// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2020, The Linux Foundation. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/slab.h>
#define USB2_PHY_USB_PHY_UTMI_CTRL0 (0x3c)
#define SLEEPM BIT(0)
#define OPMODE_MASK GENMASK(4, 3)
#define OPMODE_NORMAL (0x00)
#define OPMODE_NONDRIVING BIT(3)
#define TERMSEL BIT(5)
#define USB2_PHY_USB_PHY_UTMI_CTRL1 (0x40)
#define XCVRSEL BIT(0)
#define USB2_PHY_USB_PHY_UTMI_CTRL5 (0x50)
#define POR BIT(1)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON0 (0x54)
#define SIDDQ BIT(2)
#define RETENABLEN BIT(3)
#define FSEL_MASK GENMASK(6, 4)
#define FSEL_DEFAULT (0x3 << 4)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON1 (0x58)
#define VBUSVLDEXTSEL0 BIT(4)
#define PLLBTUNE BIT(5)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON2 (0x5c)
#define VREGBYPASS BIT(0)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL1 (0x60)
#define VBUSVLDEXT0 BIT(0)
#define USB2_PHY_USB_PHY_HS_PHY_CTRL2 (0x64)
#define USB2_AUTO_RESUME BIT(0)
#define USB2_SUSPEND_N BIT(2)
#define USB2_SUSPEND_N_SEL BIT(3)
#define USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X0 (0x6c)
#define USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X1 (0x70)
#define USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X2 (0x74)
#define USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X3 (0x78)
#define PARAM_OVRD_MASK 0xFF
#define USB2_PHY_USB_PHY_CFG0 (0x94)
#define UTMI_PHY_DATAPATH_CTRL_OVERRIDE_EN BIT(0)
#define UTMI_PHY_CMN_CTRL_OVERRIDE_EN BIT(1)
#define USB2_PHY_USB_PHY_REFCLK_CTRL (0xa0)
#define REFCLK_SEL_MASK GENMASK(1, 0)
#define REFCLK_SEL_DEFAULT (0x2 << 0)
#define HS_DISCONNECT_MASK GENMASK(2, 0)
#define SQUELCH_DETECTOR_MASK GENMASK(7, 5)
#define HS_AMPLITUDE_MASK GENMASK(3, 0)
#define PREEMPHASIS_DURATION_MASK BIT(5)
#define PREEMPHASIS_AMPLITUDE_MASK GENMASK(7, 6)
#define HS_RISE_FALL_MASK GENMASK(1, 0)
#define HS_CROSSOVER_VOLTAGE_MASK GENMASK(3, 2)
#define HS_OUTPUT_IMPEDANCE_MASK GENMASK(5, 4)
#define LS_FS_OUTPUT_IMPEDANCE_MASK GENMASK(3, 0)
static const char * const qcom_snps_hsphy_vreg_names[] = {
"vdda-pll", "vdda33", "vdda18",
};
#define SNPS_HS_NUM_VREGS ARRAY_SIZE(qcom_snps_hsphy_vreg_names)
struct override_param {
s32 value;
u8 reg_val;
};
struct override_param_map {
const char *prop_name;
const struct override_param *param_table;
u8 table_size;
u8 reg_offset;
u8 param_mask;
};
struct phy_override_seq {
bool need_update;
u8 offset;
u8 value;
u8 mask;
};
#define NUM_HSPHY_TUNING_PARAMS (9)
/**
* struct qcom_snps_hsphy - snps hs phy attributes
*
* @dev: device structure
*
* @phy: generic phy
* @base: iomapped memory space for snps hs phy
*
* @num_clks: number of clocks
* @clks: array of clocks
* @phy_reset: phy reset control
* @vregs: regulator supplies bulk data
* @phy_initialized: if PHY has been initialized correctly
* @mode: contains the current mode the PHY is in
* @update_seq_cfg: tuning parameters for phy init
*/
struct qcom_snps_hsphy {
struct device *dev;
struct phy *phy;
void __iomem *base;
int num_clks;
struct clk_bulk_data *clks;
struct reset_control *phy_reset;
struct regulator_bulk_data vregs[SNPS_HS_NUM_VREGS];
bool phy_initialized;
enum phy_mode mode;
struct phy_override_seq update_seq_cfg[NUM_HSPHY_TUNING_PARAMS];
};
static int qcom_snps_hsphy_clk_init(struct qcom_snps_hsphy *hsphy)
{
struct device *dev = hsphy->dev;
hsphy->num_clks = 2;
hsphy->clks = devm_kcalloc(dev, hsphy->num_clks, sizeof(*hsphy->clks), GFP_KERNEL);
if (!hsphy->clks)
return -ENOMEM;
/*
* TODO: Currently no device tree instantiation of the PHY is using the clock.
* This needs to be fixed in order for this code to be able to use devm_clk_bulk_get().
*/
hsphy->clks[0].id = "cfg_ahb";
hsphy->clks[0].clk = devm_clk_get_optional(dev, "cfg_ahb");
if (IS_ERR(hsphy->clks[0].clk))
return dev_err_probe(dev, PTR_ERR(hsphy->clks[0].clk),
"failed to get cfg_ahb clk\n");
hsphy->clks[1].id = "ref";
hsphy->clks[1].clk = devm_clk_get(dev, "ref");
if (IS_ERR(hsphy->clks[1].clk))
return dev_err_probe(dev, PTR_ERR(hsphy->clks[1].clk),
"failed to get ref clk\n");
return 0;
}
static inline void qcom_snps_hsphy_write_mask(void __iomem *base, u32 offset,
u32 mask, u32 val)
{
u32 reg;
reg = readl_relaxed(base + offset);
reg &= ~mask;
reg |= val & mask;
writel_relaxed(reg, base + offset);
/* Ensure above write is completed */
readl_relaxed(base + offset);
}
static int qcom_snps_hsphy_suspend(struct qcom_snps_hsphy *hsphy)
{
dev_dbg(&hsphy->phy->dev, "Suspend QCOM SNPS PHY\n");
if (hsphy->mode == PHY_MODE_USB_HOST) {
/* Enable auto-resume to meet remote wakeup timing */
qcom_snps_hsphy_write_mask(hsphy->base,
USB2_PHY_USB_PHY_HS_PHY_CTRL2,
USB2_AUTO_RESUME,
USB2_AUTO_RESUME);
usleep_range(500, 1000);
qcom_snps_hsphy_write_mask(hsphy->base,
USB2_PHY_USB_PHY_HS_PHY_CTRL2,
0, USB2_AUTO_RESUME);
}
return 0;
}
static int qcom_snps_hsphy_resume(struct qcom_snps_hsphy *hsphy)
{
dev_dbg(&hsphy->phy->dev, "Resume QCOM SNPS PHY, mode\n");
return 0;
}
static int __maybe_unused qcom_snps_hsphy_runtime_suspend(struct device *dev)
{
struct qcom_snps_hsphy *hsphy = dev_get_drvdata(dev);
if (!hsphy->phy_initialized)
return 0;
return qcom_snps_hsphy_suspend(hsphy);
}
static int __maybe_unused qcom_snps_hsphy_runtime_resume(struct device *dev)
{
struct qcom_snps_hsphy *hsphy = dev_get_drvdata(dev);
if (!hsphy->phy_initialized)
return 0;
return qcom_snps_hsphy_resume(hsphy);
}
static int qcom_snps_hsphy_set_mode(struct phy *phy, enum phy_mode mode,
int submode)
{
struct qcom_snps_hsphy *hsphy = phy_get_drvdata(phy);
hsphy->mode = mode;
return 0;
}
static const struct override_param hs_disconnect_sc7280[] = {
{ -272, 0 },
{ 0, 1 },
{ 317, 2 },
{ 630, 3 },
{ 973, 4 },
{ 1332, 5 },
{ 1743, 6 },
{ 2156, 7 },
};
static const struct override_param squelch_det_threshold_sc7280[] = {
{ -2090, 7 },
{ -1560, 6 },
{ -1030, 5 },
{ -530, 4 },
{ 0, 3 },
{ 530, 2 },
{ 1060, 1 },
{ 1590, 0 },
};
static const struct override_param hs_amplitude_sc7280[] = {
{ -660, 0 },
{ -440, 1 },
{ -220, 2 },
{ 0, 3 },
{ 230, 4 },
{ 440, 5 },
{ 650, 6 },
{ 890, 7 },
{ 1110, 8 },
{ 1330, 9 },
{ 1560, 10 },
{ 1780, 11 },
{ 2000, 12 },
{ 2220, 13 },
{ 2430, 14 },
{ 2670, 15 },
};
static const struct override_param preemphasis_duration_sc7280[] = {
{ 10000, 1 },
{ 20000, 0 },
};
static const struct override_param preemphasis_amplitude_sc7280[] = {
{ 10000, 1 },
{ 20000, 2 },
{ 30000, 3 },
{ 40000, 0 },
};
static const struct override_param hs_rise_fall_time_sc7280[] = {
{ -4100, 3 },
{ 0, 2 },
{ 2810, 1 },
{ 5430, 0 },
};
static const struct override_param hs_crossover_voltage_sc7280[] = {
{ -31000, 1 },
{ 0, 3 },
{ 28000, 2 },
};
static const struct override_param hs_output_impedance_sc7280[] = {
{ -2300000, 3 },
{ 0, 2 },
{ 2600000, 1 },
{ 6100000, 0 },
};
static const struct override_param ls_fs_output_impedance_sc7280[] = {
{ -1053, 15 },
{ -557, 7 },
{ 0, 3 },
{ 612, 1 },
{ 1310, 0 },
};
static const struct override_param_map sc7280_snps_7nm_phy[] = {
{
"qcom,hs-disconnect-bp",
hs_disconnect_sc7280,
ARRAY_SIZE(hs_disconnect_sc7280),
USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X0,
HS_DISCONNECT_MASK
},
{
"qcom,squelch-detector-bp",
squelch_det_threshold_sc7280,
ARRAY_SIZE(squelch_det_threshold_sc7280),
USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X0,
SQUELCH_DETECTOR_MASK
},
{
"qcom,hs-amplitude-bp",
hs_amplitude_sc7280,
ARRAY_SIZE(hs_amplitude_sc7280),
USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X1,
HS_AMPLITUDE_MASK
},
{
"qcom,pre-emphasis-duration-bp",
preemphasis_duration_sc7280,
ARRAY_SIZE(preemphasis_duration_sc7280),
USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X1,
PREEMPHASIS_DURATION_MASK,
},
{
"qcom,pre-emphasis-amplitude-bp",
preemphasis_amplitude_sc7280,
ARRAY_SIZE(preemphasis_amplitude_sc7280),
USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X1,
PREEMPHASIS_AMPLITUDE_MASK,
},
{
"qcom,hs-rise-fall-time-bp",
hs_rise_fall_time_sc7280,
ARRAY_SIZE(hs_rise_fall_time_sc7280),
USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X2,
HS_RISE_FALL_MASK
},
{
"qcom,hs-crossover-voltage-microvolt",
hs_crossover_voltage_sc7280,
ARRAY_SIZE(hs_crossover_voltage_sc7280),
USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X2,
HS_CROSSOVER_VOLTAGE_MASK
},
{
"qcom,hs-output-impedance-micro-ohms",
hs_output_impedance_sc7280,
ARRAY_SIZE(hs_output_impedance_sc7280),
USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X2,
HS_OUTPUT_IMPEDANCE_MASK,
},
{
"qcom,ls-fs-output-impedance-bp",
ls_fs_output_impedance_sc7280,
ARRAY_SIZE(ls_fs_output_impedance_sc7280),
USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X3,
LS_FS_OUTPUT_IMPEDANCE_MASK,
},
{},
};
static int qcom_snps_hsphy_init(struct phy *phy)
{
struct qcom_snps_hsphy *hsphy = phy_get_drvdata(phy);
int ret, i;
dev_vdbg(&phy->dev, "%s(): Initializing SNPS HS phy\n", __func__);
ret = regulator_bulk_enable(ARRAY_SIZE(hsphy->vregs), hsphy->vregs);
if (ret)
return ret;
ret = clk_bulk_prepare_enable(hsphy->num_clks, hsphy->clks);
if (ret) {
dev_err(&phy->dev, "failed to enable clocks, %d\n", ret);
goto poweroff_phy;
}
ret = reset_control_assert(hsphy->phy_reset);
if (ret) {
dev_err(&phy->dev, "failed to assert phy_reset, %d\n", ret);
goto disable_clks;
}
usleep_range(100, 150);
ret = reset_control_deassert(hsphy->phy_reset);
if (ret) {
dev_err(&phy->dev, "failed to de-assert phy_reset, %d\n", ret);
goto disable_clks;
}
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_CFG0,
UTMI_PHY_CMN_CTRL_OVERRIDE_EN,
UTMI_PHY_CMN_CTRL_OVERRIDE_EN);
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_UTMI_CTRL5,
POR, POR);
qcom_snps_hsphy_write_mask(hsphy->base,
USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON0,
FSEL_MASK, 0);
qcom_snps_hsphy_write_mask(hsphy->base,
USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON1,
PLLBTUNE, PLLBTUNE);
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_REFCLK_CTRL,
REFCLK_SEL_DEFAULT, REFCLK_SEL_MASK);
qcom_snps_hsphy_write_mask(hsphy->base,
USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON1,
VBUSVLDEXTSEL0, VBUSVLDEXTSEL0);
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL1,
VBUSVLDEXT0, VBUSVLDEXT0);
for (i = 0; i < ARRAY_SIZE(hsphy->update_seq_cfg); i++) {
if (hsphy->update_seq_cfg[i].need_update)
qcom_snps_hsphy_write_mask(hsphy->base,
hsphy->update_seq_cfg[i].offset,
hsphy->update_seq_cfg[i].mask,
hsphy->update_seq_cfg[i].value);
}
qcom_snps_hsphy_write_mask(hsphy->base,
USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON2,
VREGBYPASS, VREGBYPASS);
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL2,
USB2_SUSPEND_N_SEL | USB2_SUSPEND_N,
USB2_SUSPEND_N_SEL | USB2_SUSPEND_N);
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_UTMI_CTRL0,
SLEEPM, SLEEPM);
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON0,
SIDDQ, 0);
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_UTMI_CTRL5,
POR, 0);
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL2,
USB2_SUSPEND_N_SEL, 0);
qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_CFG0,
UTMI_PHY_CMN_CTRL_OVERRIDE_EN, 0);
hsphy->phy_initialized = true;
return 0;
disable_clks:
clk_bulk_disable_unprepare(hsphy->num_clks, hsphy->clks);
poweroff_phy:
regulator_bulk_disable(ARRAY_SIZE(hsphy->vregs), hsphy->vregs);
return ret;
}
static int qcom_snps_hsphy_exit(struct phy *phy)
{
struct qcom_snps_hsphy *hsphy = phy_get_drvdata(phy);
reset_control_assert(hsphy->phy_reset);
clk_bulk_disable_unprepare(hsphy->num_clks, hsphy->clks);
regulator_bulk_disable(ARRAY_SIZE(hsphy->vregs), hsphy->vregs);
hsphy->phy_initialized = false;
return 0;
}
static const struct phy_ops qcom_snps_hsphy_gen_ops = {
.init = qcom_snps_hsphy_init,
.exit = qcom_snps_hsphy_exit,
.set_mode = qcom_snps_hsphy_set_mode,
.owner = THIS_MODULE,
};
static const struct of_device_id qcom_snps_hsphy_of_match_table[] = {
{ .compatible = "qcom,sm8150-usb-hs-phy", },
{ .compatible = "qcom,usb-snps-hs-5nm-phy", },
{
.compatible = "qcom,usb-snps-hs-7nm-phy",
.data = &sc7280_snps_7nm_phy,
},
{ .compatible = "qcom,usb-snps-femto-v2-phy", },
{ }
};
MODULE_DEVICE_TABLE(of, qcom_snps_hsphy_of_match_table);
static const struct dev_pm_ops qcom_snps_hsphy_pm_ops = {
SET_RUNTIME_PM_OPS(qcom_snps_hsphy_runtime_suspend,
qcom_snps_hsphy_runtime_resume, NULL)
};
static void qcom_snps_hsphy_override_param_update_val(
const struct override_param_map map,
s32 dt_val, struct phy_override_seq *seq_entry)
{
int i;
/*
* Param table for each param is in increasing order
* of dt values. We need to iterate over the list to
* select the entry that matches the dt value and pick
* up the corresponding register value.
*/
for (i = 0; i < map.table_size - 1; i++) {
if (map.param_table[i].value == dt_val)
break;
}
seq_entry->need_update = true;
seq_entry->offset = map.reg_offset;
seq_entry->mask = map.param_mask;
seq_entry->value = map.param_table[i].reg_val << __ffs(map.param_mask);
}
static void qcom_snps_hsphy_read_override_param_seq(struct device *dev)
{
struct device_node *node = dev->of_node;
s32 val;
int ret, i;
struct qcom_snps_hsphy *hsphy;
const struct override_param_map *cfg = of_device_get_match_data(dev);
if (!cfg)
return;
hsphy = dev_get_drvdata(dev);
for (i = 0; cfg[i].prop_name != NULL; i++) {
ret = of_property_read_s32(node, cfg[i].prop_name, &val);
if (ret)
continue;
qcom_snps_hsphy_override_param_update_val(cfg[i], val,
&hsphy->update_seq_cfg[i]);
dev_dbg(&hsphy->phy->dev, "Read param: %s dt_val: %d reg_val: 0x%x\n",
cfg[i].prop_name, val, hsphy->update_seq_cfg[i].value);
}
}
static int qcom_snps_hsphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct qcom_snps_hsphy *hsphy;
struct phy_provider *phy_provider;
struct phy *generic_phy;
int ret, i;
int num;
hsphy = devm_kzalloc(dev, sizeof(*hsphy), GFP_KERNEL);
if (!hsphy)
return -ENOMEM;
hsphy->dev = dev;
hsphy->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(hsphy->base))
return PTR_ERR(hsphy->base);
ret = qcom_snps_hsphy_clk_init(hsphy);
if (ret)
return dev_err_probe(dev, ret, "failed to initialize clocks\n");
hsphy->phy_reset = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (IS_ERR(hsphy->phy_reset)) {
dev_err(dev, "failed to get phy core reset\n");
return PTR_ERR(hsphy->phy_reset);
}
num = ARRAY_SIZE(hsphy->vregs);
for (i = 0; i < num; i++)
hsphy->vregs[i].supply = qcom_snps_hsphy_vreg_names[i];
ret = devm_regulator_bulk_get(dev, num, hsphy->vregs);
if (ret)
return dev_err_probe(dev, ret,
"failed to get regulator supplies\n");
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
/*
* Prevent runtime pm from being ON by default. Users can enable
* it using power/control in sysfs.
*/
pm_runtime_forbid(dev);
generic_phy = devm_phy_create(dev, NULL, &qcom_snps_hsphy_gen_ops);
if (IS_ERR(generic_phy)) {
ret = PTR_ERR(generic_phy);
dev_err(dev, "failed to create phy, %d\n", ret);
return ret;
}
hsphy->phy = generic_phy;
dev_set_drvdata(dev, hsphy);
phy_set_drvdata(generic_phy, hsphy);
qcom_snps_hsphy_read_override_param_seq(dev);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (!IS_ERR(phy_provider))
dev_dbg(dev, "Registered Qcom-SNPS HS phy\n");
else
pm_runtime_disable(dev);
return PTR_ERR_OR_ZERO(phy_provider);
}
static struct platform_driver qcom_snps_hsphy_driver = {
.probe = qcom_snps_hsphy_probe,
.driver = {
.name = "qcom-snps-hs-femto-v2-phy",
.pm = &qcom_snps_hsphy_pm_ops,
.of_match_table = qcom_snps_hsphy_of_match_table,
},
};
module_platform_driver(qcom_snps_hsphy_driver);
MODULE_DESCRIPTION("Qualcomm SNPS FEMTO USB HS PHY V2 driver");
MODULE_LICENSE("GPL v2");