/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "resource.h"
#include "include/irq_service_interface.h"
#include "link_encoder.h"
#include "stream_encoder.h"
#include "opp.h"
#include "timing_generator.h"
#include "transform.h"
#include "dccg.h"
#include "dchubbub.h"
#include "dpp.h"
#include "core_types.h"
#include "set_mode_types.h"
#include "virtual/virtual_stream_encoder.h"
#include "dpcd_defs.h"
#include "link_enc_cfg.h"
#include "link.h"
#include "clk_mgr.h"
#include "dc_state_priv.h"
#include "dc_stream_priv.h"
#include "virtual/virtual_link_hwss.h"
#include "link/hwss/link_hwss_dio.h"
#include "link/hwss/link_hwss_dpia.h"
#include "link/hwss/link_hwss_hpo_dp.h"
#include "link/hwss/link_hwss_dio_fixed_vs_pe_retimer.h"
#include "link/hwss/link_hwss_hpo_fixed_vs_pe_retimer_dp.h"
#if defined(CONFIG_DRM_AMD_DC_SI)
#include "dce60/dce60_resource.h"
#endif
#include "dce80/dce80_resource.h"
#include "dce100/dce100_resource.h"
#include "dce110/dce110_resource.h"
#include "dce112/dce112_resource.h"
#include "dce120/dce120_resource.h"
#include "dcn10/dcn10_resource.h"
#include "dcn20/dcn20_resource.h"
#include "dcn21/dcn21_resource.h"
#include "dcn201/dcn201_resource.h"
#include "dcn30/dcn30_resource.h"
#include "dcn301/dcn301_resource.h"
#include "dcn302/dcn302_resource.h"
#include "dcn303/dcn303_resource.h"
#include "dcn31/dcn31_resource.h"
#include "dcn314/dcn314_resource.h"
#include "dcn315/dcn315_resource.h"
#include "dcn316/dcn316_resource.h"
#include "dcn32/dcn32_resource.h"
#include "dcn321/dcn321_resource.h"
#include "dcn35/dcn35_resource.h"
#include "dcn351/dcn351_resource.h"
#include "dcn401/dcn401_resource.h"
#if defined(CONFIG_DRM_AMD_DC_FP)
#include "dc_spl_translate.h"
#endif
#define VISUAL_CONFIRM_BASE_DEFAULT 3
#define VISUAL_CONFIRM_BASE_MIN 1
#define VISUAL_CONFIRM_BASE_MAX 10
/* we choose 240 because it is a common denominator of common v addressable
* such as 2160, 1440, 1200, 960. So we take 1/240 portion of v addressable as
* the visual confirm dpp offset height. So visual confirm height can stay
* relatively the same independent from timing used.
*/
#define VISUAL_CONFIRM_DPP_OFFSET_DENO 240
#define DC_LOGGER \
dc->ctx->logger
#define DC_LOGGER_INIT(logger)
#include "dml2/dml2_wrapper.h"
#define UNABLE_TO_SPLIT -1
enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
{
enum dce_version dc_version = DCE_VERSION_UNKNOWN;
switch (asic_id.chip_family) {
#if defined(CONFIG_DRM_AMD_DC_SI)
case FAMILY_SI:
if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
dc_version = DCE_VERSION_6_0;
else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
dc_version = DCE_VERSION_6_4;
else
dc_version = DCE_VERSION_6_1;
break;
#endif
case FAMILY_CI:
dc_version = DCE_VERSION_8_0;
break;
case FAMILY_KV:
if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
dc_version = DCE_VERSION_8_3;
else
dc_version = DCE_VERSION_8_1;
break;
case FAMILY_CZ:
dc_version = DCE_VERSION_11_0;
break;
case FAMILY_VI:
if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
dc_version = DCE_VERSION_10_0;
break;
}
if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
dc_version = DCE_VERSION_11_2;
}
if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
dc_version = DCE_VERSION_11_22;
break;
case FAMILY_AI:
if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
dc_version = DCE_VERSION_12_1;
else
dc_version = DCE_VERSION_12_0;
break;
case FAMILY_RV:
dc_version = DCN_VERSION_1_0;
if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
dc_version = DCN_VERSION_1_01;
if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
dc_version = DCN_VERSION_2_1;
if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
dc_version = DCN_VERSION_2_1;
break;
case FAMILY_NV:
dc_version = DCN_VERSION_2_0;
if (asic_id.chip_id == DEVICE_ID_NV_13FE || asic_id.chip_id == DEVICE_ID_NV_143F) {
dc_version = DCN_VERSION_2_01;
break;
}
if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
dc_version = DCN_VERSION_3_0;
if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
dc_version = DCN_VERSION_3_02;
if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
dc_version = DCN_VERSION_3_03;
break;
case FAMILY_VGH:
dc_version = DCN_VERSION_3_01;
break;
case FAMILY_YELLOW_CARP:
if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
dc_version = DCN_VERSION_3_1;
break;
case AMDGPU_FAMILY_GC_10_3_6:
if (ASICREV_IS_GC_10_3_6(asic_id.hw_internal_rev))
dc_version = DCN_VERSION_3_15;
break;
case AMDGPU_FAMILY_GC_10_3_7:
if (ASICREV_IS_GC_10_3_7(asic_id.hw_internal_rev))
dc_version = DCN_VERSION_3_16;
break;
case AMDGPU_FAMILY_GC_11_0_0:
dc_version = DCN_VERSION_3_2;
if (ASICREV_IS_GC_11_0_2(asic_id.hw_internal_rev))
dc_version = DCN_VERSION_3_21;
break;
case AMDGPU_FAMILY_GC_11_0_1:
dc_version = DCN_VERSION_3_14;
break;
case AMDGPU_FAMILY_GC_11_5_0:
dc_version = DCN_VERSION_3_5;
if (ASICREV_IS_GC_11_0_4(asic_id.hw_internal_rev))
dc_version = DCN_VERSION_3_51;
break;
case AMDGPU_FAMILY_GC_12_0_0:
if (ASICREV_IS_GC_12_0_1_A0(asic_id.hw_internal_rev) ||
ASICREV_IS_GC_12_0_0_A0(asic_id.hw_internal_rev))
dc_version = DCN_VERSION_4_01;
break;
default:
dc_version = DCE_VERSION_UNKNOWN;
break;
}
return dc_version;
}
struct resource_pool *dc_create_resource_pool(struct dc *dc,
const struct dc_init_data *init_data,
enum dce_version dc_version)
{
struct resource_pool *res_pool = NULL;
switch (dc_version) {
#if defined(CONFIG_DRM_AMD_DC_SI)
case DCE_VERSION_6_0:
res_pool = dce60_create_resource_pool(
init_data->num_virtual_links, dc);
break;
case DCE_VERSION_6_1:
res_pool = dce61_create_resource_pool(
init_data->num_virtual_links, dc);
break;
case DCE_VERSION_6_4:
res_pool = dce64_create_resource_pool(
init_data->num_virtual_links, dc);
break;
#endif
case DCE_VERSION_8_0:
res_pool = dce80_create_resource_pool(
init_data->num_virtual_links, dc);
break;
case DCE_VERSION_8_1:
res_pool = dce81_create_resource_pool(
init_data->num_virtual_links, dc);
break;
case DCE_VERSION_8_3:
res_pool = dce83_create_resource_pool(
init_data->num_virtual_links, dc);
break;
case DCE_VERSION_10_0:
res_pool = dce100_create_resource_pool(
init_data->num_virtual_links, dc);
break;
case DCE_VERSION_11_0:
res_pool = dce110_create_resource_pool(
init_data->num_virtual_links, dc,
init_data->asic_id);
break;
case DCE_VERSION_11_2:
case DCE_VERSION_11_22:
res_pool = dce112_create_resource_pool(
init_data->num_virtual_links, dc);
break;
case DCE_VERSION_12_0:
case DCE_VERSION_12_1:
res_pool = dce120_create_resource_pool(
init_data->num_virtual_links, dc);
break;
#if defined(CONFIG_DRM_AMD_DC_FP)
case DCN_VERSION_1_0:
case DCN_VERSION_1_01:
res_pool = dcn10_create_resource_pool(init_data, dc);
break;
case DCN_VERSION_2_0:
res_pool = dcn20_create_resource_pool(init_data, dc);
break;
case DCN_VERSION_2_1:
res_pool = dcn21_create_resource_pool(init_data, dc);
break;
case DCN_VERSION_2_01:
res_pool = dcn201_create_resource_pool(init_data, dc);
break;
case DCN_VERSION_3_0:
res_pool = dcn30_create_resource_pool(init_data, dc);
break;
case DCN_VERSION_3_01:
res_pool = dcn301_create_resource_pool(init_data, dc);
break;
case DCN_VERSION_3_02:
res_pool = dcn302_create_resource_pool(init_data, dc);
break;
case DCN_VERSION_3_03:
res_pool = dcn303_create_resource_pool(init_data, dc);
break;
case DCN_VERSION_3_1:
res_pool = dcn31_create_resource_pool(init_data, dc);
break;
case DCN_VERSION_3_14:
res_pool = dcn314_create_resource_pool(init_data, dc);
break;
case DCN_VERSION_3_15:
res_pool = dcn315_create_resource_pool(init_data, dc);
break;
case DCN_VERSION_3_16:
res_pool = dcn316_create_resource_pool(init_data, dc);
break;
case DCN_VERSION_3_2:
res_pool = dcn32_create_resource_pool(init_data, dc);
break;
case DCN_VERSION_3_21:
res_pool = dcn321_create_resource_pool(init_data, dc);
break;
case DCN_VERSION_3_5:
res_pool = dcn35_create_resource_pool(init_data, dc);
break;
case DCN_VERSION_3_51:
res_pool = dcn351_create_resource_pool(init_data, dc);
break;
case DCN_VERSION_4_01:
res_pool = dcn401_create_resource_pool(init_data, dc);
break;
#endif /* CONFIG_DRM_AMD_DC_FP */
default:
break;
}
if (res_pool != NULL) {
if (dc->ctx->dc_bios->fw_info_valid) {
res_pool->ref_clocks.xtalin_clock_inKhz =
dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
/* initialize with firmware data first, no all
* ASIC have DCCG SW component. FPGA or
* simulation need initialization of
* dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
* with xtalin_clock_inKhz
*/
res_pool->ref_clocks.dccg_ref_clock_inKhz =
res_pool->ref_clocks.xtalin_clock_inKhz;
res_pool->ref_clocks.dchub_ref_clock_inKhz =
res_pool->ref_clocks.xtalin_clock_inKhz;
} else
ASSERT_CRITICAL(false);
}
return res_pool;
}
void dc_destroy_resource_pool(struct dc *dc)
{
if (dc) {
if (dc->res_pool)
dc->res_pool->funcs->destroy(&dc->res_pool);
kfree(dc->hwseq);
}
}
static void update_num_audio(
const struct resource_straps *straps,
unsigned int *num_audio,
struct audio_support *aud_support)
{
aud_support->dp_audio = true;
aud_support->hdmi_audio_native = false;
aud_support->hdmi_audio_on_dongle = false;
if (straps->hdmi_disable == 0) {
if (straps->dc_pinstraps_audio & 0x2) {
aud_support->hdmi_audio_on_dongle = true;
aud_support->hdmi_audio_native = true;
}
}
switch (straps->audio_stream_number) {
case 0: /* multi streams supported */
break;
case 1: /* multi streams not supported */
*num_audio = 1;
break;
default:
DC_ERR("DC: unexpected audio fuse!\n");
}
}
bool resource_construct(
unsigned int num_virtual_links,
struct dc *dc,
struct resource_pool *pool,
const struct resource_create_funcs *create_funcs)
{
struct dc_context *ctx = dc->ctx;
const struct resource_caps *caps = pool->res_cap;
int i;
unsigned int num_audio = caps->num_audio;
struct resource_straps straps = {0};
if (create_funcs->read_dce_straps)
create_funcs->read_dce_straps(dc->ctx, &straps);
pool->audio_count = 0;
if (create_funcs->create_audio) {
/* find the total number of streams available via the
* AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
* registers (one for each pin) starting from pin 1
* up to the max number of audio pins.
* We stop on the first pin where
* PORT_CONNECTIVITY == 1 (as instructed by HW team).
*/
update_num_audio(&straps, &num_audio, &pool->audio_support);
for (i = 0; i < caps->num_audio; i++) {
struct audio *aud = create_funcs->create_audio(ctx, i);
if (aud == NULL) {
DC_ERR("DC: failed to create audio!\n");
return false;
}
if (!aud->funcs->endpoint_valid(aud)) {
aud->funcs->destroy(&aud);
break;
}
pool->audios[i] = aud;
pool->audio_count++;
}
}
pool->stream_enc_count = 0;
if (create_funcs->create_stream_encoder) {
for (i = 0; i < caps->num_stream_encoder; i++) {
pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
if (pool->stream_enc[i] == NULL)
DC_ERR("DC: failed to create stream_encoder!\n");
pool->stream_enc_count++;
}
}
pool->hpo_dp_stream_enc_count = 0;
if (create_funcs->create_hpo_dp_stream_encoder) {
for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
if (pool->hpo_dp_stream_enc[i] == NULL)
DC_ERR("DC: failed to create HPO DP stream encoder!\n");
pool->hpo_dp_stream_enc_count++;
}
}
pool->hpo_dp_link_enc_count = 0;
if (create_funcs->create_hpo_dp_link_encoder) {
for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
if (pool->hpo_dp_link_enc[i] == NULL)
DC_ERR("DC: failed to create HPO DP link encoder!\n");
pool->hpo_dp_link_enc_count++;
}
}
for (i = 0; i < caps->num_mpc_3dlut; i++) {
pool->mpc_lut[i] = dc_create_3dlut_func();
if (pool->mpc_lut[i] == NULL)
DC_ERR("DC: failed to create MPC 3dlut!\n");
pool->mpc_shaper[i] = dc_create_transfer_func();
if (pool->mpc_shaper[i] == NULL)
DC_ERR("DC: failed to create MPC shaper!\n");
}
dc->caps.dynamic_audio = false;
if (pool->audio_count < pool->stream_enc_count) {
dc->caps.dynamic_audio = true;
}
for (i = 0; i < num_virtual_links; i++) {
pool->stream_enc[pool->stream_enc_count] =
virtual_stream_encoder_create(
ctx, ctx->dc_bios);
if (pool->stream_enc[pool->stream_enc_count] == NULL) {
DC_ERR("DC: failed to create stream_encoder!\n");
return false;
}
pool->stream_enc_count++;
}
dc->hwseq = create_funcs->create_hwseq(ctx);
return true;
}
static int find_matching_clock_source(
const struct resource_pool *pool,
struct clock_source *clock_source)
{
int i;
for (i = 0; i < pool->clk_src_count; i++) {
if (pool->clock_sources[i] == clock_source)
return i;
}
return -1;
}
void resource_unreference_clock_source(
struct resource_context *res_ctx,
const struct resource_pool *pool,
struct clock_source *clock_source)
{
int i = find_matching_clock_source(pool, clock_source);
if (i > -1)
res_ctx->clock_source_ref_count[i]--;
if (pool->dp_clock_source == clock_source)
res_ctx->dp_clock_source_ref_count--;
}
void resource_reference_clock_source(
struct resource_context *res_ctx,
const struct resource_pool *pool,
struct clock_source *clock_source)
{
int i = find_matching_clock_source(pool, clock_source);
if (i > -1)
res_ctx->clock_source_ref_count[i]++;
if (pool->dp_clock_source == clock_source)
res_ctx->dp_clock_source_ref_count++;
}
int resource_get_clock_source_reference(
struct resource_context *res_ctx,
const struct resource_pool *pool,
struct clock_source *clock_source)
{
int i = find_matching_clock_source(pool, clock_source);
if (i > -1)
return res_ctx->clock_source_ref_count[i];
if (pool->dp_clock_source == clock_source)
return res_ctx->dp_clock_source_ref_count;
return -1;
}
bool resource_are_vblanks_synchronizable(
struct dc_stream_state *stream1,
struct dc_stream_state *stream2)
{
uint32_t base60_refresh_rates[] = {10, 20, 5};
uint8_t i;
uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
uint64_t frame_time_diff;
if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
dc_is_dp_signal(stream1->signal) &&
dc_is_dp_signal(stream2->signal) &&
false == stream1->has_non_synchronizable_pclk &&
false == stream2->has_non_synchronizable_pclk &&
stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
/* disable refresh rates higher than 60Hz for now */
if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
stream1->timing.v_total > 60)
return false;
if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
stream2->timing.v_total > 60)
return false;
frame_time_diff = (uint64_t)10000 *
stream1->timing.h_total *
stream1->timing.v_total *
stream2->timing.pix_clk_100hz;
frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
for (i = 0; i < rr_count; i++) {
int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
if (diff < 0)
diff = -diff;
if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
return true;
}
}
return false;
}
bool resource_are_streams_timing_synchronizable(
struct dc_stream_state *stream1,
struct dc_stream_state *stream2)
{
if (stream1->timing.h_total != stream2->timing.h_total)
return false;
if (stream1->timing.v_total != stream2->timing.v_total)
return false;
if (stream1->timing.h_addressable
!= stream2->timing.h_addressable)
return false;
if (stream1->timing.v_addressable
!= stream2->timing.v_addressable)
return false;
if (stream1->timing.v_front_porch
!= stream2->timing.v_front_porch)
return false;
if (stream1->timing.pix_clk_100hz
!= stream2->timing.pix_clk_100hz)
return false;
if (stream1->clamping.c_depth != stream2->clamping.c_depth)
return false;
if (stream1->phy_pix_clk != stream2->phy_pix_clk
&& (!dc_is_dp_signal(stream1->signal)
|| !dc_is_dp_signal(stream2->signal)))
return false;
if (stream1->view_format != stream2->view_format)
return false;
if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
return false;
return true;
}
static bool is_dp_and_hdmi_sharable(
struct dc_stream_state *stream1,
struct dc_stream_state *stream2)
{
if (stream1->ctx->dc->caps.disable_dp_clk_share)
return false;
if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
stream2->clamping.c_depth != COLOR_DEPTH_888)
return false;
return true;
}
static bool is_sharable_clk_src(
const struct pipe_ctx *pipe_with_clk_src,
const struct pipe_ctx *pipe)
{
if (pipe_with_clk_src->clock_source == NULL)
return false;
if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
return false;
if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
(dc_is_dp_signal(pipe->stream->signal) &&
!is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
pipe->stream)))
return false;
if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
&& dc_is_dual_link_signal(pipe->stream->signal))
return false;
if (dc_is_hdmi_signal(pipe->stream->signal)
&& dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
return false;
if (!resource_are_streams_timing_synchronizable(
pipe_with_clk_src->stream, pipe->stream))
return false;
return true;
}
struct clock_source *resource_find_used_clk_src_for_sharing(
struct resource_context *res_ctx,
struct pipe_ctx *pipe_ctx)
{
int i;
for (i = 0; i < MAX_PIPES; i++) {
if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
return res_ctx->pipe_ctx[i].clock_source;
}
return NULL;
}
static enum pixel_format convert_pixel_format_to_dalsurface(
enum surface_pixel_format surface_pixel_format)
{
enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
switch (surface_pixel_format) {
case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
dal_pixel_format = PIXEL_FORMAT_INDEX8;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
dal_pixel_format = PIXEL_FORMAT_RGB565;
break;
case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
dal_pixel_format = PIXEL_FORMAT_RGB565;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
dal_pixel_format = PIXEL_FORMAT_ARGB8888;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
dal_pixel_format = PIXEL_FORMAT_ARGB8888;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
dal_pixel_format = PIXEL_FORMAT_FP16;
break;
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
dal_pixel_format = PIXEL_FORMAT_420BPP8;
break;
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
dal_pixel_format = PIXEL_FORMAT_420BPP10;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
default:
dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
break;
}
return dal_pixel_format;
}
static inline void get_vp_scan_direction(
enum dc_rotation_angle rotation,
bool horizontal_mirror,
bool *orthogonal_rotation,
bool *flip_vert_scan_dir,
bool *flip_horz_scan_dir)
{
*orthogonal_rotation = false;
*flip_vert_scan_dir = false;
*flip_horz_scan_dir = false;
if (rotation == ROTATION_ANGLE_180) {
*flip_vert_scan_dir = true;
*flip_horz_scan_dir = true;
} else if (rotation == ROTATION_ANGLE_90) {
*orthogonal_rotation = true;
*flip_horz_scan_dir = true;
} else if (rotation == ROTATION_ANGLE_270) {
*orthogonal_rotation = true;
*flip_vert_scan_dir = true;
}
if (horizontal_mirror)
*flip_horz_scan_dir = !*flip_horz_scan_dir;
}
/*
* This is a preliminary vp size calculation to allow us to check taps support.
* The result is completely overridden afterwards.
*/
static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
{
struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
swap(data->viewport.width, data->viewport.height);
swap(data->viewport_c.width, data->viewport_c.height);
}
}
static struct rect intersect_rec(const struct rect *r0, const struct rect *r1)
{
struct rect rec;
int r0_x_end = r0->x + r0->width;
int r1_x_end = r1->x + r1->width;
int r0_y_end = r0->y + r0->height;
int r1_y_end = r1->y + r1->height;
rec.x = r0->x > r1->x ? r0->x : r1->x;
rec.width = r0_x_end > r1_x_end ? r1_x_end - rec.x : r0_x_end - rec.x;
rec.y = r0->y > r1->y ? r0->y : r1->y;
rec.height = r0_y_end > r1_y_end ? r1_y_end - rec.y : r0_y_end - rec.y;
/* in case that there is no intersection */
if (rec.width < 0 || rec.height < 0)
memset(&rec, 0, sizeof(rec));
return rec;
}
static struct rect shift_rec(const struct rect *rec_in, int x, int y)
{
struct rect rec_out = *rec_in;
rec_out.x += x;
rec_out.y += y;
return rec_out;
}
static struct rect calculate_plane_rec_in_timing_active(
struct pipe_ctx *pipe_ctx,
const struct rect *rec_in)
{
/*
* The following diagram shows an example where we map a 1920x1200
* desktop to a 2560x1440 timing with a plane rect in the middle
* of the screen. To map a plane rect from Stream Source to Timing
* Active space, we first multiply stream scaling ratios (i.e 2304/1920
* horizontal and 1440/1200 vertical) to the plane's x and y, then
* we add stream destination offsets (i.e 128 horizontal, 0 vertical).
* This will give us a plane rect's position in Timing Active. However
* we have to remove the fractional. The rule is that we find left/right
* and top/bottom positions and round the value to the adjacent integer.
*
* Stream Source Space
* ------------
* __________________________________________________
* |Stream Source (1920 x 1200) ^ |
* | y |
* | <------- w --------|> |
* | __________________V |
* |<-- x -->|Plane//////////////| ^ |
* | |(pre scale)////////| | |
* | |///////////////////| | |
* | |///////////////////| h |
* | |///////////////////| | |
* | |///////////////////| | |
* | |///////////////////| V |
* | |
* | |
* |__________________________________________________|
*
*
* Timing Active Space
* ---------------------------------
*
* Timing Active (2560 x 1440)
* __________________________________________________
* |*****| Stteam Destination (2304 x 1440) |*****|
* |*****| |*****|
* |<128>| |*****|
* |*****| __________________ |*****|
* |*****| |Plane/////////////| |*****|
* |*****| |(post scale)//////| |*****|
* |*****| |//////////////////| |*****|
* |*****| |//////////////////| |*****|
* |*****| |//////////////////| |*****|
* |*****| |//////////////////| |*****|
* |*****| |*****|
* |*****| |*****|
* |*****| |*****|
* |*****|______________________________________|*****|
*
* So the resulting formulas are shown below:
*
* recout_x = 128 + round(plane_x * 2304 / 1920)
* recout_w = 128 + round((plane_x + plane_w) * 2304 / 1920) - recout_x
* recout_y = 0 + round(plane_y * 1440 / 1280)
* recout_h = 0 + round((plane_y + plane_h) * 1440 / 1200) - recout_y
*
* NOTE: fixed point division is not error free. To reduce errors
* introduced by fixed point division, we divide only after
* multiplication is complete.
*/
const struct dc_stream_state *stream = pipe_ctx->stream;
struct rect rec_out = {0};
struct fixed31_32 temp;
temp = dc_fixpt_from_fraction(rec_in->x * (long long)stream->dst.width,
stream->src.width);
rec_out.x = stream->dst.x + dc_fixpt_round(temp);
temp = dc_fixpt_from_fraction(
(rec_in->x + rec_in->width) * (long long)stream->dst.width,
stream->src.width);
rec_out.width = stream->dst.x + dc_fixpt_round(temp) - rec_out.x;
temp = dc_fixpt_from_fraction(rec_in->y * (long long)stream->dst.height,
stream->src.height);
rec_out.y = stream->dst.y + dc_fixpt_round(temp);
temp = dc_fixpt_from_fraction(
(rec_in->y + rec_in->height) * (long long)stream->dst.height,
stream->src.height);
rec_out.height = stream->dst.y + dc_fixpt_round(temp) - rec_out.y;
return rec_out;
}
static struct rect calculate_mpc_slice_in_timing_active(
struct pipe_ctx *pipe_ctx,
struct rect *plane_clip_rec)
{
const struct dc_stream_state *stream = pipe_ctx->stream;
int mpc_slice_count = resource_get_mpc_slice_count(pipe_ctx);
int mpc_slice_idx = resource_get_mpc_slice_index(pipe_ctx);
int epimo = mpc_slice_count - plane_clip_rec->width % mpc_slice_count - 1;
struct rect mpc_rec;
mpc_rec.width = plane_clip_rec->width / mpc_slice_count;
mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
mpc_rec.height = plane_clip_rec->height;
mpc_rec.y = plane_clip_rec->y;
ASSERT(mpc_slice_count == 1 ||
stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE ||
mpc_rec.width % 2 == 0);
if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
mpc_rec.x -= (mpc_rec.width * mpc_slice_idx);
/* extra pixels in the division remainder need to go to pipes after
* the extra pixel index minus one(epimo) defined here as:
*/
if (mpc_slice_idx > epimo) {
mpc_rec.x += mpc_slice_idx - epimo - 1;
mpc_rec.width += 1;
}
if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) {
ASSERT(mpc_rec.height % 2 == 0);
mpc_rec.height /= 2;
}
return mpc_rec;
}
static void calculate_adjust_recout_for_visual_confirm(struct pipe_ctx *pipe_ctx,
int *base_offset, int *dpp_offset)
{
struct dc *dc = pipe_ctx->stream->ctx->dc;
*base_offset = 0;
*dpp_offset = 0;
if (dc->debug.visual_confirm == VISUAL_CONFIRM_DISABLE || !pipe_ctx->plane_res.dpp)
return;
*dpp_offset = pipe_ctx->stream->timing.v_addressable / VISUAL_CONFIRM_DPP_OFFSET_DENO;
*dpp_offset *= pipe_ctx->plane_res.dpp->inst;
if ((dc->debug.visual_confirm_rect_height >= VISUAL_CONFIRM_BASE_MIN) &&
dc->debug.visual_confirm_rect_height <= VISUAL_CONFIRM_BASE_MAX)
*base_offset = dc->debug.visual_confirm_rect_height;
else
*base_offset = VISUAL_CONFIRM_BASE_DEFAULT;
}
static void adjust_recout_for_visual_confirm(struct rect *recout,
struct pipe_ctx *pipe_ctx)
{
int dpp_offset, base_offset;
calculate_adjust_recout_for_visual_confirm(pipe_ctx, &base_offset,
&dpp_offset);
recout->height -= base_offset;
recout->height -= dpp_offset;
}
/*
* The function maps a plane clip from Stream Source Space to ODM Slice Space
* and calculates the rec of the overlapping area of MPC slice of the plane
* clip, ODM slice associated with the pipe context and stream destination rec.
*/
static void calculate_recout(struct pipe_ctx *pipe_ctx)
{
/*
* A plane clip represents the desired plane size and position in Stream
* Source Space. Stream Source is the destination where all planes are
* blended (i.e. positioned, scaled and overlaid). It is a canvas where
* all planes associated with the current stream are drawn together.
* After Stream Source is completed, we will further scale and
* reposition the entire canvas of the stream source to Stream
* Destination in Timing Active Space. This could be due to display
* overscan adjustment where we will need to rescale and reposition all
* the planes so they can fit into a TV with overscan or downscale
* upscale features such as GPU scaling or VSR.
*
* This two step blending is a virtual procedure in software. In
* hardware there is no such thing as Stream Source. all planes are
* blended once in Timing Active Space. Software virtualizes a Stream
* Source space to decouple the math complicity so scaling param
* calculation focuses on one step at a time.
*
* In the following two diagrams, user applied 10% overscan adjustment
* so the Stream Source needs to be scaled down a little before mapping
* to Timing Active Space. As a result the Plane Clip is also scaled
* down by the same ratio, Plane Clip position (i.e. x and y) with
* respect to Stream Source is also scaled down. To map it in Timing
* Active Space additional x and y offsets from Stream Destination are
* added to Plane Clip as well.
*
* Stream Source Space
* ------------
* __________________________________________________
* |Stream Source (3840 x 2160) ^ |
* | y |
* | | |
* | __________________V |
* |<-- x -->|Plane Clip/////////| |
* | |(pre scale)////////| |
* | |///////////////////| |
* | |///////////////////| |
* | |///////////////////| |
* | |///////////////////| |
* | |///////////////////| |
* | |
* | |
* |__________________________________________________|
*
*
* Timing Active Space (3840 x 2160)
* ---------------------------------
*
* Timing Active
* __________________________________________________
* | y_____________________________________________ |
* |x |Stream Destination (3456 x 1944) | |
* | | | |
* | | __________________ | |
* | | |Plane Clip////////| | |
* | | |(post scale)//////| | |
* | | |//////////////////| | |
* | | |//////////////////| | |
* | | |//////////////////| | |
* | | |//////////////////| | |
* | | | |
* | | | |
* | |____________________________________________| |
* |__________________________________________________|
*
*
* In Timing Active Space a plane clip could be further sliced into
* pieces called MPC slices. Each Pipe Context is responsible for
* processing only one MPC slice so the plane processing workload can be
* distributed to multiple DPP Pipes. MPC slices could be blended
* together to a single ODM slice. Each ODM slice is responsible for
* processing a portion of Timing Active divided horizontally so the
* output pixel processing workload can be distributed to multiple OPP
* pipes. All ODM slices are mapped together in ODM block so all MPC
* slices belong to different ODM slices could be pieced together to
* form a single image in Timing Active. MPC slices must belong to
* single ODM slice. If an MPC slice goes across ODM slice boundary, it
* needs to be divided into two MPC slices one for each ODM slice.
*
* In the following diagram the output pixel processing workload is
* divided horizontally into two ODM slices one for each OPP blend tree.
* OPP0 blend tree is responsible for processing left half of Timing
* Active, while OPP2 blend tree is responsible for processing right
* half.
*
* The plane has two MPC slices. However since the right MPC slice goes
* across ODM boundary, two DPP pipes are needed one for each OPP blend
* tree. (i.e. DPP1 for OPP0 blend tree and DPP2 for OPP2 blend tree).
*
* Assuming that we have a Pipe Context associated with OPP0 and DPP1
* working on processing the plane in the diagram. We want to know the
* width and height of the shaded rectangle and its relative position
* with respect to the ODM slice0. This is called the recout of the pipe
* context.
*
* Planes can be at arbitrary size and position and there could be an
* arbitrary number of MPC and ODM slices. The algorithm needs to take
* all scenarios into account.
*
* Timing Active Space (3840 x 2160)
* ---------------------------------
*
* Timing Active
* __________________________________________________
* |OPP0(ODM slice0)^ |OPP2(ODM slice1) |
* | y | |
* | | <- w -> |
* | _____V________|____ |
* | |DPP0 ^ |DPP1 |DPP2| |
* |<------ x |-----|->|/////| | |
* | | | |/////| | |
* | | h |/////| | |
* | | | |/////| | |
* | |_____V__|/////|____| |
* | | |
* | | |
* | | |
* |_________________________|________________________|
*
*
*/
struct rect plane_clip;
struct rect mpc_slice_of_plane_clip;
struct rect odm_slice_src;
struct rect overlapping_area;
plane_clip = calculate_plane_rec_in_timing_active(pipe_ctx,
&pipe_ctx->plane_state->clip_rect);
/* guard plane clip from drawing beyond stream dst here */
plane_clip = intersect_rec(&plane_clip,
&pipe_ctx->stream->dst);
mpc_slice_of_plane_clip = calculate_mpc_slice_in_timing_active(
pipe_ctx, &plane_clip);
odm_slice_src = resource_get_odm_slice_src_rect(pipe_ctx);
overlapping_area = intersect_rec(&mpc_slice_of_plane_clip, &odm_slice_src);
if (overlapping_area.height > 0 &&
overlapping_area.width > 0) {
/* shift the overlapping area so it is with respect to current
* ODM slice source's position
*/
pipe_ctx->plane_res.scl_data.recout = shift_rec(
&overlapping_area,
-odm_slice_src.x, -odm_slice_src.y);
adjust_recout_for_visual_confirm(
&pipe_ctx->plane_res.scl_data.recout,
pipe_ctx);
} else {
/* if there is no overlap, zero recout */
memset(&pipe_ctx->plane_res.scl_data.recout, 0,
sizeof(struct rect));
}
}
static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
{
const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
const struct dc_stream_state *stream = pipe_ctx->stream;
struct rect surf_src = plane_state->src_rect;
const int in_w = stream->src.width;
const int in_h = stream->src.height;
const int out_w = stream->dst.width;
const int out_h = stream->dst.height;
/*Swap surf_src height and width since scaling ratios are in recout rotation*/
if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
swap(surf_src.height, surf_src.width);
pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
surf_src.width,
plane_state->dst_rect.width);
pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
surf_src.height,
plane_state->dst_rect.height);
if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
|| pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
}
pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
pipe_ctx->plane_res.scl_data.ratios.horz, 19);
pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
pipe_ctx->plane_res.scl_data.ratios.vert, 19);
pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
}
/*
* We completely calculate vp offset, size and inits here based entirely on scaling
* ratios and recout for pixel perfect pipe combine.
*/
static void calculate_init_and_vp(
bool flip_scan_dir,
int recout_offset_within_recout_full,
int recout_size,
int src_size,
int taps,
struct fixed31_32 ratio,
struct fixed31_32 *init,
int *vp_offset,
int *vp_size)
{
struct fixed31_32 temp;
int int_part;
/*
* First of the taps starts sampling pixel number <init_int_part> corresponding to recout
* pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
* All following calculations are based on this logic.
*
* Init calculated according to formula:
* init = (scaling_ratio + number_of_taps + 1) / 2
* init_bot = init + scaling_ratio
* to get pixel perfect combine add the fraction from calculating vp offset
*/
temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
*vp_offset = dc_fixpt_floor(temp);
temp.value &= 0xffffffff;
*init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
/*
* If viewport has non 0 offset and there are more taps than covered by init then
* we should decrease the offset and increase init so we are never sampling
* outside of viewport.
*/
int_part = dc_fixpt_floor(*init);
if (int_part < taps) {
int_part = taps - int_part;
if (int_part > *vp_offset)
int_part = *vp_offset;
*vp_offset -= int_part;
*init = dc_fixpt_add_int(*init, int_part);
}
/*
* If taps are sampling outside of viewport at end of recout and there are more pixels
* available in the surface we should increase the viewport size, regardless set vp to
* only what is used.
*/
temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
*vp_size = dc_fixpt_floor(temp);
if (*vp_size + *vp_offset > src_size)
*vp_size = src_size - *vp_offset;
/* We did all the math assuming we are scanning same direction as display does,
* however mirror/rotation changes how vp scans vs how it is offset. If scan direction
* is flipped we simply need to calculate offset from the other side of plane.
* Note that outside of viewport all scaling hardware works in recout space.
*/
if (flip_scan_dir)
*vp_offset = src_size - *vp_offset - *vp_size;
}
static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
{
const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
struct rect src = plane_state->src_rect;
struct rect recout_dst_in_active_timing;
struct rect recout_clip_in_active_timing;
struct rect recout_clip_in_recout_dst;
struct rect overlap_in_active_timing;
struct rect odm_slice_src = resource_get_odm_slice_src_rect(pipe_ctx);
int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
recout_clip_in_active_timing = shift_rec(
&data->recout, odm_slice_src.x, odm_slice_src.y);
recout_dst_in_active_timing = calculate_plane_rec_in_timing_active(
pipe_ctx, &plane_state->dst_rect);
overlap_in_active_timing = intersect_rec(&recout_clip_in_active_timing,
&recout_dst_in_active_timing);
if (overlap_in_active_timing.width > 0 &&
overlap_in_active_timing.height > 0)
recout_clip_in_recout_dst = shift_rec(&overlap_in_active_timing,
-recout_dst_in_active_timing.x,
-recout_dst_in_active_timing.y);
else
memset(&recout_clip_in_recout_dst, 0, sizeof(struct rect));
/*
* Work in recout rotation since that requires less transformations
*/
get_vp_scan_direction(
plane_state->rotation,
plane_state->horizontal_mirror,
&orthogonal_rotation,
&flip_vert_scan_dir,
&flip_horz_scan_dir);
if (orthogonal_rotation) {
swap(src.width, src.height);
swap(flip_vert_scan_dir, flip_horz_scan_dir);
}
calculate_init_and_vp(
flip_horz_scan_dir,
recout_clip_in_recout_dst.x,
data->recout.width,
src.width,
data->taps.h_taps,
data->ratios.horz,
&data->inits.h,
&data->viewport.x,
&data->viewport.width);
calculate_init_and_vp(
flip_horz_scan_dir,
recout_clip_in_recout_dst.x,
data->recout.width,
src.width / vpc_div,
data->taps.h_taps_c,
data->ratios.horz_c,
&data->inits.h_c,
&data->viewport_c.x,
&data->viewport_c.width);
calculate_init_and_vp(
flip_vert_scan_dir,
recout_clip_in_recout_dst.y,
data->recout.height,
src.height,
data->taps.v_taps,
data->ratios.vert,
&data->inits.v,
&data->viewport.y,
&data->viewport.height);
calculate_init_and_vp(
flip_vert_scan_dir,
recout_clip_in_recout_dst.y,
data->recout.height,
src.height / vpc_div,
data->taps.v_taps_c,
data->ratios.vert_c,
&data->inits.v_c,
&data->viewport_c.y,
&data->viewport_c.height);
if (orthogonal_rotation) {
swap(data->viewport.x, data->viewport.y);
swap(data->viewport.width, data->viewport.height);
swap(data->viewport_c.x, data->viewport_c.y);
swap(data->viewport_c.width, data->viewport_c.height);
}
data->viewport.x += src.x;
data->viewport.y += src.y;
ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
data->viewport_c.x += src.x / vpc_div;
data->viewport_c.y += src.y / vpc_div;
}
static bool is_subvp_high_refresh_candidate(struct dc_stream_state *stream)
{
uint32_t refresh_rate;
struct dc *dc = stream->ctx->dc;
refresh_rate = (stream->timing.pix_clk_100hz * (uint64_t)100 +
stream->timing.v_total * stream->timing.h_total - (uint64_t)1);
refresh_rate = div_u64(refresh_rate, stream->timing.v_total);
refresh_rate = div_u64(refresh_rate, stream->timing.h_total);
/* If there's any stream that fits the SubVP high refresh criteria,
* we must return true. This is because cursor updates are asynchronous
* with full updates, so we could transition into a SubVP config and
* remain in HW cursor mode if there's no cursor update which will
* then cause corruption.
*/
if ((refresh_rate >= 120 && refresh_rate <= 175 &&
stream->timing.v_addressable >= 1080 &&
stream->timing.v_addressable <= 2160) &&
(dc->current_state->stream_count > 1 ||
(dc->current_state->stream_count == 1 && !stream->allow_freesync)))
return true;
return false;
}
static enum controller_dp_test_pattern convert_dp_to_controller_test_pattern(
enum dp_test_pattern test_pattern)
{
enum controller_dp_test_pattern controller_test_pattern;
switch (test_pattern) {
case DP_TEST_PATTERN_COLOR_SQUARES:
controller_test_pattern =
CONTROLLER_DP_TEST_PATTERN_COLORSQUARES;
break;
case DP_TEST_PATTERN_COLOR_SQUARES_CEA:
controller_test_pattern =
CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA;
break;
case DP_TEST_PATTERN_VERTICAL_BARS:
controller_test_pattern =
CONTROLLER_DP_TEST_PATTERN_VERTICALBARS;
break;
case DP_TEST_PATTERN_HORIZONTAL_BARS:
controller_test_pattern =
CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS;
break;
case DP_TEST_PATTERN_COLOR_RAMP:
controller_test_pattern =
CONTROLLER_DP_TEST_PATTERN_COLORRAMP;
break;
default:
controller_test_pattern =
CONTROLLER_DP_TEST_PATTERN_VIDEOMODE;
break;
}
return controller_test_pattern;
}
static enum controller_dp_color_space convert_dp_to_controller_color_space(
enum dp_test_pattern_color_space color_space)
{
enum controller_dp_color_space controller_color_space;
switch (color_space) {
case DP_TEST_PATTERN_COLOR_SPACE_RGB:
controller_color_space = CONTROLLER_DP_COLOR_SPACE_RGB;
break;
case DP_TEST_PATTERN_COLOR_SPACE_YCBCR601:
controller_color_space = CONTROLLER_DP_COLOR_SPACE_YCBCR601;
break;
case DP_TEST_PATTERN_COLOR_SPACE_YCBCR709:
controller_color_space = CONTROLLER_DP_COLOR_SPACE_YCBCR709;
break;
case DP_TEST_PATTERN_COLOR_SPACE_UNDEFINED:
default:
controller_color_space = CONTROLLER_DP_COLOR_SPACE_UDEFINED;
break;
}
return controller_color_space;
}
void resource_build_test_pattern_params(struct resource_context *res_ctx,
struct pipe_ctx *otg_master)
{
struct pipe_ctx *opp_heads[MAX_PIPES];
struct test_pattern_params *params;
int odm_cnt;
enum controller_dp_test_pattern controller_test_pattern;
enum controller_dp_color_space controller_color_space;
enum dc_color_depth color_depth = otg_master->stream->timing.display_color_depth;
struct rect odm_slice_src;
int i;
controller_test_pattern = convert_dp_to_controller_test_pattern(
otg_master->stream->test_pattern.type);
controller_color_space = convert_dp_to_controller_color_space(
otg_master->stream->test_pattern.color_space);
if (controller_test_pattern == CONTROLLER_DP_TEST_PATTERN_VIDEOMODE)
return;
odm_cnt = resource_get_opp_heads_for_otg_master(otg_master, res_ctx, opp_heads);
for (i = 0; i < odm_cnt; i++) {
odm_slice_src = resource_get_odm_slice_src_rect(opp_heads[i]);
params = &opp_heads[i]->stream_res.test_pattern_params;
params->test_pattern = controller_test_pattern;
params->color_space = controller_color_space;
params->color_depth = color_depth;
params->height = odm_slice_src.height;
params->offset = odm_slice_src.x;
params->width = odm_slice_src.width;
}
}
bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
{
const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
const struct rect odm_slice_src = resource_get_odm_slice_src_rect(pipe_ctx);
bool res = false;
DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
/* Invalid input */
if (!plane_state->dst_rect.width ||
!plane_state->dst_rect.height ||
!plane_state->src_rect.width ||
!plane_state->src_rect.height) {
ASSERT(0);
return false;
}
/* Timing borders are part of vactive that we are also supposed to skip in addition
* to any stream dst offset. Since dm logic assumes dst is in addressable
* space we need to add the left and top borders to dst offsets temporarily.
* TODO: fix in DM, stream dst is supposed to be in vactive
*/
pipe_ctx->stream->dst.x += timing->h_border_left;
pipe_ctx->stream->dst.y += timing->v_border_top;
/* Calculate H and V active size */
pipe_ctx->plane_res.scl_data.h_active = odm_slice_src.width;
pipe_ctx->plane_res.scl_data.v_active = odm_slice_src.height;
pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
pipe_ctx->plane_state->format);
#if defined(CONFIG_DRM_AMD_DC_FP)
if ((pipe_ctx->stream->ctx->dc->config.use_spl) && (!pipe_ctx->stream->ctx->dc->debug.disable_spl)) {
struct spl_in *spl_in = &pipe_ctx->plane_res.spl_in;
struct spl_out *spl_out = &pipe_ctx->plane_res.spl_out;
if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
else
pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
// Convert pipe_ctx to respective input params for SPL
translate_SPL_in_params_from_pipe_ctx(pipe_ctx, spl_in);
/* Pass visual confirm debug information */
calculate_adjust_recout_for_visual_confirm(pipe_ctx,
&spl_in->debug.visual_confirm_base_offset,
&spl_in->debug.visual_confirm_dpp_offset);
// Set SPL output parameters to dscl_prog_data to be used for hw registers
spl_out->dscl_prog_data = resource_get_dscl_prog_data(pipe_ctx);
// Calculate scaler parameters from SPL
res = spl_calculate_scaler_params(spl_in, spl_out);
// Convert respective out params from SPL to scaler data
translate_SPL_out_params_to_pipe_ctx(pipe_ctx, spl_out);
} else {
#endif
/* depends on h_active */
calculate_recout(pipe_ctx);
/* depends on pixel format */
calculate_scaling_ratios(pipe_ctx);
/* depends on scaling ratios and recout, does not calculate offset yet */
calculate_viewport_size(pipe_ctx);
/*
* LB calculations depend on vp size, h/v_active and scaling ratios
* Setting line buffer pixel depth to 24bpp yields banding
* on certain displays, such as the Sharp 4k. 36bpp is needed
* to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
* SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
* precision on DCN display engines, but apparently not for DCE, as
* far as testing on DCE-11.2 and DCE-8 showed. Various DCE parts have
* problems: Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
* neither do DCE-8 at 4k resolution, or DCE-11.2 (broken identify pixel
* passthrough). Therefore only use 36 bpp on DCN where it is actually needed.
*/
if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
else
pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
if (pipe_ctx->plane_res.xfm != NULL)
res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
if (pipe_ctx->plane_res.dpp != NULL)
res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
if (!res) {
/* Try 24 bpp linebuffer */
pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
if (pipe_ctx->plane_res.xfm != NULL)
res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
pipe_ctx->plane_res.xfm,
&pipe_ctx->plane_res.scl_data,
&plane_state->scaling_quality);
if (pipe_ctx->plane_res.dpp != NULL)
res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
pipe_ctx->plane_res.dpp,
&pipe_ctx->plane_res.scl_data,
&plane_state->scaling_quality);
}
/*
* Depends on recout, scaling ratios, h_active and taps
* May need to re-check lb size after this in some obscure scenario
*/
if (res)
calculate_inits_and_viewports(pipe_ctx);
/*
* Handle side by side and top bottom 3d recout offsets after vp calculation
* since 3d is special and needs to calculate vp as if there is no recout offset
* This may break with rotation, good thing we aren't mixing hw rotation and 3d
*/
if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
(pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
}
/* Clamp minimum viewport size */
if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
#ifdef CONFIG_DRM_AMD_DC_FP
}
#endif
DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d Recout: height:%d width:%d x:%d y:%d HACTIVE:%d VACTIVE:%d\n"
"src_rect: height:%d width:%d x:%d y:%d dst_rect: height:%d width:%d x:%d y:%d clip_rect: height:%d width:%d x:%d y:%d\n",
__func__,
pipe_ctx->pipe_idx,
pipe_ctx->plane_res.scl_data.viewport.height,
pipe_ctx->plane_res.scl_data.viewport.width,
pipe_ctx->plane_res.scl_data.viewport.x,
pipe_ctx->plane_res.scl_data.viewport.y,
pipe_ctx->plane_res.scl_data.recout.height,
pipe_ctx->plane_res.scl_data.recout.width,
pipe_ctx->plane_res.scl_data.recout.x,
pipe_ctx->plane_res.scl_data.recout.y,
pipe_ctx->plane_res.scl_data.h_active,
pipe_ctx->plane_res.scl_data.v_active,
plane_state->src_rect.height,
plane_state->src_rect.width,
plane_state->src_rect.x,
plane_state->src_rect.y,
plane_state->dst_rect.height,
plane_state->dst_rect.width,
plane_state->dst_rect.x,
plane_state->dst_rect.y,
plane_state->clip_rect.height,
plane_state->clip_rect.width,
plane_state->clip_rect.x,
plane_state->clip_rect.y);
pipe_ctx->stream->dst.x -= timing->h_border_left;
pipe_ctx->stream->dst.y -= timing->v_border_top;
return res;
}
enum dc_status resource_build_scaling_params_for_context(
const struct dc *dc,
struct dc_state *context)
{
int i;
for (i = 0; i < MAX_PIPES; i++) {
if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
context->res_ctx.pipe_ctx[i].stream != NULL)
if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
return DC_FAIL_SCALING;
}
return DC_OK;
}
struct pipe_ctx *resource_find_free_secondary_pipe_legacy(
struct resource_context *res_ctx,
const struct resource_pool *pool,
const struct pipe_ctx *primary_pipe)
{
int i;
struct pipe_ctx *secondary_pipe = NULL;
/*
* We add a preferred pipe mapping to avoid the chance that
* MPCCs already in use will need to be reassigned to other trees.
* For example, if we went with the strict, assign backwards logic:
*
* (State 1)
* Display A on, no surface, top pipe = 0
* Display B on, no surface, top pipe = 1
*
* (State 2)
* Display A on, no surface, top pipe = 0
* Display B on, surface enable, top pipe = 1, bottom pipe = 5
*
* (State 3)
* Display A on, surface enable, top pipe = 0, bottom pipe = 5
* Display B on, surface enable, top pipe = 1, bottom pipe = 4
*
* The state 2->3 transition requires remapping MPCC 5 from display B
* to display A.
*
* However, with the preferred pipe logic, state 2 would look like:
*
* (State 2)
* Display A on, no surface, top pipe = 0
* Display B on, surface enable, top pipe = 1, bottom pipe = 4
*
* This would then cause 2->3 to not require remapping any MPCCs.
*/
if (primary_pipe) {
int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
secondary_pipe->pipe_idx = preferred_pipe_idx;
}
}
/*
* search backwards for the second pipe to keep pipe
* assignment more consistent
*/
if (!secondary_pipe)
for (i = pool->pipe_count - 1; i >= 0; i--) {
if (res_ctx->pipe_ctx[i].stream == NULL) {
secondary_pipe = &res_ctx->pipe_ctx[i];
secondary_pipe->pipe_idx = i;
break;
}
}
return secondary_pipe;
}
int resource_find_free_pipe_used_as_sec_opp_head_by_cur_otg_master(
const struct resource_context *cur_res_ctx,
struct resource_context *new_res_ctx,
const struct pipe_ctx *cur_otg_master)
{
const struct pipe_ctx *cur_sec_opp_head = cur_otg_master->next_odm_pipe;
struct pipe_ctx *new_pipe;
int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
while (cur_sec_opp_head) {
new_pipe = &new_res_ctx->pipe_ctx[cur_sec_opp_head->pipe_idx];
if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
free_pipe_idx = cur_sec_opp_head->pipe_idx;
break;
}
cur_sec_opp_head = cur_sec_opp_head->next_odm_pipe;
}
return free_pipe_idx;
}
int resource_find_free_pipe_used_in_cur_mpc_blending_tree(
const struct resource_context *cur_res_ctx,
struct resource_context *new_res_ctx,
const struct pipe_ctx *cur_opp_head)
{
const struct pipe_ctx *cur_sec_dpp = cur_opp_head->bottom_pipe;
struct pipe_ctx *new_pipe;
int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
while (cur_sec_dpp) {
/* find a free pipe used in current opp blend tree,
* this is to avoid MPO pipe switching to different opp blending
* tree
*/
new_pipe = &new_res_ctx->pipe_ctx[cur_sec_dpp->pipe_idx];
if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
free_pipe_idx = cur_sec_dpp->pipe_idx;
break;
}
cur_sec_dpp = cur_sec_dpp->bottom_pipe;
}
return free_pipe_idx;
}
int recource_find_free_pipe_not_used_in_cur_res_ctx(
const struct resource_context *cur_res_ctx,
struct resource_context *new_res_ctx,
const struct resource_pool *pool)
{
int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
const struct pipe_ctx *new_pipe, *cur_pipe;
int i;
for (i = 0; i < pool->pipe_count; i++) {
cur_pipe = &cur_res_ctx->pipe_ctx[i];
new_pipe = &new_res_ctx->pipe_ctx[i];
if (resource_is_pipe_type(cur_pipe, FREE_PIPE) &&
resource_is_pipe_type(new_pipe, FREE_PIPE)) {
free_pipe_idx = i;
break;
}
}
return free_pipe_idx;
}
int recource_find_free_pipe_used_as_otg_master_in_cur_res_ctx(
const struct resource_context *cur_res_ctx,
struct resource_context *new_res_ctx,
const struct resource_pool *pool)
{
int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
const struct pipe_ctx *new_pipe, *cur_pipe;
int i;
for (i = 0; i < pool->pipe_count; i++) {
cur_pipe = &cur_res_ctx->pipe_ctx[i];
new_pipe = &new_res_ctx->pipe_ctx[i];
if (resource_is_pipe_type(cur_pipe, OTG_MASTER) &&
resource_is_pipe_type(new_pipe, FREE_PIPE)) {
free_pipe_idx = i;
break;
}
}
return free_pipe_idx;
}
int resource_find_free_pipe_used_as_cur_sec_dpp(
const struct resource_context *cur_res_ctx,
struct resource_context *new_res_ctx,
const struct resource_pool *pool)
{
int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
const struct pipe_ctx *new_pipe, *cur_pipe;
int i;
for (i = 0; i < pool->pipe_count; i++) {
cur_pipe = &cur_res_ctx->pipe_ctx[i];
new_pipe = &new_res_ctx->pipe_ctx[i];
if (resource_is_pipe_type(cur_pipe, DPP_PIPE) &&
!resource_is_pipe_type(cur_pipe, OPP_HEAD) &&
resource_is_pipe_type(new_pipe, FREE_PIPE)) {
free_pipe_idx = i;
break;
}
}
return free_pipe_idx;
}
int resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
const struct resource_context *cur_res_ctx,
struct resource_context *new_res_ctx,
const struct resource_pool *pool)
{
int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
const struct pipe_ctx *new_pipe, *cur_pipe;
int i;
for (i = 0; i < pool->pipe_count; i++) {
cur_pipe = &cur_res_ctx->pipe_ctx[i];
new_pipe = &new_res_ctx->pipe_ctx[i];
if (resource_is_pipe_type(cur_pipe, DPP_PIPE) &&
!resource_is_pipe_type(cur_pipe, OPP_HEAD) &&
resource_get_mpc_slice_index(cur_pipe) > 0 &&
resource_is_pipe_type(new_pipe, FREE_PIPE)) {
free_pipe_idx = i;
break;
}
}
return free_pipe_idx;
}
int resource_find_any_free_pipe(struct resource_context *new_res_ctx,
const struct resource_pool *pool)
{
int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
const struct pipe_ctx *new_pipe;
int i;
for (i = 0; i < pool->pipe_count; i++) {
new_pipe = &new_res_ctx->pipe_ctx[i];
if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
free_pipe_idx = i;
break;
}
}
return free_pipe_idx;
}
bool resource_is_pipe_type(const struct pipe_ctx *pipe_ctx, enum pipe_type type)
{
switch (type) {
case OTG_MASTER:
return !pipe_ctx->prev_odm_pipe &&
!pipe_ctx->top_pipe &&
pipe_ctx->stream;
case OPP_HEAD:
return !pipe_ctx->top_pipe && pipe_ctx->stream;
case DPP_PIPE:
return pipe_ctx->plane_state && pipe_ctx->stream;
case FREE_PIPE:
return !pipe_ctx->plane_state && !pipe_ctx->stream;
default:
return false;
}
}
struct pipe_ctx *resource_get_otg_master_for_stream(
struct resource_context *res_ctx,
const struct dc_stream_state *stream)
{
int i;
for (i = 0; i < MAX_PIPES; i++) {
if (res_ctx->pipe_ctx[i].stream == stream &&
resource_is_pipe_type(&res_ctx->pipe_ctx[i], OTG_MASTER))
return &res_ctx->pipe_ctx[i];
}
return NULL;
}
int resource_get_opp_heads_for_otg_master(const struct pipe_ctx *otg_master,
struct resource_context *res_ctx,
struct pipe_ctx *opp_heads[MAX_PIPES])
{
struct pipe_ctx *opp_head = &res_ctx->pipe_ctx[otg_master->pipe_idx];
struct dc *dc = otg_master->stream->ctx->dc;
int i = 0;
DC_LOGGER_INIT(dc->ctx->logger);
if (!resource_is_pipe_type(otg_master, OTG_MASTER)) {
DC_LOG_WARNING("%s called from a non OTG master, something "
"is wrong in the pipe configuration",
__func__);
ASSERT(0);
return 0;
}
while (opp_head) {
ASSERT(i < MAX_PIPES);
opp_heads[i++] = opp_head;
opp_head = opp_head->next_odm_pipe;
}
return i;
}
int resource_get_dpp_pipes_for_opp_head(const struct pipe_ctx *opp_head,
struct resource_context *res_ctx,
struct pipe_ctx *dpp_pipes[MAX_PIPES])
{
struct pipe_ctx *pipe = &res_ctx->pipe_ctx[opp_head->pipe_idx];
int i = 0;
if (!resource_is_pipe_type(opp_head, OPP_HEAD)) {
ASSERT(0);
return 0;
}
while (pipe && resource_is_pipe_type(pipe, DPP_PIPE)) {
ASSERT(i < MAX_PIPES);
dpp_pipes[i++] = pipe;
pipe = pipe->bottom_pipe;
}
return i;
}
int resource_get_dpp_pipes_for_plane(const struct dc_plane_state *plane,
struct resource_context *res_ctx,
struct pipe_ctx *dpp_pipes[MAX_PIPES])
{
int i = 0, j;
struct pipe_ctx *pipe;
for (j = 0; j < MAX_PIPES; j++) {
pipe = &res_ctx->pipe_ctx[j];
if (pipe->plane_state == plane && pipe->prev_odm_pipe == NULL) {
if (resource_is_pipe_type(pipe, OPP_HEAD) ||
pipe->top_pipe->plane_state != plane)
break;
}
}
if (j < MAX_PIPES) {
if (pipe->next_odm_pipe)
while (pipe) {
dpp_pipes[i++] = pipe;
pipe = pipe->next_odm_pipe;
}
else
while (pipe && pipe->plane_state == plane) {
dpp_pipes[i++] = pipe;
pipe = pipe->bottom_pipe;
}
}
return i;
}
struct pipe_ctx *resource_get_otg_master(const struct pipe_ctx *pipe_ctx)
{
struct pipe_ctx *otg_master = resource_get_opp_head(pipe_ctx);
while (otg_master->prev_odm_pipe)
otg_master = otg_master->prev_odm_pipe;
return otg_master;
}
struct pipe_ctx *resource_get_opp_head(const struct pipe_ctx *pipe_ctx)
{
struct pipe_ctx *opp_head = (struct pipe_ctx *) pipe_ctx;
ASSERT(!resource_is_pipe_type(opp_head, FREE_PIPE));
while (opp_head->top_pipe)
opp_head = opp_head->top_pipe;
return opp_head;
}
struct pipe_ctx *resource_get_primary_dpp_pipe(const struct pipe_ctx *dpp_pipe)
{
struct pipe_ctx *pri_dpp_pipe = (struct pipe_ctx *) dpp_pipe;
ASSERT(resource_is_pipe_type(dpp_pipe, DPP_PIPE));
while (pri_dpp_pipe->prev_odm_pipe)
pri_dpp_pipe = pri_dpp_pipe->prev_odm_pipe;
while (pri_dpp_pipe->top_pipe &&
pri_dpp_pipe->top_pipe->plane_state == pri_dpp_pipe->plane_state)
pri_dpp_pipe = pri_dpp_pipe->top_pipe;
return pri_dpp_pipe;
}
int resource_get_mpc_slice_index(const struct pipe_ctx *pipe_ctx)
{
struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
int index = 0;
while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
index++;
split_pipe = split_pipe->top_pipe;
}
return index;
}
int resource_get_mpc_slice_count(const struct pipe_ctx *pipe)
{
int mpc_split_count = 1;
const struct pipe_ctx *other_pipe = pipe->bottom_pipe;
while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
mpc_split_count++;
other_pipe = other_pipe->bottom_pipe;
}
other_pipe = pipe->top_pipe;
while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
mpc_split_count++;
other_pipe = other_pipe->top_pipe;
}
return mpc_split_count;
}
int resource_get_odm_slice_count(const struct pipe_ctx *pipe)
{
int odm_split_count = 1;
pipe = resource_get_otg_master(pipe);
while (pipe->next_odm_pipe) {
odm_split_count++;
pipe = pipe->next_odm_pipe;
}
return odm_split_count;
}
int resource_get_odm_slice_index(const struct pipe_ctx *pipe_ctx)
{
int index = 0;
pipe_ctx = resource_get_opp_head(pipe_ctx);
if (!pipe_ctx)
return 0;
while (pipe_ctx->prev_odm_pipe) {
index++;
pipe_ctx = pipe_ctx->prev_odm_pipe;
}
return index;
}
int resource_get_odm_slice_dst_width(struct pipe_ctx *otg_master,
bool is_last_segment)
{
const struct dc_crtc_timing *timing;
int count;
int h_active;
int width;
bool two_pixel_alignment_required = false;
if (!otg_master || !otg_master->stream)
return 0;
timing = &otg_master->stream->timing;
count = resource_get_odm_slice_count(otg_master);
h_active = timing->h_addressable +
timing->h_border_left +
timing->h_border_right;
width = h_active / count;
if (otg_master->stream_res.tg)
two_pixel_alignment_required =
otg_master->stream_res.tg->funcs->is_two_pixels_per_container(timing) ||
/*
* 422 is sub-sampled horizontally. 1 set of chromas
* (Cb/Cr) is shared for 2 lumas (i.e 2 Y values).
* Therefore even if 422 is still 1 pixel per container,
* ODM segment width still needs to be 2 pixel aligned.
*/
timing->pixel_encoding == PIXEL_ENCODING_YCBCR422;
if ((width % 2) && two_pixel_alignment_required)
width++;
return is_last_segment ?
h_active - width * (count - 1) :
width;
}
struct rect resource_get_odm_slice_dst_rect(struct pipe_ctx *pipe_ctx)
{
const struct dc_stream_state *stream = pipe_ctx->stream;
bool is_last_odm_slice = pipe_ctx->next_odm_pipe == NULL;
struct pipe_ctx *otg_master = resource_get_otg_master(pipe_ctx);
int odm_slice_idx = resource_get_odm_slice_index(pipe_ctx);
int odm_segment_offset = resource_get_odm_slice_dst_width(otg_master, false);
struct rect odm_slice_dst;
odm_slice_dst.x = odm_segment_offset * odm_slice_idx;
odm_slice_dst.width = resource_get_odm_slice_dst_width(otg_master, is_last_odm_slice);
odm_slice_dst.y = 0;
odm_slice_dst.height = stream->timing.v_addressable +
stream->timing.v_border_bottom +
stream->timing.v_border_top;
return odm_slice_dst;
}
struct rect resource_get_odm_slice_src_rect(struct pipe_ctx *pipe_ctx)
{
struct rect odm_slice_dst;
struct rect odm_slice_src;
struct pipe_ctx *opp_head = resource_get_opp_head(pipe_ctx);
struct output_pixel_processor *opp = opp_head->stream_res.opp;
uint32_t left_edge_extra_pixel_count;
odm_slice_dst = resource_get_odm_slice_dst_rect(opp_head);
odm_slice_src = odm_slice_dst;
if (opp && opp->funcs->opp_get_left_edge_extra_pixel_count)
left_edge_extra_pixel_count =
opp->funcs->opp_get_left_edge_extra_pixel_count(
opp, pipe_ctx->stream->timing.pixel_encoding,
resource_is_pipe_type(opp_head, OTG_MASTER));
else
left_edge_extra_pixel_count = 0;
odm_slice_src.x -= left_edge_extra_pixel_count;
odm_slice_src.width += left_edge_extra_pixel_count;
return odm_slice_src;
}
bool resource_is_pipe_topology_changed(const struct dc_state *state_a,
const struct dc_state *state_b)
{
int i;
const struct pipe_ctx *pipe_a, *pipe_b;
if (state_a->stream_count != state_b->stream_count)
return true;
for (i = 0; i < MAX_PIPES; i++) {
pipe_a = &state_a->res_ctx.pipe_ctx[i];
pipe_b = &state_b->res_ctx.pipe_ctx[i];
if (pipe_a->stream && !pipe_b->stream)
return true;
else if (!pipe_a->stream && pipe_b->stream)
return true;
if (pipe_a->plane_state && !pipe_b->plane_state)
return true;
else if (!pipe_a->plane_state && pipe_b->plane_state)
return true;
if (pipe_a->bottom_pipe && pipe_b->bottom_pipe) {
if (pipe_a->bottom_pipe->pipe_idx != pipe_b->bottom_pipe->pipe_idx)
return true;
if ((pipe_a->bottom_pipe->plane_state == pipe_a->plane_state) &&
(pipe_b->bottom_pipe->plane_state != pipe_b->plane_state))
return true;
else if ((pipe_a->bottom_pipe->plane_state != pipe_a->plane_state) &&
(pipe_b->bottom_pipe->plane_state == pipe_b->plane_state))
return true;
} else if (pipe_a->bottom_pipe || pipe_b->bottom_pipe) {
return true;
}
if (pipe_a->next_odm_pipe && pipe_b->next_odm_pipe) {
if (pipe_a->next_odm_pipe->pipe_idx != pipe_b->next_odm_pipe->pipe_idx)
return true;
} else if (pipe_a->next_odm_pipe || pipe_b->next_odm_pipe) {
return true;
}
}
return false;
}
bool resource_is_odm_topology_changed(const struct pipe_ctx *otg_master_a,
const struct pipe_ctx *otg_master_b)
{
const struct pipe_ctx *opp_head_a = otg_master_a;
const struct pipe_ctx *opp_head_b = otg_master_b;
if (!resource_is_pipe_type(otg_master_a, OTG_MASTER) ||
!resource_is_pipe_type(otg_master_b, OTG_MASTER))
return true;
while (opp_head_a && opp_head_b) {
if (opp_head_a->stream_res.opp != opp_head_b->stream_res.opp)
return true;
if ((opp_head_a->next_odm_pipe && !opp_head_b->next_odm_pipe) ||
(!opp_head_a->next_odm_pipe && opp_head_b->next_odm_pipe))
return true;
opp_head_a = opp_head_a->next_odm_pipe;
opp_head_b = opp_head_b->next_odm_pipe;
}
return false;
}
/*
* Sample log:
* pipe topology update
* ________________________
* | plane0 slice0 stream0|
* |DPP0----OPP0----OTG0----| <--- case 0 (OTG master pipe with plane)
* | plane1 | | |
* |DPP1----| | | <--- case 5 (DPP pipe not in last slice)
* | plane0 slice1 | |
* |DPP2----OPP2----| | <--- case 2 (OPP head pipe with plane)
* | plane1 | |
* |DPP3----| | <--- case 4 (DPP pipe in last slice)
* | slice0 stream1|
* |DPG4----OPP4----OTG4----| <--- case 1 (OTG master pipe without plane)
* | slice1 | |
* |DPG5----OPP5----| | <--- case 3 (OPP head pipe without plane)
* |________________________|
*/
static void resource_log_pipe(struct dc *dc, struct pipe_ctx *pipe,
int stream_idx, int slice_idx, int plane_idx, int slice_count,
bool is_primary)
{
DC_LOGGER_INIT(dc->ctx->logger);
if (slice_idx == 0 && plane_idx == 0 && is_primary) {
/* case 0 (OTG master pipe with plane) */
DC_LOG_DC(" | plane%d slice%d stream%d|",
plane_idx, slice_idx, stream_idx);
DC_LOG_DC(" |DPP%d----OPP%d----OTG%d----|",
pipe->plane_res.dpp->inst,
pipe->stream_res.opp->inst,
pipe->stream_res.tg->inst);
} else if (slice_idx == 0 && plane_idx == -1) {
/* case 1 (OTG master pipe without plane) */
DC_LOG_DC(" | slice%d stream%d|",
slice_idx, stream_idx);
DC_LOG_DC(" |DPG%d----OPP%d----OTG%d----|",
pipe->stream_res.opp->inst,
pipe->stream_res.opp->inst,
pipe->stream_res.tg->inst);
} else if (slice_idx != 0 && plane_idx == 0 && is_primary) {
/* case 2 (OPP head pipe with plane) */
DC_LOG_DC(" | plane%d slice%d | |",
plane_idx, slice_idx);
DC_LOG_DC(" |DPP%d----OPP%d----| |",
pipe->plane_res.dpp->inst,
pipe->stream_res.opp->inst);
} else if (slice_idx != 0 && plane_idx == -1) {
/* case 3 (OPP head pipe without plane) */
DC_LOG_DC(" | slice%d | |", slice_idx);
DC_LOG_DC(" |DPG%d----OPP%d----| |",
pipe->plane_res.dpp->inst,
pipe->stream_res.opp->inst);
} else if (slice_idx == slice_count - 1) {
/* case 4 (DPP pipe in last slice) */
DC_LOG_DC(" | plane%d | |", plane_idx);
DC_LOG_DC(" |DPP%d----| |",
pipe->plane_res.dpp->inst);
} else {
/* case 5 (DPP pipe not in last slice) */
DC_LOG_DC(" | plane%d | | |", plane_idx);
DC_LOG_DC(" |DPP%d----| | |",
pipe->plane_res.dpp->inst);
}
}
static void resource_log_pipe_for_stream(struct dc *dc, struct dc_state *state,
struct pipe_ctx *otg_master, int stream_idx)
{
struct pipe_ctx *opp_heads[MAX_PIPES];
struct pipe_ctx *dpp_pipes[MAX_PIPES];
int slice_idx, dpp_idx, plane_idx, slice_count, dpp_count;
bool is_primary;
DC_LOGGER_INIT(dc->ctx->logger);
slice_count = resource_get_opp_heads_for_otg_master(otg_master,
&state->res_ctx, opp_heads);
for (slice_idx = 0; slice_idx < slice_count; slice_idx++) {
plane_idx = -1;
if (opp_heads[slice_idx]->plane_state) {
dpp_count = resource_get_dpp_pipes_for_opp_head(
opp_heads[slice_idx],
&state->res_ctx,
dpp_pipes);
for (dpp_idx = 0; dpp_idx < dpp_count; dpp_idx++) {
is_primary = !dpp_pipes[dpp_idx]->top_pipe ||
dpp_pipes[dpp_idx]->top_pipe->plane_state != dpp_pipes[dpp_idx]->plane_state;
if (is_primary)
plane_idx++;
resource_log_pipe(dc, dpp_pipes[dpp_idx],
stream_idx, slice_idx,
plane_idx, slice_count,
is_primary);
}
} else {
resource_log_pipe(dc, opp_heads[slice_idx],
stream_idx, slice_idx, plane_idx,
slice_count, true);
}
}
}
static int resource_stream_to_stream_idx(struct dc_state *state,
struct dc_stream_state *stream)
{
int i, stream_idx = -1;
for (i = 0; i < state->stream_count; i++)
if (state->streams[i] == stream) {
stream_idx = i;
break;
}
/* never return negative array index */
if (stream_idx == -1) {
ASSERT(0);
return 0;
}
return stream_idx;
}
void resource_log_pipe_topology_update(struct dc *dc, struct dc_state *state)
{
struct pipe_ctx *otg_master;
int stream_idx, phantom_stream_idx;
DC_LOGGER_INIT(dc->ctx->logger);
DC_LOG_DC(" pipe topology update");
DC_LOG_DC(" ________________________");
for (stream_idx = 0; stream_idx < state->stream_count; stream_idx++) {
if (state->streams[stream_idx]->is_phantom)
continue;
otg_master = resource_get_otg_master_for_stream(
&state->res_ctx, state->streams[stream_idx]);
if (!otg_master)
continue;
resource_log_pipe_for_stream(dc, state, otg_master, stream_idx);
}
if (state->phantom_stream_count > 0) {
DC_LOG_DC(" | (phantom pipes) |");
for (stream_idx = 0; stream_idx < state->stream_count; stream_idx++) {
if (state->stream_status[stream_idx].mall_stream_config.type != SUBVP_MAIN)
continue;
phantom_stream_idx = resource_stream_to_stream_idx(state,
state->stream_status[stream_idx].mall_stream_config.paired_stream);
otg_master = resource_get_otg_master_for_stream(
&state->res_ctx, state->streams[phantom_stream_idx]);
if (!otg_master)
continue;
resource_log_pipe_for_stream(dc, state, otg_master, stream_idx);
}
}
DC_LOG_DC(" |________________________|\n");
}
static struct pipe_ctx *get_tail_pipe(
struct pipe_ctx *head_pipe)
{
struct pipe_ctx *tail_pipe = head_pipe->bottom_pipe;
while (tail_pipe) {
head_pipe = tail_pipe;
tail_pipe = tail_pipe->bottom_pipe;
}
return head_pipe;
}
static struct pipe_ctx *get_last_opp_head(
struct pipe_ctx *opp_head)
{
ASSERT(resource_is_pipe_type(opp_head, OPP_HEAD));
while (opp_head->next_odm_pipe)
opp_head = opp_head->next_odm_pipe;
return opp_head;
}
static struct pipe_ctx *get_last_dpp_pipe_in_mpcc_combine(
struct pipe_ctx *dpp_pipe)
{
ASSERT(resource_is_pipe_type(dpp_pipe, DPP_PIPE));
while (dpp_pipe->bottom_pipe &&
dpp_pipe->plane_state == dpp_pipe->bottom_pipe->plane_state)
dpp_pipe = dpp_pipe->bottom_pipe;
return dpp_pipe;
}
static bool update_pipe_params_after_odm_slice_count_change(
struct pipe_ctx *otg_master,
struct dc_state *context,
const struct resource_pool *pool)
{
int i;
struct pipe_ctx *pipe;
bool result = true;
for (i = 0; i < pool->pipe_count && result; i++) {
pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->stream == otg_master->stream && pipe->plane_state)
result = resource_build_scaling_params(pipe);
}
if (pool->funcs->build_pipe_pix_clk_params)
pool->funcs->build_pipe_pix_clk_params(otg_master);
resource_build_test_pattern_params(&context->res_ctx, otg_master);
return result;
}
static bool update_pipe_params_after_mpc_slice_count_change(
const struct dc_plane_state *plane,
struct dc_state *context,
const struct resource_pool *pool)
{
int i;
struct pipe_ctx *pipe;
bool result = true;
for (i = 0; i < pool->pipe_count && result; i++) {
pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->plane_state == plane)
result = resource_build_scaling_params(pipe);
}
return result;
}
static int acquire_first_split_pipe(
struct resource_context *res_ctx,
const struct resource_pool *pool,
struct dc_stream_state *stream)
{
int i;
for (i = 0; i < pool->pipe_count; i++) {
struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
if (split_pipe->top_pipe &&
split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
if (split_pipe->bottom_pipe)
split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
if (split_pipe->top_pipe->plane_state)
resource_build_scaling_params(split_pipe->top_pipe);
memset(split_pipe, 0, sizeof(*split_pipe));
split_pipe->stream_res.tg = pool->timing_generators[i];
split_pipe->plane_res.hubp = pool->hubps[i];
split_pipe->plane_res.ipp = pool->ipps[i];
split_pipe->plane_res.dpp = pool->dpps[i];
split_pipe->stream_res.opp = pool->opps[i];
split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
split_pipe->pipe_idx = i;
split_pipe->stream = stream;
return i;
}
}
return FREE_PIPE_INDEX_NOT_FOUND;
}
static void update_stream_engine_usage(
struct resource_context *res_ctx,
const struct resource_pool *pool,
struct stream_encoder *stream_enc,
bool acquired)
{
int i;
for (i = 0; i < pool->stream_enc_count; i++) {
if (pool->stream_enc[i] == stream_enc)
res_ctx->is_stream_enc_acquired[i] = acquired;
}
}
static void update_hpo_dp_stream_engine_usage(
struct resource_context *res_ctx,
const struct resource_pool *pool,
struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
bool acquired)
{
int i;
for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
}
}
static inline int find_acquired_hpo_dp_link_enc_for_link(
const struct resource_context *res_ctx,
const struct dc_link *link)
{
int i;
for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_to_link_idx); i++)
if (res_ctx->hpo_dp_link_enc_ref_cnts[i] > 0 &&
res_ctx->hpo_dp_link_enc_to_link_idx[i] == link->link_index)
return i;
return -1;
}
static inline int find_free_hpo_dp_link_enc(const struct resource_context *res_ctx,
const struct resource_pool *pool)
{
int i;
for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts); i++)
if (res_ctx->hpo_dp_link_enc_ref_cnts[i] == 0)
break;
return (i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts) &&
i < pool->hpo_dp_link_enc_count) ? i : -1;
}
static inline void acquire_hpo_dp_link_enc(
struct resource_context *res_ctx,
unsigned int link_index,
int enc_index)
{
res_ctx->hpo_dp_link_enc_to_link_idx[enc_index] = link_index;
res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] = 1;
}
static inline void retain_hpo_dp_link_enc(
struct resource_context *res_ctx,
int enc_index)
{
res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]++;
}
static inline void release_hpo_dp_link_enc(
struct resource_context *res_ctx,
int enc_index)
{
ASSERT(res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] > 0);
res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]--;
}
static bool add_hpo_dp_link_enc_to_ctx(struct resource_context *res_ctx,
const struct resource_pool *pool,
struct pipe_ctx *pipe_ctx,
struct dc_stream_state *stream)
{
int enc_index;
enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
if (enc_index >= 0) {
retain_hpo_dp_link_enc(res_ctx, enc_index);
} else {
enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
if (enc_index >= 0)
acquire_hpo_dp_link_enc(res_ctx, stream->link->link_index, enc_index);
}
if (enc_index >= 0)
pipe_ctx->link_res.hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
return pipe_ctx->link_res.hpo_dp_link_enc != NULL;
}
static void remove_hpo_dp_link_enc_from_ctx(struct resource_context *res_ctx,
struct pipe_ctx *pipe_ctx,
struct dc_stream_state *stream)
{
int enc_index;
enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
if (enc_index >= 0) {
release_hpo_dp_link_enc(res_ctx, enc_index);
pipe_ctx->link_res.hpo_dp_link_enc = NULL;
}
}
static int get_num_of_free_pipes(const struct resource_pool *pool, const struct dc_state *context)
{
int i;
int count = 0;
for (i = 0; i < pool->pipe_count; i++)
if (resource_is_pipe_type(&context->res_ctx.pipe_ctx[i], FREE_PIPE))
count++;
return count;
}
enum dc_status resource_add_otg_master_for_stream_output(struct dc_state *new_ctx,
const struct resource_pool *pool,
struct dc_stream_state *stream)
{
struct dc *dc = stream->ctx->dc;
return dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
}
void resource_remove_otg_master_for_stream_output(struct dc_state *context,
const struct resource_pool *pool,
struct dc_stream_state *stream)
{
struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(
&context->res_ctx, stream);
if (!otg_master)
return;
ASSERT(resource_get_odm_slice_count(otg_master) == 1);
ASSERT(otg_master->plane_state == NULL);
ASSERT(otg_master->stream_res.stream_enc);
update_stream_engine_usage(
&context->res_ctx,
pool,
otg_master->stream_res.stream_enc,
false);
if (stream->ctx->dc->link_srv->dp_is_128b_132b_signal(otg_master)) {
update_hpo_dp_stream_engine_usage(
&context->res_ctx, pool,
otg_master->stream_res.hpo_dp_stream_enc,
false);
remove_hpo_dp_link_enc_from_ctx(
&context->res_ctx, otg_master, stream);
}
if (otg_master->stream_res.audio)
update_audio_usage(
&context->res_ctx,
pool,
otg_master->stream_res.audio,
false);
resource_unreference_clock_source(&context->res_ctx,
pool,
otg_master->clock_source);
if (pool->funcs->remove_stream_from_ctx)
pool->funcs->remove_stream_from_ctx(
stream->ctx->dc, context, stream);
memset(otg_master, 0, sizeof(*otg_master));
}
/* For each OPP head of an OTG master, add top plane at plane index 0.
*
* In the following example, the stream has 2 ODM slices without a top plane.
* By adding a plane 0 to OPP heads, we are configuring our hardware to render
* plane 0 by using each OPP head's DPP.
*
* Inter-pipe Relation (Before Adding Plane)
* __________________________________________________
* |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
* | | | slice 0 | |
* | 0 | |blank ----ODM----------- |
* | | | slice 1 | | |
* | 1 | |blank ---- | |
* |________|_______________|___________|_____________|
*
* Inter-pipe Relation (After Adding Plane)
* __________________________________________________
* |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
* | | plane 0 | slice 0 | |
* | 0 | -------------------------ODM----------- |
* | | plane 0 | slice 1 | | |
* | 1 | ------------------------- | |
* |________|_______________|___________|_____________|
*/
static bool add_plane_to_opp_head_pipes(struct pipe_ctx *otg_master_pipe,
struct dc_plane_state *plane_state,
struct dc_state *context)
{
struct pipe_ctx *opp_head_pipe = otg_master_pipe;
while (opp_head_pipe) {
if (opp_head_pipe->plane_state) {
ASSERT(0);
return false;
}
opp_head_pipe->plane_state = plane_state;
opp_head_pipe = opp_head_pipe->next_odm_pipe;
}
return true;
}
/* For each OPP head of an OTG master, acquire a secondary DPP pipe and add
* the plane. So the plane is added to all ODM slices associated with the OTG
* master pipe in the bottom layer.
*
* In the following example, the stream has 2 ODM slices and a top plane 0.
* By acquiring secondary DPP pipes and adding a plane 1, we are configuring our
* hardware to render the plane 1 by acquiring a new pipe for each ODM slice and
* render plane 1 using new pipes' DPP in the Z axis below plane 0.
*
* Inter-pipe Relation (Before Adding Plane)
* __________________________________________________
* |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
* | | plane 0 | slice 0 | |
* | 0 | -------------------------ODM----------- |
* | | plane 0 | slice 1 | | |
* | 1 | ------------------------- | |
* |________|_______________|___________|_____________|
*
* Inter-pipe Relation (After Acquiring and Adding Plane)
* __________________________________________________
* |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
* | | plane 0 | slice 0 | |
* | 0 | -------------MPC---------ODM----------- |
* | | plane 1 | | | | |
* | 2 | ------------- | | | |
* | | plane 0 | slice 1 | | |
* | 1 | -------------MPC--------- | |
* | | plane 1 | | | |
* | 3 | ------------- | | |
* |________|_______________|___________|_____________|
*/
static bool acquire_secondary_dpp_pipes_and_add_plane(
struct pipe_ctx *otg_master_pipe,
struct dc_plane_state *plane_state,
struct dc_state *new_ctx,
struct dc_state *cur_ctx,
struct resource_pool *pool)
{
struct pipe_ctx *sec_pipe, *tail_pipe;
struct pipe_ctx *opp_heads[MAX_PIPES];
int opp_head_count;
int i;
if (!pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe) {
ASSERT(0);
return false;
}
opp_head_count = resource_get_opp_heads_for_otg_master(otg_master_pipe,
&new_ctx->res_ctx, opp_heads);
if (get_num_of_free_pipes(pool, new_ctx) < opp_head_count)
/* not enough free pipes */
return false;
for (i = 0; i < opp_head_count; i++) {
sec_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
cur_ctx,
new_ctx,
pool,
opp_heads[i]);
ASSERT(sec_pipe);
sec_pipe->plane_state = plane_state;
/* establish pipe relationship */
tail_pipe = get_tail_pipe(opp_heads[i]);
tail_pipe->bottom_pipe = sec_pipe;
sec_pipe->top_pipe = tail_pipe;
sec_pipe->bottom_pipe = NULL;
if (tail_pipe->prev_odm_pipe) {
ASSERT(tail_pipe->prev_odm_pipe->bottom_pipe);
sec_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = sec_pipe;
} else {
sec_pipe->prev_odm_pipe = NULL;
}
}
return true;
}
bool resource_append_dpp_pipes_for_plane_composition(
struct dc_state *new_ctx,
struct dc_state *cur_ctx,
struct resource_pool *pool,
struct pipe_ctx *otg_master_pipe,
struct dc_plane_state *plane_state)
{
bool success;
if (otg_master_pipe->plane_state == NULL)
success = add_plane_to_opp_head_pipes(otg_master_pipe,
plane_state, new_ctx);
else
success = acquire_secondary_dpp_pipes_and_add_plane(
otg_master_pipe, plane_state, new_ctx,
cur_ctx, pool);
if (success) {
/* when appending a plane mpc slice count changes from 0 to 1 */
success = update_pipe_params_after_mpc_slice_count_change(
plane_state, new_ctx, pool);
if (!success)
resource_remove_dpp_pipes_for_plane_composition(new_ctx,
pool, plane_state);
}
return success;
}
void resource_remove_dpp_pipes_for_plane_composition(
struct dc_state *context,
const struct resource_pool *pool,
const struct dc_plane_state *plane_state)
{
int i;
for (i = pool->pipe_count - 1; i >= 0; i--) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->plane_state == plane_state) {
if (pipe_ctx->top_pipe)
pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
/* Second condition is to avoid setting NULL to top pipe
* of tail pipe making it look like head pipe in subsequent
* deletes
*/
if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
/*
* For head pipe detach surfaces from pipe for tail
* pipe just zero it out
*/
if (!pipe_ctx->top_pipe)
pipe_ctx->plane_state = NULL;
else
memset(pipe_ctx, 0, sizeof(*pipe_ctx));
}
}
}
/*
* Increase ODM slice count by 1 by acquiring pipes and adding a new ODM slice
* at the last index.
* return - true if a new ODM slice is added and required pipes are acquired.
* false if new_ctx is no longer a valid state after new ODM slice is added.
*
* This is achieved by duplicating MPC blending tree from previous ODM slice.
* In the following example, we have a single MPC tree and 1 ODM slice 0. We
* want to add a new odm slice by duplicating the MPC blending tree and add
* ODM slice 1.
*
* Inter-pipe Relation (Before Acquiring and Adding ODM Slice)
* __________________________________________________
* |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
* | | plane 0 | slice 0 | |
* | 0 | -------------MPC---------ODM----------- |
* | | plane 1 | | | |
* | 1 | ------------- | | |
* |________|_______________|___________|_____________|
*
* Inter-pipe Relation (After Acquiring and Adding ODM Slice)
* __________________________________________________
* |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
* | | plane 0 | slice 0 | |
* | 0 | -------------MPC---------ODM----------- |
* | | plane 1 | | | | |
* | 1 | ------------- | | | |
* | | plane 0 | slice 1 | | |
* | 2 | -------------MPC--------- | |
* | | plane 1 | | | |
* | 3 | ------------- | | |
* |________|_______________|___________|_____________|
*/
static bool acquire_pipes_and_add_odm_slice(
struct pipe_ctx *otg_master_pipe,
struct dc_state *new_ctx,
const struct dc_state *cur_ctx,
const struct resource_pool *pool)
{
struct pipe_ctx *last_opp_head = get_last_opp_head(otg_master_pipe);
struct pipe_ctx *new_opp_head;
struct pipe_ctx *last_top_dpp_pipe, *last_bottom_dpp_pipe,
*new_top_dpp_pipe, *new_bottom_dpp_pipe;
if (!pool->funcs->acquire_free_pipe_as_secondary_opp_head) {
ASSERT(0);
return false;
}
new_opp_head = pool->funcs->acquire_free_pipe_as_secondary_opp_head(
cur_ctx, new_ctx, pool,
otg_master_pipe);
if (!new_opp_head)
return false;
last_opp_head->next_odm_pipe = new_opp_head;
new_opp_head->prev_odm_pipe = last_opp_head;
new_opp_head->next_odm_pipe = NULL;
new_opp_head->plane_state = last_opp_head->plane_state;
last_top_dpp_pipe = last_opp_head;
new_top_dpp_pipe = new_opp_head;
while (last_top_dpp_pipe->bottom_pipe) {
last_bottom_dpp_pipe = last_top_dpp_pipe->bottom_pipe;
new_bottom_dpp_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
cur_ctx, new_ctx, pool,
new_opp_head);
if (!new_bottom_dpp_pipe)
return false;
new_bottom_dpp_pipe->plane_state = last_bottom_dpp_pipe->plane_state;
new_top_dpp_pipe->bottom_pipe = new_bottom_dpp_pipe;
new_bottom_dpp_pipe->top_pipe = new_top_dpp_pipe;
last_bottom_dpp_pipe->next_odm_pipe = new_bottom_dpp_pipe;
new_bottom_dpp_pipe->prev_odm_pipe = last_bottom_dpp_pipe;
new_bottom_dpp_pipe->next_odm_pipe = NULL;
last_top_dpp_pipe = last_bottom_dpp_pipe;
}
return true;
}
/*
* Decrease ODM slice count by 1 by releasing pipes and removing the ODM slice
* at the last index.
* return - true if the last ODM slice is removed and related pipes are
* released. false if there is no removable ODM slice.
*
* In the following example, we have 2 MPC trees and ODM slice 0 and slice 1.
* We want to remove the last ODM i.e slice 1. We are releasing secondary DPP
* pipe 3 and OPP head pipe 2.
*
* Inter-pipe Relation (Before Releasing and Removing ODM Slice)
* __________________________________________________
* |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
* | | plane 0 | slice 0 | |
* | 0 | -------------MPC---------ODM----------- |
* | | plane 1 | | | | |
* | 1 | ------------- | | | |
* | | plane 0 | slice 1 | | |
* | 2 | -------------MPC--------- | |
* | | plane 1 | | | |
* | 3 | ------------- | | |
* |________|_______________|___________|_____________|
*
* Inter-pipe Relation (After Releasing and Removing ODM Slice)
* __________________________________________________
* |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
* | | plane 0 | slice 0 | |
* | 0 | -------------MPC---------ODM----------- |
* | | plane 1 | | | |
* | 1 | ------------- | | |
* |________|_______________|___________|_____________|
*/
static bool release_pipes_and_remove_odm_slice(
struct pipe_ctx *otg_master_pipe,
struct dc_state *context,
const struct resource_pool *pool)
{
struct pipe_ctx *last_opp_head = get_last_opp_head(otg_master_pipe);
struct pipe_ctx *tail_pipe = get_tail_pipe(last_opp_head);
if (!pool->funcs->release_pipe) {
ASSERT(0);
return false;
}
if (resource_is_pipe_type(last_opp_head, OTG_MASTER))
return false;
while (tail_pipe->top_pipe) {
tail_pipe->prev_odm_pipe->next_odm_pipe = NULL;
tail_pipe = tail_pipe->top_pipe;
pool->funcs->release_pipe(context, tail_pipe->bottom_pipe, pool);
tail_pipe->bottom_pipe = NULL;
}
last_opp_head->prev_odm_pipe->next_odm_pipe = NULL;
pool->funcs->release_pipe(context, last_opp_head, pool);
return true;
}
/*
* Increase MPC slice count by 1 by acquiring a new DPP pipe and add it as the
* last MPC slice of the plane associated with dpp_pipe.
*
* return - true if a new MPC slice is added and required pipes are acquired.
* false if new_ctx is no longer a valid state after new MPC slice is added.
*
* In the following example, we add a new MPC slice for plane 0 into the
* new_ctx. To do so we pass pipe 0 as dpp_pipe. The function acquires a new DPP
* pipe 2 for plane 0 as the bottom most pipe for plane 0.
*
* Inter-pipe Relation (Before Acquiring and Adding MPC Slice)
* __________________________________________________
* |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
* | | plane 0 | | |
* | 0 | -------------MPC----------------------- |
* | | plane 1 | | | |
* | 1 | ------------- | | |
* |________|_______________|___________|_____________|
*
* Inter-pipe Relation (After Acquiring and Adding MPC Slice)
* __________________________________________________
* |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
* | | plane 0 | | |
* | 0 | -------------MPC----------------------- |
* | | plane 0 | | | |
* | 2 | ------------- | | |
* | | plane 1 | | | |
* | 1 | ------------- | | |
* |________|_______________|___________|_____________|
*/
static bool acquire_dpp_pipe_and_add_mpc_slice(
struct pipe_ctx *dpp_pipe,
struct dc_state *new_ctx,
const struct dc_state *cur_ctx,
const struct resource_pool *pool)
{
struct pipe_ctx *last_dpp_pipe =
get_last_dpp_pipe_in_mpcc_combine(dpp_pipe);
struct pipe_ctx *opp_head = resource_get_opp_head(dpp_pipe);
struct pipe_ctx *new_dpp_pipe;
if (!pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe) {
ASSERT(0);
return false;
}
new_dpp_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
cur_ctx, new_ctx, pool, opp_head);
if (!new_dpp_pipe || resource_get_odm_slice_count(dpp_pipe) > 1)
return false;
new_dpp_pipe->bottom_pipe = last_dpp_pipe->bottom_pipe;
if (new_dpp_pipe->bottom_pipe)
new_dpp_pipe->bottom_pipe->top_pipe = new_dpp_pipe;
new_dpp_pipe->top_pipe = last_dpp_pipe;
last_dpp_pipe->bottom_pipe = new_dpp_pipe;
new_dpp_pipe->plane_state = last_dpp_pipe->plane_state;
return true;
}
/*
* Reduce MPC slice count by 1 by releasing the bottom DPP pipe in MPCC combine
* with dpp_pipe and removing last MPC slice of the plane associated with
* dpp_pipe.
*
* return - true if the last MPC slice of the plane associated with dpp_pipe is
* removed and last DPP pipe in MPCC combine with dpp_pipe is released.
* false if there is no removable MPC slice.
*
* In the following example, we remove an MPC slice for plane 0 from the
* context. To do so we pass pipe 0 as dpp_pipe. The function releases pipe 1 as
* it is the last pipe for plane 0.
*
* Inter-pipe Relation (Before Releasing and Removing MPC Slice)
* __________________________________________________
* |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
* | | plane 0 | | |
* | 0 | -------------MPC----------------------- |
* | | plane 0 | | | |
* | 1 | ------------- | | |
* | | plane 1 | | | |
* | 2 | ------------- | | |
* |________|_______________|___________|_____________|
*
* Inter-pipe Relation (After Releasing and Removing MPC Slice)
* __________________________________________________
* |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
* | | plane 0 | | |
* | 0 | -------------MPC----------------------- |
* | | plane 1 | | | |
* | 2 | ------------- | | |
* |________|_______________|___________|_____________|
*/
static bool release_dpp_pipe_and_remove_mpc_slice(
struct pipe_ctx *dpp_pipe,
struct dc_state *context,
const struct resource_pool *pool)
{
struct pipe_ctx *last_dpp_pipe =
get_last_dpp_pipe_in_mpcc_combine(dpp_pipe);
if (!pool->funcs->release_pipe) {
ASSERT(0);
return false;
}
if (resource_is_pipe_type(last_dpp_pipe, OPP_HEAD) ||
resource_get_odm_slice_count(dpp_pipe) > 1)
return false;
last_dpp_pipe->top_pipe->bottom_pipe = last_dpp_pipe->bottom_pipe;
if (last_dpp_pipe->bottom_pipe)
last_dpp_pipe->bottom_pipe->top_pipe = last_dpp_pipe->top_pipe;
pool->funcs->release_pipe(context, last_dpp_pipe, pool);
return true;
}
bool resource_update_pipes_for_stream_with_slice_count(
struct dc_state *new_ctx,
const struct dc_state *cur_ctx,
const struct resource_pool *pool,
const struct dc_stream_state *stream,
int new_slice_count)
{
int i;
struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(
&new_ctx->res_ctx, stream);
int cur_slice_count;
bool result = true;
if (!otg_master)
return false;
cur_slice_count = resource_get_odm_slice_count(otg_master);
if (new_slice_count == cur_slice_count)
return result;
if (new_slice_count > cur_slice_count)
for (i = 0; i < new_slice_count - cur_slice_count && result; i++)
result = acquire_pipes_and_add_odm_slice(
otg_master, new_ctx, cur_ctx, pool);
else
for (i = 0; i < cur_slice_count - new_slice_count && result; i++)
result = release_pipes_and_remove_odm_slice(
otg_master, new_ctx, pool);
if (result)
result = update_pipe_params_after_odm_slice_count_change(
otg_master, new_ctx, pool);
return result;
}
bool resource_update_pipes_for_plane_with_slice_count(
struct dc_state *new_ctx,
const struct dc_state *cur_ctx,
const struct resource_pool *pool,
const struct dc_plane_state *plane,
int new_slice_count)
{
int i;
int dpp_pipe_count;
int cur_slice_count;
struct pipe_ctx *dpp_pipes[MAX_PIPES] = {0};
bool result = true;
dpp_pipe_count = resource_get_dpp_pipes_for_plane(plane,
&new_ctx->res_ctx, dpp_pipes);
ASSERT(dpp_pipe_count > 0);
cur_slice_count = resource_get_mpc_slice_count(dpp_pipes[0]);
if (new_slice_count == cur_slice_count)
return result;
if (new_slice_count > cur_slice_count)
for (i = 0; i < new_slice_count - cur_slice_count && result; i++)
result = acquire_dpp_pipe_and_add_mpc_slice(
dpp_pipes[0], new_ctx, cur_ctx, pool);
else
for (i = 0; i < cur_slice_count - new_slice_count && result; i++)
result = release_dpp_pipe_and_remove_mpc_slice(
dpp_pipes[0], new_ctx, pool);
if (result)
result = update_pipe_params_after_mpc_slice_count_change(
dpp_pipes[0]->plane_state, new_ctx, pool);
return result;
}
bool dc_is_timing_changed(struct dc_stream_state *cur_stream,
struct dc_stream_state *new_stream)
{
if (cur_stream == NULL)
return true;
/* If output color space is changed, need to reprogram info frames */
if (cur_stream->output_color_space != new_stream->output_color_space)
return true;
return memcmp(
&cur_stream->timing,
&new_stream->timing,
sizeof(struct dc_crtc_timing)) != 0;
}
static bool are_stream_backends_same(
struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
{
if (stream_a == stream_b)
return true;
if (stream_a == NULL || stream_b == NULL)
return false;
if (dc_is_timing_changed(stream_a, stream_b))
return false;
if (stream_a->signal != stream_b->signal)
return false;
if (stream_a->dpms_off != stream_b->dpms_off)
return false;
return true;
}
/*
* dc_is_stream_unchanged() - Compare two stream states for equivalence.
*
* Checks if there a difference between the two states
* that would require a mode change.
*
* Does not compare cursor position or attributes.
*/
bool dc_is_stream_unchanged(
struct dc_stream_state *old_stream, struct dc_stream_state *stream)
{
if (!old_stream || !stream)
return false;
if (!are_stream_backends_same(old_stream, stream))
return false;
if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
return false;
/*compare audio info*/
if (memcmp(&old_stream->audio_info, &stream->audio_info, sizeof(stream->audio_info)) != 0)
return false;
return true;
}
/*
* dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
*/
bool dc_is_stream_scaling_unchanged(struct dc_stream_state *old_stream,
struct dc_stream_state *stream)
{
if (old_stream == stream)
return true;
if (old_stream == NULL || stream == NULL)
return false;
if (memcmp(&old_stream->src,
&stream->src,
sizeof(struct rect)) != 0)
return false;
if (memcmp(&old_stream->dst,
&stream->dst,
sizeof(struct rect)) != 0)
return false;
return true;
}
/* TODO: release audio object */
void update_audio_usage(
struct resource_context *res_ctx,
const struct resource_pool *pool,
struct audio *audio,
bool acquired)
{
int i;
for (i = 0; i < pool->audio_count; i++) {
if (pool->audios[i] == audio)
res_ctx->is_audio_acquired[i] = acquired;
}
}
static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
struct resource_context *res_ctx,
const struct resource_pool *pool,
struct dc_stream_state *stream)
{
int i;
for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
pool->hpo_dp_stream_enc[i]) {
return pool->hpo_dp_stream_enc[i];
}
}
return NULL;
}
static struct audio *find_first_free_audio(
struct resource_context *res_ctx,
const struct resource_pool *pool,
enum engine_id id,
enum dce_version dc_version)
{
int i, available_audio_count;
if (id == ENGINE_ID_UNKNOWN)
return NULL;
available_audio_count = pool->audio_count;
for (i = 0; i < available_audio_count; i++) {
if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
/*we have enough audio endpoint, find the matching inst*/
if (id != i)
continue;
return pool->audios[i];
}
}
/* use engine id to find free audio */
if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
return pool->audios[id];
}
/*not found the matching one, first come first serve*/
for (i = 0; i < available_audio_count; i++) {
if (res_ctx->is_audio_acquired[i] == false) {
return pool->audios[i];
}
}
return NULL;
}
static struct dc_stream_state *find_pll_sharable_stream(
struct dc_stream_state *stream_needs_pll,
struct dc_state *context)
{
int i;
for (i = 0; i < context->stream_count; i++) {
struct dc_stream_state *stream_has_pll = context->streams[i];
/* We are looking for non dp, non virtual stream */
if (resource_are_streams_timing_synchronizable(
stream_needs_pll, stream_has_pll)
&& !dc_is_dp_signal(stream_has_pll->signal)
&& stream_has_pll->link->connector_signal
!= SIGNAL_TYPE_VIRTUAL)
return stream_has_pll;
}
return NULL;
}
static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
{
uint32_t pix_clk = timing->pix_clk_100hz;
uint32_t normalized_pix_clk = pix_clk;
if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
pix_clk /= 2;
if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
switch (timing->display_color_depth) {
case COLOR_DEPTH_666:
case COLOR_DEPTH_888:
normalized_pix_clk = pix_clk;
break;
case COLOR_DEPTH_101010:
normalized_pix_clk = (pix_clk * 30) / 24;
break;
case COLOR_DEPTH_121212:
normalized_pix_clk = (pix_clk * 36) / 24;
break;
case COLOR_DEPTH_161616:
normalized_pix_clk = (pix_clk * 48) / 24;
break;
default:
ASSERT(0);
break;
}
}
return normalized_pix_clk;
}
static void calculate_phy_pix_clks(struct dc_stream_state *stream)
{
/* update actual pixel clock on all streams */
if (dc_is_hdmi_signal(stream->signal))
stream->phy_pix_clk = get_norm_pix_clk(
&stream->timing) / 10;
else
stream->phy_pix_clk =
stream->timing.pix_clk_100hz / 10;
if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
stream->phy_pix_clk *= 2;
}
static int acquire_resource_from_hw_enabled_state(
struct resource_context *res_ctx,
const struct resource_pool *pool,
struct dc_stream_state *stream)
{
struct dc_link *link = stream->link;
unsigned int i, inst, tg_inst = 0;
uint32_t numPipes = 1;
uint32_t id_src[4] = {0};
/* Check for enabled DIG to identify enabled display */
if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
return -1;
inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
if (inst == ENGINE_ID_UNKNOWN)
return -1;
for (i = 0; i < pool->stream_enc_count; i++) {
if (pool->stream_enc[i]->id == inst) {
tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
pool->stream_enc[i]);
break;
}
}
// tg_inst not found
if (i == pool->stream_enc_count)
return -1;
if (tg_inst >= pool->timing_generator_count)
return -1;
if (!res_ctx->pipe_ctx[tg_inst].stream) {
struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
id_src[0] = tg_inst;
if (pipe_ctx->stream_res.tg->funcs->get_optc_source)
pipe_ctx->stream_res.tg->funcs->get_optc_source(pipe_ctx->stream_res.tg,
&numPipes, &id_src[0], &id_src[1]);
if (id_src[0] == 0xf && id_src[1] == 0xf) {
id_src[0] = tg_inst;
numPipes = 1;
}
for (i = 0; i < numPipes; i++) {
//Check if src id invalid
if (id_src[i] == 0xf)
return -1;
pipe_ctx = &res_ctx->pipe_ctx[id_src[i]];
pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
pipe_ctx->plane_res.mi = pool->mis[id_src[i]];
pipe_ctx->plane_res.hubp = pool->hubps[id_src[i]];
pipe_ctx->plane_res.ipp = pool->ipps[id_src[i]];
pipe_ctx->plane_res.xfm = pool->transforms[id_src[i]];
pipe_ctx->plane_res.dpp = pool->dpps[id_src[i]];
pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
if (pool->dpps[id_src[i]]) {
pipe_ctx->plane_res.mpcc_inst = pool->dpps[id_src[i]]->inst;
if (pool->mpc->funcs->read_mpcc_state) {
struct mpcc_state s = {0};
pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
if (s.dpp_id < MAX_MPCC)
pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id =
s.dpp_id;
if (s.bot_mpcc_id < MAX_MPCC)
pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
&pool->mpc->mpcc_array[s.bot_mpcc_id];
if (s.opp_id < MAX_OPP)
pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
}
}
pipe_ctx->pipe_idx = id_src[i];
if (id_src[i] >= pool->timing_generator_count) {
id_src[i] = pool->timing_generator_count - 1;
pipe_ctx->stream_res.tg = pool->timing_generators[id_src[i]];
pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
}
pipe_ctx->stream = stream;
}
if (numPipes == 2) {
stream->apply_boot_odm_mode = dm_odm_combine_policy_2to1;
res_ctx->pipe_ctx[id_src[0]].next_odm_pipe = &res_ctx->pipe_ctx[id_src[1]];
res_ctx->pipe_ctx[id_src[0]].prev_odm_pipe = NULL;
res_ctx->pipe_ctx[id_src[1]].next_odm_pipe = NULL;
res_ctx->pipe_ctx[id_src[1]].prev_odm_pipe = &res_ctx->pipe_ctx[id_src[0]];
} else
stream->apply_boot_odm_mode = dm_odm_combine_mode_disabled;
return id_src[0];
}
return -1;
}
static void mark_seamless_boot_stream(
const struct dc *dc,
struct dc_stream_state *stream)
{
struct dc_bios *dcb = dc->ctx->dc_bios;
if (dc->config.allow_seamless_boot_optimization &&
!dcb->funcs->is_accelerated_mode(dcb)) {
if (dc_validate_boot_timing(dc, stream->sink, &stream->timing))
stream->apply_seamless_boot_optimization = true;
}
}
/*
* Acquire a pipe as OTG master and assign to the stream in new dc context.
* return - true if OTG master pipe is acquired and new dc context is updated.
* false if it fails to acquire an OTG master pipe for this stream.
*
* In the example below, we acquired pipe 0 as OTG master pipe for the stream.
* After the function its Inter-pipe Relation is represented by the diagram
* below.
*
* Inter-pipe Relation
* __________________________________________________
* |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
* | | | | |
* | 0 | |blank ------------------ |
* |________|_______________|___________|_____________|
*/
static bool acquire_otg_master_pipe_for_stream(
const struct dc_state *cur_ctx,
struct dc_state *new_ctx,
const struct resource_pool *pool,
struct dc_stream_state *stream)
{
/* TODO: Move this function to DCN specific resource file and acquire
* DSC resource here. The reason is that the function should have the
* same level of responsibility as when we acquire secondary OPP head.
* We acquire DSC when we acquire secondary OPP head, so we should
* acquire DSC when we acquire OTG master.
*/
int pipe_idx;
struct pipe_ctx *pipe_ctx = NULL;
/*
* Upper level code is responsible to optimize unnecessary addition and
* removal for unchanged streams. So unchanged stream will keep the same
* OTG master instance allocated. When current stream is removed and a
* new stream is added, we want to reuse the OTG instance made available
* by the removed stream first. If not found, we try to avoid of using
* any free pipes already used in current context as this could tear
* down exiting ODM/MPC/MPO configuration unnecessarily.
*/
/*
* Try to acquire the same OTG master already in use. This is not
* optimal because resetting an enabled OTG master pipe for a new stream
* requires an extra frame of wait. However there are test automation
* and eDP assumptions that rely on reusing the same OTG master pipe
* during mode change. We have to keep this logic as is for now.
*/
pipe_idx = recource_find_free_pipe_used_as_otg_master_in_cur_res_ctx(
&cur_ctx->res_ctx, &new_ctx->res_ctx, pool);
/*
* Try to acquire a pipe not used in current resource context to avoid
* pipe swapping.
*/
if (pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
&cur_ctx->res_ctx, &new_ctx->res_ctx, pool);
/*
* If pipe swapping is unavoidable, try to acquire pipe used as
* secondary DPP pipe in current state as we prioritize to support more
* streams over supporting MPO planes.
*/
if (pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
pipe_idx = resource_find_free_pipe_used_as_cur_sec_dpp(
&cur_ctx->res_ctx, &new_ctx->res_ctx, pool);
if (pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
pipe_idx = resource_find_any_free_pipe(&new_ctx->res_ctx, pool);
if (pipe_idx != FREE_PIPE_INDEX_NOT_FOUND) {
pipe_ctx = &new_ctx->res_ctx.pipe_ctx[pipe_idx];
memset(pipe_ctx, 0, sizeof(*pipe_ctx));
pipe_ctx->pipe_idx = pipe_idx;
pipe_ctx->stream_res.tg = pool->timing_generators[pipe_idx];
pipe_ctx->plane_res.mi = pool->mis[pipe_idx];
pipe_ctx->plane_res.hubp = pool->hubps[pipe_idx];
pipe_ctx->plane_res.ipp = pool->ipps[pipe_idx];
pipe_ctx->plane_res.xfm = pool->transforms[pipe_idx];
pipe_ctx->plane_res.dpp = pool->dpps[pipe_idx];
pipe_ctx->stream_res.opp = pool->opps[pipe_idx];
if (pool->dpps[pipe_idx])
pipe_ctx->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
if (pipe_idx >= pool->timing_generator_count && pool->timing_generator_count != 0) {
int tg_inst = pool->timing_generator_count - 1;
pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
pipe_ctx->stream_res.opp = pool->opps[tg_inst];
}
pipe_ctx->stream = stream;
} else {
pipe_idx = acquire_first_split_pipe(&new_ctx->res_ctx, pool, stream);
}
return pipe_idx != FREE_PIPE_INDEX_NOT_FOUND;
}
enum dc_status resource_map_pool_resources(
const struct dc *dc,
struct dc_state *context,
struct dc_stream_state *stream)
{
const struct resource_pool *pool = dc->res_pool;
int i;
struct dc_context *dc_ctx = dc->ctx;
struct pipe_ctx *pipe_ctx = NULL;
int pipe_idx = -1;
bool acquired = false;
calculate_phy_pix_clks(stream);
mark_seamless_boot_stream(dc, stream);
if (stream->apply_seamless_boot_optimization) {
pipe_idx = acquire_resource_from_hw_enabled_state(
&context->res_ctx,
pool,
stream);
if (pipe_idx < 0)
/* hw resource was assigned to other stream */
stream->apply_seamless_boot_optimization = false;
else
acquired = true;
}
if (!acquired)
/* acquire new resources */
acquired = acquire_otg_master_pipe_for_stream(dc->current_state,
context, pool, stream);
pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, stream);
if (!pipe_ctx || pipe_ctx->stream_res.tg == NULL)
return DC_NO_CONTROLLER_RESOURCE;
pipe_ctx->stream_res.stream_enc =
dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
&context->res_ctx, pool, stream);
if (!pipe_ctx->stream_res.stream_enc)
return DC_NO_STREAM_ENC_RESOURCE;
update_stream_engine_usage(
&context->res_ctx, pool,
pipe_ctx->stream_res.stream_enc,
true);
/* Allocate DP HPO Stream Encoder based on signal, hw capabilities
* and link settings
*/
if (dc_is_dp_signal(stream->signal) ||
dc_is_virtual_signal(stream->signal)) {
if (!dc->link_srv->dp_decide_link_settings(stream,
&pipe_ctx->link_config.dp_link_settings))
return DC_FAIL_DP_LINK_BANDWIDTH;
if (dc->link_srv->dp_get_encoding_format(
&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
pipe_ctx->stream_res.hpo_dp_stream_enc =
find_first_free_match_hpo_dp_stream_enc_for_link(
&context->res_ctx, pool, stream);
if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
return DC_NO_STREAM_ENC_RESOURCE;
update_hpo_dp_stream_engine_usage(
&context->res_ctx, pool,
pipe_ctx->stream_res.hpo_dp_stream_enc,
true);
if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, pool, pipe_ctx, stream))
return DC_NO_LINK_ENC_RESOURCE;
}
}
/* TODO: Add check if ASIC support and EDID audio */
if (!stream->converter_disable_audio &&
dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
stream->audio_info.mode_count && stream->audio_info.flags.all) {
pipe_ctx->stream_res.audio = find_first_free_audio(
&context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
/*
* Audio assigned in order first come first get.
* There are asics which has number of audio
* resources less then number of pipes
*/
if (pipe_ctx->stream_res.audio)
update_audio_usage(&context->res_ctx, pool,
pipe_ctx->stream_res.audio, true);
}
/* Add ABM to the resource if on EDP */
if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
if (pool->abm)
pipe_ctx->stream_res.abm = pool->abm;
else
pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
}
for (i = 0; i < context->stream_count; i++)
if (context->streams[i] == stream) {
context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
context->stream_status[i].audio_inst =
pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
return DC_OK;
}
DC_ERROR("Stream %p not found in new ctx!\n", stream);
return DC_ERROR_UNEXPECTED;
}
bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
{
if (dc->res_pool == NULL)
return false;
return dc->res_pool->res_cap->num_dsc > 0;
}
static bool planes_changed_for_existing_stream(struct dc_state *context,
struct dc_stream_state *stream,
const struct dc_validation_set set[],
int set_count)
{
int i, j;
struct dc_stream_status *stream_status = NULL;
for (i = 0; i < context->stream_count; i++) {
if (context->streams[i] == stream) {
stream_status = &context->stream_status[i];
break;
}
}
if (!stream_status) {
ASSERT(0);
return false;
}
for (i = 0; i < set_count; i++)
if (set[i].stream == stream)
break;
if (i == set_count)
ASSERT(0);
if (set[i].plane_count != stream_status->plane_count)
return true;
for (j = 0; j < set[i].plane_count; j++)
if (set[i].plane_states[j] != stream_status->plane_states[j])
return true;
return false;
}
static bool add_all_planes_for_stream(
const struct dc *dc,
struct dc_stream_state *stream,
const struct dc_validation_set set[],
int set_count,
struct dc_state *state)
{
int i, j;
for (i = 0; i < set_count; i++)
if (set[i].stream == stream)
break;
if (i == set_count) {
dm_error("Stream %p not found in set!\n", stream);
return false;
}
for (j = 0; j < set[i].plane_count; j++)
if (!dc_state_add_plane(dc, stream, set[i].plane_states[j], state))
return false;
return true;
}
/**
* dc_validate_with_context - Validate and update the potential new stream in the context object
*
* @dc: Used to get the current state status
* @set: An array of dc_validation_set with all the current streams reference
* @set_count: Total of streams
* @context: New context
* @fast_validate: Enable or disable fast validation
*
* This function updates the potential new stream in the context object. It
* creates multiple lists for the add, remove, and unchanged streams. In
* particular, if the unchanged streams have a plane that changed, it is
* necessary to remove all planes from the unchanged streams. In summary, this
* function is responsible for validating the new context.
*
* Return:
* In case of success, return DC_OK (1), otherwise, return a DC error.
*/
enum dc_status dc_validate_with_context(struct dc *dc,
const struct dc_validation_set set[],
int set_count,
struct dc_state *context,
bool fast_validate)
{
struct dc_stream_state *unchanged_streams[MAX_PIPES] = { 0 };
struct dc_stream_state *del_streams[MAX_PIPES] = { 0 };
struct dc_stream_state *add_streams[MAX_PIPES] = { 0 };
int old_stream_count = context->stream_count;
enum dc_status res = DC_ERROR_UNEXPECTED;
int unchanged_streams_count = 0;
int del_streams_count = 0;
int add_streams_count = 0;
bool found = false;
int i, j, k;
DC_LOGGER_INIT(dc->ctx->logger);
/* First build a list of streams to be remove from current context */
for (i = 0; i < old_stream_count; i++) {
struct dc_stream_state *stream = context->streams[i];
for (j = 0; j < set_count; j++) {
if (stream == set[j].stream) {
found = true;
break;
}
}
if (!found)
del_streams[del_streams_count++] = stream;
found = false;
}
/* Second, build a list of new streams */
for (i = 0; i < set_count; i++) {
struct dc_stream_state *stream = set[i].stream;
for (j = 0; j < old_stream_count; j++) {
if (stream == context->streams[j]) {
found = true;
break;
}
}
if (!found)
add_streams[add_streams_count++] = stream;
found = false;
}
/* Build a list of unchanged streams which is necessary for handling
* planes change such as added, removed, and updated.
*/
for (i = 0; i < set_count; i++) {
/* Check if stream is part of the delete list */
for (j = 0; j < del_streams_count; j++) {
if (set[i].stream == del_streams[j]) {
found = true;
break;
}
}
if (!found) {
/* Check if stream is part of the add list */
for (j = 0; j < add_streams_count; j++) {
if (set[i].stream == add_streams[j]) {
found = true;
break;
}
}
}
if (!found)
unchanged_streams[unchanged_streams_count++] = set[i].stream;
found = false;
}
/* Remove all planes for unchanged streams if planes changed */
for (i = 0; i < unchanged_streams_count; i++) {
if (planes_changed_for_existing_stream(context,
unchanged_streams[i],
set,
set_count)) {
if (!dc_state_rem_all_planes_for_stream(dc,
unchanged_streams[i],
context)) {
res = DC_FAIL_DETACH_SURFACES;
goto fail;
}
}
}
/* Remove all planes for removed streams and then remove the streams */
for (i = 0; i < del_streams_count; i++) {
/* Need to cpy the dwb data from the old stream in order to efc to work */
if (del_streams[i]->num_wb_info > 0) {
for (j = 0; j < add_streams_count; j++) {
if (del_streams[i]->sink == add_streams[j]->sink) {
add_streams[j]->num_wb_info = del_streams[i]->num_wb_info;
for (k = 0; k < del_streams[i]->num_wb_info; k++)
add_streams[j]->writeback_info[k] = del_streams[i]->writeback_info[k];
}
}
}
if (dc_state_get_stream_subvp_type(context, del_streams[i]) == SUBVP_PHANTOM) {
/* remove phantoms specifically */
if (!dc_state_rem_all_phantom_planes_for_stream(dc, del_streams[i], context, true)) {
res = DC_FAIL_DETACH_SURFACES;
goto fail;
}
res = dc_state_remove_phantom_stream(dc, context, del_streams[i]);
dc_state_release_phantom_stream(dc, context, del_streams[i]);
} else {
if (!dc_state_rem_all_planes_for_stream(dc, del_streams[i], context)) {
res = DC_FAIL_DETACH_SURFACES;
goto fail;
}
res = dc_state_remove_stream(dc, context, del_streams[i]);
}
if (res != DC_OK)
goto fail;
}
/* Swap seamless boot stream to pipe 0 (if needed) to ensure pipe_ctx
* matches. This may change in the future if seamless_boot_stream can be
* multiple.
*/
for (i = 0; i < add_streams_count; i++) {
mark_seamless_boot_stream(dc, add_streams[i]);
if (add_streams[i]->apply_seamless_boot_optimization && i != 0) {
struct dc_stream_state *temp = add_streams[0];
add_streams[0] = add_streams[i];
add_streams[i] = temp;
break;
}
}
/* Add new streams and then add all planes for the new stream */
for (i = 0; i < add_streams_count; i++) {
calculate_phy_pix_clks(add_streams[i]);
res = dc_state_add_stream(dc, context, add_streams[i]);
if (res != DC_OK)
goto fail;
if (!add_all_planes_for_stream(dc, add_streams[i], set, set_count, context)) {
res = DC_FAIL_ATTACH_SURFACES;
goto fail;
}
}
/* Add all planes for unchanged streams if planes changed */
for (i = 0; i < unchanged_streams_count; i++) {
if (planes_changed_for_existing_stream(context,
unchanged_streams[i],
set,
set_count)) {
if (!add_all_planes_for_stream(dc, unchanged_streams[i], set, set_count, context)) {
res = DC_FAIL_ATTACH_SURFACES;
goto fail;
}
}
}
res = dc_validate_global_state(dc, context, fast_validate);
/* calculate pixel rate divider after deciding pxiel clock & odm combine */
if ((dc->hwss.calculate_pix_rate_divider) && (res == DC_OK)) {
for (i = 0; i < add_streams_count; i++)
dc->hwss.calculate_pix_rate_divider(dc, context, add_streams[i]);
}
fail:
if (res != DC_OK)
DC_LOG_WARNING("%s:resource validation failed, dc_status:%d\n",
__func__,
res);
return res;
}
/**
* dc_validate_global_state() - Determine if hardware can support a given state
*
* @dc: dc struct for this driver
* @new_ctx: state to be validated
* @fast_validate: set to true if only yes/no to support matters
*
* Checks hardware resource availability and bandwidth requirement.
*
* Return:
* DC_OK if the result can be programmed. Otherwise, an error code.
*/
enum dc_status dc_validate_global_state(
struct dc *dc,
struct dc_state *new_ctx,
bool fast_validate)
{
enum dc_status result = DC_ERROR_UNEXPECTED;
int i, j;
if (!new_ctx)
return DC_ERROR_UNEXPECTED;
if (dc->res_pool->funcs->validate_global) {
result = dc->res_pool->funcs->validate_global(dc, new_ctx);
if (result != DC_OK)
return result;
}
for (i = 0; i < new_ctx->stream_count; i++) {
struct dc_stream_state *stream = new_ctx->streams[i];
for (j = 0; j < dc->res_pool->pipe_count; j++) {
struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
if (pipe_ctx->stream != stream)
continue;
if (dc->res_pool->funcs->patch_unknown_plane_state &&
pipe_ctx->plane_state &&
pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
if (result != DC_OK)
return result;
}
/* Switch to dp clock source only if there is
* no non dp stream that shares the same timing
* with the dp stream.
*/
if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
!find_pll_sharable_stream(stream, new_ctx)) {
resource_unreference_clock_source(
&new_ctx->res_ctx,
dc->res_pool,
pipe_ctx->clock_source);
pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
resource_reference_clock_source(
&new_ctx->res_ctx,
dc->res_pool,
pipe_ctx->clock_source);
}
}
}
result = resource_build_scaling_params_for_context(dc, new_ctx);
if (result == DC_OK)
if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
result = DC_FAIL_BANDWIDTH_VALIDATE;
/*
* Only update link encoder to stream assignment after bandwidth validation passed.
* TODO: Split out assignment and validation.
*/
if (result == DC_OK && dc->res_pool->funcs->link_encs_assign && fast_validate == false)
dc->res_pool->funcs->link_encs_assign(
dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
return result;
}
static void patch_gamut_packet_checksum(
struct dc_info_packet *gamut_packet)
{
/* For gamut we recalc checksum */
if (gamut_packet->valid) {
uint8_t chk_sum = 0;
uint8_t *ptr;
uint8_t i;
/*start of the Gamut data. */
ptr = &gamut_packet->sb[3];
for (i = 0; i <= gamut_packet->sb[1]; i++)
chk_sum += ptr[i];
gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
}
}
static void set_avi_info_frame(
struct dc_info_packet *info_packet,
struct pipe_ctx *pipe_ctx)
{
struct dc_stream_state *stream = pipe_ctx->stream;
enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
uint32_t pixel_encoding = 0;
enum scanning_type scan_type = SCANNING_TYPE_NODATA;
enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
uint8_t *check_sum = NULL;
uint8_t byte_index = 0;
union hdmi_info_packet hdmi_info;
unsigned int vic = pipe_ctx->stream->timing.vic;
unsigned int rid = pipe_ctx->stream->timing.rid;
unsigned int fr_ind = pipe_ctx->stream->timing.fr_index;
enum dc_timing_3d_format format;
memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
color_space = pipe_ctx->stream->output_color_space;
if (color_space == COLOR_SPACE_UNKNOWN)
color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
/* Initialize header */
hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
/* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
* not be used in HDMI 2.0 (Section 10.1) */
hdmi_info.bits.header.version = 2;
hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
/*
* IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
* according to HDMI 2.0 spec (Section 10.1)
*/
switch (stream->timing.pixel_encoding) {
case PIXEL_ENCODING_YCBCR422:
pixel_encoding = 1;
break;
case PIXEL_ENCODING_YCBCR444:
pixel_encoding = 2;
break;
case PIXEL_ENCODING_YCBCR420:
pixel_encoding = 3;
break;
case PIXEL_ENCODING_RGB:
default:
pixel_encoding = 0;
}
/* Y0_Y1_Y2 : The pixel encoding */
/* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
/* A0 = 1 Active Format Information valid */
hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
/* B0, B1 = 3; Bar info data is valid */
hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
/* S0, S1 : Underscan / Overscan */
/* TODO: un-hardcode scan type */
scan_type = SCANNING_TYPE_UNDERSCAN;
hdmi_info.bits.S0_S1 = scan_type;
/* C0, C1 : Colorimetry */
switch (color_space) {
case COLOR_SPACE_YCBCR709:
case COLOR_SPACE_YCBCR709_LIMITED:
hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
break;
case COLOR_SPACE_YCBCR601:
case COLOR_SPACE_YCBCR601_LIMITED:
hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
break;
case COLOR_SPACE_2020_RGB_FULLRANGE:
case COLOR_SPACE_2020_RGB_LIMITEDRANGE:
case COLOR_SPACE_2020_YCBCR:
hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
break;
case COLOR_SPACE_ADOBERGB:
hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
break;
case COLOR_SPACE_SRGB:
default:
hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
break;
}
if (pixel_encoding && color_space == COLOR_SPACE_2020_YCBCR &&
stream->out_transfer_func.tf == TRANSFER_FUNCTION_GAMMA22) {
hdmi_info.bits.EC0_EC2 = 0;
hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
}
/* TODO: un-hardcode aspect ratio */
aspect = stream->timing.aspect_ratio;
switch (aspect) {
case ASPECT_RATIO_4_3:
case ASPECT_RATIO_16_9:
hdmi_info.bits.M0_M1 = aspect;
break;
case ASPECT_RATIO_NO_DATA:
case ASPECT_RATIO_64_27:
case ASPECT_RATIO_256_135:
default:
hdmi_info.bits.M0_M1 = 0;
}
/* Active Format Aspect ratio - same as Picture Aspect Ratio. */
hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
switch (stream->content_type) {
case DISPLAY_CONTENT_TYPE_NO_DATA:
hdmi_info.bits.CN0_CN1 = 0;
hdmi_info.bits.ITC = 1;
break;
case DISPLAY_CONTENT_TYPE_GRAPHICS:
hdmi_info.bits.CN0_CN1 = 0;
hdmi_info.bits.ITC = 1;
break;
case DISPLAY_CONTENT_TYPE_PHOTO:
hdmi_info.bits.CN0_CN1 = 1;
hdmi_info.bits.ITC = 1;
break;
case DISPLAY_CONTENT_TYPE_CINEMA:
hdmi_info.bits.CN0_CN1 = 2;
hdmi_info.bits.ITC = 1;
break;
case DISPLAY_CONTENT_TYPE_GAME:
hdmi_info.bits.CN0_CN1 = 3;
hdmi_info.bits.ITC = 1;
break;
}
if (stream->qs_bit == 1) {
if (color_space == COLOR_SPACE_SRGB ||
color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_FULL_RANGE;
else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_LIMITED_RANGE;
else
hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
} else
hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
/* TODO : We should handle YCC quantization */
/* but we do not have matrix calculation */
hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
///VIC
if (pipe_ctx->stream->timing.hdmi_vic != 0)
vic = 0;
format = stream->timing.timing_3d_format;
/*todo, add 3DStereo support*/
if (format != TIMING_3D_FORMAT_NONE) {
// Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
switch (pipe_ctx->stream->timing.hdmi_vic) {
case 1:
vic = 95;
break;
case 2:
vic = 94;
break;
case 3:
vic = 93;
break;
case 4:
vic = 98;
break;
default:
break;
}
}
/* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
hdmi_info.bits.VIC0_VIC7 = vic;
if (vic >= 128)
hdmi_info.bits.header.version = 3;
/* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
* the Source shall use 20 AVI InfoFrame Version 4
*/
if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
hdmi_info.bits.header.version = 4;
hdmi_info.bits.header.length = 14;
}
if (rid != 0 && fr_ind != 0) {
hdmi_info.bits.header.version = 4;
hdmi_info.bits.header.length = 15;
hdmi_info.bits.FR0_FR3 = fr_ind & 0xF;
hdmi_info.bits.FR4 = (fr_ind >> 4) & 0x1;
hdmi_info.bits.RID0_RID5 = rid;
}
/* pixel repetition
* PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
* repetition start from 1 */
hdmi_info.bits.PR0_PR3 = 0;
/* Bar Info
* barTop: Line Number of End of Top Bar.
* barBottom: Line Number of Start of Bottom Bar.
* barLeft: Pixel Number of End of Left Bar.
* barRight: Pixel Number of Start of Right Bar. */
hdmi_info.bits.bar_top = stream->timing.v_border_top;
hdmi_info.bits.bar_bottom = (stream->timing.v_total
- stream->timing.v_border_bottom + 1);
hdmi_info.bits.bar_left = stream->timing.h_border_left;
hdmi_info.bits.bar_right = (stream->timing.h_total
- stream->timing.h_border_right + 1);
/* Additional Colorimetry Extension
* Used in conduction with C0-C1 and EC0-EC2
* 0 = DCI-P3 RGB (D65)
* 1 = DCI-P3 RGB (theater)
*/
hdmi_info.bits.ACE0_ACE3 = 0;
/* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
check_sum = &hdmi_info.packet_raw_data.sb[0];
*check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
*check_sum += hdmi_info.packet_raw_data.sb[byte_index];
/* one byte complement */
*check_sum = (uint8_t) (0x100 - *check_sum);
/* Store in hw_path_mode */
info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
info_packet->valid = true;
}
static void set_vendor_info_packet(
struct dc_info_packet *info_packet,
struct dc_stream_state *stream)
{
/* SPD info packet for FreeSync */
/* Check if Freesync is supported. Return if false. If true,
* set the corresponding bit in the info packet
*/
if (!stream->vsp_infopacket.valid)
return;
*info_packet = stream->vsp_infopacket;
}
static void set_spd_info_packet(
struct dc_info_packet *info_packet,
struct dc_stream_state *stream)
{
/* SPD info packet for FreeSync */
/* Check if Freesync is supported. Return if false. If true,
* set the corresponding bit in the info packet
*/
if (!stream->vrr_infopacket.valid)
return;
*info_packet = stream->vrr_infopacket;
}
static void set_hdr_static_info_packet(
struct dc_info_packet *info_packet,
struct dc_stream_state *stream)
{
/* HDR Static Metadata info packet for HDR10 */
if (!stream->hdr_static_metadata.valid ||
stream->use_dynamic_meta)
return;
*info_packet = stream->hdr_static_metadata;
}
static void set_vsc_info_packet(
struct dc_info_packet *info_packet,
struct dc_stream_state *stream)
{
if (!stream->vsc_infopacket.valid)
return;
*info_packet = stream->vsc_infopacket;
}
static void set_hfvs_info_packet(
struct dc_info_packet *info_packet,
struct dc_stream_state *stream)
{
if (!stream->hfvsif_infopacket.valid)
return;
*info_packet = stream->hfvsif_infopacket;
}
static void adaptive_sync_override_dp_info_packets_sdp_line_num(
const struct dc_crtc_timing *timing,
struct enc_sdp_line_num *sdp_line_num,
struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
{
uint32_t asic_blank_start = 0;
uint32_t asic_blank_end = 0;
uint32_t v_update = 0;
const struct dc_crtc_timing *tg = timing;
/* blank_start = frame end - front porch */
asic_blank_start = tg->v_total - tg->v_front_porch;
/* blank_end = blank_start - active */
asic_blank_end = (asic_blank_start - tg->v_border_bottom -
tg->v_addressable - tg->v_border_top);
if (pipe_dlg_param->vstartup_start > asic_blank_end) {
v_update = (tg->v_total - (pipe_dlg_param->vstartup_start - asic_blank_end));
sdp_line_num->adaptive_sync_line_num_valid = true;
sdp_line_num->adaptive_sync_line_num = (tg->v_total - v_update - 1);
} else {
sdp_line_num->adaptive_sync_line_num_valid = false;
sdp_line_num->adaptive_sync_line_num = 0;
}
}
static void set_adaptive_sync_info_packet(
struct dc_info_packet *info_packet,
const struct dc_stream_state *stream,
struct encoder_info_frame *info_frame,
struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
{
if (!stream->adaptive_sync_infopacket.valid)
return;
adaptive_sync_override_dp_info_packets_sdp_line_num(
&stream->timing,
&info_frame->sdp_line_num,
pipe_dlg_param);
*info_packet = stream->adaptive_sync_infopacket;
}
static void set_vtem_info_packet(
struct dc_info_packet *info_packet,
struct dc_stream_state *stream)
{
if (!stream->vtem_infopacket.valid)
return;
*info_packet = stream->vtem_infopacket;
}
struct clock_source *dc_resource_find_first_free_pll(
struct resource_context *res_ctx,
const struct resource_pool *pool)
{
int i;
for (i = 0; i < pool->clk_src_count; ++i) {
if (res_ctx->clock_source_ref_count[i] == 0)
return pool->clock_sources[i];
}
return NULL;
}
void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
{
enum signal_type signal = SIGNAL_TYPE_NONE;
struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
/* default all packets to invalid */
info->avi.valid = false;
info->gamut.valid = false;
info->vendor.valid = false;
info->spd.valid = false;
info->hdrsmd.valid = false;
info->vsc.valid = false;
info->hfvsif.valid = false;
info->vtem.valid = false;
info->adaptive_sync.valid = false;
signal = pipe_ctx->stream->signal;
/* HDMi and DP have different info packets*/
if (dc_is_hdmi_signal(signal)) {
set_avi_info_frame(&info->avi, pipe_ctx);
set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
set_hfvs_info_packet(&info->hfvsif, pipe_ctx->stream);
set_vtem_info_packet(&info->vtem, pipe_ctx->stream);
set_spd_info_packet(&info->spd, pipe_ctx->stream);
set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
} else if (dc_is_dp_signal(signal)) {
set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
set_spd_info_packet(&info->spd, pipe_ctx->stream);
set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
set_adaptive_sync_info_packet(&info->adaptive_sync,
pipe_ctx->stream,
info,
&pipe_ctx->pipe_dlg_param);
}
patch_gamut_packet_checksum(&info->gamut);
}
enum dc_status resource_map_clock_resources(
const struct dc *dc,
struct dc_state *context,
struct dc_stream_state *stream)
{
/* acquire new resources */
const struct resource_pool *pool = dc->res_pool;
struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(
&context->res_ctx, stream);
if (!pipe_ctx)
return DC_ERROR_UNEXPECTED;
if (dc_is_dp_signal(pipe_ctx->stream->signal)
|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
pipe_ctx->clock_source = pool->dp_clock_source;
else {
pipe_ctx->clock_source = NULL;
if (!dc->config.disable_disp_pll_sharing)
pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
&context->res_ctx,
pipe_ctx);
if (pipe_ctx->clock_source == NULL)
pipe_ctx->clock_source =
dc_resource_find_first_free_pll(
&context->res_ctx,
pool);
}
if (pipe_ctx->clock_source == NULL)
return DC_NO_CLOCK_SOURCE_RESOURCE;
resource_reference_clock_source(
&context->res_ctx, pool,
pipe_ctx->clock_source);
return DC_OK;
}
/*
* Note: We need to disable output if clock sources change,
* since bios does optimization and doesn't apply if changing
* PHY when not already disabled.
*/
bool pipe_need_reprogram(
struct pipe_ctx *pipe_ctx_old,
struct pipe_ctx *pipe_ctx)
{
if (!pipe_ctx_old->stream)
return false;
if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
return true;
if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
return true;
if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
return true;
if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
&& pipe_ctx_old->stream != pipe_ctx->stream)
return true;
if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
return true;
if (dc_is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
return true;
if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
return true;
if (false == pipe_ctx_old->stream->link->link_state_valid &&
false == pipe_ctx_old->stream->dpms_off)
return true;
if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
return true;
if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
return true;
if (pipe_ctx_old->link_res.hpo_dp_link_enc != pipe_ctx->link_res.hpo_dp_link_enc)
return true;
/* DIG link encoder resource assignment for stream changed. */
if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
bool need_reprogram = false;
struct dc *dc = pipe_ctx_old->stream->ctx->dc;
struct link_encoder *link_enc_prev =
link_enc_cfg_get_link_enc_used_by_stream_current(dc, pipe_ctx_old->stream);
if (link_enc_prev != pipe_ctx->stream->link_enc)
need_reprogram = true;
return need_reprogram;
}
return false;
}
void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
struct bit_depth_reduction_params *fmt_bit_depth)
{
enum dc_dither_option option = stream->dither_option;
enum dc_pixel_encoding pixel_encoding =
stream->timing.pixel_encoding;
memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
if (option == DITHER_OPTION_DEFAULT) {
switch (stream->timing.display_color_depth) {
case COLOR_DEPTH_666:
option = DITHER_OPTION_SPATIAL6;
break;
case COLOR_DEPTH_888:
option = DITHER_OPTION_SPATIAL8;
break;
case COLOR_DEPTH_101010:
option = DITHER_OPTION_TRUN10;
break;
default:
option = DITHER_OPTION_DISABLE;
}
}
if (option == DITHER_OPTION_DISABLE)
return;
if (option == DITHER_OPTION_TRUN6) {
fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
} else if (option == DITHER_OPTION_TRUN8 ||
option == DITHER_OPTION_TRUN8_SPATIAL6 ||
option == DITHER_OPTION_TRUN8_FM6) {
fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
} else if (option == DITHER_OPTION_TRUN10 ||
option == DITHER_OPTION_TRUN10_SPATIAL6 ||
option == DITHER_OPTION_TRUN10_SPATIAL8 ||
option == DITHER_OPTION_TRUN10_FM8 ||
option == DITHER_OPTION_TRUN10_FM6 ||
option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
if (option == DITHER_OPTION_TRUN10)
fmt_bit_depth->flags.TRUNCATE_MODE = 1;
}
/* special case - Formatter can only reduce by 4 bits at most.
* When reducing from 12 to 6 bits,
* HW recommends we use trunc with round mode
* (if we did nothing, trunc to 10 bits would be used)
* note that any 12->10 bit reduction is ignored prior to DCE8,
* as the input was 10 bits.
*/
if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
option == DITHER_OPTION_SPATIAL6 ||
option == DITHER_OPTION_FM6) {
fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
fmt_bit_depth->flags.TRUNCATE_MODE = 1;
}
/* spatial dither
* note that spatial modes 1-3 are never used
*/
if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
option == DITHER_OPTION_SPATIAL6 ||
option == DITHER_OPTION_TRUN10_SPATIAL6 ||
option == DITHER_OPTION_TRUN8_SPATIAL6) {
fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
fmt_bit_depth->flags.RGB_RANDOM =
(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
} else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM ||
option == DITHER_OPTION_SPATIAL8 ||
option == DITHER_OPTION_SPATIAL8_FM6 ||
option == DITHER_OPTION_TRUN10_SPATIAL8 ||
option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
fmt_bit_depth->flags.RGB_RANDOM =
(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
} else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
option == DITHER_OPTION_SPATIAL10 ||
option == DITHER_OPTION_SPATIAL10_FM8 ||
option == DITHER_OPTION_SPATIAL10_FM6) {
fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
fmt_bit_depth->flags.RGB_RANDOM =
(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
}
if (option == DITHER_OPTION_SPATIAL6 ||
option == DITHER_OPTION_SPATIAL8 ||
option == DITHER_OPTION_SPATIAL10) {
fmt_bit_depth->flags.FRAME_RANDOM = 0;
} else {
fmt_bit_depth->flags.FRAME_RANDOM = 1;
}
//////////////////////
//// temporal dither
//////////////////////
if (option == DITHER_OPTION_FM6 ||
option == DITHER_OPTION_SPATIAL8_FM6 ||
option == DITHER_OPTION_SPATIAL10_FM6 ||
option == DITHER_OPTION_TRUN10_FM6 ||
option == DITHER_OPTION_TRUN8_FM6 ||
option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
} else if (option == DITHER_OPTION_FM8 ||
option == DITHER_OPTION_SPATIAL10_FM8 ||
option == DITHER_OPTION_TRUN10_FM8) {
fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
} else if (option == DITHER_OPTION_FM10) {
fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
}
fmt_bit_depth->pixel_encoding = pixel_encoding;
}
enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
{
if (dc == NULL || stream == NULL)
return DC_ERROR_UNEXPECTED;
struct dc_link *link = stream->link;
struct timing_generator *tg = dc->res_pool->timing_generators[0];
enum dc_status res = DC_OK;
calculate_phy_pix_clks(stream);
if (!tg->funcs->validate_timing(tg, &stream->timing))
res = DC_FAIL_CONTROLLER_VALIDATE;
if (res == DC_OK) {
if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
!link->link_enc->funcs->validate_output_with_stream(
link->link_enc, stream))
res = DC_FAIL_ENC_VALIDATE;
}
/* TODO: validate audio ASIC caps, encoder */
if (res == DC_OK)
res = dc->link_srv->validate_mode_timing(stream,
link,
&stream->timing);
return res;
}
enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
{
enum dc_status res = DC_OK;
/* check if surface has invalid dimensions */
if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
return DC_FAIL_SURFACE_VALIDATE;
/* TODO For now validates pixel format only */
if (dc->res_pool->funcs->validate_plane)
return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
return res;
}
unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
{
switch (format) {
case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
return 8;
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
return 12;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
return 16;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
return 32;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
return 64;
default:
ASSERT_CRITICAL(false);
return -1;
}
}
static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
{
if (modes) {
if (modes->sample_rates.rate.RATE_192)
return 192000;
if (modes->sample_rates.rate.RATE_176_4)
return 176400;
if (modes->sample_rates.rate.RATE_96)
return 96000;
if (modes->sample_rates.rate.RATE_88_2)
return 88200;
if (modes->sample_rates.rate.RATE_48)
return 48000;
if (modes->sample_rates.rate.RATE_44_1)
return 44100;
if (modes->sample_rates.rate.RATE_32)
return 32000;
}
/*original logic when no audio info*/
return 441000;
}
void get_audio_check(struct audio_info *aud_modes,
struct audio_check *audio_chk)
{
unsigned int i;
unsigned int max_sample_rate = 0;
if (aud_modes) {
audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
audio_chk->max_audiosample_rate = 0;
for (i = 0; i < aud_modes->mode_count; i++) {
max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
if (audio_chk->max_audiosample_rate < max_sample_rate)
audio_chk->max_audiosample_rate = max_sample_rate;
/*dts takes the same as type 2: AP = 0.25*/
}
/*check which one take more bandwidth*/
if (audio_chk->max_audiosample_rate > 192000)
audio_chk->audio_packet_type = 0x9;/*AP =1*/
audio_chk->acat = 0;/*not support*/
}
}
static struct hpo_dp_link_encoder *get_temp_hpo_dp_link_enc(
const struct resource_context *res_ctx,
const struct resource_pool *const pool,
const struct dc_link *link)
{
struct hpo_dp_link_encoder *hpo_dp_link_enc = NULL;
int enc_index;
enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link);
if (enc_index < 0)
enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
if (enc_index >= 0)
hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
return hpo_dp_link_enc;
}
bool get_temp_dp_link_res(struct dc_link *link,
struct link_resource *link_res,
struct dc_link_settings *link_settings)
{
const struct dc *dc = link->dc;
const struct resource_context *res_ctx = &dc->current_state->res_ctx;
memset(link_res, 0, sizeof(*link_res));
if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
link_res->hpo_dp_link_enc = get_temp_hpo_dp_link_enc(res_ctx,
dc->res_pool, link);
if (!link_res->hpo_dp_link_enc)
return false;
}
return true;
}
void reset_syncd_pipes_from_disabled_pipes(struct dc *dc,
struct dc_state *context)
{
int i, j;
struct pipe_ctx *pipe_ctx_old, *pipe_ctx, *pipe_ctx_syncd;
/* If pipe backend is reset, need to reset pipe syncd status */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
pipe_ctx_old = &dc->current_state->res_ctx.pipe_ctx[i];
pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (!resource_is_pipe_type(pipe_ctx_old, OTG_MASTER))
continue;
if (!pipe_ctx->stream ||
pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
/* Reset all the syncd pipes from the disabled pipe */
for (j = 0; j < dc->res_pool->pipe_count; j++) {
pipe_ctx_syncd = &context->res_ctx.pipe_ctx[j];
if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_syncd) == pipe_ctx_old->pipe_idx) ||
!IS_PIPE_SYNCD_VALID(pipe_ctx_syncd))
SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_syncd, j);
}
}
}
}
void check_syncd_pipes_for_disabled_master_pipe(struct dc *dc,
struct dc_state *context,
uint8_t disabled_master_pipe_idx)
{
int i;
struct pipe_ctx *pipe_ctx, *pipe_ctx_check;
pipe_ctx = &context->res_ctx.pipe_ctx[disabled_master_pipe_idx];
if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx) != disabled_master_pipe_idx) ||
!IS_PIPE_SYNCD_VALID(pipe_ctx))
SET_PIPE_SYNCD_TO_PIPE(pipe_ctx, disabled_master_pipe_idx);
/* for the pipe disabled, check if any slave pipe exists and assert */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
pipe_ctx_check = &context->res_ctx.pipe_ctx[i];
if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_check) == disabled_master_pipe_idx) &&
IS_PIPE_SYNCD_VALID(pipe_ctx_check) && (i != disabled_master_pipe_idx)) {
struct pipe_ctx *first_pipe = pipe_ctx_check;
while (first_pipe->prev_odm_pipe)
first_pipe = first_pipe->prev_odm_pipe;
/* When ODM combine is enabled, this case is expected. If the disabled pipe
* is part of the ODM tree, then we should not print an error.
* */
if (first_pipe->pipe_idx == disabled_master_pipe_idx)
continue;
DC_ERR("DC: Failure: pipe_idx[%d] syncd with disabled master pipe_idx[%d]\n",
i, disabled_master_pipe_idx);
}
}
}
void reset_sync_context_for_pipe(const struct dc *dc,
struct dc_state *context,
uint8_t pipe_idx)
{
int i;
struct pipe_ctx *pipe_ctx_reset;
/* reset the otg sync context for the pipe and its slave pipes if any */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
pipe_ctx_reset = &context->res_ctx.pipe_ctx[i];
if (((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_reset) == pipe_idx) &&
IS_PIPE_SYNCD_VALID(pipe_ctx_reset)) || (i == pipe_idx))
SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_reset, i);
}
}
uint8_t resource_transmitter_to_phy_idx(const struct dc *dc, enum transmitter transmitter)
{
/* TODO - get transmitter to phy idx mapping from DMUB */
uint8_t phy_idx = transmitter - TRANSMITTER_UNIPHY_A;
if (dc->ctx->dce_version == DCN_VERSION_3_1 &&
dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) {
switch (transmitter) {
case TRANSMITTER_UNIPHY_A:
phy_idx = 0;
break;
case TRANSMITTER_UNIPHY_B:
phy_idx = 1;
break;
case TRANSMITTER_UNIPHY_C:
phy_idx = 5;
break;
case TRANSMITTER_UNIPHY_D:
phy_idx = 6;
break;
case TRANSMITTER_UNIPHY_E:
phy_idx = 4;
break;
default:
phy_idx = 0;
break;
}
}
return phy_idx;
}
const struct link_hwss *get_link_hwss(const struct dc_link *link,
const struct link_resource *link_res)
{
/* Link_hwss is only accessible by getter function instead of accessing
* by pointers in dc with the intent to protect against breaking polymorphism.
*/
if (can_use_hpo_dp_link_hwss(link, link_res))
/* TODO: some assumes that if decided link settings is 128b/132b
* channel coding format hpo_dp_link_enc should be used.
* Others believe that if hpo_dp_link_enc is available in link
* resource then hpo_dp_link_enc must be used. This bound between
* hpo_dp_link_enc != NULL and decided link settings is loosely coupled
* with a premise that both hpo_dp_link_enc pointer and decided link
* settings are determined based on single policy function like
* "decide_link_settings" from upper layer. This "convention"
* cannot be maintained and enforced at current level.
* Therefore a refactor is due so we can enforce a strong bound
* between those two parameters at this level.
*
* To put it simple, we want to make enforcement at low level so that
* we will not return link hwss if caller plans to do 8b/10b
* with an hpo encoder. Or we can return a very dummy one that doesn't
* do work for all functions
*/
return (requires_fixed_vs_pe_retimer_hpo_link_hwss(link) ?
get_hpo_fixed_vs_pe_retimer_dp_link_hwss() : get_hpo_dp_link_hwss());
else if (can_use_dpia_link_hwss(link, link_res))
return get_dpia_link_hwss();
else if (can_use_dio_link_hwss(link, link_res))
return (requires_fixed_vs_pe_retimer_dio_link_hwss(link)) ?
get_dio_fixed_vs_pe_retimer_link_hwss() : get_dio_link_hwss();
else
return get_virtual_link_hwss();
}
bool is_h_timing_divisible_by_2(struct dc_stream_state *stream)
{
bool divisible = false;
uint16_t h_blank_start = 0;
uint16_t h_blank_end = 0;
if (stream) {
h_blank_start = stream->timing.h_total - stream->timing.h_front_porch;
h_blank_end = h_blank_start - stream->timing.h_addressable;
/* HTOTAL, Hblank start/end, and Hsync start/end all must be
* divisible by 2 in order for the horizontal timing params
* to be considered divisible by 2. Hsync start is always 0.
*/
divisible = (stream->timing.h_total % 2 == 0) &&
(h_blank_start % 2 == 0) &&
(h_blank_end % 2 == 0) &&
(stream->timing.h_sync_width % 2 == 0);
}
return divisible;
}
/* This interface is deprecated for new DCNs. It is replaced by the following
* new interfaces. These two interfaces encapsulate pipe selection priority
* with DCN specific minimum hardware transition optimization algorithm. With
* the new interfaces caller no longer needs to know the implementation detail
* of a pipe topology.
*
* resource_update_pipes_with_odm_slice_count
* resource_update_pipes_with_mpc_slice_count
*
*/
bool dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy(
const struct dc *dc,
struct dc_state *state,
struct pipe_ctx *pri_pipe,
struct pipe_ctx *sec_pipe,
bool odm)
{
int pipe_idx = sec_pipe->pipe_idx;
struct pipe_ctx *sec_top, *sec_bottom, *sec_next, *sec_prev;
const struct resource_pool *pool = dc->res_pool;
sec_top = sec_pipe->top_pipe;
sec_bottom = sec_pipe->bottom_pipe;
sec_next = sec_pipe->next_odm_pipe;
sec_prev = sec_pipe->prev_odm_pipe;
if (pri_pipe == NULL)
return false;
*sec_pipe = *pri_pipe;
sec_pipe->top_pipe = sec_top;
sec_pipe->bottom_pipe = sec_bottom;
sec_pipe->next_odm_pipe = sec_next;
sec_pipe->prev_odm_pipe = sec_prev;
sec_pipe->pipe_idx = pipe_idx;
sec_pipe->plane_res.mi = pool->mis[pipe_idx];
sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
sec_pipe->stream_res.dsc = NULL;
if (odm) {
if (!sec_pipe->top_pipe)
sec_pipe->stream_res.opp = pool->opps[pipe_idx];
else
sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
if (sec_pipe->stream->timing.flags.DSC == 1) {
#if defined(CONFIG_DRM_AMD_DC_FP)
dcn20_acquire_dsc(dc, &state->res_ctx, &sec_pipe->stream_res.dsc, sec_pipe->stream_res.opp->inst);
#endif
ASSERT(sec_pipe->stream_res.dsc);
if (sec_pipe->stream_res.dsc == NULL)
return false;
}
#if defined(CONFIG_DRM_AMD_DC_FP)
dcn20_build_mapped_resource(dc, state, sec_pipe->stream);
#endif
}
return true;
}
enum dc_status update_dp_encoder_resources_for_test_harness(const struct dc *dc,
struct dc_state *context,
struct pipe_ctx *pipe_ctx)
{
if (dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
if (pipe_ctx->stream_res.hpo_dp_stream_enc == NULL) {
pipe_ctx->stream_res.hpo_dp_stream_enc =
find_first_free_match_hpo_dp_stream_enc_for_link(
&context->res_ctx, dc->res_pool, pipe_ctx->stream);
if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
return DC_NO_STREAM_ENC_RESOURCE;
update_hpo_dp_stream_engine_usage(
&context->res_ctx, dc->res_pool,
pipe_ctx->stream_res.hpo_dp_stream_enc,
true);
}
if (pipe_ctx->link_res.hpo_dp_link_enc == NULL) {
if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, dc->res_pool, pipe_ctx, pipe_ctx->stream))
return DC_NO_LINK_ENC_RESOURCE;
}
} else {
if (pipe_ctx->stream_res.hpo_dp_stream_enc) {
update_hpo_dp_stream_engine_usage(
&context->res_ctx, dc->res_pool,
pipe_ctx->stream_res.hpo_dp_stream_enc,
false);
pipe_ctx->stream_res.hpo_dp_stream_enc = NULL;
}
if (pipe_ctx->link_res.hpo_dp_link_enc)
remove_hpo_dp_link_enc_from_ctx(&context->res_ctx, pipe_ctx, pipe_ctx->stream);
}
return DC_OK;
}
bool check_subvp_sw_cursor_fallback_req(const struct dc *dc, struct dc_stream_state *stream)
{
if (!dc->debug.disable_subvp_high_refresh && is_subvp_high_refresh_candidate(stream))
return true;
if (dc->current_state->stream_count == 1 && stream->timing.v_addressable >= 2880 &&
((stream->timing.pix_clk_100hz * 100) / stream->timing.v_total / stream->timing.h_total) < 120)
return true;
else if (dc->current_state->stream_count > 1 && stream->timing.v_addressable >= 1080 &&
((stream->timing.pix_clk_100hz * 100) / stream->timing.v_total / stream->timing.h_total) < 120)
return true;
return false;
}
struct dscl_prog_data *resource_get_dscl_prog_data(struct pipe_ctx *pipe_ctx)
{
return &pipe_ctx->plane_res.scl_data.dscl_prog_data;
}
void resource_init_common_dml2_callbacks(struct dc *dc, struct dml2_configuration_options *dml2_options)
{
dml2_options->callbacks.dc = dc;
dml2_options->callbacks.build_scaling_params = &resource_build_scaling_params;
dml2_options->callbacks.build_test_pattern_params = &resource_build_test_pattern_params;
dml2_options->callbacks.acquire_secondary_pipe_for_mpc_odm = &dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy;
dml2_options->callbacks.update_pipes_for_stream_with_slice_count = &resource_update_pipes_for_stream_with_slice_count;
dml2_options->callbacks.update_pipes_for_plane_with_slice_count = &resource_update_pipes_for_plane_with_slice_count;
dml2_options->callbacks.get_mpc_slice_index = &resource_get_mpc_slice_index;
dml2_options->callbacks.get_mpc_slice_count = &resource_get_mpc_slice_count;
dml2_options->callbacks.get_odm_slice_index = &resource_get_odm_slice_index;
dml2_options->callbacks.get_odm_slice_count = &resource_get_odm_slice_count;
dml2_options->callbacks.get_opp_head = &resource_get_opp_head;
dml2_options->callbacks.get_otg_master_for_stream = &resource_get_otg_master_for_stream;
dml2_options->callbacks.get_opp_heads_for_otg_master = &resource_get_opp_heads_for_otg_master;
dml2_options->callbacks.get_dpp_pipes_for_plane = &resource_get_dpp_pipes_for_plane;
dml2_options->callbacks.get_stream_status = &dc_state_get_stream_status;
dml2_options->callbacks.get_stream_from_id = &dc_state_get_stream_from_id;
dml2_options->callbacks.get_max_flickerless_instant_vtotal_increase = &dc_stream_get_max_flickerless_instant_vtotal_increase;
dml2_options->svp_pstate.callbacks.dc = dc;
dml2_options->svp_pstate.callbacks.add_phantom_plane = &dc_state_add_phantom_plane;
dml2_options->svp_pstate.callbacks.add_phantom_stream = &dc_state_add_phantom_stream;
dml2_options->svp_pstate.callbacks.build_scaling_params = &resource_build_scaling_params;
dml2_options->svp_pstate.callbacks.create_phantom_plane = &dc_state_create_phantom_plane;
dml2_options->svp_pstate.callbacks.remove_phantom_plane = &dc_state_remove_phantom_plane;
dml2_options->svp_pstate.callbacks.remove_phantom_stream = &dc_state_remove_phantom_stream;
dml2_options->svp_pstate.callbacks.create_phantom_stream = &dc_state_create_phantom_stream;
dml2_options->svp_pstate.callbacks.release_phantom_plane = &dc_state_release_phantom_plane;
dml2_options->svp_pstate.callbacks.release_phantom_stream = &dc_state_release_phantom_stream;
dml2_options->svp_pstate.callbacks.get_pipe_subvp_type = &dc_state_get_pipe_subvp_type;
dml2_options->svp_pstate.callbacks.get_stream_subvp_type = &dc_state_get_stream_subvp_type;
dml2_options->svp_pstate.callbacks.get_paired_subvp_stream = &dc_state_get_paired_subvp_stream;
dml2_options->svp_pstate.callbacks.remove_phantom_streams_and_planes = &dc_state_remove_phantom_streams_and_planes;
dml2_options->svp_pstate.callbacks.release_phantom_streams_and_planes = &dc_state_release_phantom_streams_and_planes;
}
/* Returns number of DET segments allocated for a given OTG_MASTER pipe */
int resource_calculate_det_for_stream(struct dc_state *state, struct pipe_ctx *otg_master)
{
struct pipe_ctx *opp_heads[MAX_PIPES];
struct pipe_ctx *dpp_pipes[MAX_PIPES];
int dpp_count = 0;
int det_segments = 0;
if (!otg_master->stream)
return 0;
int slice_count = resource_get_opp_heads_for_otg_master(otg_master,
&state->res_ctx, opp_heads);
for (int slice_idx = 0; slice_idx < slice_count; slice_idx++) {
if (opp_heads[slice_idx]->plane_state) {
dpp_count = resource_get_dpp_pipes_for_opp_head(
opp_heads[slice_idx],
&state->res_ctx,
dpp_pipes);
for (int dpp_idx = 0; dpp_idx < dpp_count; dpp_idx++)
det_segments += dpp_pipes[dpp_idx]->hubp_regs.det_size;
}
}
return det_segments;
}
bool resource_is_hpo_acquired(struct dc_state *context)
{
int i;
for (i = 0; i < MAX_HPO_DP2_ENCODERS; i++) {
if (context->res_ctx.is_hpo_dp_stream_enc_acquired[i]) {
return true;
}
}
return false;
}