// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*/
#include <linux/string_helpers.h>
#include <drm/intel/i915_drm.h>
#include "display/intel_display.h"
#include "display/intel_display_irq.h"
#include "i915_drv.h"
#include "i915_irq.h"
#include "i915_reg.h"
#include "intel_breadcrumbs.h"
#include "intel_gt.h"
#include "intel_gt_clock_utils.h"
#include "intel_gt_irq.h"
#include "intel_gt_pm.h"
#include "intel_gt_pm_irq.h"
#include "intel_gt_print.h"
#include "intel_gt_regs.h"
#include "intel_mchbar_regs.h"
#include "intel_pcode.h"
#include "intel_rps.h"
#include "vlv_sideband.h"
#include "../../../platform/x86/intel_ips.h"
#define BUSY_MAX_EI 20u /* ms */
/*
* Lock protecting IPS related data structures
*/
static DEFINE_SPINLOCK(mchdev_lock);
static struct intel_gt *rps_to_gt(struct intel_rps *rps)
{
return container_of(rps, struct intel_gt, rps);
}
static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
{
return rps_to_gt(rps)->i915;
}
static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
{
return rps_to_gt(rps)->uncore;
}
static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
{
struct intel_gt *gt = rps_to_gt(rps);
return >_to_guc(gt)->slpc;
}
static bool rps_uses_slpc(struct intel_rps *rps)
{
struct intel_gt *gt = rps_to_gt(rps);
return intel_uc_uses_guc_slpc(>->uc);
}
static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
{
return mask & ~rps->pm_intrmsk_mbz;
}
static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
{
intel_uncore_write_fw(uncore, reg, val);
}
static void rps_timer(struct timer_list *t)
{
struct intel_rps *rps = from_timer(rps, t, timer);
struct intel_gt *gt = rps_to_gt(rps);
struct intel_engine_cs *engine;
ktime_t dt, last, timestamp;
enum intel_engine_id id;
s64 max_busy[3] = {};
timestamp = 0;
for_each_engine(engine, gt, id) {
s64 busy;
int i;
dt = intel_engine_get_busy_time(engine, ×tamp);
last = engine->stats.rps;
engine->stats.rps = dt;
busy = ktime_to_ns(ktime_sub(dt, last));
for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
if (busy > max_busy[i])
swap(busy, max_busy[i]);
}
}
last = rps->pm_timestamp;
rps->pm_timestamp = timestamp;
if (intel_rps_is_active(rps)) {
s64 busy;
int i;
dt = ktime_sub(timestamp, last);
/*
* Our goal is to evaluate each engine independently, so we run
* at the lowest clocks required to sustain the heaviest
* workload. However, a task may be split into sequential
* dependent operations across a set of engines, such that
* the independent contributions do not account for high load,
* but overall the task is GPU bound. For example, consider
* video decode on vcs followed by colour post-processing
* on vecs, followed by general post-processing on rcs.
* Since multi-engines being active does imply a single
* continuous workload across all engines, we hedge our
* bets by only contributing a factor of the distributed
* load into our busyness calculation.
*/
busy = max_busy[0];
for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
if (!max_busy[i])
break;
busy += div_u64(max_busy[i], 1 << i);
}
GT_TRACE(gt,
"busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
busy, (int)div64_u64(100 * busy, dt),
max_busy[0], max_busy[1], max_busy[2],
rps->pm_interval);
if (100 * busy > rps->power.up_threshold * dt &&
rps->cur_freq < rps->max_freq_softlimit) {
rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
rps->pm_interval = 1;
queue_work(gt->i915->unordered_wq, &rps->work);
} else if (100 * busy < rps->power.down_threshold * dt &&
rps->cur_freq > rps->min_freq_softlimit) {
rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
rps->pm_interval = 1;
queue_work(gt->i915->unordered_wq, &rps->work);
} else {
rps->last_adj = 0;
}
mod_timer(&rps->timer,
jiffies + msecs_to_jiffies(rps->pm_interval));
rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
}
}
static void rps_start_timer(struct intel_rps *rps)
{
rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
rps->pm_interval = 1;
mod_timer(&rps->timer, jiffies + 1);
}
static void rps_stop_timer(struct intel_rps *rps)
{
del_timer_sync(&rps->timer);
rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
cancel_work_sync(&rps->work);
}
static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
{
u32 mask = 0;
/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
if (val > rps->min_freq_softlimit)
mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
GEN6_PM_RP_DOWN_THRESHOLD |
GEN6_PM_RP_DOWN_TIMEOUT);
if (val < rps->max_freq_softlimit)
mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
mask &= rps->pm_events;
return rps_pm_sanitize_mask(rps, ~mask);
}
static void rps_reset_ei(struct intel_rps *rps)
{
memset(&rps->ei, 0, sizeof(rps->ei));
}
static void rps_enable_interrupts(struct intel_rps *rps)
{
struct intel_gt *gt = rps_to_gt(rps);
GEM_BUG_ON(rps_uses_slpc(rps));
GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
rps->pm_events, rps_pm_mask(rps, rps->last_freq));
rps_reset_ei(rps);
spin_lock_irq(gt->irq_lock);
gen6_gt_pm_enable_irq(gt, rps->pm_events);
spin_unlock_irq(gt->irq_lock);
intel_uncore_write(gt->uncore,
GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
}
static void gen6_rps_reset_interrupts(struct intel_rps *rps)
{
gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
}
static void gen11_rps_reset_interrupts(struct intel_rps *rps)
{
while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
;
}
static void rps_reset_interrupts(struct intel_rps *rps)
{
struct intel_gt *gt = rps_to_gt(rps);
spin_lock_irq(gt->irq_lock);
if (GRAPHICS_VER(gt->i915) >= 11)
gen11_rps_reset_interrupts(rps);
else
gen6_rps_reset_interrupts(rps);
rps->pm_iir = 0;
spin_unlock_irq(gt->irq_lock);
}
static void rps_disable_interrupts(struct intel_rps *rps)
{
struct intel_gt *gt = rps_to_gt(rps);
intel_uncore_write(gt->uncore,
GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
spin_lock_irq(gt->irq_lock);
gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
spin_unlock_irq(gt->irq_lock);
intel_synchronize_irq(gt->i915);
/*
* Now that we will not be generating any more work, flush any
* outstanding tasks. As we are called on the RPS idle path,
* we will reset the GPU to minimum frequencies, so the current
* state of the worker can be discarded.
*/
cancel_work_sync(&rps->work);
rps_reset_interrupts(rps);
GT_TRACE(gt, "interrupts:off\n");
}
static const struct cparams {
u16 i;
u16 t;
u16 m;
u16 c;
} cparams[] = {
{ 1, 1333, 301, 28664 },
{ 1, 1067, 294, 24460 },
{ 1, 800, 294, 25192 },
{ 0, 1333, 276, 27605 },
{ 0, 1067, 276, 27605 },
{ 0, 800, 231, 23784 },
};
static void gen5_rps_init(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
struct intel_uncore *uncore = rps_to_uncore(rps);
u8 fmax, fmin, fstart;
u32 rgvmodectl;
int c_m, i;
if (i915->fsb_freq <= 3200000)
c_m = 0;
else if (i915->fsb_freq <= 4800000)
c_m = 1;
else
c_m = 2;
for (i = 0; i < ARRAY_SIZE(cparams); i++) {
if (cparams[i].i == c_m &&
cparams[i].t == DIV_ROUND_CLOSEST(i915->mem_freq, 1000)) {
rps->ips.m = cparams[i].m;
rps->ips.c = cparams[i].c;
break;
}
}
rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
/* Set up min, max, and cur for interrupt handling */
fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
MEMMODE_FSTART_SHIFT;
drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
fmax, fmin, fstart);
rps->min_freq = fmax;
rps->efficient_freq = fstart;
rps->max_freq = fmin;
}
static unsigned long
__ips_chipset_val(struct intel_ips *ips)
{
struct intel_uncore *uncore =
rps_to_uncore(container_of(ips, struct intel_rps, ips));
unsigned long now = jiffies_to_msecs(jiffies), dt;
unsigned long result;
u64 total, delta;
lockdep_assert_held(&mchdev_lock);
/*
* Prevent division-by-zero if we are asking too fast.
* Also, we don't get interesting results if we are polling
* faster than once in 10ms, so just return the saved value
* in such cases.
*/
dt = now - ips->last_time1;
if (dt <= 10)
return ips->chipset_power;
/* FIXME: handle per-counter overflow */
total = intel_uncore_read(uncore, DMIEC);
total += intel_uncore_read(uncore, DDREC);
total += intel_uncore_read(uncore, CSIEC);
delta = total - ips->last_count1;
result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
ips->last_count1 = total;
ips->last_time1 = now;
ips->chipset_power = result;
return result;
}
static unsigned long ips_mch_val(struct intel_uncore *uncore)
{
unsigned int m, x, b;
u32 tsfs;
tsfs = intel_uncore_read(uncore, TSFS);
x = intel_uncore_read8(uncore, TR1);
b = tsfs & TSFS_INTR_MASK;
m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
return m * x / 127 - b;
}
static int _pxvid_to_vd(u8 pxvid)
{
if (pxvid == 0)
return 0;
if (pxvid >= 8 && pxvid < 31)
pxvid = 31;
return (pxvid + 2) * 125;
}
static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
{
const int vd = _pxvid_to_vd(pxvid);
if (INTEL_INFO(i915)->is_mobile)
return max(vd - 1125, 0);
return vd;
}
static void __gen5_ips_update(struct intel_ips *ips)
{
struct intel_uncore *uncore =
rps_to_uncore(container_of(ips, struct intel_rps, ips));
u64 now, delta, dt;
u32 count;
lockdep_assert_held(&mchdev_lock);
now = ktime_get_raw_ns();
dt = now - ips->last_time2;
do_div(dt, NSEC_PER_MSEC);
/* Don't divide by 0 */
if (dt <= 10)
return;
count = intel_uncore_read(uncore, GFXEC);
delta = count - ips->last_count2;
ips->last_count2 = count;
ips->last_time2 = now;
/* More magic constants... */
ips->gfx_power = div_u64(delta * 1181, dt * 10);
}
static void gen5_rps_update(struct intel_rps *rps)
{
spin_lock_irq(&mchdev_lock);
__gen5_ips_update(&rps->ips);
spin_unlock_irq(&mchdev_lock);
}
static unsigned int gen5_invert_freq(struct intel_rps *rps,
unsigned int val)
{
/* Invert the frequency bin into an ips delay */
val = rps->max_freq - val;
val = rps->min_freq + val;
return val;
}
static int __gen5_rps_set(struct intel_rps *rps, u8 val)
{
struct intel_uncore *uncore = rps_to_uncore(rps);
u16 rgvswctl;
lockdep_assert_held(&mchdev_lock);
rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
if (rgvswctl & MEMCTL_CMD_STS) {
drm_dbg(&rps_to_i915(rps)->drm,
"gpu busy, RCS change rejected\n");
return -EBUSY; /* still busy with another command */
}
/* Invert the frequency bin into an ips delay */
val = gen5_invert_freq(rps, val);
rgvswctl =
(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
(val << MEMCTL_FREQ_SHIFT) |
MEMCTL_SFCAVM;
intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
intel_uncore_posting_read16(uncore, MEMSWCTL);
rgvswctl |= MEMCTL_CMD_STS;
intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
return 0;
}
static int gen5_rps_set(struct intel_rps *rps, u8 val)
{
int err;
spin_lock_irq(&mchdev_lock);
err = __gen5_rps_set(rps, val);
spin_unlock_irq(&mchdev_lock);
return err;
}
static unsigned long intel_pxfreq(u32 vidfreq)
{
int div = (vidfreq & 0x3f0000) >> 16;
int post = (vidfreq & 0x3000) >> 12;
int pre = (vidfreq & 0x7);
if (!pre)
return 0;
return div * 133333 / (pre << post);
}
static unsigned int init_emon(struct intel_uncore *uncore)
{
u8 pxw[16];
int i;
/* Disable to program */
intel_uncore_write(uncore, ECR, 0);
intel_uncore_posting_read(uncore, ECR);
/* Program energy weights for various events */
intel_uncore_write(uncore, SDEW, 0x15040d00);
intel_uncore_write(uncore, CSIEW0, 0x007f0000);
intel_uncore_write(uncore, CSIEW1, 0x1e220004);
intel_uncore_write(uncore, CSIEW2, 0x04000004);
for (i = 0; i < 5; i++)
intel_uncore_write(uncore, PEW(i), 0);
for (i = 0; i < 3; i++)
intel_uncore_write(uncore, DEW(i), 0);
/* Program P-state weights to account for frequency power adjustment */
for (i = 0; i < 16; i++) {
u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
unsigned int freq = intel_pxfreq(pxvidfreq);
unsigned int vid =
(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
unsigned int val;
val = vid * vid * freq / 1000 * 255;
val /= 127 * 127 * 900;
pxw[i] = val;
}
/* Render standby states get 0 weight */
pxw[14] = 0;
pxw[15] = 0;
for (i = 0; i < 4; i++) {
intel_uncore_write(uncore, PXW(i),
pxw[i * 4 + 0] << 24 |
pxw[i * 4 + 1] << 16 |
pxw[i * 4 + 2] << 8 |
pxw[i * 4 + 3] << 0);
}
/* Adjust magic regs to magic values (more experimental results) */
intel_uncore_write(uncore, OGW0, 0);
intel_uncore_write(uncore, OGW1, 0);
intel_uncore_write(uncore, EG0, 0x00007f00);
intel_uncore_write(uncore, EG1, 0x0000000e);
intel_uncore_write(uncore, EG2, 0x000e0000);
intel_uncore_write(uncore, EG3, 0x68000300);
intel_uncore_write(uncore, EG4, 0x42000000);
intel_uncore_write(uncore, EG5, 0x00140031);
intel_uncore_write(uncore, EG6, 0);
intel_uncore_write(uncore, EG7, 0);
for (i = 0; i < 8; i++)
intel_uncore_write(uncore, PXWL(i), 0);
/* Enable PMON + select events */
intel_uncore_write(uncore, ECR, 0x80000019);
return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
}
static bool gen5_rps_enable(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
struct intel_uncore *uncore = rps_to_uncore(rps);
u8 fstart, vstart;
u32 rgvmodectl;
spin_lock_irq(&mchdev_lock);
rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
/* Enable temp reporting */
intel_uncore_write16(uncore, PMMISC,
intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
intel_uncore_write16(uncore, TSC1,
intel_uncore_read16(uncore, TSC1) | TSE);
/* 100ms RC evaluation intervals */
intel_uncore_write(uncore, RCUPEI, 100000);
intel_uncore_write(uncore, RCDNEI, 100000);
/* Set max/min thresholds to 90ms and 80ms respectively */
intel_uncore_write(uncore, RCBMAXAVG, 90000);
intel_uncore_write(uncore, RCBMINAVG, 80000);
intel_uncore_write(uncore, MEMIHYST, 1);
/* Set up min, max, and cur for interrupt handling */
fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
MEMMODE_FSTART_SHIFT;
vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
intel_uncore_write(uncore,
MEMINTREN,
MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
intel_uncore_write(uncore, VIDSTART, vstart);
intel_uncore_posting_read(uncore, VIDSTART);
rgvmodectl |= MEMMODE_SWMODE_EN;
intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
MEMCTL_CMD_STS) == 0, 10))
drm_err(&uncore->i915->drm,
"stuck trying to change perf mode\n");
mdelay(1);
__gen5_rps_set(rps, rps->cur_freq);
rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
rps->ips.last_time1 = jiffies_to_msecs(jiffies);
rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
rps->ips.last_time2 = ktime_get_raw_ns();
spin_lock(&i915->irq_lock);
ilk_enable_display_irq(i915, DE_PCU_EVENT);
spin_unlock(&i915->irq_lock);
spin_unlock_irq(&mchdev_lock);
rps->ips.corr = init_emon(uncore);
return true;
}
static void gen5_rps_disable(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
struct intel_uncore *uncore = rps_to_uncore(rps);
u16 rgvswctl;
spin_lock_irq(&mchdev_lock);
spin_lock(&i915->irq_lock);
ilk_disable_display_irq(i915, DE_PCU_EVENT);
spin_unlock(&i915->irq_lock);
rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
/* Ack interrupts, disable EFC interrupt */
intel_uncore_rmw(uncore, MEMINTREN, MEMINT_EVAL_CHG_EN, 0);
intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
/* Go back to the starting frequency */
__gen5_rps_set(rps, rps->idle_freq);
mdelay(1);
rgvswctl |= MEMCTL_CMD_STS;
intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
mdelay(1);
spin_unlock_irq(&mchdev_lock);
}
static u32 rps_limits(struct intel_rps *rps, u8 val)
{
u32 limits;
/*
* Only set the down limit when we've reached the lowest level to avoid
* getting more interrupts, otherwise leave this clear. This prevents a
* race in the hw when coming out of rc6: There's a tiny window where
* the hw runs at the minimal clock before selecting the desired
* frequency, if the down threshold expires in that window we will not
* receive a down interrupt.
*/
if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
limits = rps->max_freq_softlimit << 23;
if (val <= rps->min_freq_softlimit)
limits |= rps->min_freq_softlimit << 14;
} else {
limits = rps->max_freq_softlimit << 24;
if (val <= rps->min_freq_softlimit)
limits |= rps->min_freq_softlimit << 16;
}
return limits;
}
static void rps_set_power(struct intel_rps *rps, int new_power)
{
struct intel_gt *gt = rps_to_gt(rps);
struct intel_uncore *uncore = gt->uncore;
u32 ei_up = 0, ei_down = 0;
lockdep_assert_held(&rps->power.mutex);
if (new_power == rps->power.mode)
return;
/* Note the units here are not exactly 1us, but 1280ns. */
switch (new_power) {
case LOW_POWER:
ei_up = 16000;
ei_down = 32000;
break;
case BETWEEN:
ei_up = 13000;
ei_down = 32000;
break;
case HIGH_POWER:
ei_up = 10000;
ei_down = 32000;
break;
}
/* When byt can survive without system hang with dynamic
* sw freq adjustments, this restriction can be lifted.
*/
if (IS_VALLEYVIEW(gt->i915))
goto skip_hw_write;
GT_TRACE(gt,
"changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
new_power,
rps->power.up_threshold, ei_up,
rps->power.down_threshold, ei_down);
set(uncore, GEN6_RP_UP_EI,
intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
set(uncore, GEN6_RP_UP_THRESHOLD,
intel_gt_ns_to_pm_interval(gt,
ei_up * rps->power.up_threshold * 10));
set(uncore, GEN6_RP_DOWN_EI,
intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
set(uncore, GEN6_RP_DOWN_THRESHOLD,
intel_gt_ns_to_pm_interval(gt,
ei_down *
rps->power.down_threshold * 10));
set(uncore, GEN6_RP_CONTROL,
(GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
GEN6_RP_MEDIA_HW_NORMAL_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_AVG);
skip_hw_write:
rps->power.mode = new_power;
}
static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
{
int new_power;
new_power = rps->power.mode;
switch (rps->power.mode) {
case LOW_POWER:
if (val > rps->efficient_freq + 1 &&
val > rps->cur_freq)
new_power = BETWEEN;
break;
case BETWEEN:
if (val <= rps->efficient_freq &&
val < rps->cur_freq)
new_power = LOW_POWER;
else if (val >= rps->rp0_freq &&
val > rps->cur_freq)
new_power = HIGH_POWER;
break;
case HIGH_POWER:
if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
val < rps->cur_freq)
new_power = BETWEEN;
break;
}
/* Max/min bins are special */
if (val <= rps->min_freq_softlimit)
new_power = LOW_POWER;
if (val >= rps->max_freq_softlimit)
new_power = HIGH_POWER;
mutex_lock(&rps->power.mutex);
if (rps->power.interactive)
new_power = HIGH_POWER;
rps_set_power(rps, new_power);
mutex_unlock(&rps->power.mutex);
}
void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
{
GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n",
str_yes_no(interactive));
mutex_lock(&rps->power.mutex);
if (interactive) {
if (!rps->power.interactive++ && intel_rps_is_active(rps))
rps_set_power(rps, HIGH_POWER);
} else {
GEM_BUG_ON(!rps->power.interactive);
rps->power.interactive--;
}
mutex_unlock(&rps->power.mutex);
}
static int gen6_rps_set(struct intel_rps *rps, u8 val)
{
struct intel_uncore *uncore = rps_to_uncore(rps);
struct drm_i915_private *i915 = rps_to_i915(rps);
u32 swreq;
GEM_BUG_ON(rps_uses_slpc(rps));
if (GRAPHICS_VER(i915) >= 9)
swreq = GEN9_FREQUENCY(val);
else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
swreq = HSW_FREQUENCY(val);
else
swreq = (GEN6_FREQUENCY(val) |
GEN6_OFFSET(0) |
GEN6_AGGRESSIVE_TURBO);
set(uncore, GEN6_RPNSWREQ, swreq);
GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
val, intel_gpu_freq(rps, val), swreq);
return 0;
}
static int vlv_rps_set(struct intel_rps *rps, u8 val)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
int err;
vlv_punit_get(i915);
err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
vlv_punit_put(i915);
GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
val, intel_gpu_freq(rps, val));
return err;
}
static int rps_set(struct intel_rps *rps, u8 val, bool update)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
int err;
if (val == rps->last_freq)
return 0;
if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
err = vlv_rps_set(rps, val);
else if (GRAPHICS_VER(i915) >= 6)
err = gen6_rps_set(rps, val);
else
err = gen5_rps_set(rps, val);
if (err)
return err;
if (update && GRAPHICS_VER(i915) >= 6)
gen6_rps_set_thresholds(rps, val);
rps->last_freq = val;
return 0;
}
void intel_rps_unpark(struct intel_rps *rps)
{
if (!intel_rps_is_enabled(rps))
return;
GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
/*
* Use the user's desired frequency as a guide, but for better
* performance, jump directly to RPe as our starting frequency.
*/
mutex_lock(&rps->lock);
intel_rps_set_active(rps);
intel_rps_set(rps,
clamp(rps->cur_freq,
rps->min_freq_softlimit,
rps->max_freq_softlimit));
mutex_unlock(&rps->lock);
rps->pm_iir = 0;
if (intel_rps_has_interrupts(rps))
rps_enable_interrupts(rps);
if (intel_rps_uses_timer(rps))
rps_start_timer(rps);
if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
gen5_rps_update(rps);
}
void intel_rps_park(struct intel_rps *rps)
{
int adj;
if (!intel_rps_is_enabled(rps))
return;
if (!intel_rps_clear_active(rps))
return;
if (intel_rps_uses_timer(rps))
rps_stop_timer(rps);
if (intel_rps_has_interrupts(rps))
rps_disable_interrupts(rps);
if (rps->last_freq <= rps->idle_freq)
return;
/*
* The punit delays the write of the frequency and voltage until it
* determines the GPU is awake. During normal usage we don't want to
* waste power changing the frequency if the GPU is sleeping (rc6).
* However, the GPU and driver is now idle and we do not want to delay
* switching to minimum voltage (reducing power whilst idle) as we do
* not expect to be woken in the near future and so must flush the
* change by waking the device.
*
* We choose to take the media powerwell (either would do to trick the
* punit into committing the voltage change) as that takes a lot less
* power than the render powerwell.
*/
intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
rps_set(rps, rps->idle_freq, false);
intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
/*
* Since we will try and restart from the previously requested
* frequency on unparking, treat this idle point as a downclock
* interrupt and reduce the frequency for resume. If we park/unpark
* more frequently than the rps worker can run, we will not respond
* to any EI and never see a change in frequency.
*
* (Note we accommodate Cherryview's limitation of only using an
* even bin by applying it to all.)
*/
adj = rps->last_adj;
if (adj < 0)
adj *= 2;
else /* CHV needs even encode values */
adj = -2;
rps->last_adj = adj;
rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
if (rps->cur_freq < rps->efficient_freq) {
rps->cur_freq = rps->efficient_freq;
rps->last_adj = 0;
}
GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
}
u32 intel_rps_get_boost_frequency(struct intel_rps *rps)
{
struct intel_guc_slpc *slpc;
if (rps_uses_slpc(rps)) {
slpc = rps_to_slpc(rps);
return slpc->boost_freq;
} else {
return intel_gpu_freq(rps, rps->boost_freq);
}
}
static int rps_set_boost_freq(struct intel_rps *rps, u32 val)
{
bool boost = false;
/* Validate against (static) hardware limits */
val = intel_freq_opcode(rps, val);
if (val < rps->min_freq || val > rps->max_freq)
return -EINVAL;
mutex_lock(&rps->lock);
if (val != rps->boost_freq) {
rps->boost_freq = val;
boost = atomic_read(&rps->num_waiters);
}
mutex_unlock(&rps->lock);
if (boost)
queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
return 0;
}
int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq)
{
struct intel_guc_slpc *slpc;
if (rps_uses_slpc(rps)) {
slpc = rps_to_slpc(rps);
return intel_guc_slpc_set_boost_freq(slpc, freq);
} else {
return rps_set_boost_freq(rps, freq);
}
}
void intel_rps_dec_waiters(struct intel_rps *rps)
{
struct intel_guc_slpc *slpc;
if (rps_uses_slpc(rps)) {
slpc = rps_to_slpc(rps);
intel_guc_slpc_dec_waiters(slpc);
} else {
atomic_dec(&rps->num_waiters);
}
}
void intel_rps_boost(struct i915_request *rq)
{
struct intel_guc_slpc *slpc;
if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
return;
/* Waitboost is not needed for contexts marked with a Freq hint */
if (test_bit(CONTEXT_LOW_LATENCY, &rq->context->flags))
return;
/* Serializes with i915_request_retire() */
if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
if (rps_uses_slpc(rps)) {
slpc = rps_to_slpc(rps);
if (slpc->min_freq_softlimit >= slpc->boost_freq)
return;
/* Return if old value is non zero */
if (!atomic_fetch_inc(&slpc->num_waiters)) {
GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
rq->fence.context, rq->fence.seqno);
queue_work(rps_to_gt(rps)->i915->unordered_wq,
&slpc->boost_work);
}
return;
}
if (atomic_fetch_inc(&rps->num_waiters))
return;
if (!intel_rps_is_active(rps))
return;
GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
rq->fence.context, rq->fence.seqno);
if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
}
}
int intel_rps_set(struct intel_rps *rps, u8 val)
{
int err;
lockdep_assert_held(&rps->lock);
GEM_BUG_ON(val > rps->max_freq);
GEM_BUG_ON(val < rps->min_freq);
if (intel_rps_is_active(rps)) {
err = rps_set(rps, val, true);
if (err)
return err;
/*
* Make sure we continue to get interrupts
* until we hit the minimum or maximum frequencies.
*/
if (intel_rps_has_interrupts(rps)) {
struct intel_uncore *uncore = rps_to_uncore(rps);
set(uncore,
GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
}
}
rps->cur_freq = val;
return 0;
}
static u32 intel_rps_read_state_cap(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
struct intel_uncore *uncore = rps_to_uncore(rps);
if (IS_GEN9_LP(i915))
return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
else
return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
}
static void
mtl_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
{
struct intel_uncore *uncore = rps_to_uncore(rps);
u32 rp_state_cap = rps_to_gt(rps)->type == GT_MEDIA ?
intel_uncore_read(uncore, MTL_MEDIAP_STATE_CAP) :
intel_uncore_read(uncore, MTL_RP_STATE_CAP);
u32 rpe = rps_to_gt(rps)->type == GT_MEDIA ?
intel_uncore_read(uncore, MTL_MPE_FREQUENCY) :
intel_uncore_read(uncore, MTL_GT_RPE_FREQUENCY);
/* MTL values are in units of 16.67 MHz */
caps->rp0_freq = REG_FIELD_GET(MTL_RP0_CAP_MASK, rp_state_cap);
caps->min_freq = REG_FIELD_GET(MTL_RPN_CAP_MASK, rp_state_cap);
caps->rp1_freq = REG_FIELD_GET(MTL_RPE_MASK, rpe);
}
static void
__gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
u32 rp_state_cap;
rp_state_cap = intel_rps_read_state_cap(rps);
/* static values from HW: RP0 > RP1 > RPn (min_freq) */
if (IS_GEN9_LP(i915)) {
caps->rp0_freq = (rp_state_cap >> 16) & 0xff;
caps->rp1_freq = (rp_state_cap >> 8) & 0xff;
caps->min_freq = (rp_state_cap >> 0) & 0xff;
} else {
caps->rp0_freq = (rp_state_cap >> 0) & 0xff;
if (GRAPHICS_VER(i915) >= 10)
caps->rp1_freq = REG_FIELD_GET(RPE_MASK,
intel_uncore_read(to_gt(i915)->uncore,
GEN10_FREQ_INFO_REC));
else
caps->rp1_freq = (rp_state_cap >> 8) & 0xff;
caps->min_freq = (rp_state_cap >> 16) & 0xff;
}
if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
/*
* In this case rp_state_cap register reports frequencies in
* units of 50 MHz. Convert these to the actual "hw unit", i.e.
* units of 16.67 MHz
*/
caps->rp0_freq *= GEN9_FREQ_SCALER;
caps->rp1_freq *= GEN9_FREQ_SCALER;
caps->min_freq *= GEN9_FREQ_SCALER;
}
}
/**
* gen6_rps_get_freq_caps - Get freq caps exposed by HW
* @rps: the intel_rps structure
* @caps: returned freq caps
*
* Returned "caps" frequencies should be converted to MHz using
* intel_gpu_freq()
*/
void gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
return mtl_get_freq_caps(rps, caps);
else
return __gen6_rps_get_freq_caps(rps, caps);
}
static void gen6_rps_init(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
struct intel_rps_freq_caps caps;
gen6_rps_get_freq_caps(rps, &caps);
rps->rp0_freq = caps.rp0_freq;
rps->rp1_freq = caps.rp1_freq;
rps->min_freq = caps.min_freq;
/* hw_max = RP0 until we check for overclocking */
rps->max_freq = rps->rp0_freq;
rps->efficient_freq = rps->rp1_freq;
if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
u32 ddcc_status = 0;
u32 mult = 1;
if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11)
mult = GEN9_FREQ_SCALER;
if (snb_pcode_read(rps_to_gt(rps)->uncore,
HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
&ddcc_status, NULL) == 0)
rps->efficient_freq =
clamp_t(u32,
((ddcc_status >> 8) & 0xff) * mult,
rps->min_freq,
rps->max_freq);
}
}
static bool rps_reset(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
/* force a reset */
rps->power.mode = -1;
rps->last_freq = -1;
if (rps_set(rps, rps->min_freq, true)) {
drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
return false;
}
rps->cur_freq = rps->min_freq;
return true;
}
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
static bool gen9_rps_enable(struct intel_rps *rps)
{
struct intel_gt *gt = rps_to_gt(rps);
struct intel_uncore *uncore = gt->uncore;
/* Program defaults and thresholds for RPS */
if (GRAPHICS_VER(gt->i915) == 9)
intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
GEN9_FREQUENCY(rps->rp1_freq));
intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
return rps_reset(rps);
}
static bool gen8_rps_enable(struct intel_rps *rps)
{
struct intel_uncore *uncore = rps_to_uncore(rps);
intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
HSW_FREQUENCY(rps->rp1_freq));
intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
return rps_reset(rps);
}
static bool gen6_rps_enable(struct intel_rps *rps)
{
struct intel_uncore *uncore = rps_to_uncore(rps);
/* Power down if completely idle for over 50ms */
intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
GEN6_PM_RP_DOWN_THRESHOLD |
GEN6_PM_RP_DOWN_TIMEOUT);
return rps_reset(rps);
}
static int chv_rps_max_freq(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
struct intel_gt *gt = rps_to_gt(rps);
u32 val;
val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
switch (gt->info.sseu.eu_total) {
case 8:
/* (2 * 4) config */
val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
break;
case 12:
/* (2 * 6) config */
val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
break;
case 16:
/* (2 * 8) config */
default:
/* Setting (2 * 8) Min RP0 for any other combination */
val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
break;
}
return val & FB_GFX_FREQ_FUSE_MASK;
}
static int chv_rps_rpe_freq(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
u32 val;
val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
}
static int chv_rps_guar_freq(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
u32 val;
val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
return val & FB_GFX_FREQ_FUSE_MASK;
}
static u32 chv_rps_min_freq(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
u32 val;
val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
return val & FB_GFX_FREQ_FUSE_MASK;
}
static bool chv_rps_enable(struct intel_rps *rps)
{
struct intel_uncore *uncore = rps_to_uncore(rps);
struct drm_i915_private *i915 = rps_to_i915(rps);
u32 val;
/* 1: Program defaults and thresholds for RPS*/
intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
/* 2: Enable RPS */
intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
GEN6_RP_MEDIA_HW_NORMAL_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_AVG);
rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
GEN6_PM_RP_DOWN_THRESHOLD |
GEN6_PM_RP_DOWN_TIMEOUT);
/* Setting Fixed Bias */
vlv_punit_get(i915);
val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
vlv_punit_put(i915);
/* RPS code assumes GPLL is used */
drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
"GPLL not enabled\n");
drm_dbg(&i915->drm, "GPLL enabled? %s\n",
str_yes_no(val & GPLLENABLE));
drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
return rps_reset(rps);
}
static int vlv_rps_guar_freq(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
u32 val, rp1;
val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
return rp1;
}
static int vlv_rps_max_freq(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
u32 val, rp0;
val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
/* Clamp to max */
rp0 = min_t(u32, rp0, 0xea);
return rp0;
}
static int vlv_rps_rpe_freq(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
u32 val, rpe;
val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
return rpe;
}
static int vlv_rps_min_freq(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
u32 val;
val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
/*
* According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
* for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
* a BYT-M B0 the above register contains 0xbf. Moreover when setting
* a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
* to make sure it matches what Punit accepts.
*/
return max_t(u32, val, 0xc0);
}
static bool vlv_rps_enable(struct intel_rps *rps)
{
struct intel_uncore *uncore = rps_to_uncore(rps);
struct drm_i915_private *i915 = rps_to_i915(rps);
u32 val;
intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
GEN6_RP_MEDIA_TURBO |
GEN6_RP_MEDIA_HW_NORMAL_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_CONT);
/* WaGsvRC0ResidencyMethod:vlv */
rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
vlv_punit_get(i915);
/* Setting Fixed Bias */
val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
vlv_punit_put(i915);
/* RPS code assumes GPLL is used */
drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
"GPLL not enabled\n");
drm_dbg(&i915->drm, "GPLL enabled? %s\n",
str_yes_no(val & GPLLENABLE));
drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
return rps_reset(rps);
}
static unsigned long __ips_gfx_val(struct intel_ips *ips)
{
struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
struct intel_uncore *uncore = rps_to_uncore(rps);
unsigned int t, state1, state2;
u32 pxvid, ext_v;
u64 corr, corr2;
lockdep_assert_held(&mchdev_lock);
pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
pxvid = (pxvid >> 24) & 0x7f;
ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
state1 = ext_v;
/* Revel in the empirically derived constants */
/* Correction factor in 1/100000 units */
t = ips_mch_val(uncore);
if (t > 80)
corr = t * 2349 + 135940;
else if (t >= 50)
corr = t * 964 + 29317;
else /* < 50 */
corr = t * 301 + 1004;
corr = div_u64(corr * 150142 * state1, 10000) - 78642;
corr2 = div_u64(corr, 100000) * ips->corr;
state2 = div_u64(corr2 * state1, 10000);
state2 /= 100; /* convert to mW */
__gen5_ips_update(ips);
return ips->gfx_power + state2;
}
static bool has_busy_stats(struct intel_rps *rps)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, rps_to_gt(rps), id) {
if (!intel_engine_supports_stats(engine))
return false;
}
return true;
}
void intel_rps_enable(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
struct intel_uncore *uncore = rps_to_uncore(rps);
bool enabled = false;
if (!HAS_RPS(i915))
return;
if (rps_uses_slpc(rps))
return;
intel_gt_check_clock_frequency(rps_to_gt(rps));
intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
if (rps->max_freq <= rps->min_freq)
/* leave disabled, no room for dynamic reclocking */;
else if (IS_CHERRYVIEW(i915))
enabled = chv_rps_enable(rps);
else if (IS_VALLEYVIEW(i915))
enabled = vlv_rps_enable(rps);
else if (GRAPHICS_VER(i915) >= 9)
enabled = gen9_rps_enable(rps);
else if (GRAPHICS_VER(i915) >= 8)
enabled = gen8_rps_enable(rps);
else if (GRAPHICS_VER(i915) >= 6)
enabled = gen6_rps_enable(rps);
else if (IS_IRONLAKE_M(i915))
enabled = gen5_rps_enable(rps);
else
MISSING_CASE(GRAPHICS_VER(i915));
intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
if (!enabled)
return;
GT_TRACE(rps_to_gt(rps),
"min:%x, max:%x, freq:[%d, %d], thresholds:[%u, %u]\n",
rps->min_freq, rps->max_freq,
intel_gpu_freq(rps, rps->min_freq),
intel_gpu_freq(rps, rps->max_freq),
rps->power.up_threshold,
rps->power.down_threshold);
GEM_BUG_ON(rps->max_freq < rps->min_freq);
GEM_BUG_ON(rps->idle_freq > rps->max_freq);
GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
if (has_busy_stats(rps))
intel_rps_set_timer(rps);
else if (GRAPHICS_VER(i915) >= 6 && GRAPHICS_VER(i915) <= 11)
intel_rps_set_interrupts(rps);
else
/* Ironlake currently uses intel_ips.ko */ {}
intel_rps_set_enabled(rps);
}
static void gen6_rps_disable(struct intel_rps *rps)
{
set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
}
void intel_rps_disable(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
if (!intel_rps_is_enabled(rps))
return;
intel_rps_clear_enabled(rps);
intel_rps_clear_interrupts(rps);
intel_rps_clear_timer(rps);
if (GRAPHICS_VER(i915) >= 6)
gen6_rps_disable(rps);
else if (IS_IRONLAKE_M(i915))
gen5_rps_disable(rps);
}
static int byt_gpu_freq(struct intel_rps *rps, int val)
{
/*
* N = val - 0xb7
* Slow = Fast = GPLL ref * N
*/
return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
}
static int byt_freq_opcode(struct intel_rps *rps, int val)
{
return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
}
static int chv_gpu_freq(struct intel_rps *rps, int val)
{
/*
* N = val / 2
* CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
*/
return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
}
static int chv_freq_opcode(struct intel_rps *rps, int val)
{
/* CHV needs even values */
return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
}
int intel_gpu_freq(struct intel_rps *rps, int val)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
if (GRAPHICS_VER(i915) >= 9)
return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
GEN9_FREQ_SCALER);
else if (IS_CHERRYVIEW(i915))
return chv_gpu_freq(rps, val);
else if (IS_VALLEYVIEW(i915))
return byt_gpu_freq(rps, val);
else if (GRAPHICS_VER(i915) >= 6)
return val * GT_FREQUENCY_MULTIPLIER;
else
return val;
}
int intel_freq_opcode(struct intel_rps *rps, int val)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
if (GRAPHICS_VER(i915) >= 9)
return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
GT_FREQUENCY_MULTIPLIER);
else if (IS_CHERRYVIEW(i915))
return chv_freq_opcode(rps, val);
else if (IS_VALLEYVIEW(i915))
return byt_freq_opcode(rps, val);
else if (GRAPHICS_VER(i915) >= 6)
return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
else
return val;
}
static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
rps->gpll_ref_freq =
vlv_get_cck_clock(i915, "GPLL ref",
CCK_GPLL_CLOCK_CONTROL,
i915->czclk_freq);
drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
rps->gpll_ref_freq);
}
static void vlv_rps_init(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
vlv_iosf_sb_get(i915,
BIT(VLV_IOSF_SB_PUNIT) |
BIT(VLV_IOSF_SB_NC) |
BIT(VLV_IOSF_SB_CCK));
vlv_init_gpll_ref_freq(rps);
rps->max_freq = vlv_rps_max_freq(rps);
rps->rp0_freq = rps->max_freq;
drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
rps->efficient_freq = vlv_rps_rpe_freq(rps);
drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
rps->rp1_freq = vlv_rps_guar_freq(rps);
drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
rps->min_freq = vlv_rps_min_freq(rps);
drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
vlv_iosf_sb_put(i915,
BIT(VLV_IOSF_SB_PUNIT) |
BIT(VLV_IOSF_SB_NC) |
BIT(VLV_IOSF_SB_CCK));
}
static void chv_rps_init(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
vlv_iosf_sb_get(i915,
BIT(VLV_IOSF_SB_PUNIT) |
BIT(VLV_IOSF_SB_NC) |
BIT(VLV_IOSF_SB_CCK));
vlv_init_gpll_ref_freq(rps);
rps->max_freq = chv_rps_max_freq(rps);
rps->rp0_freq = rps->max_freq;
drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
rps->efficient_freq = chv_rps_rpe_freq(rps);
drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
rps->rp1_freq = chv_rps_guar_freq(rps);
drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
rps->min_freq = chv_rps_min_freq(rps);
drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
vlv_iosf_sb_put(i915,
BIT(VLV_IOSF_SB_PUNIT) |
BIT(VLV_IOSF_SB_NC) |
BIT(VLV_IOSF_SB_CCK));
drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
rps->rp1_freq | rps->min_freq) & 1,
"Odd GPU freq values\n");
}
static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
{
ei->ktime = ktime_get_raw();
ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
}
static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
{
struct intel_uncore *uncore = rps_to_uncore(rps);
const struct intel_rps_ei *prev = &rps->ei;
struct intel_rps_ei now;
u32 events = 0;
if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
return 0;
vlv_c0_read(uncore, &now);
if (prev->ktime) {
u64 time, c0;
u32 render, media;
time = ktime_us_delta(now.ktime, prev->ktime);
time *= rps_to_i915(rps)->czclk_freq;
/* Workload can be split between render + media,
* e.g. SwapBuffers being blitted in X after being rendered in
* mesa. To account for this we need to combine both engines
* into our activity counter.
*/
render = now.render_c0 - prev->render_c0;
media = now.media_c0 - prev->media_c0;
c0 = max(render, media);
c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
if (c0 > time * rps->power.up_threshold)
events = GEN6_PM_RP_UP_THRESHOLD;
else if (c0 < time * rps->power.down_threshold)
events = GEN6_PM_RP_DOWN_THRESHOLD;
}
rps->ei = now;
return events;
}
static void rps_work(struct work_struct *work)
{
struct intel_rps *rps = container_of(work, typeof(*rps), work);
struct intel_gt *gt = rps_to_gt(rps);
struct drm_i915_private *i915 = rps_to_i915(rps);
bool client_boost = false;
int new_freq, adj, min, max;
u32 pm_iir = 0;
spin_lock_irq(gt->irq_lock);
pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
client_boost = atomic_read(&rps->num_waiters);
spin_unlock_irq(gt->irq_lock);
/* Make sure we didn't queue anything we're not going to process. */
if (!pm_iir && !client_boost)
goto out;
mutex_lock(&rps->lock);
if (!intel_rps_is_active(rps)) {
mutex_unlock(&rps->lock);
return;
}
pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
adj = rps->last_adj;
new_freq = rps->cur_freq;
min = rps->min_freq_softlimit;
max = rps->max_freq_softlimit;
if (client_boost)
max = rps->max_freq;
GT_TRACE(gt,
"pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
pm_iir, str_yes_no(client_boost),
adj, new_freq, min, max);
if (client_boost && new_freq < rps->boost_freq) {
new_freq = rps->boost_freq;
adj = 0;
} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
if (adj > 0)
adj *= 2;
else /* CHV needs even encode values */
adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
if (new_freq >= rps->max_freq_softlimit)
adj = 0;
} else if (client_boost) {
adj = 0;
} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
if (rps->cur_freq > rps->efficient_freq)
new_freq = rps->efficient_freq;
else if (rps->cur_freq > rps->min_freq_softlimit)
new_freq = rps->min_freq_softlimit;
adj = 0;
} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
if (adj < 0)
adj *= 2;
else /* CHV needs even encode values */
adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
if (new_freq <= rps->min_freq_softlimit)
adj = 0;
} else { /* unknown event */
adj = 0;
}
/*
* sysfs frequency limits may have snuck in while
* servicing the interrupt
*/
new_freq += adj;
new_freq = clamp_t(int, new_freq, min, max);
if (intel_rps_set(rps, new_freq)) {
drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
adj = 0;
}
rps->last_adj = adj;
mutex_unlock(&rps->lock);
out:
spin_lock_irq(gt->irq_lock);
gen6_gt_pm_unmask_irq(gt, rps->pm_events);
spin_unlock_irq(gt->irq_lock);
}
void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
{
struct intel_gt *gt = rps_to_gt(rps);
const u32 events = rps->pm_events & pm_iir;
lockdep_assert_held(gt->irq_lock);
if (unlikely(!events))
return;
GT_TRACE(gt, "irq events:%x\n", events);
gen6_gt_pm_mask_irq(gt, events);
rps->pm_iir |= events;
queue_work(gt->i915->unordered_wq, &rps->work);
}
void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
{
struct intel_gt *gt = rps_to_gt(rps);
u32 events;
events = pm_iir & rps->pm_events;
if (events) {
spin_lock(gt->irq_lock);
GT_TRACE(gt, "irq events:%x\n", events);
gen6_gt_pm_mask_irq(gt, events);
rps->pm_iir |= events;
queue_work(gt->i915->unordered_wq, &rps->work);
spin_unlock(gt->irq_lock);
}
if (GRAPHICS_VER(gt->i915) >= 8)
return;
if (pm_iir & PM_VEBOX_USER_INTERRUPT)
intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
drm_dbg(&rps_to_i915(rps)->drm,
"Command parser error, pm_iir 0x%08x\n", pm_iir);
}
void gen5_rps_irq_handler(struct intel_rps *rps)
{
struct intel_uncore *uncore = rps_to_uncore(rps);
u32 busy_up, busy_down, max_avg, min_avg;
u8 new_freq;
spin_lock(&mchdev_lock);
intel_uncore_write16(uncore,
MEMINTRSTS,
intel_uncore_read(uncore, MEMINTRSTS));
intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
max_avg = intel_uncore_read(uncore, RCBMAXAVG);
min_avg = intel_uncore_read(uncore, RCBMINAVG);
/* Handle RCS change request from hw */
new_freq = rps->cur_freq;
if (busy_up > max_avg)
new_freq++;
else if (busy_down < min_avg)
new_freq--;
new_freq = clamp(new_freq,
rps->min_freq_softlimit,
rps->max_freq_softlimit);
if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
rps->cur_freq = new_freq;
spin_unlock(&mchdev_lock);
}
void intel_rps_init_early(struct intel_rps *rps)
{
mutex_init(&rps->lock);
mutex_init(&rps->power.mutex);
INIT_WORK(&rps->work, rps_work);
timer_setup(&rps->timer, rps_timer, 0);
atomic_set(&rps->num_waiters, 0);
}
void intel_rps_init(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
if (rps_uses_slpc(rps))
return;
if (IS_CHERRYVIEW(i915))
chv_rps_init(rps);
else if (IS_VALLEYVIEW(i915))
vlv_rps_init(rps);
else if (GRAPHICS_VER(i915) >= 6)
gen6_rps_init(rps);
else if (IS_IRONLAKE_M(i915))
gen5_rps_init(rps);
/* Derive initial user preferences/limits from the hardware limits */
rps->max_freq_softlimit = rps->max_freq;
rps_to_gt(rps)->defaults.max_freq = rps->max_freq_softlimit;
rps->min_freq_softlimit = rps->min_freq;
rps_to_gt(rps)->defaults.min_freq = rps->min_freq_softlimit;
/* After setting max-softlimit, find the overclock max freq */
if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
u32 params = 0;
snb_pcode_read(rps_to_gt(rps)->uncore, GEN6_READ_OC_PARAMS, ¶ms, NULL);
if (params & BIT(31)) { /* OC supported */
drm_dbg(&i915->drm,
"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
(rps->max_freq & 0xff) * 50,
(params & 0xff) * 50);
rps->max_freq = params & 0xff;
}
}
/* Set default thresholds in % */
rps->power.up_threshold = 95;
rps_to_gt(rps)->defaults.rps_up_threshold = rps->power.up_threshold;
rps->power.down_threshold = 85;
rps_to_gt(rps)->defaults.rps_down_threshold = rps->power.down_threshold;
/* Finally allow us to boost to max by default */
rps->boost_freq = rps->max_freq;
rps->idle_freq = rps->min_freq;
/* Start in the middle, from here we will autotune based on workload */
rps->cur_freq = rps->efficient_freq;
rps->pm_intrmsk_mbz = 0;
/*
* SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
* if GEN6_PM_UP_EI_EXPIRED is masked.
*
* TODO: verify if this can be reproduced on VLV,CHV.
*/
if (GRAPHICS_VER(i915) <= 7)
rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
/* GuC needs ARAT expired interrupt unmasked */
if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
}
void intel_rps_sanitize(struct intel_rps *rps)
{
if (rps_uses_slpc(rps))
return;
if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
rps_disable_interrupts(rps);
}
u32 intel_rps_read_rpstat(struct intel_rps *rps)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
i915_reg_t rpstat;
rpstat = (GRAPHICS_VER(i915) >= 12) ? GEN12_RPSTAT1 : GEN6_RPSTAT1;
return intel_uncore_read(rps_to_gt(rps)->uncore, rpstat);
}
static u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
u32 cagf;
if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
cagf = REG_FIELD_GET(MTL_CAGF_MASK, rpstat);
else if (GRAPHICS_VER(i915) >= 12)
cagf = REG_FIELD_GET(GEN12_CAGF_MASK, rpstat);
else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
cagf = REG_FIELD_GET(RPE_MASK, rpstat);
else if (GRAPHICS_VER(i915) >= 9)
cagf = REG_FIELD_GET(GEN9_CAGF_MASK, rpstat);
else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
cagf = REG_FIELD_GET(HSW_CAGF_MASK, rpstat);
else if (GRAPHICS_VER(i915) >= 6)
cagf = REG_FIELD_GET(GEN6_CAGF_MASK, rpstat);
else
cagf = gen5_invert_freq(rps, REG_FIELD_GET(MEMSTAT_PSTATE_MASK, rpstat));
return cagf;
}
static u32 __read_cagf(struct intel_rps *rps, bool take_fw)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
struct intel_uncore *uncore = rps_to_uncore(rps);
i915_reg_t r = INVALID_MMIO_REG;
u32 freq;
/*
* For Gen12+ reading freq from HW does not need a forcewake and
* registers will return 0 freq when GT is in RC6
*/
if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
r = MTL_MIRROR_TARGET_WP1;
} else if (GRAPHICS_VER(i915) >= 12) {
r = GEN12_RPSTAT1;
} else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
vlv_punit_get(i915);
freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
vlv_punit_put(i915);
} else if (GRAPHICS_VER(i915) >= 6) {
r = GEN6_RPSTAT1;
} else {
r = MEMSTAT_ILK;
}
if (i915_mmio_reg_valid(r))
freq = take_fw ? intel_uncore_read(uncore, r) : intel_uncore_read_fw(uncore, r);
return intel_rps_get_cagf(rps, freq);
}
static u32 read_cagf(struct intel_rps *rps)
{
return __read_cagf(rps, true);
}
u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
{
struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
intel_wakeref_t wakeref;
u32 freq = 0;
with_intel_runtime_pm_if_in_use(rpm, wakeref)
freq = intel_gpu_freq(rps, read_cagf(rps));
return freq;
}
u32 intel_rps_read_actual_frequency_fw(struct intel_rps *rps)
{
return intel_gpu_freq(rps, __read_cagf(rps, false));
}
static u32 intel_rps_read_punit_req(struct intel_rps *rps)
{
struct intel_uncore *uncore = rps_to_uncore(rps);
struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
intel_wakeref_t wakeref;
u32 freq = 0;
with_intel_runtime_pm_if_in_use(rpm, wakeref)
freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
return freq;
}
static u32 intel_rps_get_req(u32 pureq)
{
u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
return req;
}
u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
{
u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
return intel_gpu_freq(rps, freq);
}
u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
{
if (rps_uses_slpc(rps))
return intel_rps_read_punit_req_frequency(rps);
else
return intel_gpu_freq(rps, rps->cur_freq);
}
u32 intel_rps_get_max_frequency(struct intel_rps *rps)
{
struct intel_guc_slpc *slpc = rps_to_slpc(rps);
if (rps_uses_slpc(rps))
return slpc->max_freq_softlimit;
else
return intel_gpu_freq(rps, rps->max_freq_softlimit);
}
/**
* intel_rps_get_max_raw_freq - returns the max frequency in some raw format.
* @rps: the intel_rps structure
*
* Returns the max frequency in a raw format. In newer platforms raw is in
* units of 50 MHz.
*/
u32 intel_rps_get_max_raw_freq(struct intel_rps *rps)
{
struct intel_guc_slpc *slpc = rps_to_slpc(rps);
u32 freq;
if (rps_uses_slpc(rps)) {
return DIV_ROUND_CLOSEST(slpc->rp0_freq,
GT_FREQUENCY_MULTIPLIER);
} else {
freq = rps->max_freq;
if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
/* Convert GT frequency to 50 MHz units */
freq /= GEN9_FREQ_SCALER;
}
return freq;
}
}
u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
{
struct intel_guc_slpc *slpc = rps_to_slpc(rps);
if (rps_uses_slpc(rps))
return slpc->rp0_freq;
else
return intel_gpu_freq(rps, rps->rp0_freq);
}
u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
{
struct intel_guc_slpc *slpc = rps_to_slpc(rps);
if (rps_uses_slpc(rps))
return slpc->rp1_freq;
else
return intel_gpu_freq(rps, rps->rp1_freq);
}
u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
{
struct intel_guc_slpc *slpc = rps_to_slpc(rps);
if (rps_uses_slpc(rps))
return slpc->min_freq;
else
return intel_gpu_freq(rps, rps->min_freq);
}
static void rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
{
struct intel_gt *gt = rps_to_gt(rps);
struct drm_i915_private *i915 = gt->i915;
struct intel_uncore *uncore = gt->uncore;
struct intel_rps_freq_caps caps;
u32 rp_state_limits;
u32 gt_perf_status;
u32 rpmodectl, rpinclimit, rpdeclimit;
u32 rpstat, cagf, reqf;
u32 rpcurupei, rpcurup, rpprevup;
u32 rpcurdownei, rpcurdown, rpprevdown;
u32 rpupei, rpupt, rpdownei, rpdownt;
u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
rp_state_limits = intel_uncore_read(uncore, GEN6_RP_STATE_LIMITS);
gen6_rps_get_freq_caps(rps, &caps);
if (IS_GEN9_LP(i915))
gt_perf_status = intel_uncore_read(uncore, BXT_GT_PERF_STATUS);
else
gt_perf_status = intel_uncore_read(uncore, GEN6_GT_PERF_STATUS);
/* RPSTAT1 is in the GT power well */
intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
reqf = intel_uncore_read(uncore, GEN6_RPNSWREQ);
if (GRAPHICS_VER(i915) >= 9) {
reqf >>= 23;
} else {
reqf &= ~GEN6_TURBO_DISABLE;
if (IS_HASWELL(i915) || IS_BROADWELL(i915))
reqf >>= 24;
else
reqf >>= 25;
}
reqf = intel_gpu_freq(rps, reqf);
rpmodectl = intel_uncore_read(uncore, GEN6_RP_CONTROL);
rpinclimit = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
rpdeclimit = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
rpstat = intel_rps_read_rpstat(rps);
rpcurupei = intel_uncore_read(uncore, GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
rpcurup = intel_uncore_read(uncore, GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
rpprevup = intel_uncore_read(uncore, GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
rpcurdownei = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
rpcurdown = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
rpprevdown = intel_uncore_read(uncore, GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
rpupei = intel_uncore_read(uncore, GEN6_RP_UP_EI);
rpupt = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
rpdownei = intel_uncore_read(uncore, GEN6_RP_DOWN_EI);
rpdownt = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
cagf = intel_rps_read_actual_frequency(rps);
intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
if (GRAPHICS_VER(i915) >= 11) {
pm_ier = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE);
pm_imr = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK);
/*
* The equivalent to the PM ISR & IIR cannot be read
* without affecting the current state of the system
*/
pm_isr = 0;
pm_iir = 0;
} else if (GRAPHICS_VER(i915) >= 8) {
pm_ier = intel_uncore_read(uncore, GEN8_GT_IER(2));
pm_imr = intel_uncore_read(uncore, GEN8_GT_IMR(2));
pm_isr = intel_uncore_read(uncore, GEN8_GT_ISR(2));
pm_iir = intel_uncore_read(uncore, GEN8_GT_IIR(2));
} else {
pm_ier = intel_uncore_read(uncore, GEN6_PMIER);
pm_imr = intel_uncore_read(uncore, GEN6_PMIMR);
pm_isr = intel_uncore_read(uncore, GEN6_PMISR);
pm_iir = intel_uncore_read(uncore, GEN6_PMIIR);
}
pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
drm_printf(p, "Video Turbo Mode: %s\n",
str_yes_no(rpmodectl & GEN6_RP_MEDIA_TURBO));
drm_printf(p, "HW control enabled: %s\n",
str_yes_no(rpmodectl & GEN6_RP_ENABLE));
drm_printf(p, "SW control enabled: %s\n",
str_yes_no((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE));
drm_printf(p, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n",
pm_ier, pm_imr, pm_mask);
if (GRAPHICS_VER(i915) <= 10)
drm_printf(p, "PM ISR=0x%08x IIR=0x%08x\n",
pm_isr, pm_iir);
drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
rps->pm_intrmsk_mbz);
drm_printf(p, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
drm_printf(p, "Render p-state ratio: %d\n",
(gt_perf_status & (GRAPHICS_VER(i915) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
drm_printf(p, "Render p-state VID: %d\n",
gt_perf_status & 0xff);
drm_printf(p, "Render p-state limit: %d\n",
rp_state_limits & 0xff);
drm_printf(p, "RPSTAT1: 0x%08x\n", rpstat);
drm_printf(p, "RPMODECTL: 0x%08x\n", rpmodectl);
drm_printf(p, "RPINCLIMIT: 0x%08x\n", rpinclimit);
drm_printf(p, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
drm_printf(p, "RPNSWREQ: %dMHz\n", reqf);
drm_printf(p, "CAGF: %dMHz\n", cagf);
drm_printf(p, "RP CUR UP EI: %d (%lldns)\n",
rpcurupei,
intel_gt_pm_interval_to_ns(gt, rpcurupei));
drm_printf(p, "RP CUR UP: %d (%lldns)\n",
rpcurup, intel_gt_pm_interval_to_ns(gt, rpcurup));
drm_printf(p, "RP PREV UP: %d (%lldns)\n",
rpprevup, intel_gt_pm_interval_to_ns(gt, rpprevup));
drm_printf(p, "Up threshold: %d%%\n",
rps->power.up_threshold);
drm_printf(p, "RP UP EI: %d (%lldns)\n",
rpupei, intel_gt_pm_interval_to_ns(gt, rpupei));
drm_printf(p, "RP UP THRESHOLD: %d (%lldns)\n",
rpupt, intel_gt_pm_interval_to_ns(gt, rpupt));
drm_printf(p, "RP CUR DOWN EI: %d (%lldns)\n",
rpcurdownei,
intel_gt_pm_interval_to_ns(gt, rpcurdownei));
drm_printf(p, "RP CUR DOWN: %d (%lldns)\n",
rpcurdown,
intel_gt_pm_interval_to_ns(gt, rpcurdown));
drm_printf(p, "RP PREV DOWN: %d (%lldns)\n",
rpprevdown,
intel_gt_pm_interval_to_ns(gt, rpprevdown));
drm_printf(p, "Down threshold: %d%%\n",
rps->power.down_threshold);
drm_printf(p, "RP DOWN EI: %d (%lldns)\n",
rpdownei, intel_gt_pm_interval_to_ns(gt, rpdownei));
drm_printf(p, "RP DOWN THRESHOLD: %d (%lldns)\n",
rpdownt, intel_gt_pm_interval_to_ns(gt, rpdownt));
drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
intel_gpu_freq(rps, caps.min_freq));
drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
intel_gpu_freq(rps, caps.rp1_freq));
drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
intel_gpu_freq(rps, caps.rp0_freq));
drm_printf(p, "Max overclocked frequency: %dMHz\n",
intel_gpu_freq(rps, rps->max_freq));
drm_printf(p, "Current freq: %d MHz\n",
intel_gpu_freq(rps, rps->cur_freq));
drm_printf(p, "Actual freq: %d MHz\n", cagf);
drm_printf(p, "Idle freq: %d MHz\n",
intel_gpu_freq(rps, rps->idle_freq));
drm_printf(p, "Min freq: %d MHz\n",
intel_gpu_freq(rps, rps->min_freq));
drm_printf(p, "Boost freq: %d MHz\n",
intel_gpu_freq(rps, rps->boost_freq));
drm_printf(p, "Max freq: %d MHz\n",
intel_gpu_freq(rps, rps->max_freq));
drm_printf(p,
"efficient (RPe) frequency: %d MHz\n",
intel_gpu_freq(rps, rps->efficient_freq));
}
static void slpc_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
{
struct intel_gt *gt = rps_to_gt(rps);
struct intel_uncore *uncore = gt->uncore;
struct intel_rps_freq_caps caps;
u32 pm_mask;
gen6_rps_get_freq_caps(rps, &caps);
pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
drm_printf(p, "PM MASK=0x%08x\n", pm_mask);
drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
rps->pm_intrmsk_mbz);
drm_printf(p, "RPSTAT1: 0x%08x\n", intel_rps_read_rpstat(rps));
drm_printf(p, "RPNSWREQ: %dMHz\n", intel_rps_get_requested_frequency(rps));
drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
intel_gpu_freq(rps, caps.min_freq));
drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
intel_gpu_freq(rps, caps.rp1_freq));
drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
intel_gpu_freq(rps, caps.rp0_freq));
drm_printf(p, "Current freq: %d MHz\n",
intel_rps_get_requested_frequency(rps));
drm_printf(p, "Actual freq: %d MHz\n",
intel_rps_read_actual_frequency(rps));
drm_printf(p, "Min freq: %d MHz\n",
intel_rps_get_min_frequency(rps));
drm_printf(p, "Boost freq: %d MHz\n",
intel_rps_get_boost_frequency(rps));
drm_printf(p, "Max freq: %d MHz\n",
intel_rps_get_max_frequency(rps));
drm_printf(p,
"efficient (RPe) frequency: %d MHz\n",
intel_gpu_freq(rps, caps.rp1_freq));
}
void gen6_rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
{
if (rps_uses_slpc(rps))
return slpc_frequency_dump(rps, p);
else
return rps_frequency_dump(rps, p);
}
static int set_max_freq(struct intel_rps *rps, u32 val)
{
struct drm_i915_private *i915 = rps_to_i915(rps);
int ret = 0;
mutex_lock(&rps->lock);
val = intel_freq_opcode(rps, val);
if (val < rps->min_freq ||
val > rps->max_freq ||
val < rps->min_freq_softlimit) {
ret = -EINVAL;
goto unlock;
}
if (val > rps->rp0_freq)
drm_dbg(&i915->drm, "User requested overclocking to %d\n",
intel_gpu_freq(rps, val));
rps->max_freq_softlimit = val;
val = clamp_t(int, rps->cur_freq,
rps->min_freq_softlimit,
rps->max_freq_softlimit);
/*
* We still need *_set_rps to process the new max_delay and
* update the interrupt limits and PMINTRMSK even though
* frequency request may be unchanged.
*/
intel_rps_set(rps, val);
unlock:
mutex_unlock(&rps->lock);
return ret;
}
int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
{
struct intel_guc_slpc *slpc = rps_to_slpc(rps);
if (rps_uses_slpc(rps))
return intel_guc_slpc_set_max_freq(slpc, val);
else
return set_max_freq(rps, val);
}
u32 intel_rps_get_min_frequency(struct intel_rps *rps)
{
struct intel_guc_slpc *slpc = rps_to_slpc(rps);
if (rps_uses_slpc(rps))
return slpc->min_freq_softlimit;
else
return intel_gpu_freq(rps, rps->min_freq_softlimit);
}
/**
* intel_rps_get_min_raw_freq - returns the min frequency in some raw format.
* @rps: the intel_rps structure
*
* Returns the min frequency in a raw format. In newer platforms raw is in
* units of 50 MHz.
*/
u32 intel_rps_get_min_raw_freq(struct intel_rps *rps)
{
struct intel_guc_slpc *slpc = rps_to_slpc(rps);
u32 freq;
if (rps_uses_slpc(rps)) {
return DIV_ROUND_CLOSEST(slpc->min_freq,
GT_FREQUENCY_MULTIPLIER);
} else {
freq = rps->min_freq;
if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
/* Convert GT frequency to 50 MHz units */
freq /= GEN9_FREQ_SCALER;
}
return freq;
}
}
static int set_min_freq(struct intel_rps *rps, u32 val)
{
int ret = 0;
mutex_lock(&rps->lock);
val = intel_freq_opcode(rps, val);
if (val < rps->min_freq ||
val > rps->max_freq ||
val > rps->max_freq_softlimit) {
ret = -EINVAL;
goto unlock;
}
rps->min_freq_softlimit = val;
val = clamp_t(int, rps->cur_freq,
rps->min_freq_softlimit,
rps->max_freq_softlimit);
/*
* We still need *_set_rps to process the new min_delay and
* update the interrupt limits and PMINTRMSK even though
* frequency request may be unchanged.
*/
intel_rps_set(rps, val);
unlock:
mutex_unlock(&rps->lock);
return ret;
}
int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
{
struct intel_guc_slpc *slpc = rps_to_slpc(rps);
if (rps_uses_slpc(rps))
return intel_guc_slpc_set_min_freq(slpc, val);
else
return set_min_freq(rps, val);
}
u8 intel_rps_get_up_threshold(struct intel_rps *rps)
{
return rps->power.up_threshold;
}
static int rps_set_threshold(struct intel_rps *rps, u8 *threshold, u8 val)
{
int ret;
if (val > 100)
return -EINVAL;
ret = mutex_lock_interruptible(&rps->lock);
if (ret)
return ret;
if (*threshold == val)
goto out_unlock;
*threshold = val;
/* Force reset. */
rps->last_freq = -1;
mutex_lock(&rps->power.mutex);
rps->power.mode = -1;
mutex_unlock(&rps->power.mutex);
intel_rps_set(rps, clamp(rps->cur_freq,
rps->min_freq_softlimit,
rps->max_freq_softlimit));
out_unlock:
mutex_unlock(&rps->lock);
return ret;
}
int intel_rps_set_up_threshold(struct intel_rps *rps, u8 threshold)
{
return rps_set_threshold(rps, &rps->power.up_threshold, threshold);
}
u8 intel_rps_get_down_threshold(struct intel_rps *rps)
{
return rps->power.down_threshold;
}
int intel_rps_set_down_threshold(struct intel_rps *rps, u8 threshold)
{
return rps_set_threshold(rps, &rps->power.down_threshold, threshold);
}
static void intel_rps_set_manual(struct intel_rps *rps, bool enable)
{
struct intel_uncore *uncore = rps_to_uncore(rps);
u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE;
/* Allow punit to process software requests */
intel_uncore_write(uncore, GEN6_RP_CONTROL, state);
}
void intel_rps_raise_unslice(struct intel_rps *rps)
{
struct intel_uncore *uncore = rps_to_uncore(rps);
mutex_lock(&rps->lock);
if (rps_uses_slpc(rps)) {
/* RP limits have not been initialized yet for SLPC path */
struct intel_rps_freq_caps caps;
gen6_rps_get_freq_caps(rps, &caps);
intel_rps_set_manual(rps, true);
intel_uncore_write(uncore, GEN6_RPNSWREQ,
((caps.rp0_freq <<
GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
GEN9_IGNORE_SLICE_RATIO));
intel_rps_set_manual(rps, false);
} else {
intel_rps_set(rps, rps->rp0_freq);
}
mutex_unlock(&rps->lock);
}
void intel_rps_lower_unslice(struct intel_rps *rps)
{
struct intel_uncore *uncore = rps_to_uncore(rps);
mutex_lock(&rps->lock);
if (rps_uses_slpc(rps)) {
/* RP limits have not been initialized yet for SLPC path */
struct intel_rps_freq_caps caps;
gen6_rps_get_freq_caps(rps, &caps);
intel_rps_set_manual(rps, true);
intel_uncore_write(uncore, GEN6_RPNSWREQ,
((caps.min_freq <<
GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
GEN9_IGNORE_SLICE_RATIO));
intel_rps_set_manual(rps, false);
} else {
intel_rps_set(rps, rps->min_freq);
}
mutex_unlock(&rps->lock);
}
static u32 rps_read_mmio(struct intel_rps *rps, i915_reg_t reg32)
{
struct intel_gt *gt = rps_to_gt(rps);
intel_wakeref_t wakeref;
u32 val;
with_intel_runtime_pm(gt->uncore->rpm, wakeref)
val = intel_uncore_read(gt->uncore, reg32);
return val;
}
bool rps_read_mask_mmio(struct intel_rps *rps,
i915_reg_t reg32, u32 mask)
{
return rps_read_mmio(rps, reg32) & mask;
}
/* External interface for intel_ips.ko */
static struct drm_i915_private __rcu *ips_mchdev;
/*
* Tells the intel_ips driver that the i915 driver is now loaded, if
* IPS got loaded first.
*
* This awkward dance is so that neither module has to depend on the
* other in order for IPS to do the appropriate communication of
* GPU turbo limits to i915.
*/
static void
ips_ping_for_i915_load(void)
{
void (*link)(void);
link = symbol_get(ips_link_to_i915_driver);
if (link) {
link();
symbol_put(ips_link_to_i915_driver);
}
}
void intel_rps_driver_register(struct intel_rps *rps)
{
struct intel_gt *gt = rps_to_gt(rps);
/*
* We only register the i915 ips part with intel-ips once everything is
* set up, to avoid intel-ips sneaking in and reading bogus values.
*/
if (GRAPHICS_VER(gt->i915) == 5) {
GEM_BUG_ON(ips_mchdev);
rcu_assign_pointer(ips_mchdev, gt->i915);
ips_ping_for_i915_load();
}
}
void intel_rps_driver_unregister(struct intel_rps *rps)
{
if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
rcu_assign_pointer(ips_mchdev, NULL);
}
static struct drm_i915_private *mchdev_get(void)
{
struct drm_i915_private *i915;
rcu_read_lock();
i915 = rcu_dereference(ips_mchdev);
if (i915 && !kref_get_unless_zero(&i915->drm.ref))
i915 = NULL;
rcu_read_unlock();
return i915;
}
/**
* i915_read_mch_val - return value for IPS use
*
* Calculate and return a value for the IPS driver to use when deciding whether
* we have thermal and power headroom to increase CPU or GPU power budget.
*/
unsigned long i915_read_mch_val(void)
{
struct drm_i915_private *i915;
unsigned long chipset_val = 0;
unsigned long graphics_val = 0;
intel_wakeref_t wakeref;
i915 = mchdev_get();
if (!i915)
return 0;
with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
struct intel_ips *ips = &to_gt(i915)->rps.ips;
spin_lock_irq(&mchdev_lock);
chipset_val = __ips_chipset_val(ips);
graphics_val = __ips_gfx_val(ips);
spin_unlock_irq(&mchdev_lock);
}
drm_dev_put(&i915->drm);
return chipset_val + graphics_val;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);
/**
* i915_gpu_raise - raise GPU frequency limit
*
* Raise the limit; IPS indicates we have thermal headroom.
*/
bool i915_gpu_raise(void)
{
struct drm_i915_private *i915;
struct intel_rps *rps;
i915 = mchdev_get();
if (!i915)
return false;
rps = &to_gt(i915)->rps;
spin_lock_irq(&mchdev_lock);
if (rps->max_freq_softlimit < rps->max_freq)
rps->max_freq_softlimit++;
spin_unlock_irq(&mchdev_lock);
drm_dev_put(&i915->drm);
return true;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);
/**
* i915_gpu_lower - lower GPU frequency limit
*
* IPS indicates we're close to a thermal limit, so throttle back the GPU
* frequency maximum.
*/
bool i915_gpu_lower(void)
{
struct drm_i915_private *i915;
struct intel_rps *rps;
i915 = mchdev_get();
if (!i915)
return false;
rps = &to_gt(i915)->rps;
spin_lock_irq(&mchdev_lock);
if (rps->max_freq_softlimit > rps->min_freq)
rps->max_freq_softlimit--;
spin_unlock_irq(&mchdev_lock);
drm_dev_put(&i915->drm);
return true;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);
/**
* i915_gpu_busy - indicate GPU business to IPS
*
* Tell the IPS driver whether or not the GPU is busy.
*/
bool i915_gpu_busy(void)
{
struct drm_i915_private *i915;
bool ret;
i915 = mchdev_get();
if (!i915)
return false;
ret = to_gt(i915)->awake;
drm_dev_put(&i915->drm);
return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);
/**
* i915_gpu_turbo_disable - disable graphics turbo
*
* Disable graphics turbo by resetting the max frequency and setting the
* current frequency to the default.
*/
bool i915_gpu_turbo_disable(void)
{
struct drm_i915_private *i915;
struct intel_rps *rps;
bool ret;
i915 = mchdev_get();
if (!i915)
return false;
rps = &to_gt(i915)->rps;
spin_lock_irq(&mchdev_lock);
rps->max_freq_softlimit = rps->min_freq;
ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq);
spin_unlock_irq(&mchdev_lock);
drm_dev_put(&i915->drm);
return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftest_rps.c"
#include "selftest_slpc.c"
#endif