/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2016 Intel Corporation
*/
#include <linux/highmem.h>
#include <linux/prime_numbers.h>
#include "gem/i915_gem_internal.h"
#include "gem/i915_gem_lmem.h"
#include "gem/i915_gem_region.h"
#include "gem/i915_gem_ttm.h"
#include "gem/i915_gem_ttm_move.h"
#include "gt/intel_engine_pm.h"
#include "gt/intel_gpu_commands.h"
#include "gt/intel_gt.h"
#include "gt/intel_gt_pm.h"
#include "gt/intel_migrate.h"
#include "i915_reg.h"
#include "i915_ttm_buddy_manager.h"
#include "huge_gem_object.h"
#include "i915_selftest.h"
#include "selftests/i915_random.h"
#include "selftests/igt_flush_test.h"
#include "selftests/igt_reset.h"
#include "selftests/igt_mmap.h"
struct tile {
unsigned int width;
unsigned int height;
unsigned int stride;
unsigned int size;
unsigned int tiling;
unsigned int swizzle;
};
static u64 swizzle_bit(unsigned int bit, u64 offset)
{
return (offset & BIT_ULL(bit)) >> (bit - 6);
}
static u64 tiled_offset(const struct tile *tile, u64 v)
{
u64 x, y;
if (tile->tiling == I915_TILING_NONE)
return v;
y = div64_u64_rem(v, tile->stride, &x);
v = div64_u64_rem(y, tile->height, &y) * tile->stride * tile->height;
if (tile->tiling == I915_TILING_X) {
v += y * tile->width;
v += div64_u64_rem(x, tile->width, &x) << tile->size;
v += x;
} else if (tile->width == 128) {
const unsigned int ytile_span = 16;
const unsigned int ytile_height = 512;
v += y * ytile_span;
v += div64_u64_rem(x, ytile_span, &x) * ytile_height;
v += x;
} else {
const unsigned int ytile_span = 32;
const unsigned int ytile_height = 256;
v += y * ytile_span;
v += div64_u64_rem(x, ytile_span, &x) * ytile_height;
v += x;
}
switch (tile->swizzle) {
case I915_BIT_6_SWIZZLE_9:
v ^= swizzle_bit(9, v);
break;
case I915_BIT_6_SWIZZLE_9_10:
v ^= swizzle_bit(9, v) ^ swizzle_bit(10, v);
break;
case I915_BIT_6_SWIZZLE_9_11:
v ^= swizzle_bit(9, v) ^ swizzle_bit(11, v);
break;
case I915_BIT_6_SWIZZLE_9_10_11:
v ^= swizzle_bit(9, v) ^ swizzle_bit(10, v) ^ swizzle_bit(11, v);
break;
}
return v;
}
static int check_partial_mapping(struct drm_i915_gem_object *obj,
const struct tile *tile,
struct rnd_state *prng)
{
const unsigned long npages = obj->base.size / PAGE_SIZE;
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct i915_gtt_view view;
struct i915_vma *vma;
unsigned long offset;
unsigned long page;
u32 __iomem *io;
struct page *p;
unsigned int n;
u32 *cpu;
int err;
err = i915_gem_object_set_tiling(obj, tile->tiling, tile->stride);
if (err) {
pr_err("Failed to set tiling mode=%u, stride=%u, err=%d\n",
tile->tiling, tile->stride, err);
return err;
}
GEM_BUG_ON(i915_gem_object_get_tiling(obj) != tile->tiling);
GEM_BUG_ON(i915_gem_object_get_stride(obj) != tile->stride);
i915_gem_object_lock(obj, NULL);
err = i915_gem_object_set_to_gtt_domain(obj, true);
i915_gem_object_unlock(obj);
if (err) {
pr_err("Failed to flush to GTT write domain; err=%d\n", err);
return err;
}
page = i915_prandom_u32_max_state(npages, prng);
view = compute_partial_view(obj, page, MIN_CHUNK_PAGES);
vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
if (IS_ERR(vma)) {
pr_err("Failed to pin partial view: offset=%lu; err=%d\n",
page, (int)PTR_ERR(vma));
return PTR_ERR(vma);
}
n = page - view.partial.offset;
GEM_BUG_ON(n >= view.partial.size);
io = i915_vma_pin_iomap(vma);
i915_vma_unpin(vma);
if (IS_ERR(io)) {
pr_err("Failed to iomap partial view: offset=%lu; err=%d\n",
page, (int)PTR_ERR(io));
err = PTR_ERR(io);
goto out;
}
iowrite32(page, io + n * PAGE_SIZE / sizeof(*io));
i915_vma_unpin_iomap(vma);
offset = tiled_offset(tile, page << PAGE_SHIFT);
if (offset >= obj->base.size)
goto out;
intel_gt_flush_ggtt_writes(to_gt(i915));
p = i915_gem_object_get_page(obj, offset >> PAGE_SHIFT);
cpu = kmap(p) + offset_in_page(offset);
drm_clflush_virt_range(cpu, sizeof(*cpu));
if (*cpu != (u32)page) {
pr_err("Partial view for %lu [%u] (offset=%llu, size=%u [%llu, row size %u], fence=%d, tiling=%d, stride=%d) misalignment, expected write to page (%lu + %u [0x%lx]) of 0x%x, found 0x%x\n",
page, n,
view.partial.offset,
view.partial.size,
vma->size >> PAGE_SHIFT,
tile->tiling ? tile_row_pages(obj) : 0,
vma->fence ? vma->fence->id : -1, tile->tiling, tile->stride,
offset >> PAGE_SHIFT,
(unsigned int)offset_in_page(offset),
offset,
(u32)page, *cpu);
err = -EINVAL;
}
*cpu = 0;
drm_clflush_virt_range(cpu, sizeof(*cpu));
kunmap(p);
out:
i915_gem_object_lock(obj, NULL);
i915_vma_destroy(vma);
i915_gem_object_unlock(obj);
return err;
}
static int check_partial_mappings(struct drm_i915_gem_object *obj,
const struct tile *tile,
unsigned long end_time)
{
const unsigned int nreal = obj->scratch / PAGE_SIZE;
const unsigned long npages = obj->base.size / PAGE_SIZE;
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct i915_vma *vma;
unsigned long page;
int err;
err = i915_gem_object_set_tiling(obj, tile->tiling, tile->stride);
if (err) {
pr_err("Failed to set tiling mode=%u, stride=%u, err=%d\n",
tile->tiling, tile->stride, err);
return err;
}
GEM_BUG_ON(i915_gem_object_get_tiling(obj) != tile->tiling);
GEM_BUG_ON(i915_gem_object_get_stride(obj) != tile->stride);
i915_gem_object_lock(obj, NULL);
err = i915_gem_object_set_to_gtt_domain(obj, true);
i915_gem_object_unlock(obj);
if (err) {
pr_err("Failed to flush to GTT write domain; err=%d\n", err);
return err;
}
for_each_prime_number_from(page, 1, npages) {
struct i915_gtt_view view =
compute_partial_view(obj, page, MIN_CHUNK_PAGES);
unsigned long offset;
u32 __iomem *io;
struct page *p;
unsigned int n;
u32 *cpu;
GEM_BUG_ON(view.partial.size > nreal);
cond_resched();
vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
if (IS_ERR(vma)) {
pr_err("Failed to pin partial view: offset=%lu; err=%d\n",
page, (int)PTR_ERR(vma));
return PTR_ERR(vma);
}
n = page - view.partial.offset;
GEM_BUG_ON(n >= view.partial.size);
io = i915_vma_pin_iomap(vma);
i915_vma_unpin(vma);
if (IS_ERR(io)) {
pr_err("Failed to iomap partial view: offset=%lu; err=%d\n",
page, (int)PTR_ERR(io));
return PTR_ERR(io);
}
iowrite32(page, io + n * PAGE_SIZE / sizeof(*io));
i915_vma_unpin_iomap(vma);
offset = tiled_offset(tile, page << PAGE_SHIFT);
if (offset >= obj->base.size)
continue;
intel_gt_flush_ggtt_writes(to_gt(i915));
p = i915_gem_object_get_page(obj, offset >> PAGE_SHIFT);
cpu = kmap(p) + offset_in_page(offset);
drm_clflush_virt_range(cpu, sizeof(*cpu));
if (*cpu != (u32)page) {
pr_err("Partial view for %lu [%u] (offset=%llu, size=%u [%llu, row size %u], fence=%d, tiling=%d, stride=%d) misalignment, expected write to page (%lu + %u [0x%lx]) of 0x%x, found 0x%x\n",
page, n,
view.partial.offset,
view.partial.size,
vma->size >> PAGE_SHIFT,
tile->tiling ? tile_row_pages(obj) : 0,
vma->fence ? vma->fence->id : -1, tile->tiling, tile->stride,
offset >> PAGE_SHIFT,
(unsigned int)offset_in_page(offset),
offset,
(u32)page, *cpu);
err = -EINVAL;
}
*cpu = 0;
drm_clflush_virt_range(cpu, sizeof(*cpu));
kunmap(p);
if (err)
return err;
i915_gem_object_lock(obj, NULL);
i915_vma_destroy(vma);
i915_gem_object_unlock(obj);
if (igt_timeout(end_time,
"%s: timed out after tiling=%d stride=%d\n",
__func__, tile->tiling, tile->stride))
return -EINTR;
}
return 0;
}
static unsigned int
setup_tile_size(struct tile *tile, struct drm_i915_private *i915)
{
if (GRAPHICS_VER(i915) <= 2) {
tile->height = 16;
tile->width = 128;
tile->size = 11;
} else if (tile->tiling == I915_TILING_Y &&
HAS_128_BYTE_Y_TILING(i915)) {
tile->height = 32;
tile->width = 128;
tile->size = 12;
} else {
tile->height = 8;
tile->width = 512;
tile->size = 12;
}
if (GRAPHICS_VER(i915) < 4)
return 8192 / tile->width;
else if (GRAPHICS_VER(i915) < 7)
return 128 * I965_FENCE_MAX_PITCH_VAL / tile->width;
else
return 128 * GEN7_FENCE_MAX_PITCH_VAL / tile->width;
}
static int igt_partial_tiling(void *arg)
{
const unsigned int nreal = 1 << 12; /* largest tile row x2 */
struct drm_i915_private *i915 = arg;
struct drm_i915_gem_object *obj;
intel_wakeref_t wakeref;
int tiling;
int err;
if (!i915_ggtt_has_aperture(to_gt(i915)->ggtt))
return 0;
/* We want to check the page mapping and fencing of a large object
* mmapped through the GTT. The object we create is larger than can
* possibly be mmaped as a whole, and so we must use partial GGTT vma.
* We then check that a write through each partial GGTT vma ends up
* in the right set of pages within the object, and with the expected
* tiling, which we verify by manual swizzling.
*/
obj = huge_gem_object(i915,
nreal << PAGE_SHIFT,
(1 + next_prime_number(to_gt(i915)->ggtt->vm.total >> PAGE_SHIFT)) << PAGE_SHIFT);
if (IS_ERR(obj))
return PTR_ERR(obj);
err = i915_gem_object_pin_pages_unlocked(obj);
if (err) {
pr_err("Failed to allocate %u pages (%lu total), err=%d\n",
nreal, obj->base.size / PAGE_SIZE, err);
goto out;
}
wakeref = intel_runtime_pm_get(&i915->runtime_pm);
if (1) {
IGT_TIMEOUT(end);
struct tile tile;
tile.height = 1;
tile.width = 1;
tile.size = 0;
tile.stride = 0;
tile.swizzle = I915_BIT_6_SWIZZLE_NONE;
tile.tiling = I915_TILING_NONE;
err = check_partial_mappings(obj, &tile, end);
if (err && err != -EINTR)
goto out_unlock;
}
for (tiling = I915_TILING_X; tiling <= I915_TILING_Y; tiling++) {
IGT_TIMEOUT(end);
unsigned int max_pitch;
unsigned int pitch;
struct tile tile;
if (i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES)
/*
* The swizzling pattern is actually unknown as it
* varies based on physical address of each page.
* See i915_gem_detect_bit_6_swizzle().
*/
break;
tile.tiling = tiling;
switch (tiling) {
case I915_TILING_X:
tile.swizzle = to_gt(i915)->ggtt->bit_6_swizzle_x;
break;
case I915_TILING_Y:
tile.swizzle = to_gt(i915)->ggtt->bit_6_swizzle_y;
break;
}
GEM_BUG_ON(tile.swizzle == I915_BIT_6_SWIZZLE_UNKNOWN);
if (tile.swizzle == I915_BIT_6_SWIZZLE_9_17 ||
tile.swizzle == I915_BIT_6_SWIZZLE_9_10_17)
continue;
max_pitch = setup_tile_size(&tile, i915);
for (pitch = max_pitch; pitch; pitch >>= 1) {
tile.stride = tile.width * pitch;
err = check_partial_mappings(obj, &tile, end);
if (err == -EINTR)
goto next_tiling;
if (err)
goto out_unlock;
if (pitch > 2 && GRAPHICS_VER(i915) >= 4) {
tile.stride = tile.width * (pitch - 1);
err = check_partial_mappings(obj, &tile, end);
if (err == -EINTR)
goto next_tiling;
if (err)
goto out_unlock;
}
if (pitch < max_pitch && GRAPHICS_VER(i915) >= 4) {
tile.stride = tile.width * (pitch + 1);
err = check_partial_mappings(obj, &tile, end);
if (err == -EINTR)
goto next_tiling;
if (err)
goto out_unlock;
}
}
if (GRAPHICS_VER(i915) >= 4) {
for_each_prime_number(pitch, max_pitch) {
tile.stride = tile.width * pitch;
err = check_partial_mappings(obj, &tile, end);
if (err == -EINTR)
goto next_tiling;
if (err)
goto out_unlock;
}
}
next_tiling: ;
}
out_unlock:
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
i915_gem_object_unpin_pages(obj);
out:
i915_gem_object_put(obj);
return err;
}
static int igt_smoke_tiling(void *arg)
{
const unsigned int nreal = 1 << 12; /* largest tile row x2 */
struct drm_i915_private *i915 = arg;
struct drm_i915_gem_object *obj;
intel_wakeref_t wakeref;
I915_RND_STATE(prng);
unsigned long count;
IGT_TIMEOUT(end);
int err;
if (!i915_ggtt_has_aperture(to_gt(i915)->ggtt))
return 0;
/*
* igt_partial_tiling() does an exhastive check of partial tiling
* chunking, but will undoubtably run out of time. Here, we do a
* randomised search and hope over many runs of 1s with different
* seeds we will do a thorough check.
*
* Remember to look at the st_seed if we see a flip-flop in BAT!
*/
if (i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES)
return 0;
obj = huge_gem_object(i915,
nreal << PAGE_SHIFT,
(1 + next_prime_number(to_gt(i915)->ggtt->vm.total >> PAGE_SHIFT)) << PAGE_SHIFT);
if (IS_ERR(obj))
return PTR_ERR(obj);
err = i915_gem_object_pin_pages_unlocked(obj);
if (err) {
pr_err("Failed to allocate %u pages (%lu total), err=%d\n",
nreal, obj->base.size / PAGE_SIZE, err);
goto out;
}
wakeref = intel_runtime_pm_get(&i915->runtime_pm);
count = 0;
do {
struct tile tile;
tile.tiling =
i915_prandom_u32_max_state(I915_TILING_Y + 1, &prng);
switch (tile.tiling) {
case I915_TILING_NONE:
tile.height = 1;
tile.width = 1;
tile.size = 0;
tile.stride = 0;
tile.swizzle = I915_BIT_6_SWIZZLE_NONE;
break;
case I915_TILING_X:
tile.swizzle = to_gt(i915)->ggtt->bit_6_swizzle_x;
break;
case I915_TILING_Y:
tile.swizzle = to_gt(i915)->ggtt->bit_6_swizzle_y;
break;
}
if (tile.swizzle == I915_BIT_6_SWIZZLE_9_17 ||
tile.swizzle == I915_BIT_6_SWIZZLE_9_10_17)
continue;
if (tile.tiling != I915_TILING_NONE) {
unsigned int max_pitch = setup_tile_size(&tile, i915);
tile.stride =
i915_prandom_u32_max_state(max_pitch, &prng);
tile.stride = (1 + tile.stride) * tile.width;
if (GRAPHICS_VER(i915) < 4)
tile.stride = rounddown_pow_of_two(tile.stride);
}
err = check_partial_mapping(obj, &tile, &prng);
if (err)
break;
count++;
} while (!__igt_timeout(end, NULL));
pr_info("%s: Completed %lu trials\n", __func__, count);
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
i915_gem_object_unpin_pages(obj);
out:
i915_gem_object_put(obj);
return err;
}
static int make_obj_busy(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct intel_engine_cs *engine;
for_each_uabi_engine(engine, i915) {
struct i915_request *rq;
struct i915_vma *vma;
struct i915_gem_ww_ctx ww;
int err;
vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
if (IS_ERR(vma))
return PTR_ERR(vma);
i915_gem_ww_ctx_init(&ww, false);
retry:
err = i915_gem_object_lock(obj, &ww);
if (!err)
err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_USER);
if (err)
goto err;
rq = intel_engine_create_kernel_request(engine);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_unpin;
}
err = i915_vma_move_to_active(vma, rq,
EXEC_OBJECT_WRITE);
i915_request_add(rq);
err_unpin:
i915_vma_unpin(vma);
err:
if (err == -EDEADLK) {
err = i915_gem_ww_ctx_backoff(&ww);
if (!err)
goto retry;
}
i915_gem_ww_ctx_fini(&ww);
if (err)
return err;
}
i915_gem_object_put(obj); /* leave it only alive via its active ref */
return 0;
}
static enum i915_mmap_type default_mapping(struct drm_i915_private *i915)
{
if (HAS_LMEM(i915))
return I915_MMAP_TYPE_FIXED;
return I915_MMAP_TYPE_GTT;
}
static struct drm_i915_gem_object *
create_sys_or_internal(struct drm_i915_private *i915,
unsigned long size)
{
if (HAS_LMEM(i915)) {
struct intel_memory_region *sys_region =
i915->mm.regions[INTEL_REGION_SMEM];
return __i915_gem_object_create_user(i915, size, &sys_region, 1);
}
return i915_gem_object_create_internal(i915, size);
}
static bool assert_mmap_offset(struct drm_i915_private *i915,
unsigned long size,
int expected)
{
struct drm_i915_gem_object *obj;
u64 offset;
int ret;
obj = create_sys_or_internal(i915, size);
if (IS_ERR(obj))
return expected && expected == PTR_ERR(obj);
ret = __assign_mmap_offset(obj, default_mapping(i915), &offset, NULL);
i915_gem_object_put(obj);
return ret == expected;
}
static void disable_retire_worker(struct drm_i915_private *i915)
{
i915_gem_driver_unregister__shrinker(i915);
intel_gt_pm_get_untracked(to_gt(i915));
cancel_delayed_work_sync(&to_gt(i915)->requests.retire_work);
}
static void restore_retire_worker(struct drm_i915_private *i915)
{
igt_flush_test(i915);
intel_gt_pm_put_untracked(to_gt(i915));
i915_gem_driver_register__shrinker(i915);
}
static void mmap_offset_lock(struct drm_i915_private *i915)
__acquires(&i915->drm.vma_offset_manager->vm_lock)
{
write_lock(&i915->drm.vma_offset_manager->vm_lock);
}
static void mmap_offset_unlock(struct drm_i915_private *i915)
__releases(&i915->drm.vma_offset_manager->vm_lock)
{
write_unlock(&i915->drm.vma_offset_manager->vm_lock);
}
static int igt_mmap_offset_exhaustion(void *arg)
{
struct drm_i915_private *i915 = arg;
struct drm_mm *mm = &i915->drm.vma_offset_manager->vm_addr_space_mm;
struct drm_i915_gem_object *obj;
struct drm_mm_node *hole, *next;
int loop, err = 0;
u64 offset;
int enospc = HAS_LMEM(i915) ? -ENXIO : -ENOSPC;
/* Disable background reaper */
disable_retire_worker(i915);
GEM_BUG_ON(!to_gt(i915)->awake);
intel_gt_retire_requests(to_gt(i915));
i915_gem_drain_freed_objects(i915);
/* Trim the device mmap space to only a page */
mmap_offset_lock(i915);
loop = 1; /* PAGE_SIZE units */
list_for_each_entry_safe(hole, next, &mm->hole_stack, hole_stack) {
struct drm_mm_node *resv;
resv = kzalloc(sizeof(*resv), GFP_NOWAIT);
if (!resv) {
err = -ENOMEM;
goto out_park;
}
resv->start = drm_mm_hole_node_start(hole) + loop;
resv->size = hole->hole_size - loop;
resv->color = -1ul;
loop = 0;
if (!resv->size) {
kfree(resv);
continue;
}
pr_debug("Reserving hole [%llx + %llx]\n",
resv->start, resv->size);
err = drm_mm_reserve_node(mm, resv);
if (err) {
pr_err("Failed to trim VMA manager, err=%d\n", err);
kfree(resv);
goto out_park;
}
}
GEM_BUG_ON(!list_is_singular(&mm->hole_stack));
mmap_offset_unlock(i915);
/* Just fits! */
if (!assert_mmap_offset(i915, PAGE_SIZE, 0)) {
pr_err("Unable to insert object into single page hole\n");
err = -EINVAL;
goto out;
}
/* Too large */
if (!assert_mmap_offset(i915, 2 * PAGE_SIZE, enospc)) {
pr_err("Unexpectedly succeeded in inserting too large object into single page hole\n");
err = -EINVAL;
goto out;
}
/* Fill the hole, further allocation attempts should then fail */
obj = create_sys_or_internal(i915, PAGE_SIZE);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
pr_err("Unable to create object for reclaimed hole\n");
goto out;
}
err = __assign_mmap_offset(obj, default_mapping(i915), &offset, NULL);
if (err) {
pr_err("Unable to insert object into reclaimed hole\n");
goto err_obj;
}
if (!assert_mmap_offset(i915, PAGE_SIZE, enospc)) {
pr_err("Unexpectedly succeeded in inserting object into no holes!\n");
err = -EINVAL;
goto err_obj;
}
i915_gem_object_put(obj);
/* Now fill with busy dead objects that we expect to reap */
for (loop = 0; loop < 3; loop++) {
if (intel_gt_is_wedged(to_gt(i915)))
break;
obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto out;
}
err = make_obj_busy(obj);
if (err) {
pr_err("[loop %d] Failed to busy the object\n", loop);
goto err_obj;
}
}
out:
mmap_offset_lock(i915);
out_park:
drm_mm_for_each_node_safe(hole, next, mm) {
if (hole->color != -1ul)
continue;
drm_mm_remove_node(hole);
kfree(hole);
}
mmap_offset_unlock(i915);
restore_retire_worker(i915);
return err;
err_obj:
i915_gem_object_put(obj);
goto out;
}
static int gtt_set(struct drm_i915_gem_object *obj)
{
intel_wakeref_t wakeref;
struct i915_vma *vma;
void __iomem *map;
int err = 0;
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
if (IS_ERR(vma))
return PTR_ERR(vma);
wakeref = intel_gt_pm_get(vma->vm->gt);
map = i915_vma_pin_iomap(vma);
i915_vma_unpin(vma);
if (IS_ERR(map)) {
err = PTR_ERR(map);
goto out;
}
memset_io(map, POISON_INUSE, obj->base.size);
i915_vma_unpin_iomap(vma);
out:
intel_gt_pm_put(vma->vm->gt, wakeref);
return err;
}
static int gtt_check(struct drm_i915_gem_object *obj)
{
intel_wakeref_t wakeref;
struct i915_vma *vma;
void __iomem *map;
int err = 0;
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
if (IS_ERR(vma))
return PTR_ERR(vma);
wakeref = intel_gt_pm_get(vma->vm->gt);
map = i915_vma_pin_iomap(vma);
i915_vma_unpin(vma);
if (IS_ERR(map)) {
err = PTR_ERR(map);
goto out;
}
if (memchr_inv((void __force *)map, POISON_FREE, obj->base.size)) {
pr_err("%s: Write via mmap did not land in backing store (GTT)\n",
obj->mm.region->name);
err = -EINVAL;
}
i915_vma_unpin_iomap(vma);
out:
intel_gt_pm_put(vma->vm->gt, wakeref);
return err;
}
static int wc_set(struct drm_i915_gem_object *obj)
{
void *vaddr;
vaddr = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC);
if (IS_ERR(vaddr))
return PTR_ERR(vaddr);
memset(vaddr, POISON_INUSE, obj->base.size);
i915_gem_object_flush_map(obj);
i915_gem_object_unpin_map(obj);
return 0;
}
static int wc_check(struct drm_i915_gem_object *obj)
{
void *vaddr;
int err = 0;
vaddr = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC);
if (IS_ERR(vaddr))
return PTR_ERR(vaddr);
if (memchr_inv(vaddr, POISON_FREE, obj->base.size)) {
pr_err("%s: Write via mmap did not land in backing store (WC)\n",
obj->mm.region->name);
err = -EINVAL;
}
i915_gem_object_unpin_map(obj);
return err;
}
static bool can_mmap(struct drm_i915_gem_object *obj, enum i915_mmap_type type)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
bool no_map;
if (obj->ops->mmap_offset)
return type == I915_MMAP_TYPE_FIXED;
else if (type == I915_MMAP_TYPE_FIXED)
return false;
if (type == I915_MMAP_TYPE_GTT &&
!i915_ggtt_has_aperture(to_gt(i915)->ggtt))
return false;
i915_gem_object_lock(obj, NULL);
no_map = (type != I915_MMAP_TYPE_GTT &&
!i915_gem_object_has_struct_page(obj) &&
!i915_gem_object_has_iomem(obj));
i915_gem_object_unlock(obj);
return !no_map;
}
#define expand32(x) (((x) << 0) | ((x) << 8) | ((x) << 16) | ((x) << 24))
static int __igt_mmap(struct drm_i915_private *i915,
struct drm_i915_gem_object *obj,
enum i915_mmap_type type)
{
struct vm_area_struct *area;
unsigned long addr;
int err, i;
u64 offset;
if (!can_mmap(obj, type))
return 0;
err = wc_set(obj);
if (err == -ENXIO)
err = gtt_set(obj);
if (err)
return err;
err = __assign_mmap_offset(obj, type, &offset, NULL);
if (err)
return err;
addr = igt_mmap_offset(i915, offset, obj->base.size, PROT_WRITE, MAP_SHARED);
if (IS_ERR_VALUE(addr))
return addr;
pr_debug("igt_mmap(%s, %d) @ %lx\n", obj->mm.region->name, type, addr);
mmap_read_lock(current->mm);
area = vma_lookup(current->mm, addr);
mmap_read_unlock(current->mm);
if (!area) {
pr_err("%s: Did not create a vm_area_struct for the mmap\n",
obj->mm.region->name);
err = -EINVAL;
goto out_unmap;
}
for (i = 0; i < obj->base.size / sizeof(u32); i++) {
u32 __user *ux = u64_to_user_ptr((u64)(addr + i * sizeof(*ux)));
u32 x;
if (get_user(x, ux)) {
pr_err("%s: Unable to read from mmap, offset:%zd\n",
obj->mm.region->name, i * sizeof(x));
err = -EFAULT;
goto out_unmap;
}
if (x != expand32(POISON_INUSE)) {
pr_err("%s: Read incorrect value from mmap, offset:%zd, found:%x, expected:%x\n",
obj->mm.region->name,
i * sizeof(x), x, expand32(POISON_INUSE));
err = -EINVAL;
goto out_unmap;
}
x = expand32(POISON_FREE);
if (put_user(x, ux)) {
pr_err("%s: Unable to write to mmap, offset:%zd\n",
obj->mm.region->name, i * sizeof(x));
err = -EFAULT;
goto out_unmap;
}
}
if (type == I915_MMAP_TYPE_GTT)
intel_gt_flush_ggtt_writes(to_gt(i915));
err = wc_check(obj);
if (err == -ENXIO)
err = gtt_check(obj);
out_unmap:
vm_munmap(addr, obj->base.size);
return err;
}
static int igt_mmap(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_memory_region *mr;
enum intel_region_id id;
for_each_memory_region(mr, i915, id) {
unsigned long sizes[] = {
PAGE_SIZE,
mr->min_page_size,
SZ_4M,
};
int i;
if (mr->private)
continue;
for (i = 0; i < ARRAY_SIZE(sizes); i++) {
struct drm_i915_gem_object *obj;
int err;
obj = __i915_gem_object_create_user(i915, sizes[i], &mr, 1);
if (obj == ERR_PTR(-ENODEV))
continue;
if (IS_ERR(obj))
return PTR_ERR(obj);
err = __igt_mmap(i915, obj, I915_MMAP_TYPE_GTT);
if (err == 0)
err = __igt_mmap(i915, obj, I915_MMAP_TYPE_WC);
if (err == 0)
err = __igt_mmap(i915, obj, I915_MMAP_TYPE_FIXED);
i915_gem_object_put(obj);
if (err)
return err;
}
}
return 0;
}
static void igt_close_objects(struct drm_i915_private *i915,
struct list_head *objects)
{
struct drm_i915_gem_object *obj, *on;
list_for_each_entry_safe(obj, on, objects, st_link) {
i915_gem_object_lock(obj, NULL);
if (i915_gem_object_has_pinned_pages(obj))
i915_gem_object_unpin_pages(obj);
/* No polluting the memory region between tests */
__i915_gem_object_put_pages(obj);
i915_gem_object_unlock(obj);
list_del(&obj->st_link);
i915_gem_object_put(obj);
}
cond_resched();
i915_gem_drain_freed_objects(i915);
}
static void igt_make_evictable(struct list_head *objects)
{
struct drm_i915_gem_object *obj;
list_for_each_entry(obj, objects, st_link) {
i915_gem_object_lock(obj, NULL);
if (i915_gem_object_has_pinned_pages(obj))
i915_gem_object_unpin_pages(obj);
i915_gem_object_unlock(obj);
}
cond_resched();
}
static int igt_fill_mappable(struct intel_memory_region *mr,
struct list_head *objects)
{
u64 size, total;
int err;
total = 0;
size = resource_size(&mr->io);
do {
struct drm_i915_gem_object *obj;
obj = i915_gem_object_create_region(mr, size, 0, 0);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto err_close;
}
list_add(&obj->st_link, objects);
err = i915_gem_object_pin_pages_unlocked(obj);
if (err) {
if (err != -ENXIO && err != -ENOMEM)
goto err_close;
if (size == mr->min_page_size) {
err = 0;
break;
}
size >>= 1;
continue;
}
total += obj->base.size;
} while (1);
pr_info("%s filled=%lluMiB\n", __func__, total >> 20);
return 0;
err_close:
igt_close_objects(mr->i915, objects);
return err;
}
static int ___igt_mmap_migrate(struct drm_i915_private *i915,
struct drm_i915_gem_object *obj,
unsigned long addr,
bool unfaultable)
{
struct vm_area_struct *area;
int err = 0, i;
pr_info("igt_mmap(%s, %d) @ %lx\n",
obj->mm.region->name, I915_MMAP_TYPE_FIXED, addr);
mmap_read_lock(current->mm);
area = vma_lookup(current->mm, addr);
mmap_read_unlock(current->mm);
if (!area) {
pr_err("%s: Did not create a vm_area_struct for the mmap\n",
obj->mm.region->name);
err = -EINVAL;
goto out_unmap;
}
for (i = 0; i < obj->base.size / sizeof(u32); i++) {
u32 __user *ux = u64_to_user_ptr((u64)(addr + i * sizeof(*ux)));
u32 x;
if (get_user(x, ux)) {
err = -EFAULT;
if (!unfaultable) {
pr_err("%s: Unable to read from mmap, offset:%zd\n",
obj->mm.region->name, i * sizeof(x));
goto out_unmap;
}
continue;
}
if (unfaultable) {
pr_err("%s: Faulted unmappable memory\n",
obj->mm.region->name);
err = -EINVAL;
goto out_unmap;
}
if (x != expand32(POISON_INUSE)) {
pr_err("%s: Read incorrect value from mmap, offset:%zd, found:%x, expected:%x\n",
obj->mm.region->name,
i * sizeof(x), x, expand32(POISON_INUSE));
err = -EINVAL;
goto out_unmap;
}
x = expand32(POISON_FREE);
if (put_user(x, ux)) {
pr_err("%s: Unable to write to mmap, offset:%zd\n",
obj->mm.region->name, i * sizeof(x));
err = -EFAULT;
goto out_unmap;
}
}
if (unfaultable) {
if (err == -EFAULT)
err = 0;
} else {
obj->flags &= ~I915_BO_ALLOC_GPU_ONLY;
err = wc_check(obj);
}
out_unmap:
vm_munmap(addr, obj->base.size);
return err;
}
#define IGT_MMAP_MIGRATE_TOPDOWN (1 << 0)
#define IGT_MMAP_MIGRATE_FILL (1 << 1)
#define IGT_MMAP_MIGRATE_EVICTABLE (1 << 2)
#define IGT_MMAP_MIGRATE_UNFAULTABLE (1 << 3)
#define IGT_MMAP_MIGRATE_FAIL_GPU (1 << 4)
static int __igt_mmap_migrate(struct intel_memory_region **placements,
int n_placements,
struct intel_memory_region *expected_mr,
unsigned int flags)
{
struct drm_i915_private *i915 = placements[0]->i915;
struct drm_i915_gem_object *obj;
struct i915_request *rq = NULL;
unsigned long addr;
LIST_HEAD(objects);
u64 offset;
int err;
obj = __i915_gem_object_create_user(i915, PAGE_SIZE,
placements,
n_placements);
if (IS_ERR(obj))
return PTR_ERR(obj);
if (flags & IGT_MMAP_MIGRATE_TOPDOWN)
obj->flags |= I915_BO_ALLOC_GPU_ONLY;
err = __assign_mmap_offset(obj, I915_MMAP_TYPE_FIXED, &offset, NULL);
if (err)
goto out_put;
/*
* This will eventually create a GEM context, due to opening dummy drm
* file, which needs a tiny amount of mappable device memory for the top
* level paging structures(and perhaps scratch), so make sure we
* allocate early, to avoid tears.
*/
addr = igt_mmap_offset(i915, offset, obj->base.size,
PROT_WRITE, MAP_SHARED);
if (IS_ERR_VALUE(addr)) {
err = addr;
goto out_put;
}
if (flags & IGT_MMAP_MIGRATE_FILL) {
err = igt_fill_mappable(placements[0], &objects);
if (err)
goto out_put;
}
err = i915_gem_object_lock(obj, NULL);
if (err)
goto out_put;
err = i915_gem_object_pin_pages(obj);
if (err) {
i915_gem_object_unlock(obj);
goto out_put;
}
err = intel_context_migrate_clear(to_gt(i915)->migrate.context, NULL,
obj->mm.pages->sgl, obj->pat_index,
i915_gem_object_is_lmem(obj),
expand32(POISON_INUSE), &rq);
i915_gem_object_unpin_pages(obj);
if (rq) {
err = dma_resv_reserve_fences(obj->base.resv, 1);
if (!err)
dma_resv_add_fence(obj->base.resv, &rq->fence,
DMA_RESV_USAGE_KERNEL);
i915_request_put(rq);
}
i915_gem_object_unlock(obj);
if (err)
goto out_put;
if (flags & IGT_MMAP_MIGRATE_EVICTABLE)
igt_make_evictable(&objects);
if (flags & IGT_MMAP_MIGRATE_FAIL_GPU) {
err = i915_gem_object_lock(obj, NULL);
if (err)
goto out_put;
/*
* Ensure we only simulate the gpu failuire when faulting the
* pages.
*/
err = i915_gem_object_wait_moving_fence(obj, true);
i915_gem_object_unlock(obj);
if (err)
goto out_put;
i915_ttm_migrate_set_failure_modes(true, false);
}
err = ___igt_mmap_migrate(i915, obj, addr,
flags & IGT_MMAP_MIGRATE_UNFAULTABLE);
if (!err && obj->mm.region != expected_mr) {
pr_err("%s region mismatch %s\n", __func__, expected_mr->name);
err = -EINVAL;
}
if (flags & IGT_MMAP_MIGRATE_FAIL_GPU) {
struct intel_gt *gt;
unsigned int id;
i915_ttm_migrate_set_failure_modes(false, false);
for_each_gt(gt, i915, id) {
intel_wakeref_t wakeref;
bool wedged;
mutex_lock(>->reset.mutex);
wedged = test_bit(I915_WEDGED, >->reset.flags);
mutex_unlock(>->reset.mutex);
if (!wedged) {
pr_err("gt(%u) not wedged\n", id);
err = -EINVAL;
continue;
}
wakeref = intel_runtime_pm_get(gt->uncore->rpm);
igt_global_reset_lock(gt);
intel_gt_reset(gt, ALL_ENGINES, NULL);
igt_global_reset_unlock(gt);
intel_runtime_pm_put(gt->uncore->rpm, wakeref);
}
if (!i915_gem_object_has_unknown_state(obj)) {
pr_err("object missing unknown_state\n");
err = -EINVAL;
}
}
out_put:
i915_gem_object_put(obj);
igt_close_objects(i915, &objects);
return err;
}
static int igt_mmap_migrate(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_memory_region *system = i915->mm.regions[INTEL_REGION_SMEM];
struct intel_memory_region *mr;
enum intel_region_id id;
for_each_memory_region(mr, i915, id) {
struct intel_memory_region *mixed[] = { mr, system };
struct intel_memory_region *single[] = { mr };
struct ttm_resource_manager *man = mr->region_private;
struct resource saved_io;
int err;
if (mr->private)
continue;
if (!resource_size(&mr->io))
continue;
/*
* For testing purposes let's force small BAR, if not already
* present.
*/
saved_io = mr->io;
if (resource_size(&mr->io) == mr->total) {
resource_size_t io_size = resource_size(&mr->io);
io_size = rounddown_pow_of_two(io_size >> 1);
if (io_size < PAGE_SIZE)
continue;
mr->io = DEFINE_RES_MEM(mr->io.start, io_size);
i915_ttm_buddy_man_force_visible_size(man,
io_size >> PAGE_SHIFT);
}
/*
* Allocate in the mappable portion, should be no suprises here.
*/
err = __igt_mmap_migrate(mixed, ARRAY_SIZE(mixed), mr, 0);
if (err)
goto out_io_size;
/*
* Allocate in the non-mappable portion, but force migrating to
* the mappable portion on fault (LMEM -> LMEM)
*/
err = __igt_mmap_migrate(single, ARRAY_SIZE(single), mr,
IGT_MMAP_MIGRATE_TOPDOWN |
IGT_MMAP_MIGRATE_FILL |
IGT_MMAP_MIGRATE_EVICTABLE);
if (err)
goto out_io_size;
/*
* Allocate in the non-mappable portion, but force spilling into
* system memory on fault (LMEM -> SMEM)
*/
err = __igt_mmap_migrate(mixed, ARRAY_SIZE(mixed), system,
IGT_MMAP_MIGRATE_TOPDOWN |
IGT_MMAP_MIGRATE_FILL);
if (err)
goto out_io_size;
/*
* Allocate in the non-mappable portion, but since the mappable
* portion is already full, and we can't spill to system memory,
* then we should expect the fault to fail.
*/
err = __igt_mmap_migrate(single, ARRAY_SIZE(single), mr,
IGT_MMAP_MIGRATE_TOPDOWN |
IGT_MMAP_MIGRATE_FILL |
IGT_MMAP_MIGRATE_UNFAULTABLE);
if (err)
goto out_io_size;
/*
* Allocate in the non-mappable portion, but force migrating to
* the mappable portion on fault (LMEM -> LMEM). We then also
* simulate a gpu error when moving the pages when faulting the
* pages, which should result in wedging the gpu and returning
* SIGBUS in the fault handler, since we can't fallback to
* memcpy.
*/
err = __igt_mmap_migrate(single, ARRAY_SIZE(single), mr,
IGT_MMAP_MIGRATE_TOPDOWN |
IGT_MMAP_MIGRATE_FILL |
IGT_MMAP_MIGRATE_EVICTABLE |
IGT_MMAP_MIGRATE_FAIL_GPU |
IGT_MMAP_MIGRATE_UNFAULTABLE);
out_io_size:
mr->io = saved_io;
i915_ttm_buddy_man_force_visible_size(man,
resource_size(&mr->io) >> PAGE_SHIFT);
if (err)
return err;
}
return 0;
}
static const char *repr_mmap_type(enum i915_mmap_type type)
{
switch (type) {
case I915_MMAP_TYPE_GTT: return "gtt";
case I915_MMAP_TYPE_WB: return "wb";
case I915_MMAP_TYPE_WC: return "wc";
case I915_MMAP_TYPE_UC: return "uc";
case I915_MMAP_TYPE_FIXED: return "fixed";
default: return "unknown";
}
}
static bool can_access(struct drm_i915_gem_object *obj)
{
bool access;
i915_gem_object_lock(obj, NULL);
access = i915_gem_object_has_struct_page(obj) ||
i915_gem_object_has_iomem(obj);
i915_gem_object_unlock(obj);
return access;
}
static int __igt_mmap_access(struct drm_i915_private *i915,
struct drm_i915_gem_object *obj,
enum i915_mmap_type type)
{
unsigned long __user *ptr;
unsigned long A, B;
unsigned long x, y;
unsigned long addr;
int err;
u64 offset;
memset(&A, 0xAA, sizeof(A));
memset(&B, 0xBB, sizeof(B));
if (!can_mmap(obj, type) || !can_access(obj))
return 0;
err = __assign_mmap_offset(obj, type, &offset, NULL);
if (err)
return err;
addr = igt_mmap_offset(i915, offset, obj->base.size, PROT_WRITE, MAP_SHARED);
if (IS_ERR_VALUE(addr))
return addr;
ptr = (unsigned long __user *)addr;
err = __put_user(A, ptr);
if (err) {
pr_err("%s(%s): failed to write into user mmap\n",
obj->mm.region->name, repr_mmap_type(type));
goto out_unmap;
}
intel_gt_flush_ggtt_writes(to_gt(i915));
err = access_process_vm(current, addr, &x, sizeof(x), 0);
if (err != sizeof(x)) {
pr_err("%s(%s): access_process_vm() read failed\n",
obj->mm.region->name, repr_mmap_type(type));
goto out_unmap;
}
err = access_process_vm(current, addr, &B, sizeof(B), FOLL_WRITE);
if (err != sizeof(B)) {
pr_err("%s(%s): access_process_vm() write failed\n",
obj->mm.region->name, repr_mmap_type(type));
goto out_unmap;
}
intel_gt_flush_ggtt_writes(to_gt(i915));
err = __get_user(y, ptr);
if (err) {
pr_err("%s(%s): failed to read from user mmap\n",
obj->mm.region->name, repr_mmap_type(type));
goto out_unmap;
}
if (x != A || y != B) {
pr_err("%s(%s): failed to read/write values, found (%lx, %lx)\n",
obj->mm.region->name, repr_mmap_type(type),
x, y);
err = -EINVAL;
goto out_unmap;
}
out_unmap:
vm_munmap(addr, obj->base.size);
return err;
}
static int igt_mmap_access(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_memory_region *mr;
enum intel_region_id id;
for_each_memory_region(mr, i915, id) {
struct drm_i915_gem_object *obj;
int err;
if (mr->private)
continue;
obj = __i915_gem_object_create_user(i915, PAGE_SIZE, &mr, 1);
if (obj == ERR_PTR(-ENODEV))
continue;
if (IS_ERR(obj))
return PTR_ERR(obj);
err = __igt_mmap_access(i915, obj, I915_MMAP_TYPE_GTT);
if (err == 0)
err = __igt_mmap_access(i915, obj, I915_MMAP_TYPE_WB);
if (err == 0)
err = __igt_mmap_access(i915, obj, I915_MMAP_TYPE_WC);
if (err == 0)
err = __igt_mmap_access(i915, obj, I915_MMAP_TYPE_UC);
if (err == 0)
err = __igt_mmap_access(i915, obj, I915_MMAP_TYPE_FIXED);
i915_gem_object_put(obj);
if (err)
return err;
}
return 0;
}
static int __igt_mmap_gpu(struct drm_i915_private *i915,
struct drm_i915_gem_object *obj,
enum i915_mmap_type type)
{
struct intel_engine_cs *engine;
unsigned long addr;
u32 __user *ux;
u32 bbe;
int err;
u64 offset;
/*
* Verify that the mmap access into the backing store aligns with
* that of the GPU, i.e. that mmap is indeed writing into the same
* page as being read by the GPU.
*/
if (!can_mmap(obj, type))
return 0;
err = wc_set(obj);
if (err == -ENXIO)
err = gtt_set(obj);
if (err)
return err;
err = __assign_mmap_offset(obj, type, &offset, NULL);
if (err)
return err;
addr = igt_mmap_offset(i915, offset, obj->base.size, PROT_WRITE, MAP_SHARED);
if (IS_ERR_VALUE(addr))
return addr;
ux = u64_to_user_ptr((u64)addr);
bbe = MI_BATCH_BUFFER_END;
if (put_user(bbe, ux)) {
pr_err("%s: Unable to write to mmap\n", obj->mm.region->name);
err = -EFAULT;
goto out_unmap;
}
if (type == I915_MMAP_TYPE_GTT)
intel_gt_flush_ggtt_writes(to_gt(i915));
for_each_uabi_engine(engine, i915) {
struct i915_request *rq;
struct i915_vma *vma;
struct i915_gem_ww_ctx ww;
vma = i915_vma_instance(obj, engine->kernel_context->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto out_unmap;
}
i915_gem_ww_ctx_init(&ww, false);
retry:
err = i915_gem_object_lock(obj, &ww);
if (!err)
err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_USER);
if (err)
goto out_ww;
rq = i915_request_create(engine->kernel_context);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out_unpin;
}
err = i915_vma_move_to_active(vma, rq, 0);
err = engine->emit_bb_start(rq, i915_vma_offset(vma), 0, 0);
i915_request_get(rq);
i915_request_add(rq);
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
struct drm_printer p =
drm_info_printer(engine->i915->drm.dev);
pr_err("%s(%s, %s): Failed to execute batch\n",
__func__, engine->name, obj->mm.region->name);
intel_engine_dump(engine, &p,
"%s\n", engine->name);
intel_gt_set_wedged(engine->gt);
err = -EIO;
}
i915_request_put(rq);
out_unpin:
i915_vma_unpin(vma);
out_ww:
if (err == -EDEADLK) {
err = i915_gem_ww_ctx_backoff(&ww);
if (!err)
goto retry;
}
i915_gem_ww_ctx_fini(&ww);
if (err)
goto out_unmap;
}
out_unmap:
vm_munmap(addr, obj->base.size);
return err;
}
static int igt_mmap_gpu(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_memory_region *mr;
enum intel_region_id id;
for_each_memory_region(mr, i915, id) {
struct drm_i915_gem_object *obj;
int err;
if (mr->private)
continue;
obj = __i915_gem_object_create_user(i915, PAGE_SIZE, &mr, 1);
if (obj == ERR_PTR(-ENODEV))
continue;
if (IS_ERR(obj))
return PTR_ERR(obj);
err = __igt_mmap_gpu(i915, obj, I915_MMAP_TYPE_GTT);
if (err == 0)
err = __igt_mmap_gpu(i915, obj, I915_MMAP_TYPE_WC);
if (err == 0)
err = __igt_mmap_gpu(i915, obj, I915_MMAP_TYPE_FIXED);
i915_gem_object_put(obj);
if (err)
return err;
}
return 0;
}
static int check_present_pte(pte_t *pte, unsigned long addr, void *data)
{
pte_t ptent = ptep_get(pte);
if (!pte_present(ptent) || pte_none(ptent)) {
pr_err("missing PTE:%lx\n",
(addr - (unsigned long)data) >> PAGE_SHIFT);
return -EINVAL;
}
return 0;
}
static int check_absent_pte(pte_t *pte, unsigned long addr, void *data)
{
pte_t ptent = ptep_get(pte);
if (pte_present(ptent) && !pte_none(ptent)) {
pr_err("present PTE:%lx; expected to be revoked\n",
(addr - (unsigned long)data) >> PAGE_SHIFT);
return -EINVAL;
}
return 0;
}
static int check_present(unsigned long addr, unsigned long len)
{
return apply_to_page_range(current->mm, addr, len,
check_present_pte, (void *)addr);
}
static int check_absent(unsigned long addr, unsigned long len)
{
return apply_to_page_range(current->mm, addr, len,
check_absent_pte, (void *)addr);
}
static int prefault_range(u64 start, u64 len)
{
const char __user *addr, *end;
char __maybe_unused c;
int err;
addr = u64_to_user_ptr(start);
end = addr + len;
for (; addr < end; addr += PAGE_SIZE) {
err = __get_user(c, addr);
if (err)
return err;
}
return __get_user(c, end - 1);
}
static int __igt_mmap_revoke(struct drm_i915_private *i915,
struct drm_i915_gem_object *obj,
enum i915_mmap_type type)
{
unsigned long addr;
int err;
u64 offset;
if (!can_mmap(obj, type))
return 0;
err = __assign_mmap_offset(obj, type, &offset, NULL);
if (err)
return err;
addr = igt_mmap_offset(i915, offset, obj->base.size, PROT_WRITE, MAP_SHARED);
if (IS_ERR_VALUE(addr))
return addr;
err = prefault_range(addr, obj->base.size);
if (err)
goto out_unmap;
err = check_present(addr, obj->base.size);
if (err) {
pr_err("%s: was not present\n", obj->mm.region->name);
goto out_unmap;
}
/*
* After unbinding the object from the GGTT, its address may be reused
* for other objects. Ergo we have to revoke the previous mmap PTE
* access as it no longer points to the same object.
*/
i915_gem_object_lock(obj, NULL);
err = i915_gem_object_unbind(obj, I915_GEM_OBJECT_UNBIND_ACTIVE);
i915_gem_object_unlock(obj);
if (err) {
pr_err("Failed to unbind object!\n");
goto out_unmap;
}
if (type != I915_MMAP_TYPE_GTT) {
i915_gem_object_lock(obj, NULL);
__i915_gem_object_put_pages(obj);
i915_gem_object_unlock(obj);
if (i915_gem_object_has_pages(obj)) {
pr_err("Failed to put-pages object!\n");
err = -EINVAL;
goto out_unmap;
}
}
err = check_absent(addr, obj->base.size);
if (err) {
pr_err("%s: was not absent\n", obj->mm.region->name);
goto out_unmap;
}
out_unmap:
vm_munmap(addr, obj->base.size);
return err;
}
static int igt_mmap_revoke(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_memory_region *mr;
enum intel_region_id id;
for_each_memory_region(mr, i915, id) {
struct drm_i915_gem_object *obj;
int err;
if (mr->private)
continue;
obj = __i915_gem_object_create_user(i915, PAGE_SIZE, &mr, 1);
if (obj == ERR_PTR(-ENODEV))
continue;
if (IS_ERR(obj))
return PTR_ERR(obj);
err = __igt_mmap_revoke(i915, obj, I915_MMAP_TYPE_GTT);
if (err == 0)
err = __igt_mmap_revoke(i915, obj, I915_MMAP_TYPE_WC);
if (err == 0)
err = __igt_mmap_revoke(i915, obj, I915_MMAP_TYPE_FIXED);
i915_gem_object_put(obj);
if (err)
return err;
}
return 0;
}
int i915_gem_mman_live_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(igt_partial_tiling),
SUBTEST(igt_smoke_tiling),
SUBTEST(igt_mmap_offset_exhaustion),
SUBTEST(igt_mmap),
SUBTEST(igt_mmap_migrate),
SUBTEST(igt_mmap_access),
SUBTEST(igt_mmap_revoke),
SUBTEST(igt_mmap_gpu),
};
return i915_live_subtests(tests, i915);
}