/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2014-2016 Intel Corporation
*/
#include <drm/drm_cache.h>
#include <linux/vmalloc.h>
#include "gt/intel_gt.h"
#include "gt/intel_tlb.h"
#include "i915_drv.h"
#include "i915_gem_object.h"
#include "i915_scatterlist.h"
#include "i915_gem_lmem.h"
#include "i915_gem_mman.h"
void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
struct sg_table *pages)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
unsigned long supported = RUNTIME_INFO(i915)->page_sizes;
bool shrinkable;
int i;
assert_object_held_shared(obj);
if (i915_gem_object_is_volatile(obj))
obj->mm.madv = I915_MADV_DONTNEED;
/* Make the pages coherent with the GPU (flushing any swapin). */
if (obj->cache_dirty) {
WARN_ON_ONCE(IS_DGFX(i915));
obj->write_domain = 0;
if (i915_gem_object_has_struct_page(obj))
drm_clflush_sg(pages);
obj->cache_dirty = false;
}
obj->mm.get_page.sg_pos = pages->sgl;
obj->mm.get_page.sg_idx = 0;
obj->mm.get_dma_page.sg_pos = pages->sgl;
obj->mm.get_dma_page.sg_idx = 0;
obj->mm.pages = pages;
obj->mm.page_sizes.phys = i915_sg_dma_sizes(pages->sgl);
GEM_BUG_ON(!obj->mm.page_sizes.phys);
/*
* Calculate the supported page-sizes which fit into the given
* sg_page_sizes. This will give us the page-sizes which we may be able
* to use opportunistically when later inserting into the GTT. For
* example if phys=2G, then in theory we should be able to use 1G, 2M,
* 64K or 4K pages, although in practice this will depend on a number of
* other factors.
*/
obj->mm.page_sizes.sg = 0;
for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
if (obj->mm.page_sizes.phys & ~0u << i)
obj->mm.page_sizes.sg |= BIT(i);
}
GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
shrinkable = i915_gem_object_is_shrinkable(obj);
if (i915_gem_object_is_tiled(obj) &&
i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
i915_gem_object_set_tiling_quirk(obj);
GEM_BUG_ON(!list_empty(&obj->mm.link));
atomic_inc(&obj->mm.shrink_pin);
shrinkable = false;
}
if (shrinkable && !i915_gem_object_has_self_managed_shrink_list(obj)) {
struct list_head *list;
unsigned long flags;
assert_object_held(obj);
spin_lock_irqsave(&i915->mm.obj_lock, flags);
i915->mm.shrink_count++;
i915->mm.shrink_memory += obj->base.size;
if (obj->mm.madv != I915_MADV_WILLNEED)
list = &i915->mm.purge_list;
else
list = &i915->mm.shrink_list;
list_add_tail(&obj->mm.link, list);
atomic_set(&obj->mm.shrink_pin, 0);
spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
}
}
int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
int err;
assert_object_held_shared(obj);
if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
drm_dbg(&i915->drm,
"Attempting to obtain a purgeable object\n");
return -EFAULT;
}
err = obj->ops->get_pages(obj);
GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
return err;
}
/* Ensure that the associated pages are gathered from the backing storage
* and pinned into our object. i915_gem_object_pin_pages() may be called
* multiple times before they are released by a single call to
* i915_gem_object_unpin_pages() - once the pages are no longer referenced
* either as a result of memory pressure (reaping pages under the shrinker)
* or as the object is itself released.
*/
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
int err;
assert_object_held(obj);
assert_object_held_shared(obj);
if (unlikely(!i915_gem_object_has_pages(obj))) {
GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
err = ____i915_gem_object_get_pages(obj);
if (err)
return err;
smp_mb__before_atomic();
}
atomic_inc(&obj->mm.pages_pin_count);
return 0;
}
int i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object *obj)
{
struct i915_gem_ww_ctx ww;
int err;
i915_gem_ww_ctx_init(&ww, true);
retry:
err = i915_gem_object_lock(obj, &ww);
if (!err)
err = i915_gem_object_pin_pages(obj);
if (err == -EDEADLK) {
err = i915_gem_ww_ctx_backoff(&ww);
if (!err)
goto retry;
}
i915_gem_ww_ctx_fini(&ww);
return err;
}
/* Immediately discard the backing storage */
int i915_gem_object_truncate(struct drm_i915_gem_object *obj)
{
if (obj->ops->truncate)
return obj->ops->truncate(obj);
return 0;
}
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
struct radix_tree_iter iter;
void __rcu **slot;
rcu_read_lock();
radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
radix_tree_delete(&obj->mm.get_page.radix, iter.index);
radix_tree_for_each_slot(slot, &obj->mm.get_dma_page.radix, &iter, 0)
radix_tree_delete(&obj->mm.get_dma_page.radix, iter.index);
rcu_read_unlock();
}
static void unmap_object(struct drm_i915_gem_object *obj, void *ptr)
{
if (is_vmalloc_addr(ptr))
vunmap(ptr);
}
static void flush_tlb_invalidate(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct intel_gt *gt;
int id;
for_each_gt(gt, i915, id) {
if (!obj->mm.tlb[id])
continue;
intel_gt_invalidate_tlb_full(gt, obj->mm.tlb[id]);
obj->mm.tlb[id] = 0;
}
}
struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
{
struct sg_table *pages;
assert_object_held_shared(obj);
pages = fetch_and_zero(&obj->mm.pages);
if (IS_ERR_OR_NULL(pages))
return pages;
if (i915_gem_object_is_volatile(obj))
obj->mm.madv = I915_MADV_WILLNEED;
if (!i915_gem_object_has_self_managed_shrink_list(obj))
i915_gem_object_make_unshrinkable(obj);
if (obj->mm.mapping) {
unmap_object(obj, page_mask_bits(obj->mm.mapping));
obj->mm.mapping = NULL;
}
__i915_gem_object_reset_page_iter(obj);
obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
flush_tlb_invalidate(obj);
return pages;
}
int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
struct sg_table *pages;
if (i915_gem_object_has_pinned_pages(obj))
return -EBUSY;
/* May be called by shrinker from within get_pages() (on another bo) */
assert_object_held_shared(obj);
i915_gem_object_release_mmap_offset(obj);
/*
* ->put_pages might need to allocate memory for the bit17 swizzle
* array, hence protect them from being reaped by removing them from gtt
* lists early.
*/
pages = __i915_gem_object_unset_pages(obj);
/*
* XXX Temporary hijinx to avoid updating all backends to handle
* NULL pages. In the future, when we have more asynchronous
* get_pages backends we should be better able to handle the
* cancellation of the async task in a more uniform manner.
*/
if (!IS_ERR_OR_NULL(pages))
obj->ops->put_pages(obj, pages);
return 0;
}
/* The 'mapping' part of i915_gem_object_pin_map() below */
static void *i915_gem_object_map_page(struct drm_i915_gem_object *obj,
enum i915_map_type type)
{
unsigned long n_pages = obj->base.size >> PAGE_SHIFT, i;
struct page *stack[32], **pages = stack, *page;
struct sgt_iter iter;
pgprot_t pgprot;
void *vaddr;
switch (type) {
default:
MISSING_CASE(type);
fallthrough; /* to use PAGE_KERNEL anyway */
case I915_MAP_WB:
/*
* On 32b, highmem using a finite set of indirect PTE (i.e.
* vmap) to provide virtual mappings of the high pages.
* As these are finite, map_new_virtual() must wait for some
* other kmap() to finish when it runs out. If we map a large
* number of objects, there is no method for it to tell us
* to release the mappings, and we deadlock.
*
* However, if we make an explicit vmap of the page, that
* uses a larger vmalloc arena, and also has the ability
* to tell us to release unwanted mappings. Most importantly,
* it will fail and propagate an error instead of waiting
* forever.
*
* So if the page is beyond the 32b boundary, make an explicit
* vmap.
*/
if (n_pages == 1 && !PageHighMem(sg_page(obj->mm.pages->sgl)))
return page_address(sg_page(obj->mm.pages->sgl));
pgprot = PAGE_KERNEL;
break;
case I915_MAP_WC:
pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
break;
}
if (n_pages > ARRAY_SIZE(stack)) {
/* Too big for stack -- allocate temporary array instead */
pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
if (!pages)
return ERR_PTR(-ENOMEM);
}
i = 0;
for_each_sgt_page(page, iter, obj->mm.pages)
pages[i++] = page;
vaddr = vmap(pages, n_pages, 0, pgprot);
if (pages != stack)
kvfree(pages);
return vaddr ?: ERR_PTR(-ENOMEM);
}
static void *i915_gem_object_map_pfn(struct drm_i915_gem_object *obj,
enum i915_map_type type)
{
resource_size_t iomap = obj->mm.region->iomap.base -
obj->mm.region->region.start;
unsigned long n_pfn = obj->base.size >> PAGE_SHIFT;
unsigned long stack[32], *pfns = stack, i;
struct sgt_iter iter;
dma_addr_t addr;
void *vaddr;
GEM_BUG_ON(type != I915_MAP_WC);
if (n_pfn > ARRAY_SIZE(stack)) {
/* Too big for stack -- allocate temporary array instead */
pfns = kvmalloc_array(n_pfn, sizeof(*pfns), GFP_KERNEL);
if (!pfns)
return ERR_PTR(-ENOMEM);
}
i = 0;
for_each_sgt_daddr(addr, iter, obj->mm.pages)
pfns[i++] = (iomap + addr) >> PAGE_SHIFT;
vaddr = vmap_pfn(pfns, n_pfn, pgprot_writecombine(PAGE_KERNEL_IO));
if (pfns != stack)
kvfree(pfns);
return vaddr ?: ERR_PTR(-ENOMEM);
}
/* get, pin, and map the pages of the object into kernel space */
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
enum i915_map_type type)
{
enum i915_map_type has_type;
bool pinned;
void *ptr;
int err;
if (!i915_gem_object_has_struct_page(obj) &&
!i915_gem_object_has_iomem(obj))
return ERR_PTR(-ENXIO);
if (WARN_ON_ONCE(obj->flags & I915_BO_ALLOC_GPU_ONLY))
return ERR_PTR(-EINVAL);
assert_object_held(obj);
pinned = !(type & I915_MAP_OVERRIDE);
type &= ~I915_MAP_OVERRIDE;
if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
if (unlikely(!i915_gem_object_has_pages(obj))) {
GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
err = ____i915_gem_object_get_pages(obj);
if (err)
return ERR_PTR(err);
smp_mb__before_atomic();
}
atomic_inc(&obj->mm.pages_pin_count);
pinned = false;
}
GEM_BUG_ON(!i915_gem_object_has_pages(obj));
/*
* For discrete our CPU mappings needs to be consistent in order to
* function correctly on !x86. When mapping things through TTM, we use
* the same rules to determine the caching type.
*
* The caching rules, starting from DG1:
*
* - If the object can be placed in device local-memory, then the
* pages should be allocated and mapped as write-combined only.
*
* - Everything else is always allocated and mapped as write-back,
* with the guarantee that everything is also coherent with the
* GPU.
*
* Internal users of lmem are already expected to get this right, so no
* fudging needed there.
*/
if (i915_gem_object_placement_possible(obj, INTEL_MEMORY_LOCAL)) {
if (type != I915_MAP_WC && !obj->mm.n_placements) {
ptr = ERR_PTR(-ENODEV);
goto err_unpin;
}
type = I915_MAP_WC;
} else if (IS_DGFX(to_i915(obj->base.dev))) {
type = I915_MAP_WB;
}
ptr = page_unpack_bits(obj->mm.mapping, &has_type);
if (ptr && has_type != type) {
if (pinned) {
ptr = ERR_PTR(-EBUSY);
goto err_unpin;
}
unmap_object(obj, ptr);
ptr = obj->mm.mapping = NULL;
}
if (!ptr) {
err = i915_gem_object_wait_moving_fence(obj, true);
if (err) {
ptr = ERR_PTR(err);
goto err_unpin;
}
if (GEM_WARN_ON(type == I915_MAP_WC && !pat_enabled()))
ptr = ERR_PTR(-ENODEV);
else if (i915_gem_object_has_struct_page(obj))
ptr = i915_gem_object_map_page(obj, type);
else
ptr = i915_gem_object_map_pfn(obj, type);
if (IS_ERR(ptr))
goto err_unpin;
obj->mm.mapping = page_pack_bits(ptr, type);
}
return ptr;
err_unpin:
atomic_dec(&obj->mm.pages_pin_count);
return ptr;
}
void *i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object *obj,
enum i915_map_type type)
{
void *ret;
i915_gem_object_lock(obj, NULL);
ret = i915_gem_object_pin_map(obj, type);
i915_gem_object_unlock(obj);
return ret;
}
void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
unsigned long offset,
unsigned long size)
{
enum i915_map_type has_type;
void *ptr;
GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
offset, size, obj->base.size));
wmb(); /* let all previous writes be visible to coherent partners */
obj->mm.dirty = true;
if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
return;
ptr = page_unpack_bits(obj->mm.mapping, &has_type);
if (has_type == I915_MAP_WC)
return;
drm_clflush_virt_range(ptr + offset, size);
if (size == obj->base.size) {
obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
obj->cache_dirty = false;
}
}
void __i915_gem_object_release_map(struct drm_i915_gem_object *obj)
{
GEM_BUG_ON(!obj->mm.mapping);
/*
* We allow removing the mapping from underneath pinned pages!
*
* Furthermore, since this is an unsafe operation reserved only
* for construction time manipulation, we ignore locking prudence.
*/
unmap_object(obj, page_mask_bits(fetch_and_zero(&obj->mm.mapping)));
i915_gem_object_unpin_map(obj);
}
struct scatterlist *
__i915_gem_object_page_iter_get_sg(struct drm_i915_gem_object *obj,
struct i915_gem_object_page_iter *iter,
pgoff_t n,
unsigned int *offset)
{
const bool dma = iter == &obj->mm.get_dma_page ||
iter == &obj->ttm.get_io_page;
unsigned int idx, count;
struct scatterlist *sg;
might_sleep();
GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
if (!i915_gem_object_has_pinned_pages(obj))
assert_object_held(obj);
/* As we iterate forward through the sg, we record each entry in a
* radixtree for quick repeated (backwards) lookups. If we have seen
* this index previously, we will have an entry for it.
*
* Initial lookup is O(N), but this is amortized to O(1) for
* sequential page access (where each new request is consecutive
* to the previous one). Repeated lookups are O(lg(obj->base.size)),
* i.e. O(1) with a large constant!
*/
if (n < READ_ONCE(iter->sg_idx))
goto lookup;
mutex_lock(&iter->lock);
/* We prefer to reuse the last sg so that repeated lookup of this
* (or the subsequent) sg are fast - comparing against the last
* sg is faster than going through the radixtree.
*/
sg = iter->sg_pos;
idx = iter->sg_idx;
count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
while (idx + count <= n) {
void *entry;
unsigned long i;
int ret;
/* If we cannot allocate and insert this entry, or the
* individual pages from this range, cancel updating the
* sg_idx so that on this lookup we are forced to linearly
* scan onwards, but on future lookups we will try the
* insertion again (in which case we need to be careful of
* the error return reporting that we have already inserted
* this index).
*/
ret = radix_tree_insert(&iter->radix, idx, sg);
if (ret && ret != -EEXIST)
goto scan;
entry = xa_mk_value(idx);
for (i = 1; i < count; i++) {
ret = radix_tree_insert(&iter->radix, idx + i, entry);
if (ret && ret != -EEXIST)
goto scan;
}
idx += count;
sg = ____sg_next(sg);
count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
}
scan:
iter->sg_pos = sg;
iter->sg_idx = idx;
mutex_unlock(&iter->lock);
if (unlikely(n < idx)) /* insertion completed by another thread */
goto lookup;
/* In case we failed to insert the entry into the radixtree, we need
* to look beyond the current sg.
*/
while (idx + count <= n) {
idx += count;
sg = ____sg_next(sg);
count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
}
*offset = n - idx;
return sg;
lookup:
rcu_read_lock();
sg = radix_tree_lookup(&iter->radix, n);
GEM_BUG_ON(!sg);
/* If this index is in the middle of multi-page sg entry,
* the radix tree will contain a value entry that points
* to the start of that range. We will return the pointer to
* the base page and the offset of this page within the
* sg entry's range.
*/
*offset = 0;
if (unlikely(xa_is_value(sg))) {
unsigned long base = xa_to_value(sg);
sg = radix_tree_lookup(&iter->radix, base);
GEM_BUG_ON(!sg);
*offset = n - base;
}
rcu_read_unlock();
return sg;
}
struct page *
__i915_gem_object_get_page(struct drm_i915_gem_object *obj, pgoff_t n)
{
struct scatterlist *sg;
unsigned int offset;
GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
sg = i915_gem_object_get_sg(obj, n, &offset);
return nth_page(sg_page(sg), offset);
}
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
__i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, pgoff_t n)
{
struct page *page;
page = i915_gem_object_get_page(obj, n);
if (!obj->mm.dirty)
set_page_dirty(page);
return page;
}
dma_addr_t
__i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj,
pgoff_t n, unsigned int *len)
{
struct scatterlist *sg;
unsigned int offset;
sg = i915_gem_object_get_sg_dma(obj, n, &offset);
if (len)
*len = sg_dma_len(sg) - (offset << PAGE_SHIFT);
return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
dma_addr_t
__i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, pgoff_t n)
{
return i915_gem_object_get_dma_address_len(obj, n, NULL);
}