/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "basics/dc_common.h"
#include "dc.h"
#include "core_types.h"
#include "resource.h"
#include "ipp.h"
#include "timing_generator.h"
#include "dc_dmub_srv.h"
#include "dc_state_priv.h"
#include "dc_stream_priv.h"
#define DC_LOGGER dc->ctx->logger
#ifndef MIN
#define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
#define MAX(x, y) ((x > y) ? x : y)
#endif
/*******************************************************************************
* Private functions
******************************************************************************/
void update_stream_signal(struct dc_stream_state *stream, struct dc_sink *sink)
{
if (sink->sink_signal == SIGNAL_TYPE_NONE)
stream->signal = stream->link->connector_signal;
else
stream->signal = sink->sink_signal;
if (dc_is_dvi_signal(stream->signal)) {
if (stream->ctx->dc->caps.dual_link_dvi &&
(stream->timing.pix_clk_100hz / 10) > TMDS_MAX_PIXEL_CLOCK &&
sink->sink_signal != SIGNAL_TYPE_DVI_SINGLE_LINK)
stream->signal = SIGNAL_TYPE_DVI_DUAL_LINK;
else
stream->signal = SIGNAL_TYPE_DVI_SINGLE_LINK;
}
}
bool dc_stream_construct(struct dc_stream_state *stream,
struct dc_sink *dc_sink_data)
{
uint32_t i = 0;
stream->sink = dc_sink_data;
dc_sink_retain(dc_sink_data);
stream->ctx = dc_sink_data->ctx;
stream->link = dc_sink_data->link;
stream->sink_patches = dc_sink_data->edid_caps.panel_patch;
stream->converter_disable_audio = dc_sink_data->converter_disable_audio;
stream->qs_bit = dc_sink_data->edid_caps.qs_bit;
stream->qy_bit = dc_sink_data->edid_caps.qy_bit;
/* Copy audio modes */
/* TODO - Remove this translation */
for (i = 0; i < (dc_sink_data->edid_caps.audio_mode_count); i++) {
stream->audio_info.modes[i].channel_count = dc_sink_data->edid_caps.audio_modes[i].channel_count;
stream->audio_info.modes[i].format_code = dc_sink_data->edid_caps.audio_modes[i].format_code;
stream->audio_info.modes[i].sample_rates.all = dc_sink_data->edid_caps.audio_modes[i].sample_rate;
stream->audio_info.modes[i].sample_size = dc_sink_data->edid_caps.audio_modes[i].sample_size;
}
stream->audio_info.mode_count = dc_sink_data->edid_caps.audio_mode_count;
stream->audio_info.audio_latency = dc_sink_data->edid_caps.audio_latency;
stream->audio_info.video_latency = dc_sink_data->edid_caps.video_latency;
memmove(
stream->audio_info.display_name,
dc_sink_data->edid_caps.display_name,
AUDIO_INFO_DISPLAY_NAME_SIZE_IN_CHARS);
stream->audio_info.manufacture_id = dc_sink_data->edid_caps.manufacturer_id;
stream->audio_info.product_id = dc_sink_data->edid_caps.product_id;
stream->audio_info.flags.all = dc_sink_data->edid_caps.speaker_flags;
if (dc_sink_data->dc_container_id != NULL) {
struct dc_container_id *dc_container_id = dc_sink_data->dc_container_id;
stream->audio_info.port_id[0] = dc_container_id->portId[0];
stream->audio_info.port_id[1] = dc_container_id->portId[1];
} else {
/* TODO - WindowDM has implemented,
other DMs need Unhardcode port_id */
stream->audio_info.port_id[0] = 0x5558859e;
stream->audio_info.port_id[1] = 0xd989449;
}
/* EDID CAP translation for HDMI 2.0 */
stream->timing.flags.LTE_340MCSC_SCRAMBLE = dc_sink_data->edid_caps.lte_340mcsc_scramble;
memset(&stream->timing.dsc_cfg, 0, sizeof(stream->timing.dsc_cfg));
stream->timing.dsc_cfg.num_slices_h = 0;
stream->timing.dsc_cfg.num_slices_v = 0;
stream->timing.dsc_cfg.bits_per_pixel = 128;
stream->timing.dsc_cfg.block_pred_enable = 1;
stream->timing.dsc_cfg.linebuf_depth = 9;
stream->timing.dsc_cfg.version_minor = 2;
stream->timing.dsc_cfg.ycbcr422_simple = 0;
update_stream_signal(stream, dc_sink_data);
stream->out_transfer_func.type = TF_TYPE_BYPASS;
dc_stream_assign_stream_id(stream);
return true;
}
void dc_stream_destruct(struct dc_stream_state *stream)
{
dc_sink_release(stream->sink);
}
void dc_stream_assign_stream_id(struct dc_stream_state *stream)
{
/* MSB is reserved to indicate phantoms */
stream->stream_id = stream->ctx->dc_stream_id_count;
stream->ctx->dc_stream_id_count++;
}
void dc_stream_retain(struct dc_stream_state *stream)
{
kref_get(&stream->refcount);
}
static void dc_stream_free(struct kref *kref)
{
struct dc_stream_state *stream = container_of(kref, struct dc_stream_state, refcount);
dc_stream_destruct(stream);
kfree(stream);
}
void dc_stream_release(struct dc_stream_state *stream)
{
if (stream != NULL) {
kref_put(&stream->refcount, dc_stream_free);
}
}
struct dc_stream_state *dc_create_stream_for_sink(
struct dc_sink *sink)
{
struct dc_stream_state *stream;
if (sink == NULL)
return NULL;
stream = kzalloc(sizeof(struct dc_stream_state), GFP_KERNEL);
if (stream == NULL)
goto alloc_fail;
if (dc_stream_construct(stream, sink) == false)
goto construct_fail;
kref_init(&stream->refcount);
return stream;
construct_fail:
kfree(stream);
alloc_fail:
return NULL;
}
struct dc_stream_state *dc_copy_stream(const struct dc_stream_state *stream)
{
struct dc_stream_state *new_stream;
new_stream = kmemdup(stream, sizeof(struct dc_stream_state), GFP_KERNEL);
if (!new_stream)
return NULL;
if (new_stream->sink)
dc_sink_retain(new_stream->sink);
dc_stream_assign_stream_id(new_stream);
/* If using dynamic encoder assignment, wait till stream committed to assign encoder. */
if (new_stream->ctx->dc->res_pool->funcs->link_encs_assign)
new_stream->link_enc = NULL;
kref_init(&new_stream->refcount);
return new_stream;
}
/**
* dc_stream_get_status() - Get current stream status of the given stream state
* @stream: The stream to get the stream status for.
*
* The given stream is expected to exist in dc->current_state. Otherwise, NULL
* will be returned.
*/
struct dc_stream_status *dc_stream_get_status(
struct dc_stream_state *stream)
{
struct dc *dc = stream->ctx->dc;
return dc_state_get_stream_status(dc->current_state, stream);
}
void program_cursor_attributes(
struct dc *dc,
struct dc_stream_state *stream)
{
int i;
struct resource_context *res_ctx;
struct pipe_ctx *pipe_to_program = NULL;
if (!stream)
return;
res_ctx = &dc->current_state->res_ctx;
for (i = 0; i < MAX_PIPES; i++) {
struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
if (pipe_ctx->stream != stream)
continue;
if (!pipe_to_program) {
pipe_to_program = pipe_ctx;
dc->hwss.cursor_lock(dc, pipe_to_program, true);
if (pipe_to_program->next_odm_pipe)
dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, true);
}
dc->hwss.set_cursor_attribute(pipe_ctx);
if (dc->ctx->dmub_srv)
dc_send_update_cursor_info_to_dmu(pipe_ctx, i);
if (dc->hwss.set_cursor_sdr_white_level)
dc->hwss.set_cursor_sdr_white_level(pipe_ctx);
}
if (pipe_to_program) {
dc->hwss.cursor_lock(dc, pipe_to_program, false);
if (pipe_to_program->next_odm_pipe)
dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, false);
}
}
/*
* dc_stream_set_cursor_attributes() - Update cursor attributes and set cursor surface address
*/
bool dc_stream_set_cursor_attributes(
struct dc_stream_state *stream,
const struct dc_cursor_attributes *attributes)
{
struct dc *dc;
if (NULL == stream) {
dm_error("DC: dc_stream is NULL!\n");
return false;
}
if (NULL == attributes) {
dm_error("DC: attributes is NULL!\n");
return false;
}
if (attributes->address.quad_part == 0) {
dm_output_to_console("DC: Cursor address is 0!\n");
return false;
}
dc = stream->ctx->dc;
/* SubVP is not compatible with HW cursor larger than 64 x 64 x 4.
* Therefore, if cursor is greater than 64 x 64 x 4, fallback to SW cursor in the following case:
* 1. If the config is a candidate for SubVP high refresh (both single an dual display configs)
* 2. If not subvp high refresh, for single display cases, if resolution is >= 5K and refresh rate < 120hz
* 3. If not subvp high refresh, for multi display cases, if resolution is >= 4K and refresh rate < 120hz
*/
if (dc->debug.allow_sw_cursor_fallback && attributes->height * attributes->width * 4 > 16384) {
if (check_subvp_sw_cursor_fallback_req(dc, stream))
return false;
}
stream->cursor_attributes = *attributes;
return true;
}
bool dc_stream_program_cursor_attributes(
struct dc_stream_state *stream,
const struct dc_cursor_attributes *attributes)
{
struct dc *dc;
bool reset_idle_optimizations = false;
dc = stream ? stream->ctx->dc : NULL;
if (dc_stream_set_cursor_attributes(stream, attributes)) {
dc_z10_restore(dc);
/* disable idle optimizations while updating cursor */
if (dc->idle_optimizations_allowed) {
dc_allow_idle_optimizations(dc, false);
reset_idle_optimizations = true;
}
program_cursor_attributes(dc, stream);
/* re-enable idle optimizations if necessary */
if (reset_idle_optimizations && !dc->debug.disable_dmub_reallow_idle)
dc_allow_idle_optimizations(dc, true);
return true;
}
return false;
}
void program_cursor_position(
struct dc *dc,
struct dc_stream_state *stream)
{
int i;
struct resource_context *res_ctx;
struct pipe_ctx *pipe_to_program = NULL;
if (!stream)
return;
res_ctx = &dc->current_state->res_ctx;
for (i = 0; i < MAX_PIPES; i++) {
struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
if (pipe_ctx->stream != stream ||
(!pipe_ctx->plane_res.mi && !pipe_ctx->plane_res.hubp) ||
!pipe_ctx->plane_state ||
(!pipe_ctx->plane_res.xfm && !pipe_ctx->plane_res.dpp) ||
(!pipe_ctx->plane_res.ipp && !pipe_ctx->plane_res.dpp))
continue;
if (!pipe_to_program) {
pipe_to_program = pipe_ctx;
dc->hwss.cursor_lock(dc, pipe_to_program, true);
}
dc->hwss.set_cursor_position(pipe_ctx);
if (dc->ctx->dmub_srv)
dc_send_update_cursor_info_to_dmu(pipe_ctx, i);
}
if (pipe_to_program)
dc->hwss.cursor_lock(dc, pipe_to_program, false);
}
bool dc_stream_set_cursor_position(
struct dc_stream_state *stream,
const struct dc_cursor_position *position)
{
if (NULL == stream) {
dm_error("DC: dc_stream is NULL!\n");
return false;
}
if (NULL == position) {
dm_error("DC: cursor position is NULL!\n");
return false;
}
stream->cursor_position = *position;
return true;
}
bool dc_stream_program_cursor_position(
struct dc_stream_state *stream,
const struct dc_cursor_position *position)
{
struct dc *dc;
bool reset_idle_optimizations = false;
const struct dc_cursor_position *old_position;
if (!stream)
return false;
old_position = &stream->cursor_position;
dc = stream->ctx->dc;
if (dc_stream_set_cursor_position(stream, position)) {
dc_z10_restore(dc);
/* disable idle optimizations if enabling cursor */
if (dc->idle_optimizations_allowed &&
(!old_position->enable || dc->debug.exit_idle_opt_for_cursor_updates) &&
position->enable) {
dc_allow_idle_optimizations(dc, false);
reset_idle_optimizations = true;
}
program_cursor_position(dc, stream);
/* re-enable idle optimizations if necessary */
if (reset_idle_optimizations && !dc->debug.disable_dmub_reallow_idle)
dc_allow_idle_optimizations(dc, true);
/* apply/update visual confirm */
if (dc->debug.visual_confirm == VISUAL_CONFIRM_HW_CURSOR) {
/* update software state */
uint32_t color_value = MAX_TG_COLOR_VALUE;
int i;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
/* adjust visual confirm color for all pipes with current stream */
if (stream == pipe_ctx->stream) {
if (stream->cursor_position.enable) {
pipe_ctx->visual_confirm_color.color_r_cr = color_value;
pipe_ctx->visual_confirm_color.color_g_y = 0;
pipe_ctx->visual_confirm_color.color_b_cb = 0;
} else {
pipe_ctx->visual_confirm_color.color_r_cr = 0;
pipe_ctx->visual_confirm_color.color_g_y = 0;
pipe_ctx->visual_confirm_color.color_b_cb = color_value;
}
/* programming hardware */
if (pipe_ctx->plane_state)
dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
pipe_ctx->plane_res.hubp->mpcc_id);
}
}
}
return true;
}
return false;
}
bool dc_stream_add_writeback(struct dc *dc,
struct dc_stream_state *stream,
struct dc_writeback_info *wb_info)
{
bool isDrc = false;
int i = 0;
struct dwbc *dwb;
if (stream == NULL) {
dm_error("DC: dc_stream is NULL!\n");
return false;
}
if (wb_info == NULL) {
dm_error("DC: dc_writeback_info is NULL!\n");
return false;
}
if (wb_info->dwb_pipe_inst >= MAX_DWB_PIPES) {
dm_error("DC: writeback pipe is invalid!\n");
return false;
}
dc_exit_ips_for_hw_access(dc);
wb_info->dwb_params.out_transfer_func = &stream->out_transfer_func;
dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
dwb->dwb_is_drc = false;
/* recalculate and apply DML parameters */
for (i = 0; i < stream->num_wb_info; i++) {
/*dynamic update*/
if (stream->writeback_info[i].wb_enabled &&
stream->writeback_info[i].dwb_pipe_inst == wb_info->dwb_pipe_inst) {
stream->writeback_info[i] = *wb_info;
isDrc = true;
}
}
if (!isDrc) {
ASSERT(stream->num_wb_info + 1 <= MAX_DWB_PIPES);
stream->writeback_info[stream->num_wb_info++] = *wb_info;
}
if (dc->hwss.enable_writeback) {
struct dc_stream_status *stream_status = dc_stream_get_status(stream);
struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
if (stream_status)
dwb->otg_inst = stream_status->primary_otg_inst;
}
if (!dc->hwss.update_bandwidth(dc, dc->current_state)) {
dm_error("DC: update_bandwidth failed!\n");
return false;
}
/* enable writeback */
if (dc->hwss.enable_writeback) {
struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
if (dwb->funcs->is_enabled(dwb)) {
/* writeback pipe already enabled, only need to update */
dc->hwss.update_writeback(dc, wb_info, dc->current_state);
} else {
/* Enable writeback pipe from scratch*/
dc->hwss.enable_writeback(dc, wb_info, dc->current_state);
}
}
return true;
}
bool dc_stream_fc_disable_writeback(struct dc *dc,
struct dc_stream_state *stream,
uint32_t dwb_pipe_inst)
{
struct dwbc *dwb = dc->res_pool->dwbc[dwb_pipe_inst];
if (stream == NULL) {
dm_error("DC: dc_stream is NULL!\n");
return false;
}
if (dwb_pipe_inst >= MAX_DWB_PIPES) {
dm_error("DC: writeback pipe is invalid!\n");
return false;
}
if (stream->num_wb_info > MAX_DWB_PIPES) {
dm_error("DC: num_wb_info is invalid!\n");
return false;
}
dc_exit_ips_for_hw_access(dc);
if (dwb->funcs->set_fc_enable)
dwb->funcs->set_fc_enable(dwb, DWB_FRAME_CAPTURE_DISABLE);
return true;
}
bool dc_stream_remove_writeback(struct dc *dc,
struct dc_stream_state *stream,
uint32_t dwb_pipe_inst)
{
unsigned int i, j;
if (stream == NULL) {
dm_error("DC: dc_stream is NULL!\n");
return false;
}
if (dwb_pipe_inst >= MAX_DWB_PIPES) {
dm_error("DC: writeback pipe is invalid!\n");
return false;
}
if (stream->num_wb_info > MAX_DWB_PIPES) {
dm_error("DC: num_wb_info is invalid!\n");
return false;
}
/* remove writeback info for disabled writeback pipes from stream */
for (i = 0, j = 0; i < stream->num_wb_info; i++) {
if (stream->writeback_info[i].wb_enabled) {
if (stream->writeback_info[i].dwb_pipe_inst == dwb_pipe_inst)
stream->writeback_info[i].wb_enabled = false;
/* trim the array */
if (j < i) {
memcpy(&stream->writeback_info[j], &stream->writeback_info[i],
sizeof(struct dc_writeback_info));
j++;
}
}
}
stream->num_wb_info = j;
/* recalculate and apply DML parameters */
if (!dc->hwss.update_bandwidth(dc, dc->current_state)) {
dm_error("DC: update_bandwidth failed!\n");
return false;
}
dc_exit_ips_for_hw_access(dc);
/* disable writeback */
if (dc->hwss.disable_writeback) {
struct dwbc *dwb = dc->res_pool->dwbc[dwb_pipe_inst];
if (dwb->funcs->is_enabled(dwb))
dc->hwss.disable_writeback(dc, dwb_pipe_inst);
}
return true;
}
bool dc_stream_warmup_writeback(struct dc *dc,
int num_dwb,
struct dc_writeback_info *wb_info)
{
dc_exit_ips_for_hw_access(dc);
if (dc->hwss.mmhubbub_warmup)
return dc->hwss.mmhubbub_warmup(dc, num_dwb, wb_info);
else
return false;
}
uint32_t dc_stream_get_vblank_counter(const struct dc_stream_state *stream)
{
uint8_t i;
struct dc *dc = stream->ctx->dc;
struct resource_context *res_ctx =
&dc->current_state->res_ctx;
dc_exit_ips_for_hw_access(dc);
for (i = 0; i < MAX_PIPES; i++) {
struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg;
if (res_ctx->pipe_ctx[i].stream != stream || !tg)
continue;
return tg->funcs->get_frame_count(tg);
}
return 0;
}
bool dc_stream_send_dp_sdp(const struct dc_stream_state *stream,
const uint8_t *custom_sdp_message,
unsigned int sdp_message_size)
{
int i;
struct dc *dc;
struct resource_context *res_ctx;
if (stream == NULL) {
dm_error("DC: dc_stream is NULL!\n");
return false;
}
dc = stream->ctx->dc;
res_ctx = &dc->current_state->res_ctx;
dc_exit_ips_for_hw_access(dc);
for (i = 0; i < MAX_PIPES; i++) {
struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
if (pipe_ctx->stream != stream)
continue;
if (dc->hwss.send_immediate_sdp_message != NULL)
dc->hwss.send_immediate_sdp_message(pipe_ctx,
custom_sdp_message,
sdp_message_size);
else
DC_LOG_WARNING("%s:send_immediate_sdp_message not implemented on this ASIC\n",
__func__);
}
return true;
}
bool dc_stream_get_scanoutpos(const struct dc_stream_state *stream,
uint32_t *v_blank_start,
uint32_t *v_blank_end,
uint32_t *h_position,
uint32_t *v_position)
{
uint8_t i;
bool ret = false;
struct dc *dc = stream->ctx->dc;
struct resource_context *res_ctx =
&dc->current_state->res_ctx;
dc_exit_ips_for_hw_access(dc);
for (i = 0; i < MAX_PIPES; i++) {
struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg;
if (res_ctx->pipe_ctx[i].stream != stream || !tg)
continue;
tg->funcs->get_scanoutpos(tg,
v_blank_start,
v_blank_end,
h_position,
v_position);
ret = true;
break;
}
return ret;
}
bool dc_stream_dmdata_status_done(struct dc *dc, struct dc_stream_state *stream)
{
struct pipe_ctx *pipe = NULL;
int i;
if (!dc->hwss.dmdata_status_done)
return false;
for (i = 0; i < MAX_PIPES; i++) {
pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->stream == stream)
break;
}
/* Stream not found, by default we'll assume HUBP fetched dm data */
if (i == MAX_PIPES)
return true;
dc_exit_ips_for_hw_access(dc);
return dc->hwss.dmdata_status_done(pipe);
}
bool dc_stream_set_dynamic_metadata(struct dc *dc,
struct dc_stream_state *stream,
struct dc_dmdata_attributes *attr)
{
struct pipe_ctx *pipe_ctx = NULL;
struct hubp *hubp;
int i;
/* Dynamic metadata is only supported on HDMI or DP */
if (!dc_is_hdmi_signal(stream->signal) && !dc_is_dp_signal(stream->signal))
return false;
/* Check hardware support */
if (!dc->hwss.program_dmdata_engine)
return false;
for (i = 0; i < MAX_PIPES; i++) {
pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream == stream)
break;
}
if (i == MAX_PIPES)
return false;
hubp = pipe_ctx->plane_res.hubp;
if (hubp == NULL)
return false;
pipe_ctx->stream->dmdata_address = attr->address;
dc_exit_ips_for_hw_access(dc);
dc->hwss.program_dmdata_engine(pipe_ctx);
if (hubp->funcs->dmdata_set_attributes != NULL &&
pipe_ctx->stream->dmdata_address.quad_part != 0) {
hubp->funcs->dmdata_set_attributes(hubp, attr);
}
return true;
}
enum dc_status dc_stream_add_dsc_to_resource(struct dc *dc,
struct dc_state *state,
struct dc_stream_state *stream)
{
if (dc->res_pool->funcs->add_dsc_to_stream_resource) {
return dc->res_pool->funcs->add_dsc_to_stream_resource(dc, state, stream);
} else {
return DC_NO_DSC_RESOURCE;
}
}
struct pipe_ctx *dc_stream_get_pipe_ctx(struct dc_stream_state *stream)
{
int i = 0;
for (i = 0; i < MAX_PIPES; i++) {
struct pipe_ctx *pipe = &stream->ctx->dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->stream == stream)
return pipe;
}
return NULL;
}
void dc_stream_log(const struct dc *dc, const struct dc_stream_state *stream)
{
DC_LOG_DC(
"core_stream 0x%p: src: %d, %d, %d, %d; dst: %d, %d, %d, %d, colorSpace:%d\n",
stream,
stream->src.x,
stream->src.y,
stream->src.width,
stream->src.height,
stream->dst.x,
stream->dst.y,
stream->dst.width,
stream->dst.height,
stream->output_color_space);
DC_LOG_DC(
"\tpix_clk_khz: %d, h_total: %d, v_total: %d, pixelencoder:%d, displaycolorDepth:%d\n",
stream->timing.pix_clk_100hz / 10,
stream->timing.h_total,
stream->timing.v_total,
stream->timing.pixel_encoding,
stream->timing.display_color_depth);
DC_LOG_DC(
"\tlink: %d\n",
stream->link->link_index);
DC_LOG_DC(
"\tdsc: %d, mst_pbn: %d\n",
stream->timing.flags.DSC,
stream->timing.dsc_cfg.mst_pbn);
if (stream->sink) {
if (stream->sink->sink_signal != SIGNAL_TYPE_VIRTUAL &&
stream->sink->sink_signal != SIGNAL_TYPE_NONE) {
DC_LOG_DC(
"\tdispname: %s signal: %x\n",
stream->sink->edid_caps.display_name,
stream->signal);
}
}
}
/*
* Finds the greatest index in refresh_rate_hz that contains a value <= refresh
*/
static int dc_stream_get_nearest_smallest_index(struct dc_stream_state *stream, int refresh)
{
for (int i = 0; i < (LUMINANCE_DATA_TABLE_SIZE - 1); ++i) {
if ((stream->lumin_data.refresh_rate_hz[i] <= refresh) && (refresh < stream->lumin_data.refresh_rate_hz[i + 1])) {
return i;
}
}
return 9;
}
/*
* Finds a corresponding brightness for a given refresh rate between 2 given indices, where index1 < index2
*/
static int dc_stream_get_brightness_millinits_linear_interpolation (struct dc_stream_state *stream,
int index1,
int index2,
int refresh_hz)
{
long long slope = 0;
if (stream->lumin_data.refresh_rate_hz[index2] != stream->lumin_data.refresh_rate_hz[index1]) {
slope = (stream->lumin_data.luminance_millinits[index2] - stream->lumin_data.luminance_millinits[index1]) /
(stream->lumin_data.refresh_rate_hz[index2] - stream->lumin_data.refresh_rate_hz[index1]);
}
int y_intercept = stream->lumin_data.luminance_millinits[index2] - slope * stream->lumin_data.refresh_rate_hz[index2];
return (y_intercept + refresh_hz * slope);
}
/*
* Finds a corresponding refresh rate for a given brightness between 2 given indices, where index1 < index2
*/
static int dc_stream_get_refresh_hz_linear_interpolation (struct dc_stream_state *stream,
int index1,
int index2,
int brightness_millinits)
{
long long slope = 1;
if (stream->lumin_data.refresh_rate_hz[index2] != stream->lumin_data.refresh_rate_hz[index1]) {
slope = (stream->lumin_data.luminance_millinits[index2] - stream->lumin_data.luminance_millinits[index1]) /
(stream->lumin_data.refresh_rate_hz[index2] - stream->lumin_data.refresh_rate_hz[index1]);
}
int y_intercept = stream->lumin_data.luminance_millinits[index2] - slope * stream->lumin_data.refresh_rate_hz[index2];
return ((int)div64_s64((brightness_millinits - y_intercept), slope));
}
/*
* Finds the current brightness in millinits given a refresh rate
*/
static int dc_stream_get_brightness_millinits_from_refresh (struct dc_stream_state *stream, int refresh_hz)
{
int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, refresh_hz);
int nearest_smallest_value = stream->lumin_data.refresh_rate_hz[nearest_smallest_index];
if (nearest_smallest_value == refresh_hz)
return stream->lumin_data.luminance_millinits[nearest_smallest_index];
if (nearest_smallest_index >= 9)
return dc_stream_get_brightness_millinits_linear_interpolation(stream, nearest_smallest_index - 1, nearest_smallest_index, refresh_hz);
if (nearest_smallest_value == stream->lumin_data.refresh_rate_hz[nearest_smallest_index + 1])
return stream->lumin_data.luminance_millinits[nearest_smallest_index];
return dc_stream_get_brightness_millinits_linear_interpolation(stream, nearest_smallest_index, nearest_smallest_index + 1, refresh_hz);
}
/*
* Finds the lowest/highest refresh rate (depending on search_for_max_increase)
* that can be achieved from starting_refresh_hz while staying
* within flicker criteria
*/
static int dc_stream_calculate_flickerless_refresh_rate(struct dc_stream_state *stream,
int current_brightness,
int starting_refresh_hz,
bool is_gaming,
bool search_for_max_increase)
{
int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, starting_refresh_hz);
int flicker_criteria_millinits = is_gaming ?
stream->lumin_data.flicker_criteria_milli_nits_GAMING :
stream->lumin_data.flicker_criteria_milli_nits_STATIC;
int safe_upper_bound = current_brightness + flicker_criteria_millinits;
int safe_lower_bound = current_brightness - flicker_criteria_millinits;
int lumin_millinits_temp = 0;
int offset = -1;
if (search_for_max_increase) {
offset = 1;
}
/*
* Increments up or down by 1 depending on search_for_max_increase
*/
for (int i = nearest_smallest_index; (i > 0 && !search_for_max_increase) || (i < (LUMINANCE_DATA_TABLE_SIZE - 1) && search_for_max_increase); i += offset) {
lumin_millinits_temp = stream->lumin_data.luminance_millinits[i + offset];
if ((lumin_millinits_temp >= safe_upper_bound) || (lumin_millinits_temp <= safe_lower_bound)) {
if (stream->lumin_data.refresh_rate_hz[i + offset] == stream->lumin_data.refresh_rate_hz[i])
return stream->lumin_data.refresh_rate_hz[i];
int target_brightness = (stream->lumin_data.luminance_millinits[i + offset] >= (current_brightness + flicker_criteria_millinits)) ?
current_brightness + flicker_criteria_millinits :
current_brightness - flicker_criteria_millinits;
int refresh = 0;
/*
* Need the second input to be < third input for dc_stream_get_refresh_hz_linear_interpolation
*/
if (search_for_max_increase)
refresh = dc_stream_get_refresh_hz_linear_interpolation(stream, i, i + offset, target_brightness);
else
refresh = dc_stream_get_refresh_hz_linear_interpolation(stream, i + offset, i, target_brightness);
if (refresh == stream->lumin_data.refresh_rate_hz[i + offset])
return stream->lumin_data.refresh_rate_hz[i + offset];
return refresh;
}
}
if (search_for_max_increase)
return (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, stream->timing.v_total*(long long)stream->timing.h_total);
else
return stream->lumin_data.refresh_rate_hz[0];
}
/*
* Gets the max delta luminance within a specified refresh range
*/
static int dc_stream_get_max_delta_lumin_millinits(struct dc_stream_state *stream, int hz1, int hz2, bool isGaming)
{
int lower_refresh_brightness = dc_stream_get_brightness_millinits_from_refresh (stream, hz1);
int higher_refresh_brightness = dc_stream_get_brightness_millinits_from_refresh (stream, hz2);
int min = lower_refresh_brightness;
int max = higher_refresh_brightness;
/*
* Static screen, therefore no need to scan through array
*/
if (!isGaming) {
if (lower_refresh_brightness >= higher_refresh_brightness) {
return lower_refresh_brightness - higher_refresh_brightness;
}
return higher_refresh_brightness - lower_refresh_brightness;
}
min = MIN(lower_refresh_brightness, higher_refresh_brightness);
max = MAX(lower_refresh_brightness, higher_refresh_brightness);
int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, hz1);
for (; nearest_smallest_index < (LUMINANCE_DATA_TABLE_SIZE - 1) &&
stream->lumin_data.refresh_rate_hz[nearest_smallest_index + 1] <= hz2 ; nearest_smallest_index++) {
min = MIN(min, stream->lumin_data.luminance_millinits[nearest_smallest_index + 1]);
max = MAX(max, stream->lumin_data.luminance_millinits[nearest_smallest_index + 1]);
}
return (max - min);
}
/*
* Determines the max flickerless instant vtotal delta for a stream.
* Determines vtotal increase/decrease based on the bool "increase"
*/
static unsigned int dc_stream_get_max_flickerless_instant_vtotal_delta(struct dc_stream_state *stream, bool is_gaming, bool increase)
{
if (stream->timing.v_total * stream->timing.h_total == 0)
return 0;
int current_refresh_hz = (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, stream->timing.v_total*(long long)stream->timing.h_total);
int safe_refresh_hz = dc_stream_calculate_flickerless_refresh_rate(stream,
dc_stream_get_brightness_millinits_from_refresh(stream, current_refresh_hz),
current_refresh_hz,
is_gaming,
increase);
int safe_refresh_v_total = (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, safe_refresh_hz*(long long)stream->timing.h_total);
if (increase)
return (((int) stream->timing.v_total - safe_refresh_v_total) >= 0) ? (stream->timing.v_total - safe_refresh_v_total) : 0;
return ((safe_refresh_v_total - (int) stream->timing.v_total) >= 0) ? (safe_refresh_v_total - stream->timing.v_total) : 0;
}
/*
* Finds the highest refresh rate that can be achieved
* from starting_refresh_hz while staying within flicker criteria
*/
int dc_stream_calculate_max_flickerless_refresh_rate(struct dc_stream_state *stream, int starting_refresh_hz, bool is_gaming)
{
if (!stream->lumin_data.is_valid)
return 0;
int current_brightness = dc_stream_get_brightness_millinits_from_refresh(stream, starting_refresh_hz);
return dc_stream_calculate_flickerless_refresh_rate(stream,
current_brightness,
starting_refresh_hz,
is_gaming,
true);
}
/*
* Finds the lowest refresh rate that can be achieved
* from starting_refresh_hz while staying within flicker criteria
*/
int dc_stream_calculate_min_flickerless_refresh_rate(struct dc_stream_state *stream, int starting_refresh_hz, bool is_gaming)
{
if (!stream->lumin_data.is_valid)
return 0;
int current_brightness = dc_stream_get_brightness_millinits_from_refresh(stream, starting_refresh_hz);
return dc_stream_calculate_flickerless_refresh_rate(stream,
current_brightness,
starting_refresh_hz,
is_gaming,
false);
}
/*
* Determines if there will be a flicker when moving between 2 refresh rates
*/
bool dc_stream_is_refresh_rate_range_flickerless(struct dc_stream_state *stream, int hz1, int hz2, bool is_gaming)
{
/*
* Assume that we wont flicker if there is invalid data
*/
if (!stream->lumin_data.is_valid)
return false;
int dl = dc_stream_get_max_delta_lumin_millinits(stream, hz1, hz2, is_gaming);
int flicker_criteria_millinits = (is_gaming) ?
stream->lumin_data.flicker_criteria_milli_nits_GAMING :
stream->lumin_data.flicker_criteria_milli_nits_STATIC;
return (dl <= flicker_criteria_millinits);
}
/*
* Determines the max instant vtotal delta increase that can be applied without
* flickering for a given stream
*/
unsigned int dc_stream_get_max_flickerless_instant_vtotal_decrease(struct dc_stream_state *stream,
bool is_gaming)
{
if (!stream->lumin_data.is_valid)
return 0;
return dc_stream_get_max_flickerless_instant_vtotal_delta(stream, is_gaming, true);
}
/*
* Determines the max instant vtotal delta decrease that can be applied without
* flickering for a given stream
*/
unsigned int dc_stream_get_max_flickerless_instant_vtotal_increase(struct dc_stream_state *stream,
bool is_gaming)
{
if (!stream->lumin_data.is_valid)
return 0;
return dc_stream_get_max_flickerless_instant_vtotal_delta(stream, is_gaming, false);
}