// SPDX-License-Identifier: GPL-2.0
/*
* Fast batching percpu counters.
*/
#include <linux/percpu_counter.h>
#include <linux/mutex.h>
#include <linux/init.h>
#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/debugobjects.h>
#ifdef CONFIG_HOTPLUG_CPU
static LIST_HEAD(percpu_counters);
static DEFINE_SPINLOCK(percpu_counters_lock);
#endif
#ifdef CONFIG_DEBUG_OBJECTS_PERCPU_COUNTER
static const struct debug_obj_descr percpu_counter_debug_descr;
static bool percpu_counter_fixup_free(void *addr, enum debug_obj_state state)
{
struct percpu_counter *fbc = addr;
switch (state) {
case ODEBUG_STATE_ACTIVE:
percpu_counter_destroy(fbc);
debug_object_free(fbc, &percpu_counter_debug_descr);
return true;
default:
return false;
}
}
static const struct debug_obj_descr percpu_counter_debug_descr = {
.name = "percpu_counter",
.fixup_free = percpu_counter_fixup_free,
};
static inline void debug_percpu_counter_activate(struct percpu_counter *fbc)
{
debug_object_init(fbc, &percpu_counter_debug_descr);
debug_object_activate(fbc, &percpu_counter_debug_descr);
}
static inline void debug_percpu_counter_deactivate(struct percpu_counter *fbc)
{
debug_object_deactivate(fbc, &percpu_counter_debug_descr);
debug_object_free(fbc, &percpu_counter_debug_descr);
}
#else /* CONFIG_DEBUG_OBJECTS_PERCPU_COUNTER */
static inline void debug_percpu_counter_activate(struct percpu_counter *fbc)
{ }
static inline void debug_percpu_counter_deactivate(struct percpu_counter *fbc)
{ }
#endif /* CONFIG_DEBUG_OBJECTS_PERCPU_COUNTER */
void percpu_counter_set(struct percpu_counter *fbc, s64 amount)
{
int cpu;
unsigned long flags;
raw_spin_lock_irqsave(&fbc->lock, flags);
for_each_possible_cpu(cpu) {
s32 *pcount = per_cpu_ptr(fbc->counters, cpu);
*pcount = 0;
}
fbc->count = amount;
raw_spin_unlock_irqrestore(&fbc->lock, flags);
}
EXPORT_SYMBOL(percpu_counter_set);
/*
* Add to a counter while respecting batch size.
*
* There are 2 implementations, both dealing with the following problem:
*
* The decision slow path/fast path and the actual update must be atomic.
* Otherwise a call in process context could check the current values and
* decide that the fast path can be used. If now an interrupt occurs before
* the this_cpu_add(), and the interrupt updates this_cpu(*fbc->counters),
* then the this_cpu_add() that is executed after the interrupt has completed
* can produce values larger than "batch" or even overflows.
*/
#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
/*
* Safety against interrupts is achieved in 2 ways:
* 1. the fast path uses local cmpxchg (note: no lock prefix)
* 2. the slow path operates with interrupts disabled
*/
void percpu_counter_add_batch(struct percpu_counter *fbc, s64 amount, s32 batch)
{
s64 count;
unsigned long flags;
count = this_cpu_read(*fbc->counters);
do {
if (unlikely(abs(count + amount) >= batch)) {
raw_spin_lock_irqsave(&fbc->lock, flags);
/*
* Note: by now we might have migrated to another CPU
* or the value might have changed.
*/
count = __this_cpu_read(*fbc->counters);
fbc->count += count + amount;
__this_cpu_sub(*fbc->counters, count);
raw_spin_unlock_irqrestore(&fbc->lock, flags);
return;
}
} while (!this_cpu_try_cmpxchg(*fbc->counters, &count, count + amount));
}
#else
/*
* local_irq_save() is used to make the function irq safe:
* - The slow path would be ok as protected by an irq-safe spinlock.
* - this_cpu_add would be ok as it is irq-safe by definition.
*/
void percpu_counter_add_batch(struct percpu_counter *fbc, s64 amount, s32 batch)
{
s64 count;
unsigned long flags;
local_irq_save(flags);
count = __this_cpu_read(*fbc->counters) + amount;
if (abs(count) >= batch) {
raw_spin_lock(&fbc->lock);
fbc->count += count;
__this_cpu_sub(*fbc->counters, count - amount);
raw_spin_unlock(&fbc->lock);
} else {
this_cpu_add(*fbc->counters, amount);
}
local_irq_restore(flags);
}
#endif
EXPORT_SYMBOL(percpu_counter_add_batch);
/*
* For percpu_counter with a big batch, the devication of its count could
* be big, and there is requirement to reduce the deviation, like when the
* counter's batch could be runtime decreased to get a better accuracy,
* which can be achieved by running this sync function on each CPU.
*/
void percpu_counter_sync(struct percpu_counter *fbc)
{
unsigned long flags;
s64 count;
raw_spin_lock_irqsave(&fbc->lock, flags);
count = __this_cpu_read(*fbc->counters);
fbc->count += count;
__this_cpu_sub(*fbc->counters, count);
raw_spin_unlock_irqrestore(&fbc->lock, flags);
}
EXPORT_SYMBOL(percpu_counter_sync);
/*
* Add up all the per-cpu counts, return the result. This is a more accurate
* but much slower version of percpu_counter_read_positive().
*
* We use the cpu mask of (cpu_online_mask | cpu_dying_mask) to capture sums
* from CPUs that are in the process of being taken offline. Dying cpus have
* been removed from the online mask, but may not have had the hotplug dead
* notifier called to fold the percpu count back into the global counter sum.
* By including dying CPUs in the iteration mask, we avoid this race condition
* so __percpu_counter_sum() just does the right thing when CPUs are being taken
* offline.
*/
s64 __percpu_counter_sum(struct percpu_counter *fbc)
{
s64 ret;
int cpu;
unsigned long flags;
raw_spin_lock_irqsave(&fbc->lock, flags);
ret = fbc->count;
for_each_cpu_or(cpu, cpu_online_mask, cpu_dying_mask) {
s32 *pcount = per_cpu_ptr(fbc->counters, cpu);
ret += *pcount;
}
raw_spin_unlock_irqrestore(&fbc->lock, flags);
return ret;
}
EXPORT_SYMBOL(__percpu_counter_sum);
int __percpu_counter_init_many(struct percpu_counter *fbc, s64 amount,
gfp_t gfp, u32 nr_counters,
struct lock_class_key *key)
{
unsigned long flags __maybe_unused;
size_t counter_size;
s32 __percpu *counters;
u32 i;
counter_size = ALIGN(sizeof(*counters), __alignof__(*counters));
counters = __alloc_percpu_gfp(nr_counters * counter_size,
__alignof__(*counters), gfp);
if (!counters) {
fbc[0].counters = NULL;
return -ENOMEM;
}
for (i = 0; i < nr_counters; i++) {
raw_spin_lock_init(&fbc[i].lock);
lockdep_set_class(&fbc[i].lock, key);
#ifdef CONFIG_HOTPLUG_CPU
INIT_LIST_HEAD(&fbc[i].list);
#endif
fbc[i].count = amount;
fbc[i].counters = (void __percpu *)counters + i * counter_size;
debug_percpu_counter_activate(&fbc[i]);
}
#ifdef CONFIG_HOTPLUG_CPU
spin_lock_irqsave(&percpu_counters_lock, flags);
for (i = 0; i < nr_counters; i++)
list_add(&fbc[i].list, &percpu_counters);
spin_unlock_irqrestore(&percpu_counters_lock, flags);
#endif
return 0;
}
EXPORT_SYMBOL(__percpu_counter_init_many);
void percpu_counter_destroy_many(struct percpu_counter *fbc, u32 nr_counters)
{
unsigned long flags __maybe_unused;
u32 i;
if (WARN_ON_ONCE(!fbc))
return;
if (!fbc[0].counters)
return;
for (i = 0; i < nr_counters; i++)
debug_percpu_counter_deactivate(&fbc[i]);
#ifdef CONFIG_HOTPLUG_CPU
spin_lock_irqsave(&percpu_counters_lock, flags);
for (i = 0; i < nr_counters; i++)
list_del(&fbc[i].list);
spin_unlock_irqrestore(&percpu_counters_lock, flags);
#endif
free_percpu(fbc[0].counters);
for (i = 0; i < nr_counters; i++)
fbc[i].counters = NULL;
}
EXPORT_SYMBOL(percpu_counter_destroy_many);
int percpu_counter_batch __read_mostly = 32;
EXPORT_SYMBOL(percpu_counter_batch);
static int compute_batch_value(unsigned int cpu)
{
int nr = num_online_cpus();
percpu_counter_batch = max(32, nr*2);
return 0;
}
static int percpu_counter_cpu_dead(unsigned int cpu)
{
#ifdef CONFIG_HOTPLUG_CPU
struct percpu_counter *fbc;
compute_batch_value(cpu);
spin_lock_irq(&percpu_counters_lock);
list_for_each_entry(fbc, &percpu_counters, list) {
s32 *pcount;
raw_spin_lock(&fbc->lock);
pcount = per_cpu_ptr(fbc->counters, cpu);
fbc->count += *pcount;
*pcount = 0;
raw_spin_unlock(&fbc->lock);
}
spin_unlock_irq(&percpu_counters_lock);
#endif
return 0;
}
/*
* Compare counter against given value.
* Return 1 if greater, 0 if equal and -1 if less
*/
int __percpu_counter_compare(struct percpu_counter *fbc, s64 rhs, s32 batch)
{
s64 count;
count = percpu_counter_read(fbc);
/* Check to see if rough count will be sufficient for comparison */
if (abs(count - rhs) > (batch * num_online_cpus())) {
if (count > rhs)
return 1;
else
return -1;
}
/* Need to use precise count */
count = percpu_counter_sum(fbc);
if (count > rhs)
return 1;
else if (count < rhs)
return -1;
else
return 0;
}
EXPORT_SYMBOL(__percpu_counter_compare);
/*
* Compare counter, and add amount if total is: less than or equal to limit if
* amount is positive, or greater than or equal to limit if amount is negative.
* Return true if amount is added, or false if total would be beyond the limit.
*
* Negative limit is allowed, but unusual.
* When negative amounts (subs) are given to percpu_counter_limited_add(),
* the limit would most naturally be 0 - but other limits are also allowed.
*
* Overflow beyond S64_MAX is not allowed for: counter, limit and amount
* are all assumed to be sane (far from S64_MIN and S64_MAX).
*/
bool __percpu_counter_limited_add(struct percpu_counter *fbc,
s64 limit, s64 amount, s32 batch)
{
s64 count;
s64 unknown;
unsigned long flags;
bool good = false;
if (amount == 0)
return true;
local_irq_save(flags);
unknown = batch * num_online_cpus();
count = __this_cpu_read(*fbc->counters);
/* Skip taking the lock when safe */
if (abs(count + amount) <= batch &&
((amount > 0 && fbc->count + unknown <= limit) ||
(amount < 0 && fbc->count - unknown >= limit))) {
this_cpu_add(*fbc->counters, amount);
local_irq_restore(flags);
return true;
}
raw_spin_lock(&fbc->lock);
count = fbc->count + amount;
/* Skip percpu_counter_sum() when safe */
if (amount > 0) {
if (count - unknown > limit)
goto out;
if (count + unknown <= limit)
good = true;
} else {
if (count + unknown < limit)
goto out;
if (count - unknown >= limit)
good = true;
}
if (!good) {
s32 *pcount;
int cpu;
for_each_cpu_or(cpu, cpu_online_mask, cpu_dying_mask) {
pcount = per_cpu_ptr(fbc->counters, cpu);
count += *pcount;
}
if (amount > 0) {
if (count > limit)
goto out;
} else {
if (count < limit)
goto out;
}
good = true;
}
count = __this_cpu_read(*fbc->counters);
fbc->count += count + amount;
__this_cpu_sub(*fbc->counters, count);
out:
raw_spin_unlock(&fbc->lock);
local_irq_restore(flags);
return good;
}
static int __init percpu_counter_startup(void)
{
int ret;
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "lib/percpu_cnt:online",
compute_batch_value, NULL);
WARN_ON(ret < 0);
ret = cpuhp_setup_state_nocalls(CPUHP_PERCPU_CNT_DEAD,
"lib/percpu_cnt:dead", NULL,
percpu_counter_cpu_dead);
WARN_ON(ret < 0);
return 0;
}
module_init(percpu_counter_startup);