// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include <linux/string_helpers.h>
#include "i915_drv.h"
#include "i915_reg.h"
#include "intel_dram.h"
#include "intel_mchbar_regs.h"
#include "intel_pcode.h"
#include "vlv_sideband.h"
struct dram_dimm_info {
u16 size;
u8 width, ranks;
};
struct dram_channel_info {
struct dram_dimm_info dimm_l, dimm_s;
u8 ranks;
bool is_16gb_dimm;
};
#define DRAM_TYPE_STR(type) [INTEL_DRAM_ ## type] = #type
static const char *intel_dram_type_str(enum intel_dram_type type)
{
static const char * const str[] = {
DRAM_TYPE_STR(UNKNOWN),
DRAM_TYPE_STR(DDR3),
DRAM_TYPE_STR(DDR4),
DRAM_TYPE_STR(LPDDR3),
DRAM_TYPE_STR(LPDDR4),
};
if (type >= ARRAY_SIZE(str))
type = INTEL_DRAM_UNKNOWN;
return str[type];
}
#undef DRAM_TYPE_STR
static bool pnv_is_ddr3(struct drm_i915_private *i915)
{
return intel_uncore_read(&i915->uncore, CSHRDDR3CTL) & CSHRDDR3CTL_DDR3;
}
static unsigned int pnv_mem_freq(struct drm_i915_private *dev_priv)
{
u32 tmp;
tmp = intel_uncore_read(&dev_priv->uncore, CLKCFG);
switch (tmp & CLKCFG_MEM_MASK) {
case CLKCFG_MEM_533:
return 533333;
case CLKCFG_MEM_667:
return 666667;
case CLKCFG_MEM_800:
return 800000;
}
return 0;
}
static unsigned int ilk_mem_freq(struct drm_i915_private *dev_priv)
{
u16 ddrpll;
ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
switch (ddrpll & 0xff) {
case 0xc:
return 800000;
case 0x10:
return 1066667;
case 0x14:
return 1333333;
case 0x18:
return 1600000;
default:
drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
ddrpll & 0xff);
return 0;
}
}
static unsigned int chv_mem_freq(struct drm_i915_private *i915)
{
u32 val;
vlv_iosf_sb_get(i915, BIT(VLV_IOSF_SB_CCK));
val = vlv_cck_read(i915, CCK_FUSE_REG);
vlv_iosf_sb_put(i915, BIT(VLV_IOSF_SB_CCK));
switch ((val >> 2) & 0x7) {
case 3:
return 2000000;
default:
return 1600000;
}
}
static unsigned int vlv_mem_freq(struct drm_i915_private *i915)
{
u32 val;
vlv_iosf_sb_get(i915, BIT(VLV_IOSF_SB_PUNIT));
val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
vlv_iosf_sb_put(i915, BIT(VLV_IOSF_SB_PUNIT));
switch ((val >> 6) & 3) {
case 0:
case 1:
return 800000;
case 2:
return 1066667;
case 3:
return 1333333;
}
return 0;
}
static void detect_mem_freq(struct drm_i915_private *i915)
{
if (IS_PINEVIEW(i915))
i915->mem_freq = pnv_mem_freq(i915);
else if (GRAPHICS_VER(i915) == 5)
i915->mem_freq = ilk_mem_freq(i915);
else if (IS_CHERRYVIEW(i915))
i915->mem_freq = chv_mem_freq(i915);
else if (IS_VALLEYVIEW(i915))
i915->mem_freq = vlv_mem_freq(i915);
if (IS_PINEVIEW(i915))
i915->is_ddr3 = pnv_is_ddr3(i915);
if (i915->mem_freq)
drm_dbg(&i915->drm, "DDR speed: %d kHz\n", i915->mem_freq);
}
unsigned int i9xx_fsb_freq(struct drm_i915_private *i915)
{
u32 fsb;
/*
* Note that this only reads the state of the FSB
* straps, not the actual FSB frequency. Some BIOSen
* let you configure each independently. Ideally we'd
* read out the actual FSB frequency but sadly we
* don't know which registers have that information,
* and all the relevant docs have gone to bit heaven :(
*/
fsb = intel_uncore_read(&i915->uncore, CLKCFG) & CLKCFG_FSB_MASK;
if (IS_PINEVIEW(i915) || IS_MOBILE(i915)) {
switch (fsb) {
case CLKCFG_FSB_400:
return 400000;
case CLKCFG_FSB_533:
return 533333;
case CLKCFG_FSB_667:
return 666667;
case CLKCFG_FSB_800:
return 800000;
case CLKCFG_FSB_1067:
return 1066667;
case CLKCFG_FSB_1333:
return 1333333;
default:
MISSING_CASE(fsb);
return 1333333;
}
} else {
switch (fsb) {
case CLKCFG_FSB_400_ALT:
return 400000;
case CLKCFG_FSB_533:
return 533333;
case CLKCFG_FSB_667:
return 666667;
case CLKCFG_FSB_800:
return 800000;
case CLKCFG_FSB_1067_ALT:
return 1066667;
case CLKCFG_FSB_1333_ALT:
return 1333333;
case CLKCFG_FSB_1600_ALT:
return 1600000;
default:
MISSING_CASE(fsb);
return 1333333;
}
}
}
static unsigned int ilk_fsb_freq(struct drm_i915_private *dev_priv)
{
u16 fsb;
fsb = intel_uncore_read16(&dev_priv->uncore, CSIPLL0) & 0x3ff;
switch (fsb) {
case 0x00c:
return 3200000;
case 0x00e:
return 3733333;
case 0x010:
return 4266667;
case 0x012:
return 4800000;
case 0x014:
return 5333333;
case 0x016:
return 5866667;
case 0x018:
return 6400000;
default:
drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n", fsb);
return 0;
}
}
static void detect_fsb_freq(struct drm_i915_private *i915)
{
if (GRAPHICS_VER(i915) == 5)
i915->fsb_freq = ilk_fsb_freq(i915);
else if (GRAPHICS_VER(i915) == 3 || GRAPHICS_VER(i915) == 4)
i915->fsb_freq = i9xx_fsb_freq(i915);
if (i915->fsb_freq)
drm_dbg(&i915->drm, "FSB frequency: %d kHz\n", i915->fsb_freq);
}
static int intel_dimm_num_devices(const struct dram_dimm_info *dimm)
{
return dimm->ranks * 64 / (dimm->width ?: 1);
}
/* Returns total Gb for the whole DIMM */
static int skl_get_dimm_size(u16 val)
{
return (val & SKL_DRAM_SIZE_MASK) * 8;
}
static int skl_get_dimm_width(u16 val)
{
if (skl_get_dimm_size(val) == 0)
return 0;
switch (val & SKL_DRAM_WIDTH_MASK) {
case SKL_DRAM_WIDTH_X8:
case SKL_DRAM_WIDTH_X16:
case SKL_DRAM_WIDTH_X32:
val = (val & SKL_DRAM_WIDTH_MASK) >> SKL_DRAM_WIDTH_SHIFT;
return 8 << val;
default:
MISSING_CASE(val);
return 0;
}
}
static int skl_get_dimm_ranks(u16 val)
{
if (skl_get_dimm_size(val) == 0)
return 0;
val = (val & SKL_DRAM_RANK_MASK) >> SKL_DRAM_RANK_SHIFT;
return val + 1;
}
/* Returns total Gb for the whole DIMM */
static int icl_get_dimm_size(u16 val)
{
return (val & ICL_DRAM_SIZE_MASK) * 8 / 2;
}
static int icl_get_dimm_width(u16 val)
{
if (icl_get_dimm_size(val) == 0)
return 0;
switch (val & ICL_DRAM_WIDTH_MASK) {
case ICL_DRAM_WIDTH_X8:
case ICL_DRAM_WIDTH_X16:
case ICL_DRAM_WIDTH_X32:
val = (val & ICL_DRAM_WIDTH_MASK) >> ICL_DRAM_WIDTH_SHIFT;
return 8 << val;
default:
MISSING_CASE(val);
return 0;
}
}
static int icl_get_dimm_ranks(u16 val)
{
if (icl_get_dimm_size(val) == 0)
return 0;
val = (val & ICL_DRAM_RANK_MASK) >> ICL_DRAM_RANK_SHIFT;
return val + 1;
}
static bool
skl_is_16gb_dimm(const struct dram_dimm_info *dimm)
{
/* Convert total Gb to Gb per DRAM device */
return dimm->size / (intel_dimm_num_devices(dimm) ?: 1) == 16;
}
static void
skl_dram_get_dimm_info(struct drm_i915_private *i915,
struct dram_dimm_info *dimm,
int channel, char dimm_name, u16 val)
{
if (GRAPHICS_VER(i915) >= 11) {
dimm->size = icl_get_dimm_size(val);
dimm->width = icl_get_dimm_width(val);
dimm->ranks = icl_get_dimm_ranks(val);
} else {
dimm->size = skl_get_dimm_size(val);
dimm->width = skl_get_dimm_width(val);
dimm->ranks = skl_get_dimm_ranks(val);
}
drm_dbg_kms(&i915->drm,
"CH%u DIMM %c size: %u Gb, width: X%u, ranks: %u, 16Gb DIMMs: %s\n",
channel, dimm_name, dimm->size, dimm->width, dimm->ranks,
str_yes_no(skl_is_16gb_dimm(dimm)));
}
static int
skl_dram_get_channel_info(struct drm_i915_private *i915,
struct dram_channel_info *ch,
int channel, u32 val)
{
skl_dram_get_dimm_info(i915, &ch->dimm_l,
channel, 'L', val & 0xffff);
skl_dram_get_dimm_info(i915, &ch->dimm_s,
channel, 'S', val >> 16);
if (ch->dimm_l.size == 0 && ch->dimm_s.size == 0) {
drm_dbg_kms(&i915->drm, "CH%u not populated\n", channel);
return -EINVAL;
}
if (ch->dimm_l.ranks == 2 || ch->dimm_s.ranks == 2)
ch->ranks = 2;
else if (ch->dimm_l.ranks == 1 && ch->dimm_s.ranks == 1)
ch->ranks = 2;
else
ch->ranks = 1;
ch->is_16gb_dimm = skl_is_16gb_dimm(&ch->dimm_l) ||
skl_is_16gb_dimm(&ch->dimm_s);
drm_dbg_kms(&i915->drm, "CH%u ranks: %u, 16Gb DIMMs: %s\n",
channel, ch->ranks, str_yes_no(ch->is_16gb_dimm));
return 0;
}
static bool
intel_is_dram_symmetric(const struct dram_channel_info *ch0,
const struct dram_channel_info *ch1)
{
return !memcmp(ch0, ch1, sizeof(*ch0)) &&
(ch0->dimm_s.size == 0 ||
!memcmp(&ch0->dimm_l, &ch0->dimm_s, sizeof(ch0->dimm_l)));
}
static int
skl_dram_get_channels_info(struct drm_i915_private *i915)
{
struct dram_info *dram_info = &i915->dram_info;
struct dram_channel_info ch0 = {}, ch1 = {};
u32 val;
int ret;
val = intel_uncore_read(&i915->uncore,
SKL_MAD_DIMM_CH0_0_0_0_MCHBAR_MCMAIN);
ret = skl_dram_get_channel_info(i915, &ch0, 0, val);
if (ret == 0)
dram_info->num_channels++;
val = intel_uncore_read(&i915->uncore,
SKL_MAD_DIMM_CH1_0_0_0_MCHBAR_MCMAIN);
ret = skl_dram_get_channel_info(i915, &ch1, 1, val);
if (ret == 0)
dram_info->num_channels++;
if (dram_info->num_channels == 0) {
drm_info(&i915->drm, "Number of memory channels is zero\n");
return -EINVAL;
}
if (ch0.ranks == 0 && ch1.ranks == 0) {
drm_info(&i915->drm, "couldn't get memory rank information\n");
return -EINVAL;
}
dram_info->wm_lv_0_adjust_needed = ch0.is_16gb_dimm || ch1.is_16gb_dimm;
dram_info->symmetric_memory = intel_is_dram_symmetric(&ch0, &ch1);
drm_dbg_kms(&i915->drm, "Memory configuration is symmetric? %s\n",
str_yes_no(dram_info->symmetric_memory));
return 0;
}
static enum intel_dram_type
skl_get_dram_type(struct drm_i915_private *i915)
{
u32 val;
val = intel_uncore_read(&i915->uncore,
SKL_MAD_INTER_CHANNEL_0_0_0_MCHBAR_MCMAIN);
switch (val & SKL_DRAM_DDR_TYPE_MASK) {
case SKL_DRAM_DDR_TYPE_DDR3:
return INTEL_DRAM_DDR3;
case SKL_DRAM_DDR_TYPE_DDR4:
return INTEL_DRAM_DDR4;
case SKL_DRAM_DDR_TYPE_LPDDR3:
return INTEL_DRAM_LPDDR3;
case SKL_DRAM_DDR_TYPE_LPDDR4:
return INTEL_DRAM_LPDDR4;
default:
MISSING_CASE(val);
return INTEL_DRAM_UNKNOWN;
}
}
static int
skl_get_dram_info(struct drm_i915_private *i915)
{
struct dram_info *dram_info = &i915->dram_info;
int ret;
dram_info->type = skl_get_dram_type(i915);
drm_dbg_kms(&i915->drm, "DRAM type: %s\n",
intel_dram_type_str(dram_info->type));
ret = skl_dram_get_channels_info(i915);
if (ret)
return ret;
return 0;
}
/* Returns Gb per DRAM device */
static int bxt_get_dimm_size(u32 val)
{
switch (val & BXT_DRAM_SIZE_MASK) {
case BXT_DRAM_SIZE_4GBIT:
return 4;
case BXT_DRAM_SIZE_6GBIT:
return 6;
case BXT_DRAM_SIZE_8GBIT:
return 8;
case BXT_DRAM_SIZE_12GBIT:
return 12;
case BXT_DRAM_SIZE_16GBIT:
return 16;
default:
MISSING_CASE(val);
return 0;
}
}
static int bxt_get_dimm_width(u32 val)
{
if (!bxt_get_dimm_size(val))
return 0;
val = (val & BXT_DRAM_WIDTH_MASK) >> BXT_DRAM_WIDTH_SHIFT;
return 8 << val;
}
static int bxt_get_dimm_ranks(u32 val)
{
if (!bxt_get_dimm_size(val))
return 0;
switch (val & BXT_DRAM_RANK_MASK) {
case BXT_DRAM_RANK_SINGLE:
return 1;
case BXT_DRAM_RANK_DUAL:
return 2;
default:
MISSING_CASE(val);
return 0;
}
}
static enum intel_dram_type bxt_get_dimm_type(u32 val)
{
if (!bxt_get_dimm_size(val))
return INTEL_DRAM_UNKNOWN;
switch (val & BXT_DRAM_TYPE_MASK) {
case BXT_DRAM_TYPE_DDR3:
return INTEL_DRAM_DDR3;
case BXT_DRAM_TYPE_LPDDR3:
return INTEL_DRAM_LPDDR3;
case BXT_DRAM_TYPE_DDR4:
return INTEL_DRAM_DDR4;
case BXT_DRAM_TYPE_LPDDR4:
return INTEL_DRAM_LPDDR4;
default:
MISSING_CASE(val);
return INTEL_DRAM_UNKNOWN;
}
}
static void bxt_get_dimm_info(struct dram_dimm_info *dimm, u32 val)
{
dimm->width = bxt_get_dimm_width(val);
dimm->ranks = bxt_get_dimm_ranks(val);
/*
* Size in register is Gb per DRAM device. Convert to total
* Gb to match the way we report this for non-LP platforms.
*/
dimm->size = bxt_get_dimm_size(val) * intel_dimm_num_devices(dimm);
}
static int bxt_get_dram_info(struct drm_i915_private *i915)
{
struct dram_info *dram_info = &i915->dram_info;
u32 val;
u8 valid_ranks = 0;
int i;
/*
* Now read each DUNIT8/9/10/11 to check the rank of each dimms.
*/
for (i = BXT_D_CR_DRP0_DUNIT_START; i <= BXT_D_CR_DRP0_DUNIT_END; i++) {
struct dram_dimm_info dimm;
enum intel_dram_type type;
val = intel_uncore_read(&i915->uncore, BXT_D_CR_DRP0_DUNIT(i));
if (val == 0xFFFFFFFF)
continue;
dram_info->num_channels++;
bxt_get_dimm_info(&dimm, val);
type = bxt_get_dimm_type(val);
drm_WARN_ON(&i915->drm, type != INTEL_DRAM_UNKNOWN &&
dram_info->type != INTEL_DRAM_UNKNOWN &&
dram_info->type != type);
drm_dbg_kms(&i915->drm,
"CH%u DIMM size: %u Gb, width: X%u, ranks: %u, type: %s\n",
i - BXT_D_CR_DRP0_DUNIT_START,
dimm.size, dimm.width, dimm.ranks,
intel_dram_type_str(type));
if (valid_ranks == 0)
valid_ranks = dimm.ranks;
if (type != INTEL_DRAM_UNKNOWN)
dram_info->type = type;
}
if (dram_info->type == INTEL_DRAM_UNKNOWN || valid_ranks == 0) {
drm_info(&i915->drm, "couldn't get memory information\n");
return -EINVAL;
}
return 0;
}
static int icl_pcode_read_mem_global_info(struct drm_i915_private *dev_priv)
{
struct dram_info *dram_info = &dev_priv->dram_info;
u32 val = 0;
int ret;
ret = snb_pcode_read(&dev_priv->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
ICL_PCODE_MEM_SS_READ_GLOBAL_INFO, &val, NULL);
if (ret)
return ret;
if (GRAPHICS_VER(dev_priv) == 12) {
switch (val & 0xf) {
case 0:
dram_info->type = INTEL_DRAM_DDR4;
break;
case 1:
dram_info->type = INTEL_DRAM_DDR5;
break;
case 2:
dram_info->type = INTEL_DRAM_LPDDR5;
break;
case 3:
dram_info->type = INTEL_DRAM_LPDDR4;
break;
case 4:
dram_info->type = INTEL_DRAM_DDR3;
break;
case 5:
dram_info->type = INTEL_DRAM_LPDDR3;
break;
default:
MISSING_CASE(val & 0xf);
return -EINVAL;
}
} else {
switch (val & 0xf) {
case 0:
dram_info->type = INTEL_DRAM_DDR4;
break;
case 1:
dram_info->type = INTEL_DRAM_DDR3;
break;
case 2:
dram_info->type = INTEL_DRAM_LPDDR3;
break;
case 3:
dram_info->type = INTEL_DRAM_LPDDR4;
break;
default:
MISSING_CASE(val & 0xf);
return -EINVAL;
}
}
dram_info->num_channels = (val & 0xf0) >> 4;
dram_info->num_qgv_points = (val & 0xf00) >> 8;
dram_info->num_psf_gv_points = (val & 0x3000) >> 12;
return 0;
}
static int gen11_get_dram_info(struct drm_i915_private *i915)
{
int ret = skl_get_dram_info(i915);
if (ret)
return ret;
return icl_pcode_read_mem_global_info(i915);
}
static int gen12_get_dram_info(struct drm_i915_private *i915)
{
i915->dram_info.wm_lv_0_adjust_needed = false;
return icl_pcode_read_mem_global_info(i915);
}
static int xelpdp_get_dram_info(struct drm_i915_private *i915)
{
u32 val = intel_uncore_read(&i915->uncore, MTL_MEM_SS_INFO_GLOBAL);
struct dram_info *dram_info = &i915->dram_info;
switch (REG_FIELD_GET(MTL_DDR_TYPE_MASK, val)) {
case 0:
dram_info->type = INTEL_DRAM_DDR4;
break;
case 1:
dram_info->type = INTEL_DRAM_DDR5;
break;
case 2:
dram_info->type = INTEL_DRAM_LPDDR5;
break;
case 3:
dram_info->type = INTEL_DRAM_LPDDR4;
break;
case 4:
dram_info->type = INTEL_DRAM_DDR3;
break;
case 5:
dram_info->type = INTEL_DRAM_LPDDR3;
break;
case 8:
drm_WARN_ON(&i915->drm, !IS_DGFX(i915));
dram_info->type = INTEL_DRAM_GDDR;
break;
default:
MISSING_CASE(val);
return -EINVAL;
}
dram_info->num_channels = REG_FIELD_GET(MTL_N_OF_POPULATED_CH_MASK, val);
dram_info->num_qgv_points = REG_FIELD_GET(MTL_N_OF_ENABLED_QGV_POINTS_MASK, val);
/* PSF GV points not supported in D14+ */
return 0;
}
void intel_dram_detect(struct drm_i915_private *i915)
{
struct dram_info *dram_info = &i915->dram_info;
int ret;
detect_fsb_freq(i915);
detect_mem_freq(i915);
if (GRAPHICS_VER(i915) < 9 || IS_DG2(i915) || !HAS_DISPLAY(i915))
return;
/*
* Assume level 0 watermark latency adjustment is needed until proven
* otherwise, this w/a is not needed by bxt/glk.
*/
dram_info->wm_lv_0_adjust_needed = !IS_GEN9_LP(i915);
if (DISPLAY_VER(i915) >= 14)
ret = xelpdp_get_dram_info(i915);
else if (GRAPHICS_VER(i915) >= 12)
ret = gen12_get_dram_info(i915);
else if (GRAPHICS_VER(i915) >= 11)
ret = gen11_get_dram_info(i915);
else if (IS_GEN9_LP(i915))
ret = bxt_get_dram_info(i915);
else
ret = skl_get_dram_info(i915);
if (ret)
return;
drm_dbg_kms(&i915->drm, "Num qgv points %u\n", dram_info->num_qgv_points);
drm_dbg_kms(&i915->drm, "DRAM channels: %u\n", dram_info->num_channels);
drm_dbg_kms(&i915->drm, "Watermark level 0 adjustment needed: %s\n",
str_yes_no(dram_info->wm_lv_0_adjust_needed));
}
static u32 gen9_edram_size_mb(struct drm_i915_private *i915, u32 cap)
{
static const u8 ways[8] = { 4, 8, 12, 16, 16, 16, 16, 16 };
static const u8 sets[4] = { 1, 1, 2, 2 };
return EDRAM_NUM_BANKS(cap) *
ways[EDRAM_WAYS_IDX(cap)] *
sets[EDRAM_SETS_IDX(cap)];
}
void intel_dram_edram_detect(struct drm_i915_private *i915)
{
u32 edram_cap = 0;
if (!(IS_HASWELL(i915) || IS_BROADWELL(i915) || GRAPHICS_VER(i915) >= 9))
return;
edram_cap = intel_uncore_read_fw(&i915->uncore, HSW_EDRAM_CAP);
/* NB: We can't write IDICR yet because we don't have gt funcs set up */
if (!(edram_cap & EDRAM_ENABLED))
return;
/*
* The needed capability bits for size calculation are not there with
* pre gen9 so return 128MB always.
*/
if (GRAPHICS_VER(i915) < 9)
i915->edram_size_mb = 128;
else
i915->edram_size_mb = gen9_edram_size_mb(i915, edram_cap);
drm_info(&i915->drm, "Found %uMB of eDRAM\n", i915->edram_size_mb);
}