// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "i915_selftest.h"
#include "gem/i915_gem_internal.h"
#include "gem/i915_gem_lmem.h"
#include "gem/i915_gem_region.h"
#include "gen8_engine_cs.h"
#include "i915_gem_ww.h"
#include "intel_engine_regs.h"
#include "intel_gpu_commands.h"
#include "intel_context.h"
#include "intel_gt.h"
#include "intel_ring.h"
#include "selftests/igt_flush_test.h"
#include "selftests/i915_random.h"
static void vma_set_qw(struct i915_vma *vma, u64 addr, u64 val)
{
GEM_BUG_ON(addr < i915_vma_offset(vma));
GEM_BUG_ON(addr >= i915_vma_offset(vma) + i915_vma_size(vma) + sizeof(val));
memset64(page_mask_bits(vma->obj->mm.mapping) +
(addr - i915_vma_offset(vma)), val, 1);
}
static int
pte_tlbinv(struct intel_context *ce,
struct i915_vma *va,
struct i915_vma *vb,
u64 align,
void (*tlbinv)(struct i915_address_space *vm, u64 addr, u64 length),
u64 length,
struct rnd_state *prng)
{
const unsigned int pat_index =
i915_gem_get_pat_index(ce->vm->i915, I915_CACHE_NONE);
struct drm_i915_gem_object *batch;
struct drm_mm_node vb_node;
struct i915_request *rq;
struct i915_vma *vma;
u64 addr;
int err;
u32 *cs;
batch = i915_gem_object_create_internal(ce->vm->i915, 4096);
if (IS_ERR(batch))
return PTR_ERR(batch);
vma = i915_vma_instance(batch, ce->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto out;
}
err = i915_vma_pin(vma, 0, 0, PIN_USER);
if (err)
goto out;
/* Pin va at random but aligned offset after vma */
addr = round_up(vma->node.start + vma->node.size, align);
/* MI_CONDITIONAL_BATCH_BUFFER_END limits address to 48b */
addr = igt_random_offset(prng, addr, min(ce->vm->total, BIT_ULL(48)),
va->size, align);
err = i915_vma_pin(va, 0, 0, addr | PIN_OFFSET_FIXED | PIN_USER);
if (err) {
pr_err("Cannot pin at %llx+%llx\n", addr, va->size);
goto out;
}
GEM_BUG_ON(i915_vma_offset(va) != addr);
if (vb != va) {
vb_node = vb->node;
vb->node = va->node; /* overwrites the _same_ PTE */
}
/*
* Now choose random dword at the 1st pinned page.
*
* SZ_64K pages on dg1 require that the whole PT be marked
* containing 64KiB entries. So we make sure that vma
* covers the whole PT, despite being randomly aligned to 64KiB
* and restrict our sampling to the 2MiB PT within where
* we know that we will be using 64KiB pages.
*/
if (align == SZ_64K)
addr = round_up(addr, SZ_2M);
addr = igt_random_offset(prng, addr, addr + align, 8, 8);
if (va != vb)
pr_info("%s(%s): Sampling %llx, with alignment %llx, using PTE size %x (phys %x, sg %x), invalidate:%llx+%llx\n",
ce->engine->name, va->obj->mm.region->name ?: "smem",
addr, align, va->resource->page_sizes_gtt,
va->page_sizes.phys, va->page_sizes.sg,
addr & -length, length);
cs = i915_gem_object_pin_map_unlocked(batch, I915_MAP_WC);
*cs++ = MI_NOOP; /* for later termination */
/*
* Sample the target to see if we spot the updated backing store.
* Gen8 VCS compares immediate value with bitwise-and of two
* consecutive DWORDS pointed by addr, other gen/engines compare value
* with DWORD pointed by addr. Moreover we want to exercise DWORD size
* invalidations. To fulfill all these requirements below values
* have been chosen.
*/
*cs++ = MI_CONDITIONAL_BATCH_BUFFER_END | MI_DO_COMPARE | 2;
*cs++ = 0; /* break if *addr == 0 */
*cs++ = lower_32_bits(addr);
*cs++ = upper_32_bits(addr);
vma_set_qw(va, addr, -1);
vma_set_qw(vb, addr, 0);
/* Keep sampling until we get bored */
*cs++ = MI_BATCH_BUFFER_START | BIT(8) | 1;
*cs++ = lower_32_bits(i915_vma_offset(vma));
*cs++ = upper_32_bits(i915_vma_offset(vma));
i915_gem_object_flush_map(batch);
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out_va;
}
err = rq->engine->emit_bb_start(rq, i915_vma_offset(vma), 0, 0);
if (err) {
i915_request_add(rq);
goto out_va;
}
i915_request_get(rq);
i915_request_add(rq);
/*
* Short sleep to sanitycheck the batch is spinning before we begin.
* FIXME: Why is GSC so slow?
*/
if (ce->engine->class == OTHER_CLASS)
msleep(200);
else
msleep(10);
if (va == vb) {
if (!i915_request_completed(rq)) {
pr_err("%s(%s): Semaphore sanitycheck failed %llx, with alignment %llx, using PTE size %x (phys %x, sg %x)\n",
ce->engine->name, va->obj->mm.region->name ?: "smem",
addr, align, va->resource->page_sizes_gtt,
va->page_sizes.phys, va->page_sizes.sg);
err = -EIO;
}
} else if (!i915_request_completed(rq)) {
struct i915_vma_resource vb_res = {
.bi.pages = vb->obj->mm.pages,
.bi.page_sizes = vb->obj->mm.page_sizes,
.start = i915_vma_offset(vb),
.vma_size = i915_vma_size(vb)
};
unsigned int pte_flags = 0;
/* Flip the PTE between A and B */
if (i915_gem_object_is_lmem(vb->obj))
pte_flags |= PTE_LM;
ce->vm->insert_entries(ce->vm, &vb_res, pat_index, pte_flags);
/* Flush the PTE update to concurrent HW */
tlbinv(ce->vm, addr & -length, length);
if (wait_for(i915_request_completed(rq), HZ / 2)) {
pr_err("%s: Request did not complete; the COND_BBE did not read the updated PTE\n",
ce->engine->name);
err = -EINVAL;
}
} else {
pr_err("Spinner ended unexpectedly\n");
err = -EIO;
}
i915_request_put(rq);
cs = page_mask_bits(batch->mm.mapping);
*cs = MI_BATCH_BUFFER_END;
wmb();
out_va:
if (vb != va)
vb->node = vb_node;
i915_vma_unpin(va);
if (i915_vma_unbind_unlocked(va))
err = -EIO;
out:
i915_gem_object_put(batch);
return err;
}
static struct drm_i915_gem_object *create_lmem(struct intel_gt *gt)
{
struct intel_memory_region *mr = gt->i915->mm.regions[INTEL_REGION_LMEM_0];
resource_size_t size = SZ_1G;
/*
* Allocation of largest possible page size allows to test all types
* of pages. To succeed with both allocations, especially in case of Small
* BAR, try to allocate no more than quarter of mappable memory.
*/
if (mr && size > resource_size(&mr->io) / 4)
size = resource_size(&mr->io) / 4;
return i915_gem_object_create_lmem(gt->i915, size, I915_BO_ALLOC_CONTIGUOUS);
}
static struct drm_i915_gem_object *create_smem(struct intel_gt *gt)
{
/*
* SZ_64K pages require covering the whole 2M PT (gen8 to tgl/dg1).
* While that does not require the whole 2M block to be contiguous
* it is easier to make it so, since we need that for SZ_2M pagees.
* Since we randomly offset the start of the vma, we need a 4M object
* so that there is a 2M range within it is suitable for SZ_64K PTE.
*/
return i915_gem_object_create_internal(gt->i915, SZ_4M);
}
static int
mem_tlbinv(struct intel_gt *gt,
struct drm_i915_gem_object *(*create_fn)(struct intel_gt *),
void (*tlbinv)(struct i915_address_space *vm, u64 addr, u64 length))
{
unsigned int ppgtt_size = RUNTIME_INFO(gt->i915)->ppgtt_size;
struct intel_engine_cs *engine;
struct drm_i915_gem_object *A, *B;
struct i915_ppgtt *ppgtt;
struct i915_vma *va, *vb;
enum intel_engine_id id;
I915_RND_STATE(prng);
void *vaddr;
int err;
/*
* Check that the TLB invalidate is able to revoke an active
* page. We load a page into a spinning COND_BBE loop and then
* remap that page to a new physical address. The old address, and
* so the loop keeps spinning, is retained in the TLB cache until
* we issue an invalidate.
*/
A = create_fn(gt);
if (IS_ERR(A))
return PTR_ERR(A);
vaddr = i915_gem_object_pin_map_unlocked(A, I915_MAP_WC);
if (IS_ERR(vaddr)) {
err = PTR_ERR(vaddr);
goto out_a;
}
B = create_fn(gt);
if (IS_ERR(B)) {
err = PTR_ERR(B);
goto out_a;
}
vaddr = i915_gem_object_pin_map_unlocked(B, I915_MAP_WC);
if (IS_ERR(vaddr)) {
err = PTR_ERR(vaddr);
goto out_b;
}
GEM_BUG_ON(A->base.size != B->base.size);
if ((A->mm.page_sizes.phys | B->mm.page_sizes.phys) & (A->base.size - 1))
pr_warn("Failed to allocate contiguous pages for size %zx\n",
A->base.size);
ppgtt = i915_ppgtt_create(gt, 0);
if (IS_ERR(ppgtt)) {
err = PTR_ERR(ppgtt);
goto out_b;
}
va = i915_vma_instance(A, &ppgtt->vm, NULL);
if (IS_ERR(va)) {
err = PTR_ERR(va);
goto out_vm;
}
vb = i915_vma_instance(B, &ppgtt->vm, NULL);
if (IS_ERR(vb)) {
err = PTR_ERR(vb);
goto out_vm;
}
err = 0;
for_each_engine(engine, gt, id) {
struct i915_gem_ww_ctx ww;
struct intel_context *ce;
int bit;
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
break;
}
i915_vm_put(ce->vm);
ce->vm = i915_vm_get(&ppgtt->vm);
for_i915_gem_ww(&ww, err, true)
err = intel_context_pin_ww(ce, &ww);
if (err)
goto err_put;
for_each_set_bit(bit,
(unsigned long *)&RUNTIME_INFO(gt->i915)->page_sizes,
BITS_PER_TYPE(RUNTIME_INFO(gt->i915)->page_sizes)) {
unsigned int len;
if (BIT_ULL(bit) < i915_vm_obj_min_alignment(va->vm, va->obj))
continue;
/* sanitycheck the semaphore wake up */
err = pte_tlbinv(ce, va, va,
BIT_ULL(bit),
NULL, SZ_4K,
&prng);
if (err)
goto err_unpin;
for (len = 2; len <= ppgtt_size; len = min(2 * len, ppgtt_size)) {
err = pte_tlbinv(ce, va, vb,
BIT_ULL(bit),
tlbinv,
BIT_ULL(len),
&prng);
if (err)
goto err_unpin;
if (len == ppgtt_size)
break;
}
}
err_unpin:
intel_context_unpin(ce);
err_put:
intel_context_put(ce);
if (err)
break;
}
if (igt_flush_test(gt->i915))
err = -EIO;
out_vm:
i915_vm_put(&ppgtt->vm);
out_b:
i915_gem_object_put(B);
out_a:
i915_gem_object_put(A);
return err;
}
static void tlbinv_full(struct i915_address_space *vm, u64 addr, u64 length)
{
intel_gt_invalidate_tlb_full(vm->gt, intel_gt_tlb_seqno(vm->gt) | 1);
}
static int invalidate_full(void *arg)
{
struct intel_gt *gt = arg;
int err;
if (GRAPHICS_VER(gt->i915) < 8)
return 0; /* TLB invalidate not implemented */
err = mem_tlbinv(gt, create_smem, tlbinv_full);
if (err == 0)
err = mem_tlbinv(gt, create_lmem, tlbinv_full);
if (err == -ENODEV || err == -ENXIO)
err = 0;
return err;
}
int intel_tlb_live_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(invalidate_full),
};
struct intel_gt *gt;
unsigned int i;
for_each_gt(gt, i915, i) {
int err;
if (intel_gt_is_wedged(gt))
continue;
err = intel_gt_live_subtests(tests, gt);
if (err)
return err;
}
return 0;
}