT), 0,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_FORCE_LOCK_TO_MASTER_VSYNC), 0,
FD(CRTC0_CRTC_V_TOTAL_CONTROL__CRTC_SET_V_TOTAL_MIN_MASK), 0);
CRTC_REG_UPDATE(
CRTC0_CRTC_V_TOTAL_MIN,
CRTC_V_TOTAL_MIN, 0);
CRTC_REG_UPDATE(
CRTC0_CRTC_V_TOTAL_MAX,
CRTC_V_TOTAL_MAX, 0);
CRTC_REG_UPDATE(
CRTC0_CRTC_STATIC_SCREEN_CONTROL,
CRTC_STATIC_SCREEN_EVENT_MASK,
0);
}
}
static void dce120_timing_generator_get_crtc_scanoutpos(
struct timing_generator *tg,
uint32_t *v_blank_start,
uint32_t *v_blank_end,
uint32_t *h_position,
uint32_t *v_position)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
struct crtc_position position;
uint32_t v_blank_start_end = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_V_BLANK_START_END,
tg110->offsets.crtc);
*v_blank_start = get_reg_field_value(v_blank_start_end,
CRTC0_CRTC_V_BLANK_START_END,
CRTC_V_BLANK_START);
*v_blank_end = get_reg_field_value(v_blank_start_end,
CRTC0_CRTC_V_BLANK_START_END,
CRTC_V_BLANK_END);
dce120_timing_generator_get_crtc_position(
tg, &position);
*h_position = position.horizontal_count;
*v_position = position.vertical_count;
}
static void dce120_timing_generator_enable_advanced_request(
struct timing_generator *tg,
bool enable,
const struct dc_crtc_timing *timing)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t v_sync_width_and_b_porch =
timing->v_total - timing->v_addressable -
timing->v_border_bottom - timing->v_front_porch;
uint32_t value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_START_LINE_CONTROL,
tg110->offsets.crtc);
set_reg_field_value(
value,
enable ? 0 : 1,
CRTC0_CRTC_START_LINE_CONTROL,
CRTC_LEGACY_REQUESTOR_EN);
/* Program advanced line position acc.to the best case from fetching data perspective to hide MC latency
* and prefilling Line Buffer in V Blank (to 10 lines as LB can store max 10 lines)
*/
if (v_sync_width_and_b_porch > 10)
v_sync_width_and_b_porch = 10;
set_reg_field_value(
value,
v_sync_width_and_b_porch,
CRTC0_CRTC_START_LINE_CONTROL,
CRTC_ADVANCED_START_LINE_POSITION);
dm_write_reg_soc15(tg->ctx,
mmCRTC0_CRTC_START_LINE_CONTROL,
tg110->offsets.crtc,
value);
}
static void dce120_tg_program_blank_color(struct timing_generator *tg,
const struct tg_color *black_color)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = 0;
CRTC_REG_UPDATE_3(
CRTC0_CRTC_BLACK_COLOR,
CRTC_BLACK_COLOR_B_CB, black_color->color_b_cb,
CRTC_BLACK_COLOR_G_Y, black_color->color_g_y,
CRTC_BLACK_COLOR_R_CR, black_color->color_r_cr);
value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_BLACK_COLOR,
tg110->offsets.crtc);
dm_write_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_BLANK_DATA_COLOR,
tg110->offsets.crtc,
value);
}
static void dce120_tg_set_overscan_color(struct timing_generator *tg,
const struct tg_color *overscan_color)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
CRTC_REG_SET_3(
CRTC0_CRTC_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_BLUE, overscan_color->color_b_cb,
CRTC_OVERSCAN_COLOR_GREEN, overscan_color->color_g_y,
CRTC_OVERSCAN_COLOR_RED, overscan_color->color_r_cr);
}
static void dce120_tg_program_timing(struct timing_generator *tg,
const struct dc_crtc_timing *timing,
int vready_offset,
int vstartup_start,
int vupdate_offset,
int vupdate_width,
int pstate_keepout,
const enum signal_type signal,
bool use_vbios)
{
if (use_vbios)
dce110_timing_generator_program_timing_generator(tg, timing);
else
dce120_timing_generator_program_blanking(tg, timing);
}
static bool dce120_tg_is_blanked(struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = dm_read_reg_soc15(
tg->ctx,
mmCRTC0_CRTC_BLANK_CONTROL,
tg110->offsets.crtc);
if (get_reg_field_value(
value,
CRTC0_CRTC_BLANK_CONTROL,
CRTC_BLANK_DATA_EN) == 1 &&
get_reg_field_value(
value,
CRTC0_CRTC_BLANK_CONTROL,
CRTC_CURRENT_BLANK_STATE) == 1)
return true;
return false;
}
static void dce120_tg_set_blank(struct timing_generator *tg,
bool enable_blanking)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
CRTC_REG_SET(
CRTC0_CRTC_DOUBLE_BUFFER_CONTROL,
CRTC_BLANK_DATA_DOUBLE_BUFFER_EN, 1);
if (enable_blanking)
CRTC_REG_SET(CRTC0_CRTC_BLANK_CONTROL, CRTC_BLANK_DATA_EN, 1);
else
dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_BLANK_CONTROL,
tg110->offsets.crtc, 0);
}
bool dce120_tg_validate_timing(struct timing_generator *tg,
const struct dc_crtc_timing *timing);
static void dce120_tg_wait_for_state(struct timing_generator *tg,
enum crtc_state state)
{
switch (state) {
case CRTC_STATE_VBLANK:
dce120_timing_generator_wait_for_vblank(tg);
break;
case CRTC_STATE_VACTIVE:
dce120_timing_generator_wait_for_vactive(tg);
break;
default:
break;
}
}
static void dce120_tg_set_colors(struct timing_generator *tg,
const struct tg_color *blank_color,
const struct tg_color *overscan_color)
{
if (blank_color != NULL)
dce120_tg_program_blank_color(tg, blank_color);
if (overscan_color != NULL)
dce120_tg_set_overscan_color(tg, overscan_color);
}
static void dce120_timing_generator_set_static_screen_control(
struct timing_generator *tg,
uint32_t event_triggers,
uint32_t num_frames)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
// By register spec, it only takes 8 bit value
if (num_frames > 0xFF)
num_frames = 0xFF;
CRTC_REG_UPDATE_2(CRTC0_CRTC_STATIC_SCREEN_CONTROL,
CRTC_STATIC_SCREEN_EVENT_MASK, event_triggers,
CRTC_STATIC_SCREEN_FRAME_COUNT, num_frames);
}
static void dce120_timing_generator_set_test_pattern(
struct timing_generator *tg,
/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
* because this is not DP-specific (which is probably somewhere in DP
* encoder) */
enum controller_dp_test_pattern test_pattern,
enum dc_color_depth color_depth)
{
struct dc_context *ctx = tg->ctx;
uint32_t value;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
enum test_pattern_color_format bit_depth;
enum test_pattern_dyn_range dyn_range;
enum test_pattern_mode mode;
/* color ramp generator mixes 16-bits color */
uint32_t src_bpc = 16;
/* requested bpc */
uint32_t dst_bpc;
uint32_t index;
/* RGB values of the color bars.
* Produce two RGB colors: RGB0 - white (all Fs)
* and RGB1 - black (all 0s)
* (three RGB components for two colors)
*/
uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
0x0000, 0x0000};
/* dest color (converted to the specified color format) */
uint16_t dst_color[6];
uint32_t inc_base;
/* translate to bit depth */
switch (color_depth) {
case COLOR_DEPTH_666:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
break;
case COLOR_DEPTH_888:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
break;
case COLOR_DEPTH_101010:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
break;
case COLOR_DEPTH_121212:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
break;
default:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
break;
}
switch (test_pattern) {
case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
{
dyn_range = (test_pattern ==
CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
TEST_PATTERN_DYN_RANGE_CEA :
TEST_PATTERN_DYN_RANGE_VESA);
mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
CRTC_REG_UPDATE_2(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_VRES, 6,
CRTC_TEST_PATTERN_HRES, 6);
CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_EN, 1,
CRTC_TEST_PATTERN_MODE, mode,
CRTC_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
}
break;
case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
{
mode = (test_pattern ==
CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
TEST_PATTERN_MODE_VERTICALBARS :
TEST_PATTERN_MODE_HORIZONTALBARS);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
dst_bpc = 6;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
dst_bpc = 8;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
dst_bpc = 10;
break;
default:
dst_bpc = 8;
break;
}
/* adjust color to the required colorFormat */
for (index = 0; index < 6; index++) {
/* dst = 2^dstBpc * src / 2^srcBpc = src >>
* (srcBpc - dstBpc);
*/
dst_color[index] =
src_color[index] >> (src_bpc - dst_bpc);
/* CRTC_TEST_PATTERN_DATA has 16 bits,
* lowest 6 are hardwired to ZERO
* color bits should be left aligned aligned to MSB
* XXXXXXXXXX000000 for 10 bit,
* XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
*/
dst_color[index] <<= (16 - dst_bpc);
}
dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_PARAMETERS, tg110->offsets.crtc, 0);
/* We have to write the mask before data, similar to pipeline.
* For example, for 8 bpc, if we want RGB0 to be magenta,
* and RGB1 to be cyan,
* we need to make 7 writes:
* MASK DATA
* 000001 00000000 00000000 set mask to R0
* 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0
* 000100 00000000 00000000 G0 0, 0x0000, set mask to B0
* 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1
* 010000 00000000 00000000 R1 0, 0x0000, set mask to G1
* 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1
* 100000 11111111 00000000 B1 255, 0xFF00
*
* we will make a loop of 6 in which we prepare the mask,
* then write, then prepare the color for next write.
* first iteration will write mask only,
* but each next iteration color prepared in
* previous iteration will be written within new mask,
* the last component will written separately,
* mask is not changing between 6th and 7th write
* and color will be prepared by last iteration
*/
/* write color, color values mask in CRTC_TEST_PATTERN_MASK
* is B1, G1, R1, B0, G0, R0
*/
value = 0;
for (index = 0; index < 6; index++) {
/* prepare color mask, first write PATTERN_DATA
* will have all zeros
*/
set_reg_field_value(
value,
(1 << index),
CRTC0_CRTC_TEST_PATTERN_COLOR,
CRTC_TEST_PATTERN_MASK);
/* write color component */
dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
/* prepare next color component,
* will be written in the next iteration
*/
set_reg_field_value(
value,
dst_color[index],
CRTC0_CRTC_TEST_PATTERN_COLOR,
CRTC_TEST_PATTERN_DATA);
}
/* write last color component,
* it's been already prepared in the loop
*/
dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
/* enable test pattern */
CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_EN, 1,
CRTC_TEST_PATTERN_MODE, mode,
CRTC_TEST_PATTERN_DYNAMIC_RANGE, 0,
CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
}
break;
case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
{
mode = (bit_depth ==
TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
TEST_PATTERN_MODE_DUALRAMP_RGB :
TEST_PATTERN_MODE_SINGLERAMP_RGB);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
dst_bpc = 6;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
dst_bpc = 8;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
dst_bpc = 10;
break;
default:
dst_bpc = 8;
break;
}
/* increment for the first ramp for one color gradation
* 1 gradation for 6-bit color is 2^10
* gradations in 16-bit color
*/
inc_base = (src_bpc - dst_bpc);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
{
CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_INC0, inc_base,
CRTC_TEST_PATTERN_INC1, 0,
CRTC_TEST_PATTERN_HRES, 6,
CRTC_TEST_PATTERN_VRES, 6,
CRTC_TEST_PATTERN_RAMP0_OFFSET, 0);
}
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
{
CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_INC0, inc_base,
CRTC_TEST_PATTERN_INC1, 0,
CRTC_TEST_PATTERN_HRES, 8,
CRTC_TEST_PATTERN_VRES, 6,
CRTC_TEST_PATTERN_RAMP0_OFFSET, 0);
}
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
{
CRTC_REG_UPDATE_5(CRTC0_CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_INC0, inc_base,
CRTC_TEST_PATTERN_INC1, inc_base + 2,
CRTC_TEST_PATTERN_HRES, 8,
CRTC_TEST_PATTERN_VRES, 5,
CRTC_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
}
break;
default:
break;
}
dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, 0);
/* enable test pattern */
dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_CONTROL, tg110->offsets.crtc, 0);
CRTC_REG_UPDATE_4(CRTC0_CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_EN, 1,
CRTC_TEST_PATTERN_MODE, mode,
CRTC_TEST_PATTERN_DYNAMIC_RANGE, 0,
CRTC_TEST_PATTERN_COLOR_FORMAT, bit_depth);
}
break;
case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
{
value = 0;
dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_CONTROL, tg110->offsets.crtc, value);
dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_COLOR, tg110->offsets.crtc, value);
dm_write_reg_soc15(ctx, mmCRTC0_CRTC_TEST_PATTERN_PARAMETERS, tg110->offsets.crtc, value);
}
break;
default:
break;
}
}
static bool dce120_arm_vert_intr(
struct timing_generator *tg,
uint8_t width)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t v_blank_start, v_blank_end, h_position, v_position;
tg->funcs->get_scanoutpos(
tg,
&v_blank_start,
&v_blank_end,
&h_position,
&v_position);
if (v_blank_start == 0 || v_blank_end == 0)
return false;
CRTC_REG_SET_2(
CRTC0_CRTC_VERTICAL_INTERRUPT0_POSITION,
CRTC_VERTICAL_INTERRUPT0_LINE_START, v_blank_start,
CRTC_VERTICAL_INTERRUPT0_LINE_END, v_blank_start + width);
return true;
}
static bool dce120_is_tg_enabled(struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value, field;
value = dm_read_reg_soc15(tg->ctx, mmCRTC0_CRTC_CONTROL,
tg110->offsets.crtc);
field = get_reg_field_value(value, CRTC0_CRTC_CONTROL,
CRTC_CURRENT_MASTER_EN_STATE);
return field == 1;
}
static bool dce120_configure_crc(struct timing_generator *tg,
const struct crc_params *params)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
/* Cannot configure crc on a CRTC that is disabled */
if (!dce120_is_tg_enabled(tg))
return false;
/* First, disable CRC before we configure it. */
dm_write_reg_soc15(tg->ctx, mmCRTC0_CRTC_CRC_CNTL,
tg110->offsets.crtc, 0);
if (!params->enable)
return true;
/* Program frame boundaries */
/* Window A x axis start and end. */
CRTC_REG_UPDATE_2(CRTC0_CRTC_CRC0_WINDOWA_X_CONTROL,
CRTC_CRC0_WINDOWA_X_START, params->windowa_x_start,
CRTC_CRC0_WINDOWA_X_END, params->windowa_x_end);
/* Window A y axis start and end. */
CRTC_REG_UPDATE_2(CRTC0_CRTC_CRC0_WINDOWA_Y_CONTROL,
CRTC_CRC0_WINDOWA_Y_START, params->windowa_y_start,
CRTC_CRC0_WINDOWA_Y_END, params->windowa_y_end);
/* Window B x axis start and end. */
CRTC_REG_UPDATE_2(CRTC0_CRTC_CRC0_WINDOWB_X_CONTROL,
CRTC_CRC0_WINDOWB_X_START, params->windowb_x_start,
CRTC_CRC0_WINDOWB_X_END, params->windowb_x_end);
/* Window B y axis start and end. */
CRTC_REG_UPDATE_2(CRTC0_CRTC_CRC0_WINDOWB_Y_CONTROL,
CRTC_CRC0_WINDOWB_Y_START, params->windowb_y_start,
CRTC_CRC0_WINDOWB_Y_END, params->windowb_y_end);
/* Set crc mode and selection, and enable. Only using CRC0*/
CRTC_REG_UPDATE_3(CRTC0_CRTC_CRC_CNTL,
CRTC_CRC_EN, params->continuous_mode ? 1 : 0,
CRTC_CRC0_SELECT, params->selection,
CRTC_CRC_EN, 1);
return true;
}
static bool dce120_get_crc(struct timing_generator *tg, uint32_t *r_cr,
uint32_t *g_y, uint32_t *b_cb)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value, field;
value = dm_read_reg_soc15(tg->ctx, mmCRTC0_CRTC_CRC_CNTL,
tg110->offsets.crtc);
field = get_reg_field_value(value, CRTC0_CRTC_CRC_CNTL, CRTC_CRC_EN);
/* Early return if CRC is not enabled for this CRTC */
if (!field)
return false;
value = dm_read_reg_soc15(tg->ctx, mmCRTC0_CRTC_CRC0_DATA_RG,
tg110->offsets.crtc);
*r_cr = get_reg_field_value(value, CRTC0_CRTC_CRC0_DATA_RG, CRC0_R_CR);
*g_y = get_reg_field_value(value, CRTC0_CRTC_CRC0_DATA_RG, CRC0_G_Y);
value = dm_read_reg_soc15(tg->ctx, mmCRTC0_CRTC_CRC0_DATA_B,
tg110->offsets.crtc);
*b_cb = get_reg_field_value(value, CRTC0_CRTC_CRC0_DATA_B, CRC0_B_CB);
return true;
}
static const struct timing_generator_funcs dce120_tg_funcs = {
.validate_timing = dce120_tg_validate_timing,
.program_timing = dce120_tg_program_timing,
.enable_crtc = dce120_timing_generator_enable_crtc,
.disable_crtc = dce110_timing_generator_disable_crtc,
/* used by enable_timing_synchronization. Not need for FPGA */
.is_counter_moving = dce110_timing_generator_is_counter_moving,
/* never be called */
.get_position = dce120_timing_generator_get_crtc_position,
.get_frame_count = dce120_timing_generator_get_vblank_counter,
.get_scanoutpos = dce120_timing_generator_get_crtc_scanoutpos,
.set_early_control = dce120_timing_generator_set_early_control,
/* used by enable_timing_synchronization. Not need for FPGA */
.wait_for_state = dce120_tg_wait_for_state,
.set_blank = dce120_tg_set_blank,
.is_blanked = dce120_tg_is_blanked,
/* never be called */
.set_colors = dce120_tg_set_colors,
.set_overscan_blank_color = dce120_timing_generator_set_overscan_color_black,
.set_blank_color = dce120_timing_generator_program_blank_color,
.disable_vga = dce120_timing_generator_disable_vga,
.did_triggered_reset_occur = dce120_timing_generator_did_triggered_reset_occur,
.setup_global_swap_lock = dce120_timing_generator_setup_global_swap_lock,
.enable_reset_trigger = dce120_timing_generator_enable_reset_trigger,
.disable_reset_trigger = dce120_timing_generator_disable_reset_trigger,
.tear_down_global_swap_lock = dce120_timing_generator_tear_down_global_swap_lock,
.enable_advanced_request = dce120_timing_generator_enable_advanced_request,
.set_drr = dce120_timing_generator_set_drr,
.get_last_used_drr_vtotal = NULL,
.set_static_screen_control = dce120_timing_generator_set_static_screen_control,
.set_test_pattern = dce120_timing_generator_set_test_pattern,
.arm_vert_intr = dce120_arm_vert_intr,
.is_tg_enabled = dce120_is_tg_enabled,
.configure_crc = dce120_configure_crc,
.get_crc = dce120_get_crc,
.is_two_pixels_per_container = dce110_is_two_pixels_per_container,
};
void dce120_timing_generator_construct(
struct dce110_timing_generator *tg110,
struct dc_context *ctx,
uint32_t instance,
const struct dce110_timing_generator_offsets *offsets)
{
tg110->controller_id = CONTROLLER_ID_D0 + instance;
tg110->base.inst = instance;
tg110->offsets = *offsets;
tg110->base.funcs = &dce120_tg_funcs;
tg110->base.ctx = ctx;
tg110->base.bp = ctx->dc_bios;
tg110->max_h_total = CRTC0_CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1;
tg110->max_v_total = CRTC0_CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1;
/*//CRTC requires a minimum HBLANK = 32 pixels and o
* Minimum HSYNC = 8 pixels*/
tg110->min_h_blank = 32;
/*DCE12_CRTC_Block_ARch.doc*/
tg110->min_h_front_porch = 0;
tg110->min_h_back_porch = 0;
tg110->min_h_sync_width = 4;
tg110->min_v_sync_width = 1;
tg110->min_v_blank = 3;
}