/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <linux/prime_numbers.h>
#include <linux/pm_qos.h>
#include <linux/sort.h>
#include "gem/i915_gem_internal.h"
#include "gem/i915_gem_pm.h"
#include "gem/selftests/mock_context.h"
#include "gt/intel_engine_heartbeat.h"
#include "gt/intel_engine_pm.h"
#include "gt/intel_engine_user.h"
#include "gt/intel_gt.h"
#include "gt/intel_gt_clock_utils.h"
#include "gt/intel_gt_requests.h"
#include "gt/selftest_engine_heartbeat.h"
#include "i915_random.h"
#include "i915_selftest.h"
#include "igt_flush_test.h"
#include "igt_live_test.h"
#include "igt_spinner.h"
#include "lib_sw_fence.h"
#include "mock_drm.h"
#include "mock_gem_device.h"
static unsigned int num_uabi_engines(struct drm_i915_private *i915)
{
struct intel_engine_cs *engine;
unsigned int count;
count = 0;
for_each_uabi_engine(engine, i915)
count++;
return count;
}
static struct intel_engine_cs *rcs0(struct drm_i915_private *i915)
{
return intel_engine_lookup_user(i915, I915_ENGINE_CLASS_RENDER, 0);
}
static int igt_add_request(void *arg)
{
struct drm_i915_private *i915 = arg;
struct i915_request *request;
/* Basic preliminary test to create a request and let it loose! */
request = mock_request(rcs0(i915)->kernel_context, HZ / 10);
if (!request)
return -ENOMEM;
i915_request_add(request);
return 0;
}
static int igt_wait_request(void *arg)
{
const long T = HZ / 4;
struct drm_i915_private *i915 = arg;
struct i915_request *request;
int err = -EINVAL;
/* Submit a request, then wait upon it */
request = mock_request(rcs0(i915)->kernel_context, T);
if (!request)
return -ENOMEM;
i915_request_get(request);
if (i915_request_wait(request, 0, 0) != -ETIME) {
pr_err("request wait (busy query) succeeded (expected timeout before submit!)\n");
goto out_request;
}
if (i915_request_wait(request, 0, T) != -ETIME) {
pr_err("request wait succeeded (expected timeout before submit!)\n");
goto out_request;
}
if (i915_request_completed(request)) {
pr_err("request completed before submit!!\n");
goto out_request;
}
i915_request_add(request);
if (i915_request_wait(request, 0, 0) != -ETIME) {
pr_err("request wait (busy query) succeeded (expected timeout after submit!)\n");
goto out_request;
}
if (i915_request_completed(request)) {
pr_err("request completed immediately!\n");
goto out_request;
}
if (i915_request_wait(request, 0, T / 2) != -ETIME) {
pr_err("request wait succeeded (expected timeout!)\n");
goto out_request;
}
if (i915_request_wait(request, 0, T) == -ETIME) {
pr_err("request wait timed out!\n");
goto out_request;
}
if (!i915_request_completed(request)) {
pr_err("request not complete after waiting!\n");
goto out_request;
}
if (i915_request_wait(request, 0, T) == -ETIME) {
pr_err("request wait timed out when already complete!\n");
goto out_request;
}
err = 0;
out_request:
i915_request_put(request);
mock_device_flush(i915);
return err;
}
static int igt_fence_wait(void *arg)
{
const long T = HZ / 4;
struct drm_i915_private *i915 = arg;
struct i915_request *request;
int err = -EINVAL;
/* Submit a request, treat it as a fence and wait upon it */
request = mock_request(rcs0(i915)->kernel_context, T);
if (!request)
return -ENOMEM;
if (dma_fence_wait_timeout(&request->fence, false, T) != -ETIME) {
pr_err("fence wait success before submit (expected timeout)!\n");
goto out;
}
i915_request_add(request);
if (dma_fence_is_signaled(&request->fence)) {
pr_err("fence signaled immediately!\n");
goto out;
}
if (dma_fence_wait_timeout(&request->fence, false, T / 2) != -ETIME) {
pr_err("fence wait success after submit (expected timeout)!\n");
goto out;
}
if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) {
pr_err("fence wait timed out (expected success)!\n");
goto out;
}
if (!dma_fence_is_signaled(&request->fence)) {
pr_err("fence unsignaled after waiting!\n");
goto out;
}
if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) {
pr_err("fence wait timed out when complete (expected success)!\n");
goto out;
}
err = 0;
out:
mock_device_flush(i915);
return err;
}
static int igt_request_rewind(void *arg)
{
struct drm_i915_private *i915 = arg;
struct i915_request *request, *vip;
struct i915_gem_context *ctx[2];
struct intel_context *ce;
int err = -EINVAL;
ctx[0] = mock_context(i915, "A");
if (!ctx[0]) {
err = -ENOMEM;
goto err_ctx_0;
}
ce = i915_gem_context_get_engine(ctx[0], RCS0);
GEM_BUG_ON(IS_ERR(ce));
request = mock_request(ce, 2 * HZ);
intel_context_put(ce);
if (!request) {
err = -ENOMEM;
goto err_context_0;
}
i915_request_get(request);
i915_request_add(request);
ctx[1] = mock_context(i915, "B");
if (!ctx[1]) {
err = -ENOMEM;
goto err_ctx_1;
}
ce = i915_gem_context_get_engine(ctx[1], RCS0);
GEM_BUG_ON(IS_ERR(ce));
vip = mock_request(ce, 0);
intel_context_put(ce);
if (!vip) {
err = -ENOMEM;
goto err_context_1;
}
/* Simulate preemption by manual reordering */
if (!mock_cancel_request(request)) {
pr_err("failed to cancel request (already executed)!\n");
i915_request_add(vip);
goto err_context_1;
}
i915_request_get(vip);
i915_request_add(vip);
rcu_read_lock();
request->engine->submit_request(request);
rcu_read_unlock();
if (i915_request_wait(vip, 0, HZ) == -ETIME) {
pr_err("timed out waiting for high priority request\n");
goto err;
}
if (i915_request_completed(request)) {
pr_err("low priority request already completed\n");
goto err;
}
err = 0;
err:
i915_request_put(vip);
err_context_1:
mock_context_close(ctx[1]);
err_ctx_1:
i915_request_put(request);
err_context_0:
mock_context_close(ctx[0]);
err_ctx_0:
mock_device_flush(i915);
return err;
}
struct smoketest {
struct intel_engine_cs *engine;
struct i915_gem_context **contexts;
atomic_long_t num_waits, num_fences;
int ncontexts, max_batch;
struct i915_request *(*request_alloc)(struct intel_context *ce);
};
static struct i915_request *
__mock_request_alloc(struct intel_context *ce)
{
return mock_request(ce, 0);
}
static struct i915_request *
__live_request_alloc(struct intel_context *ce)
{
return intel_context_create_request(ce);
}
struct smoke_thread {
struct kthread_worker *worker;
struct kthread_work work;
struct smoketest *t;
bool stop;
int result;
};
static void __igt_breadcrumbs_smoketest(struct kthread_work *work)
{
struct smoke_thread *thread = container_of(work, typeof(*thread), work);
struct smoketest *t = thread->t;
const unsigned int max_batch = min(t->ncontexts, t->max_batch) - 1;
const unsigned int total = 4 * t->ncontexts + 1;
unsigned int num_waits = 0, num_fences = 0;
struct i915_request **requests;
I915_RND_STATE(prng);
unsigned int *order;
int err = 0;
/*
* A very simple test to catch the most egregious of list handling bugs.
*
* At its heart, we simply create oodles of requests running across
* multiple kthreads and enable signaling on them, for the sole purpose
* of stressing our breadcrumb handling. The only inspection we do is
* that the fences were marked as signaled.
*/
requests = kcalloc(total, sizeof(*requests), GFP_KERNEL);
if (!requests) {
thread->result = -ENOMEM;
return;
}
order = i915_random_order(total, &prng);
if (!order) {
err = -ENOMEM;
goto out_requests;
}
while (!READ_ONCE(thread->stop)) {
struct i915_sw_fence *submit, *wait;
unsigned int n, count;
submit = heap_fence_create(GFP_KERNEL);
if (!submit) {
err = -ENOMEM;
break;
}
wait = heap_fence_create(GFP_KERNEL);
if (!wait) {
i915_sw_fence_commit(submit);
heap_fence_put(submit);
err = -ENOMEM;
break;
}
i915_random_reorder(order, total, &prng);
count = 1 + i915_prandom_u32_max_state(max_batch, &prng);
for (n = 0; n < count; n++) {
struct i915_gem_context *ctx =
t->contexts[order[n] % t->ncontexts];
struct i915_request *rq;
struct intel_context *ce;
ce = i915_gem_context_get_engine(ctx, t->engine->legacy_idx);
GEM_BUG_ON(IS_ERR(ce));
rq = t->request_alloc(ce);
intel_context_put(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
count = n;
break;
}
err = i915_sw_fence_await_sw_fence_gfp(&rq->submit,
submit,
GFP_KERNEL);
requests[n] = i915_request_get(rq);
i915_request_add(rq);
if (err >= 0)
err = i915_sw_fence_await_dma_fence(wait,
&rq->fence,
0,
GFP_KERNEL);
if (err < 0) {
i915_request_put(rq);
count = n;
break;
}
}
i915_sw_fence_commit(submit);
i915_sw_fence_commit(wait);
if (!wait_event_timeout(wait->wait,
i915_sw_fence_done(wait),
5 * HZ)) {
struct i915_request *rq = requests[count - 1];
pr_err("waiting for %d/%d fences (last %llx:%lld) on %s timed out!\n",
atomic_read(&wait->pending), count,
rq->fence.context, rq->fence.seqno,
t->engine->name);
GEM_TRACE_DUMP();
intel_gt_set_wedged(t->engine->gt);
GEM_BUG_ON(!i915_request_completed(rq));
i915_sw_fence_wait(wait);
err = -EIO;
}
for (n = 0; n < count; n++) {
struct i915_request *rq = requests[n];
if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
&rq->fence.flags)) {
pr_err("%llu:%llu was not signaled!\n",
rq->fence.context, rq->fence.seqno);
err = -EINVAL;
}
i915_request_put(rq);
}
heap_fence_put(wait);
heap_fence_put(submit);
if (err < 0)
break;
num_fences += count;
num_waits++;
cond_resched();
}
atomic_long_add(num_fences, &t->num_fences);
atomic_long_add(num_waits, &t->num_waits);
kfree(order);
out_requests:
kfree(requests);
thread->result = err;
}
static int mock_breadcrumbs_smoketest(void *arg)
{
struct drm_i915_private *i915 = arg;
struct smoketest t = {
.engine = rcs0(i915),
.ncontexts = 1024,
.max_batch = 1024,
.request_alloc = __mock_request_alloc
};
unsigned int ncpus = num_online_cpus();
struct smoke_thread *threads;
unsigned int n;
int ret = 0;
/*
* Smoketest our breadcrumb/signal handling for requests across multiple
* threads. A very simple test to only catch the most egregious of bugs.
* See __igt_breadcrumbs_smoketest();
*/
threads = kcalloc(ncpus, sizeof(*threads), GFP_KERNEL);
if (!threads)
return -ENOMEM;
t.contexts = kcalloc(t.ncontexts, sizeof(*t.contexts), GFP_KERNEL);
if (!t.contexts) {
ret = -ENOMEM;
goto out_threads;
}
for (n = 0; n < t.ncontexts; n++) {
t.contexts[n] = mock_context(t.engine->i915, "mock");
if (!t.contexts[n]) {
ret = -ENOMEM;
goto out_contexts;
}
}
for (n = 0; n < ncpus; n++) {
struct kthread_worker *worker;
worker = kthread_create_worker(0, "igt/%d", n);
if (IS_ERR(worker)) {
ret = PTR_ERR(worker);
ncpus = n;
break;
}
threads[n].worker = worker;
threads[n].t = &t;
threads[n].stop = false;
threads[n].result = 0;
kthread_init_work(&threads[n].work,
__igt_breadcrumbs_smoketest);
kthread_queue_work(worker, &threads[n].work);
}
msleep(jiffies_to_msecs(i915_selftest.timeout_jiffies));
for (n = 0; n < ncpus; n++) {
int err;
WRITE_ONCE(threads[n].stop, true);
kthread_flush_work(&threads[n].work);
err = READ_ONCE(threads[n].result);
if (err < 0 && !ret)
ret = err;
kthread_destroy_worker(threads[n].worker);
}
pr_info("Completed %lu waits for %lu fence across %d cpus\n",
atomic_long_read(&t.num_waits),
atomic_long_read(&t.num_fences),
ncpus);
out_contexts:
for (n = 0; n < t.ncontexts; n++) {
if (!t.contexts[n])
break;
mock_context_close(t.contexts[n]);
}
kfree(t.contexts);
out_threads:
kfree(threads);
return ret;
}
int i915_request_mock_selftests(void)
{
static const struct i915_subtest tests[] = {
SUBTEST(igt_add_request),
SUBTEST(igt_wait_request),
SUBTEST(igt_fence_wait),
SUBTEST(igt_request_rewind),
SUBTEST(mock_breadcrumbs_smoketest),
};
struct drm_i915_private *i915;
intel_wakeref_t wakeref;
int err = 0;
i915 = mock_gem_device();
if (!i915)
return -ENOMEM;
with_intel_runtime_pm(&i915->runtime_pm, wakeref)
err = i915_subtests(tests, i915);
mock_destroy_device(i915);
return err;
}
static int live_nop_request(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_engine_cs *engine;
struct igt_live_test t;
int err = -ENODEV;
/*
* Submit various sized batches of empty requests, to each engine
* (individually), and wait for the batch to complete. We can check
* the overhead of submitting requests to the hardware.
*/
for_each_uabi_engine(engine, i915) {
unsigned long n, prime;
IGT_TIMEOUT(end_time);
ktime_t times[2] = {};
err = igt_live_test_begin(&t, i915, __func__, engine->name);
if (err)
return err;
intel_engine_pm_get(engine);
for_each_prime_number_from(prime, 1, 8192) {
struct i915_request *request = NULL;
times[1] = ktime_get_raw();
for (n = 0; n < prime; n++) {
i915_request_put(request);
request = i915_request_create(engine->kernel_context);
if (IS_ERR(request))
return PTR_ERR(request);
/*
* This space is left intentionally blank.
*
* We do not actually want to perform any
* action with this request, we just want
* to measure the latency in allocation
* and submission of our breadcrumbs -
* ensuring that the bare request is sufficient
* for the system to work (i.e. proper HEAD
* tracking of the rings, interrupt handling,
* etc). It also gives us the lowest bounds
* for latency.
*/
i915_request_get(request);
i915_request_add(request);
}
i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
i915_request_put(request);
times[1] = ktime_sub(ktime_get_raw(), times[1]);
if (prime == 1)
times[0] = times[1];
if (__igt_timeout(end_time, NULL))
break;
}
intel_engine_pm_put(engine);
err = igt_live_test_end(&t);
if (err)
return err;
pr_info("Request latencies on %s: 1 = %lluns, %lu = %lluns\n",
engine->name,
ktime_to_ns(times[0]),
prime, div64_u64(ktime_to_ns(times[1]), prime));
}
return err;
}
static int __cancel_inactive(struct intel_engine_cs *engine)
{
struct intel_context *ce;
struct igt_spinner spin;
struct i915_request *rq;
int err = 0;
if (igt_spinner_init(&spin, engine->gt))
return -ENOMEM;
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
goto out_spin;
}
rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out_ce;
}
pr_debug("%s: Cancelling inactive request\n", engine->name);
i915_request_cancel(rq, -EINTR);
i915_request_get(rq);
i915_request_add(rq);
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
pr_err("%s: Failed to cancel inactive request\n", engine->name);
intel_engine_dump(engine, &p, "%s\n", engine->name);
err = -ETIME;
goto out_rq;
}
if (rq->fence.error != -EINTR) {
pr_err("%s: fence not cancelled (%u)\n",
engine->name, rq->fence.error);
err = -EINVAL;
}
out_rq:
i915_request_put(rq);
out_ce:
intel_context_put(ce);
out_spin:
igt_spinner_fini(&spin);
if (err)
pr_err("%s: %s error %d\n", __func__, engine->name, err);
return err;
}
static int __cancel_active(struct intel_engine_cs *engine)
{
struct intel_context *ce;
struct igt_spinner spin;
struct i915_request *rq;
int err = 0;
if (igt_spinner_init(&spin, engine->gt))
return -ENOMEM;
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
goto out_spin;
}
rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out_ce;
}
pr_debug("%s: Cancelling active request\n", engine->name);
i915_request_get(rq);
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin, rq)) {
struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
pr_err("Failed to start spinner on %s\n", engine->name);
intel_engine_dump(engine, &p, "%s\n", engine->name);
err = -ETIME;
goto out_rq;
}
i915_request_cancel(rq, -EINTR);
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
pr_err("%s: Failed to cancel active request\n", engine->name);
intel_engine_dump(engine, &p, "%s\n", engine->name);
err = -ETIME;
goto out_rq;
}
if (rq->fence.error != -EINTR) {
pr_err("%s: fence not cancelled (%u)\n",
engine->name, rq->fence.error);
err = -EINVAL;
}
out_rq:
i915_request_put(rq);
out_ce:
intel_context_put(ce);
out_spin:
igt_spinner_fini(&spin);
if (err)
pr_err("%s: %s error %d\n", __func__, engine->name, err);
return err;
}
static int __cancel_completed(struct intel_engine_cs *engine)
{
struct intel_context *ce;
struct igt_spinner spin;
struct i915_request *rq;
int err = 0;
if (igt_spinner_init(&spin, engine->gt))
return -ENOMEM;
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
goto out_spin;
}
rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out_ce;
}
igt_spinner_end(&spin);
i915_request_get(rq);
i915_request_add(rq);
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
err = -ETIME;
goto out_rq;
}
pr_debug("%s: Cancelling completed request\n", engine->name);
i915_request_cancel(rq, -EINTR);
if (rq->fence.error) {
pr_err("%s: fence not cancelled (%u)\n",
engine->name, rq->fence.error);
err = -EINVAL;
}
out_rq:
i915_request_put(rq);
out_ce:
intel_context_put(ce);
out_spin:
igt_spinner_fini(&spin);
if (err)
pr_err("%s: %s error %d\n", __func__, engine->name, err);
return err;
}
/*
* Test to prove a non-preemptable request can be cancelled and a subsequent
* request on the same context can successfully complete after cancellation.
*
* Testing methodology is to create a non-preemptible request and submit it,
* wait for spinner to start, create a NOP request and submit it, cancel the
* spinner, wait for spinner to complete and verify it failed with an error,
* finally wait for NOP request to complete verify it succeeded without an
* error. Preemption timeout also reduced / restored so test runs in a timely
* maner.
*/
static int __cancel_reset(struct drm_i915_private *i915,
struct intel_engine_cs *engine)
{
struct intel_context *ce;
struct igt_spinner spin;
struct i915_request *rq, *nop;
unsigned long preempt_timeout_ms;
int err = 0;
if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT ||
!intel_has_reset_engine(engine->gt))
return 0;
preempt_timeout_ms = engine->props.preempt_timeout_ms;
engine->props.preempt_timeout_ms = 100;
if (igt_spinner_init(&spin, engine->gt))
goto out_restore;
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
goto out_spin;
}
rq = igt_spinner_create_request(&spin, ce, MI_NOOP);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out_ce;
}
pr_debug("%s: Cancelling active non-preemptable request\n",
engine->name);
i915_request_get(rq);
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin, rq)) {
struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
pr_err("Failed to start spinner on %s\n", engine->name);
intel_engine_dump(engine, &p, "%s\n", engine->name);
err = -ETIME;
goto out_rq;
}
nop = intel_context_create_request(ce);
if (IS_ERR(nop))
goto out_rq;
i915_request_get(nop);
i915_request_add(nop);
i915_request_cancel(rq, -EINTR);
if (i915_request_wait(rq, 0, HZ) < 0) {
struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
pr_err("%s: Failed to cancel hung request\n", engine->name);
intel_engine_dump(engine, &p, "%s\n", engine->name);
err = -ETIME;
goto out_nop;
}
if (rq->fence.error != -EINTR) {
pr_err("%s: fence not cancelled (%u)\n",
engine->name, rq->fence.error);
err = -EINVAL;
goto out_nop;
}
if (i915_request_wait(nop, 0, HZ) < 0) {
struct drm_printer p = drm_info_printer(engine->i915->drm.dev);
pr_err("%s: Failed to complete nop request\n", engine->name);
intel_engine_dump(engine, &p, "%s\n", engine->name);
err = -ETIME;
goto out_nop;
}
if (nop->fence.error != 0) {
pr_err("%s: Nop request errored (%u)\n",
engine->name, nop->fence.error);
err = -EINVAL;
}
out_nop:
i915_request_put(nop);
out_rq:
i915_request_put(rq);
out_ce:
intel_context_put(ce);
out_spin:
igt_spinner_fini(&spin);
out_restore:
engine->props.preempt_timeout_ms = preempt_timeout_ms;
if (err)
pr_err("%s: %s error %d\n", __func__, engine->name, err);
return err;
}
static int live_cancel_request(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_engine_cs *engine;
/*
* Check cancellation of requests. We expect to be able to immediately
* cancel active requests, even if they are currently on the GPU.
*/
for_each_uabi_engine(engine, i915) {
struct igt_live_test t;
int err, err2;
if (!intel_engine_has_preemption(engine))
continue;
err = igt_live_test_begin(&t, i915, __func__, engine->name);
if (err)
return err;
err = __cancel_inactive(engine);
if (err == 0)
err = __cancel_active(engine);
if (err == 0)
err = __cancel_completed(engine);
err2 = igt_live_test_end(&t);
if (err)
return err;
if (err2)
return err2;
/* Expects reset so call outside of igt_live_test_* */
err = __cancel_reset(i915, engine);
if (err)
return err;
if (igt_flush_test(i915))
return -EIO;
}
return 0;
}
static struct i915_vma *empty_batch(struct intel_gt *gt)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
u32 *cmd;
int err;
obj = i915_gem_object_create_internal(gt->i915, PAGE_SIZE);
if (IS_ERR(obj))
return ERR_CAST(obj);
cmd = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC);
if (IS_ERR(cmd)) {
err = PTR_ERR(cmd);
goto err;
}
*cmd = MI_BATCH_BUFFER_END;
__i915_gem_object_flush_map(obj, 0, 64);
i915_gem_object_unpin_map(obj);
intel_gt_chipset_flush(gt);
vma = i915_vma_instance(obj, gt->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err;
}
err = i915_vma_pin(vma, 0, 0, PIN_USER);
if (err)
goto err;
/* Force the wait now to avoid including it in the benchmark */
err = i915_vma_sync(vma);
if (err)
goto err_pin;
return vma;
err_pin:
i915_vma_unpin(vma);
err:
i915_gem_object_put(obj);
return ERR_PTR(err);
}
static int emit_bb_start(struct i915_request *rq, struct i915_vma *batch)
{
return rq->engine->emit_bb_start(rq,
i915_vma_offset(batch),
i915_vma_size(batch),
0);
}
static struct i915_request *
empty_request(struct intel_engine_cs *engine,
struct i915_vma *batch)
{
struct i915_request *request;
int err;
request = i915_request_create(engine->kernel_context);
if (IS_ERR(request))
return request;
err = emit_bb_start(request, batch);
if (err)
goto out_request;
i915_request_get(request);
out_request:
i915_request_add(request);
return err ? ERR_PTR(err) : request;
}
static int live_empty_request(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_engine_cs *engine;
struct igt_live_test t;
int err;
/*
* Submit various sized batches of empty requests, to each engine
* (individually), and wait for the batch to complete. We can check
* the overhead of submitting requests to the hardware.
*/
for_each_uabi_engine(engine, i915) {
IGT_TIMEOUT(end_time);
struct i915_request *request;
struct i915_vma *batch;
unsigned long n, prime;
ktime_t times[2] = {};
batch = empty_batch(engine->gt);
if (IS_ERR(batch))
return PTR_ERR(batch);
err = igt_live_test_begin(&t, i915, __func__, engine->name);
if (err)
goto out_batch;
intel_engine_pm_get(engine);
/* Warmup / preload */
request = empty_request(engine, batch);
if (IS_ERR(request)) {
err = PTR_ERR(request);
intel_engine_pm_put(engine);
goto out_batch;
}
i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
for_each_prime_number_from(prime, 1, 8192) {
times[1] = ktime_get_raw();
for (n = 0; n < prime; n++) {
i915_request_put(request);
request = empty_request(engine, batch);
if (IS_ERR(request)) {
err = PTR_ERR(request);
intel_engine_pm_put(engine);
goto out_batch;
}
}
i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
times[1] = ktime_sub(ktime_get_raw(), times[1]);
if (prime == 1)
times[0] = times[1];
if (__igt_timeout(end_time, NULL))
break;
}
i915_request_put(request);
intel_engine_pm_put(engine);
err = igt_live_test_end(&t);
if (err)
goto out_batch;
pr_info("Batch latencies on %s: 1 = %lluns, %lu = %lluns\n",
engine->name,
ktime_to_ns(times[0]),
prime, div64_u64(ktime_to_ns(times[1]), prime));
out_batch:
i915_vma_unpin(batch);
i915_vma_put(batch);
if (err)
break;
}
return err;
}
static struct i915_vma *recursive_batch(struct intel_gt *gt)
{
struct drm_i915_gem_object *obj;
const int ver = GRAPHICS_VER(gt->i915);
struct i915_vma *vma;
u32 *cmd;
int err;
obj = i915_gem_object_create_internal(gt->i915, PAGE_SIZE);
if (IS_ERR(obj))
return ERR_CAST(obj);
vma = i915_vma_instance(obj, gt->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err;
}
err = i915_vma_pin(vma, 0, 0, PIN_USER);
if (err)
goto err;
cmd = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC);
if (IS_ERR(cmd)) {
err = PTR_ERR(cmd);
goto err;
}
if (ver >= 8) {
*cmd++ = MI_BATCH_BUFFER_START | 1 << 8 | 1;
*cmd++ = lower_32_bits(i915_vma_offset(vma));
*cmd++ = upper_32_bits(i915_vma_offset(vma));
} else if (ver >= 6) {
*cmd++ = MI_BATCH_BUFFER_START | 1 << 8;
*cmd++ = lower_32_bits(i915_vma_offset(vma));
} else {
*cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
*cmd++ = lower_32_bits(i915_vma_offset(vma));
}
*cmd++ = MI_BATCH_BUFFER_END; /* terminate early in case of error */
__i915_gem_object_flush_map(obj, 0, 64);
i915_gem_object_unpin_map(obj);
intel_gt_chipset_flush(gt);
return vma;
err:
i915_gem_object_put(obj);
return ERR_PTR(err);
}
static int recursive_batch_resolve(struct i915_vma *batch)
{
u32 *cmd;
cmd = i915_gem_object_pin_map_unlocked(batch->obj, I915_MAP_WC);
if (IS_ERR(cmd))
return PTR_ERR(cmd);
*cmd = MI_BATCH_BUFFER_END;
__i915_gem_object_flush_map(batch->obj, 0, sizeof(*cmd));
i915_gem_object_unpin_map(batch->obj);
intel_gt_chipset_flush(batch->vm->gt);
return 0;
}
static int live_all_engines(void *arg)
{
struct drm_i915_private *i915 = arg;
const unsigned int nengines = num_uabi_engines(i915);
struct intel_engine_cs *engine;
struct i915_request **request;
struct igt_live_test t;
unsigned int idx;
int err;
/*
* Check we can submit requests to all engines simultaneously. We
* send a recursive batch to each engine - checking that we don't
* block doing so, and that they don't complete too soon.
*/
request = kcalloc(nengines, sizeof(*request), GFP_KERNEL);
if (!request)
return -ENOMEM;
err = igt_live_test_begin(&t, i915, __func__, "");
if (err)
goto out_free;
idx = 0;
for_each_uabi_engine(engine, i915) {
struct i915_vma *batch;
batch = recursive_batch(engine->gt);
if (IS_ERR(batch)) {
err = PTR_ERR(batch);
pr_err("%s: Unable to create batch, err=%d\n",
__func__, err);
goto out_free;
}
i915_vma_lock(batch);
request[idx] = intel_engine_create_kernel_request(engine);
if (IS_ERR(request[idx])) {
err = PTR_ERR(request[idx]);
pr_err("%s: Request allocation failed with err=%d\n",
__func__, err);
goto out_unlock;
}
GEM_BUG_ON(request[idx]->context->vm != batch->vm);
err = i915_vma_move_to_active(batch, request[idx], 0);
GEM_BUG_ON(err);
err = emit_bb_start(request[idx], batch);
GEM_BUG_ON(err);
request[idx]->batch = batch;
i915_request_get(request[idx]);
i915_request_add(request[idx]);
idx++;
out_unlock:
i915_vma_unlock(batch);
if (err)
goto out_request;
}
idx = 0;
for_each_uabi_engine(engine, i915) {
if (i915_request_completed(request[idx])) {
pr_err("%s(%s): request completed too early!\n",
__func__, engine->name);
err = -EINVAL;
goto out_request;
}
idx++;
}
idx = 0;
for_each_uabi_engine(engine, i915) {
err = recursive_batch_resolve(request[idx]->batch);
if (err) {
pr_err("%s: failed to resolve batch, err=%d\n",
__func__, err);
goto out_request;
}
idx++;
}
idx = 0;
for_each_uabi_engine(engine, i915) {
struct i915_request *rq = request[idx];
long timeout;
timeout = i915_request_wait(rq, 0,
MAX_SCHEDULE_TIMEOUT);
if (timeout < 0) {
err = timeout;
pr_err("%s: error waiting for request on %s, err=%d\n",
__func__, engine->name, err);
goto out_request;
}
GEM_BUG_ON(!i915_request_completed(rq));
i915_vma_unpin(rq->batch);
i915_vma_put(rq->batch);
i915_request_put(rq);
request[idx] = NULL;
idx++;
}
err = igt_live_test_end(&t);
out_request:
idx = 0;
for_each_uabi_engine(engine, i915) {
struct i915_request *rq = request[idx];
if (!rq)
continue;
if (rq->batch) {
i915_vma_unpin(rq->batch);
i915_vma_put(rq->batch);
}
i915_request_put(rq);
idx++;
}
out_free:
kfree(request);
return err;
}
static int live_sequential_engines(void *arg)
{
struct drm_i915_private *i915 = arg;
const unsigned int nengines = num_uabi_engines(i915);
struct i915_request **request;
struct i915_request *prev = NULL;
struct intel_engine_cs *engine;
struct igt_live_test t;
unsigned int idx;
int err;
/*
* Check we can submit requests to all engines sequentially, such
* that each successive request waits for the earlier ones. This
* tests that we don't execute requests out of order, even though
* they are running on independent engines.
*/
request = kcalloc(nengines, sizeof(*request), GFP_KERNEL);
if (!request)
return -ENOMEM;
err = igt_live_test_begin(&t, i915, __func__, "");
if (err)
goto out_free;
idx = 0;
for_each_uabi_engine(engine, i915) {
struct i915_vma *batch;
batch = recursive_batch(engine->gt);
if (IS_ERR(batch)) {
err = PTR_ERR(batch);
pr_err("%s: Unable to create batch for %s, err=%d\n",
__func__, engine->name, err);
goto out_free;
}
i915_vma_lock(batch);
request[idx] = intel_engine_create_kernel_request(engine);
if (IS_ERR(request[idx])) {
err = PTR_ERR(request[idx]);
pr_err("%s: Request allocation failed for %s with err=%d\n",
__func__, engine->name, err);
goto out_unlock;
}
GEM_BUG_ON(request[idx]->context->vm != batch->vm);
if (prev) {
err = i915_request_await_dma_fence(request[idx],
&prev->fence);
if (err) {
i915_request_add(request[idx]);
pr_err("%s: Request await failed for %s with err=%d\n",
__func__, engine->name, err);
goto out_unlock;
}
}
err = i915_vma_move_to_active(batch, request[idx], 0);
GEM_BUG_ON(err);
err = emit_bb_start(request[idx], batch);
GEM_BUG_ON(err);
request[idx]->batch = batch;
i915_request_get(request[idx]);
i915_request_add(request[idx]);
prev = request[idx];
idx++;
out_unlock:
i915_vma_unlock(batch);
if (err)
goto out_request;
}
idx = 0;
for_each_uabi_engine(engine, i915) {
long timeout;
if (i915_request_completed(request[idx])) {
pr_err("%s(%s): request completed too early!\n",
__func__, engine->name);
err = -EINVAL;
goto out_request;
}
err = recursive_batch_resolve(request[idx]->batch);
if (err) {
pr_err("%s: failed to resolve batch, err=%d\n",
__func__, err);
goto out_request;
}
timeout = i915_request_wait(request[idx], 0,
MAX_SCHEDULE_TIMEOUT);
if (timeout < 0) {
err = timeout;
pr_err("%s: error waiting for request on %s, err=%d\n",
__func__, engine->name, err);
goto out_request;
}
GEM_BUG_ON(!i915_request_completed(request[idx]));
idx++;
}
err = igt_live_test_end(&t);
out_request:
idx = 0;
for_each_uabi_engine(engine, i915) {
u32 *cmd;
if (!request[idx])
break;
cmd = i915_gem_object_pin_map_unlocked(request[idx]->batch->obj,
I915_MAP_WC);
if (!IS_ERR(cmd)) {
*cmd = MI_BATCH_BUFFER_END;
__i915_gem_object_flush_map(request[idx]->batch->obj,
0, sizeof(*cmd));
i915_gem_object_unpin_map(request[idx]->batch->obj);
intel_gt_chipset_flush(engine->gt);
}
i915_vma_put(request[idx]->batch);
i915_request_put(request[idx]);
idx++;
}
out_free:
kfree(request);
return err;
}
struct parallel_thread {
struct kthread_worker *worker;
struct kthread_work work;
struct intel_engine_cs *engine;
int result;
};
static void __live_parallel_engine1(struct kthread_work *work)
{
struct parallel_thread *thread =
container_of(work, typeof(*thread), work);
struct intel_engine_cs *engine = thread->engine;
IGT_TIMEOUT(end_time);
unsigned long count;
int err = 0;
count = 0;
intel_engine_pm_get(engine);
do {
struct i915_request *rq;
rq = i915_request_create(engine->kernel_context);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
break;
}
i915_request_get(rq);
i915_request_add(rq);
err = 0;
if (i915_request_wait(rq, 0, HZ) < 0)
err = -ETIME;
i915_request_put(rq);
if (err)
break;
count++;
} while (!__igt_timeout(end_time, NULL));
intel_engine_pm_put(engine);
pr_info("%s: %lu request + sync\n", engine->name, count);
thread->result = err;
}
static void __live_parallel_engineN(struct kthread_work *work)
{
struct parallel_thread *thread =
container_of(work, typeof(*thread), work);
struct intel_engine_cs *engine = thread->engine;
IGT_TIMEOUT(end_time);
unsigned long count;
int err = 0;
count = 0;
intel_engine_pm_get(engine);
do {
struct i915_request *rq;
rq = i915_request_create(engine->kernel_context);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
break;
}
i915_request_add(rq);
count++;
} while (!__igt_timeout(end_time, NULL));
intel_engine_pm_put(engine);
pr_info("%s: %lu requests\n", engine->name, count);
thread->result = err;
}
static bool wake_all(struct drm_i915_private *i915)
{
if (atomic_dec_and_test(&i915->selftest.counter)) {
wake_up_var(&i915->selftest.counter);
return true;
}
return false;
}
static int wait_for_all(struct drm_i915_private *i915)
{
if (wake_all(i915))
return 0;
if (wait_var_event_timeout(&i915->selftest.counter,
!atomic_read(&i915->selftest.counter),
i915_selftest.timeout_jiffies))
return 0;
return -ETIME;
}
static void __live_parallel_spin(struct kthread_work *work)
{
struct parallel_thread *thread =
container_of(work, typeof(*thread), work);
struct intel_engine_cs *engine = thread->engine;
struct igt_spinner spin;
struct i915_request *rq;
int err = 0;
/*
* Create a spinner running for eternity on each engine. If a second
* spinner is incorrectly placed on the same engine, it will not be
* able to start in time.
*/
if (igt_spinner_init(&spin, engine->gt)) {
wake_all(engine->i915);
thread->result = -ENOMEM;
return;
}
intel_engine_pm_get(engine);
rq = igt_spinner_create_request(&spin,
engine->kernel_context,
MI_NOOP); /* no preemption */
intel_engine_pm_put(engine);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
if (err == -ENODEV)
err = 0;
wake_all(engine->i915);
goto out_spin;
}
i915_request_get(rq);
i915_request_add(rq);
if (igt_wait_for_spinner(&spin, rq)) {
/* Occupy this engine for the whole test */
err = wait_for_all(engine->i915);
} else {
pr_err("Failed to start spinner on %s\n", engine->name);
err = -EINVAL;
}
igt_spinner_end(&spin);
if (err == 0 && i915_request_wait(rq, 0, HZ) < 0)
err = -EIO;
i915_request_put(rq);
out_spin:
igt_spinner_fini(&spin);
thread->result = err;
}
static int live_parallel_engines(void *arg)
{
struct drm_i915_private *i915 = arg;
static void (* const func[])(struct kthread_work *) = {
__live_parallel_engine1,
__live_parallel_engineN,
__live_parallel_spin,
NULL,
};
const unsigned int nengines = num_uabi_engines(i915);
struct parallel_thread *threads;
struct intel_engine_cs *engine;
void (* const *fn)(struct kthread_work *);
int err = 0;
/*
* Check we can submit requests to all engines concurrently. This
* tests that we load up the system maximally.
*/
threads = kcalloc(nengines, sizeof(*threads), GFP_KERNEL);
if (!threads)
return -ENOMEM;
for (fn = func; !err && *fn; fn++) {
char name[KSYM_NAME_LEN];
struct igt_live_test t;
unsigned int idx;
snprintf(name, sizeof(name), "%ps", *fn);
err = igt_live_test_begin(&t, i915, __func__, name);
if (err)
break;
atomic_set(&i915->selftest.counter, nengines);
idx = 0;
for_each_uabi_engine(engine, i915) {
struct kthread_worker *worker;
worker = kthread_create_worker(0, "igt/parallel:%s",
engine->name);
if (IS_ERR(worker)) {
err = PTR_ERR(worker);
break;
}
threads[idx].worker = worker;
threads[idx].result = 0;
threads[idx].engine = engine;
kthread_init_work(&threads[idx].work, *fn);
kthread_queue_work(worker, &threads[idx].work);
idx++;
}
idx = 0;
for_each_uabi_engine(engine, i915) {
int status;
if (!threads[idx].worker)
break;
kthread_flush_work(&threads[idx].work);
status = READ_ONCE(threads[idx].result);
if (status && !err)
err = status;
kthread_destroy_worker(threads[idx++].worker);
}
if (igt_live_test_end(&t))
err = -EIO;
}
kfree(threads);
return err;
}
static int
max_batches(struct i915_gem_context *ctx, struct intel_engine_cs *engine)
{
struct i915_request *rq;
int ret;
/*
* Before execlists, all contexts share the same ringbuffer. With
* execlists, each context/engine has a separate ringbuffer and
* for the purposes of this test, inexhaustible.
*
* For the global ringbuffer though, we have to be very careful
* that we do not wrap while preventing the execution of requests
* with a unsignaled fence.
*/
if (HAS_EXECLISTS(ctx->i915))
return INT_MAX;
rq = igt_request_alloc(ctx, engine);
if (IS_ERR(rq)) {
ret = PTR_ERR(rq);
} else {
int sz;
ret = rq->ring->size - rq->reserved_space;
i915_request_add(rq);
sz = rq->ring->emit - rq->head;
if (sz < 0)
sz += rq->ring->size;
ret /= sz;
ret /= 2; /* leave half spare, in case of emergency! */
}
return ret;
}
static int live_breadcrumbs_smoketest(void *arg)
{
struct drm_i915_private *i915 = arg;
const unsigned int nengines = num_uabi_engines(i915);
const unsigned int ncpus = /* saturate with nengines * ncpus */
max_t(int, 2, DIV_ROUND_UP(num_online_cpus(), nengines));
unsigned long num_waits, num_fences;
struct intel_engine_cs *engine;
struct smoke_thread *threads;
struct igt_live_test live;
intel_wakeref_t wakeref;
struct smoketest *smoke;
unsigned int n, idx;
struct file *file;
int ret = 0;
/*
* Smoketest our breadcrumb/signal handling for requests across multiple
* threads. A very simple test to only catch the most egregious of bugs.
* See __igt_breadcrumbs_smoketest();
*
* On real hardware this time.
*/
wakeref = intel_runtime_pm_get(&i915->runtime_pm);
file = mock_file(i915);
if (IS_ERR(file)) {
ret = PTR_ERR(file);
goto out_rpm;
}
smoke = kcalloc(nengines, sizeof(*smoke), GFP_KERNEL);
if (!smoke) {
ret = -ENOMEM;
goto out_file;
}
threads = kcalloc(ncpus * nengines, sizeof(*threads), GFP_KERNEL);
if (!threads) {
ret = -ENOMEM;
goto out_smoke;
}
smoke[0].request_alloc = __live_request_alloc;
smoke[0].ncontexts = 64;
smoke[0].contexts = kcalloc(smoke[0].ncontexts,
sizeof(*smoke[0].contexts),
GFP_KERNEL);
if (!smoke[0].contexts) {
ret = -ENOMEM;
goto out_threads;
}
for (n = 0; n < smoke[0].ncontexts; n++) {
smoke[0].contexts[n] = live_context(i915, file);
if (IS_ERR(smoke[0].contexts[n])) {
ret = PTR_ERR(smoke[0].contexts[n]);
goto out_contexts;
}
}
ret = igt_live_test_begin(&live, i915, __func__, "");
if (ret)
goto out_contexts;
idx = 0;
for_each_uabi_engine(engine, i915) {
smoke[idx] = smoke[0];
smoke[idx].engine = engine;
smoke[idx].max_batch =
max_batches(smoke[0].contexts[0], engine);
if (smoke[idx].max_batch < 0) {
ret = smoke[idx].max_batch;
goto out_flush;
}
/* One ring interleaved between requests from all cpus */
smoke[idx].max_batch /= ncpus + 1;
pr_debug("Limiting batches to %d requests on %s\n",
smoke[idx].max_batch, engine->name);
for (n = 0; n < ncpus; n++) {
unsigned int i = idx * ncpus + n;
struct kthread_worker *worker;
worker = kthread_create_worker(0, "igt/%d.%d", idx, n);
if (IS_ERR(worker)) {
ret = PTR_ERR(worker);
goto out_flush;
}
threads[i].worker = worker;
threads[i].t = &smoke[idx];
kthread_init_work(&threads[i].work,
__igt_breadcrumbs_smoketest);
kthread_queue_work(worker, &threads[i].work);
}
idx++;
}
msleep(jiffies_to_msecs(i915_selftest.timeout_jiffies));
out_flush:
idx = 0;
num_waits = 0;
num_fences = 0;
for_each_uabi_engine(engine, i915) {
for (n = 0; n < ncpus; n++) {
unsigned int i = idx * ncpus + n;
int err;
if (!threads[i].worker)
continue;
WRITE_ONCE(threads[i].stop, true);
kthread_flush_work(&threads[i].work);
err = READ_ONCE(threads[i].result);
if (err < 0 && !ret)
ret = err;
kthread_destroy_worker(threads[i].worker);
}
num_waits += atomic_long_read(&smoke[idx].num_waits);
num_fences += atomic_long_read(&smoke[idx].num_fences);
idx++;
}
pr_info("Completed %lu waits for %lu fences across %d engines and %d cpus\n",
num_waits, num_fences, idx, ncpus);
ret = igt_live_test_end(&live) ?: ret;
out_contexts:
kfree(smoke[0].contexts);
out_threads:
kfree(threads);
out_smoke:
kfree(smoke);
out_file:
fput(file);
out_rpm:
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
return ret;
}
int i915_request_live_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(live_nop_request),
SUBTEST(live_all_engines),
SUBTEST(live_sequential_engines),
SUBTEST(live_parallel_engines),
SUBTEST(live_empty_request),
SUBTEST(live_cancel_request),
SUBTEST(live_breadcrumbs_smoketest),
};
if (intel_gt_is_wedged(to_gt(i915)))
return 0;
return i915_live_subtests(tests, i915);
}
static int switch_to_kernel_sync(struct intel_context *ce, int err)
{
struct i915_request *rq;
struct dma_fence *fence;
rq = intel_engine_create_kernel_request(ce->engine);
if (IS_ERR(rq))
return PTR_ERR(rq);
fence = i915_active_fence_get(&ce->timeline->last_request);
if (fence) {
i915_request_await_dma_fence(rq, fence);
dma_fence_put(fence);
}
rq = i915_request_get(rq);
i915_request_add(rq);
if (i915_request_wait(rq, 0, HZ / 2) < 0 && !err)
err = -ETIME;
i915_request_put(rq);
while (!err && !intel_engine_is_idle(ce->engine))
intel_engine_flush_submission(ce->engine);
return err;
}
struct perf_stats {
struct intel_engine_cs *engine;
unsigned long count;
ktime_t time;
ktime_t busy;
u64 runtime;
};
struct perf_series {
struct drm_i915_private *i915;
unsigned int nengines;
struct intel_context *ce[] __counted_by(nengines);
};
static int cmp_u32(const void *A, const void *B)
{
const u32 *a = A, *b = B;
return *a - *b;
}
static u32 trifilter(u32 *a)
{
u64 sum;
#define TF_COUNT 5
sort(a, TF_COUNT, sizeof(*a), cmp_u32, NULL);
sum = mul_u32_u32(a[2], 2);
sum += a[1];
sum += a[3];
GEM_BUG_ON(sum > U32_MAX);
return sum;
#define TF_BIAS 2
}
static u64 cycles_to_ns(struct intel_engine_cs *engine, u32 cycles)
{
u64 ns = intel_gt_clock_interval_to_ns(engine->gt, cycles);
return DIV_ROUND_CLOSEST(ns, 1 << TF_BIAS);
}
static u32 *emit_timestamp_store(u32 *cs, struct intel_context *ce, u32 offset)
{
*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP((ce->engine->mmio_base)));
*cs++ = offset;
*cs++ = 0;
return cs;
}
static u32 *emit_store_dw(u32 *cs, u32 offset, u32 value)
{
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = offset;
*cs++ = 0;
*cs++ = value;
return cs;
}
static u32 *emit_semaphore_poll(u32 *cs, u32 mode, u32 value, u32 offset)
{
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
mode;
*cs++ = value;
*cs++ = offset;
*cs++ = 0;
return cs;
}
static u32 *emit_semaphore_poll_until(u32 *cs, u32 offset, u32 value)
{
return emit_semaphore_poll(cs, MI_SEMAPHORE_SAD_EQ_SDD, value, offset);
}
static void semaphore_set(u32 *sema, u32 value)
{
WRITE_ONCE(*sema, value);
wmb(); /* flush the update to the cache, and beyond */
}
static u32 *hwsp_scratch(const struct intel_context *ce)
{
return memset32(ce->engine->status_page.addr + 1000, 0, 21);
}
static u32 hwsp_offset(const struct intel_context *ce, u32 *dw)
{
return (i915_ggtt_offset(ce->engine->status_page.vma) +
offset_in_page(dw));
}
static int measure_semaphore_response(struct intel_context *ce)
{
u32 *sema = hwsp_scratch(ce);
const u32 offset = hwsp_offset(ce, sema);
u32 elapsed[TF_COUNT], cycles;
struct i915_request *rq;
u32 *cs;
int err;
int i;
/*
* Measure how many cycles it takes for the HW to detect the change
* in a semaphore value.
*
* A: read CS_TIMESTAMP from CPU
* poke semaphore
* B: read CS_TIMESTAMP on GPU
*
* Semaphore latency: B - A
*/
semaphore_set(sema, -1);
rq = i915_request_create(ce);
if (IS_ERR(rq))
return PTR_ERR(rq);
cs = intel_ring_begin(rq, 4 + 12 * ARRAY_SIZE(elapsed));
if (IS_ERR(cs)) {
i915_request_add(rq);
err = PTR_ERR(cs);
goto err;
}
cs = emit_store_dw(cs, offset, 0);
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
cs = emit_semaphore_poll_until(cs, offset, i);
cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
cs = emit_store_dw(cs, offset, 0);
}
intel_ring_advance(rq, cs);
i915_request_add(rq);
if (wait_for(READ_ONCE(*sema) == 0, 50)) {
err = -EIO;
goto err;
}
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
preempt_disable();
cycles = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
semaphore_set(sema, i);
preempt_enable();
if (wait_for(READ_ONCE(*sema) == 0, 50)) {
err = -EIO;
goto err;
}
elapsed[i - 1] = sema[i] - cycles;
}
cycles = trifilter(elapsed);
pr_info("%s: semaphore response %d cycles, %lluns\n",
ce->engine->name, cycles >> TF_BIAS,
cycles_to_ns(ce->engine, cycles));
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
err:
intel_gt_set_wedged(ce->engine->gt);
return err;
}
static int measure_idle_dispatch(struct intel_context *ce)
{
u32 *sema = hwsp_scratch(ce);
const u32 offset = hwsp_offset(ce, sema);
u32 elapsed[TF_COUNT], cycles;
u32 *cs;
int err;
int i;
/*
* Measure how long it takes for us to submit a request while the
* engine is idle, but is resting in our context.
*
* A: read CS_TIMESTAMP from CPU
* submit request
* B: read CS_TIMESTAMP on GPU
*
* Submission latency: B - A
*/
for (i = 0; i < ARRAY_SIZE(elapsed); i++) {
struct i915_request *rq;
err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
if (err)
return err;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err;
}
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs)) {
i915_request_add(rq);
err = PTR_ERR(cs);
goto err;
}
cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
intel_ring_advance(rq, cs);
preempt_disable();
local_bh_disable();
elapsed[i] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
i915_request_add(rq);
local_bh_enable();
preempt_enable();
}
err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
if (err)
goto err;
for (i = 0; i < ARRAY_SIZE(elapsed); i++)
elapsed[i] = sema[i] - elapsed[i];
cycles = trifilter(elapsed);
pr_info("%s: idle dispatch latency %d cycles, %lluns\n",
ce->engine->name, cycles >> TF_BIAS,
cycles_to_ns(ce->engine, cycles));
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
err:
intel_gt_set_wedged(ce->engine->gt);
return err;
}
static int measure_busy_dispatch(struct intel_context *ce)
{
u32 *sema = hwsp_scratch(ce);
const u32 offset = hwsp_offset(ce, sema);
u32 elapsed[TF_COUNT + 1], cycles;
u32 *cs;
int err;
int i;
/*
* Measure how long it takes for us to submit a request while the
* engine is busy, polling on a semaphore in our context. With
* direct submission, this will include the cost of a lite restore.
*
* A: read CS_TIMESTAMP from CPU
* submit request
* B: read CS_TIMESTAMP on GPU
*
* Submission latency: B - A
*/
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
struct i915_request *rq;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err;
}
cs = intel_ring_begin(rq, 12);
if (IS_ERR(cs)) {
i915_request_add(rq);
err = PTR_ERR(cs);
goto err;
}
cs = emit_store_dw(cs, offset + i * sizeof(u32), -1);
cs = emit_semaphore_poll_until(cs, offset, i);
cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
intel_ring_advance(rq, cs);
if (i > 1 && wait_for(READ_ONCE(sema[i - 1]), 500)) {
err = -EIO;
goto err;
}
preempt_disable();
local_bh_disable();
elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
i915_request_add(rq);
local_bh_enable();
semaphore_set(sema, i - 1);
preempt_enable();
}
wait_for(READ_ONCE(sema[i - 1]), 500);
semaphore_set(sema, i - 1);
for (i = 1; i <= TF_COUNT; i++) {
GEM_BUG_ON(sema[i] == -1);
elapsed[i - 1] = sema[i] - elapsed[i];
}
cycles = trifilter(elapsed);
pr_info("%s: busy dispatch latency %d cycles, %lluns\n",
ce->engine->name, cycles >> TF_BIAS,
cycles_to_ns(ce->engine, cycles));
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
err:
intel_gt_set_wedged(ce->engine->gt);
return err;
}
static int plug(struct intel_engine_cs *engine, u32 *sema, u32 mode, int value)
{
const u32 offset =
i915_ggtt_offset(engine->status_page.vma) +
offset_in_page(sema);
struct i915_request *rq;
u32 *cs;
rq = i915_request_create(engine->kernel_context);
if (IS_ERR(rq))
return PTR_ERR(rq);
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs)) {
i915_request_add(rq);
return PTR_ERR(cs);
}
cs = emit_semaphore_poll(cs, mode, value, offset);
intel_ring_advance(rq, cs);
i915_request_add(rq);
return 0;
}
static int measure_inter_request(struct intel_context *ce)
{
u32 *sema = hwsp_scratch(ce);
const u32 offset = hwsp_offset(ce, sema);
u32 elapsed[TF_COUNT + 1], cycles;
struct i915_sw_fence *submit;
int i, err;
/*
* Measure how long it takes to advance from one request into the
* next. Between each request we flush the GPU caches to memory,
* update the breadcrumbs, and then invalidate those caches.
* We queue up all the requests to be submitted in one batch so
* it should be one set of contiguous measurements.
*
* A: read CS_TIMESTAMP on GPU
* advance request
* B: read CS_TIMESTAMP on GPU
*
* Request latency: B - A
*/
err = plug(ce->engine, sema, MI_SEMAPHORE_SAD_NEQ_SDD, 0);
if (err)
return err;
submit = heap_fence_create(GFP_KERNEL);
if (!submit) {
semaphore_set(sema, 1);
return -ENOMEM;
}
intel_engine_flush_submission(ce->engine);
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
struct i915_request *rq;
u32 *cs;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_submit;
}
err = i915_sw_fence_await_sw_fence_gfp(&rq->submit,
submit,
GFP_KERNEL);
if (err < 0) {
i915_request_add(rq);
goto err_submit;
}
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs)) {
i915_request_add(rq);
err = PTR_ERR(cs);
goto err_submit;
}
cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
intel_ring_advance(rq, cs);
i915_request_add(rq);
}
i915_sw_fence_commit(submit);
intel_engine_flush_submission(ce->engine);
heap_fence_put(submit);
semaphore_set(sema, 1);
err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
if (err)
goto err;
for (i = 1; i <= TF_COUNT; i++)
elapsed[i - 1] = sema[i + 1] - sema[i];
cycles = trifilter(elapsed);
pr_info("%s: inter-request latency %d cycles, %lluns\n",
ce->engine->name, cycles >> TF_BIAS,
cycles_to_ns(ce->engine, cycles));
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
err_submit:
i915_sw_fence_commit(submit);
heap_fence_put(submit);
semaphore_set(sema, 1);
err:
intel_gt_set_wedged(ce->engine->gt);
return err;
}
static int measure_context_switch(struct intel_context *ce)
{
u32 *sema = hwsp_scratch(ce);
const u32 offset = hwsp_offset(ce, sema);
struct i915_request *fence = NULL;
u32 elapsed[TF_COUNT + 1], cycles;
int i, j, err;
u32 *cs;
/*
* Measure how long it takes to advance from one request in one
* context to a request in another context. This allows us to
* measure how long the context save/restore take, along with all
* the inter-context setup we require.
*
* A: read CS_TIMESTAMP on GPU
* switch context
* B: read CS_TIMESTAMP on GPU
*
* Context switch latency: B - A
*/
err = plug(ce->engine, sema, MI_SEMAPHORE_SAD_NEQ_SDD, 0);
if (err)
return err;
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
struct intel_context *arr[] = {
ce, ce->engine->kernel_context
};
u32 addr = offset + ARRAY_SIZE(arr) * i * sizeof(u32);
for (j = 0; j < ARRAY_SIZE(arr); j++) {
struct i915_request *rq;
rq = i915_request_create(arr[j]);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_fence;
}
if (fence) {
err = i915_request_await_dma_fence(rq,
&fence->fence);
if (err) {
i915_request_add(rq);
goto err_fence;
}
}
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs)) {
i915_request_add(rq);
err = PTR_ERR(cs);
goto err_fence;
}
cs = emit_timestamp_store(cs, ce, addr);
addr += sizeof(u32);
intel_ring_advance(rq, cs);
i915_request_put(fence);
fence = i915_request_get(rq);
i915_request_add(rq);
}
}
i915_request_put(fence);
intel_engine_flush_submission(ce->engine);
semaphore_set(sema, 1);
err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
if (err)
goto err;
for (i = 1; i <= TF_COUNT; i++)
elapsed[i - 1] = sema[2 * i + 2] - sema[2 * i + 1];
cycles = trifilter(elapsed);
pr_info("%s: context switch latency %d cycles, %lluns\n",
ce->engine->name, cycles >> TF_BIAS,
cycles_to_ns(ce->engine, cycles));
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
err_fence:
i915_request_put(fence);
semaphore_set(sema, 1);
err:
intel_gt_set_wedged(ce->engine->gt);
return err;
}
static int measure_preemption(struct intel_context *ce)
{
u32 *sema = hwsp_scratch(ce);
const u32 offset = hwsp_offset(ce, sema);
u32 elapsed[TF_COUNT], cycles;
u32 *cs;
int err;
int i;
/*
* We measure two latencies while triggering preemption. The first
* latency is how long it takes for us to submit a preempting request.
* The second latency is how it takes for us to return from the
* preemption back to the original context.
*
* A: read CS_TIMESTAMP from CPU
* submit preemption
* B: read CS_TIMESTAMP on GPU (in preempting context)
* context switch
* C: read CS_TIMESTAMP on GPU (in original context)
*
* Preemption dispatch latency: B - A
* Preemption switch latency: C - B
*/
if (!intel_engine_has_preemption(ce->engine))
return 0;
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
u32 addr = offset + 2 * i * sizeof(u32);
struct i915_request *rq;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err;
}
cs = intel_ring_begin(rq, 12);
if (IS_ERR(cs)) {
i915_request_add(rq);
err = PTR_ERR(cs);
goto err;
}
cs = emit_store_dw(cs, addr, -1);
cs = emit_semaphore_poll_until(cs, offset, i);
cs = emit_timestamp_store(cs, ce, addr + sizeof(u32));
intel_ring_advance(rq, cs);
i915_request_add(rq);
if (wait_for(READ_ONCE(sema[2 * i]) == -1, 500)) {
err = -EIO;
goto err;
}
rq = i915_request_create(ce->engine->kernel_context);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err;
}
cs = intel_ring_begin(rq, 8);
if (IS_ERR(cs)) {
i915_request_add(rq);
err = PTR_ERR(cs);
goto err;
}
cs = emit_timestamp_store(cs, ce, addr);
cs = emit_store_dw(cs, offset, i);
intel_ring_advance(rq, cs);
rq->sched.attr.priority = I915_PRIORITY_BARRIER;
elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
i915_request_add(rq);
}
if (wait_for(READ_ONCE(sema[2 * i - 2]) != -1, 500)) {
err = -EIO;
goto err;
}
for (i = 1; i <= TF_COUNT; i++)
elapsed[i - 1] = sema[2 * i + 0] - elapsed[i - 1];
cycles = trifilter(elapsed);
pr_info("%s: preemption dispatch latency %d cycles, %lluns\n",
ce->engine->name, cycles >> TF_BIAS,
cycles_to_ns(ce->engine, cycles));
for (i = 1; i <= TF_COUNT; i++)
elapsed[i - 1] = sema[2 * i + 1] - sema[2 * i + 0];
cycles = trifilter(elapsed);
pr_info("%s: preemption switch latency %d cycles, %lluns\n",
ce->engine->name, cycles >> TF_BIAS,
cycles_to_ns(ce->engine, cycles));
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
err:
intel_gt_set_wedged(ce->engine->gt);
return err;
}
struct signal_cb {
struct dma_fence_cb base;
bool seen;
};
static void signal_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
{
struct signal_cb *s = container_of(cb, typeof(*s), base);
smp_store_mb(s->seen, true); /* be safe, be strong */
}
static int measure_completion(struct intel_context *ce)
{
u32 *sema = hwsp_scratch(ce);
const u32 offset = hwsp_offset(ce, sema);
u32 elapsed[TF_COUNT], cycles;
u32 *cs;
int err;
int i;
/*
* Measure how long it takes for the signal (interrupt) to be
* sent from the GPU to be processed by the CPU.
*
* A: read CS_TIMESTAMP on GPU
* signal
* B: read CS_TIMESTAMP from CPU
*
* Completion latency: B - A
*/
for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
struct signal_cb cb = { .seen = false };
struct i915_request *rq;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err;
}
cs = intel_ring_begin(rq, 12);
if (IS_ERR(cs)) {
i915_request_add(rq);
err = PTR_ERR(cs);
goto err;
}
cs = emit_store_dw(cs, offset + i * sizeof(u32), -1);
cs = emit_semaphore_poll_until(cs, offset, i);
cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
intel_ring_advance(rq, cs);
dma_fence_add_callback(&rq->fence, &cb.base, signal_cb);
i915_request_add(rq);
intel_engine_flush_submission(ce->engine);
if (wait_for(READ_ONCE(sema[i]) == -1, 50)) {
err = -EIO;
goto err;
}
preempt_disable();
semaphore_set(sema, i);
while (!READ_ONCE(cb.seen))
cpu_relax();
elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
preempt_enable();
}
err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
if (err)
goto err;
for (i = 0; i < ARRAY_SIZE(elapsed); i++) {
GEM_BUG_ON(sema[i + 1] == -1);
elapsed[i] = elapsed[i] - sema[i + 1];
}
cycles = trifilter(elapsed);
pr_info("%s: completion latency %d cycles, %lluns\n",
ce->engine->name, cycles >> TF_BIAS,
cycles_to_ns(ce->engine, cycles));
return intel_gt_wait_for_idle(ce->engine->gt, HZ);
err:
intel_gt_set_wedged(ce->engine->gt);
return err;
}
static void rps_pin(struct intel_gt *gt)
{
/* Pin the frequency to max */
atomic_inc(>->rps.num_waiters);
intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
mutex_lock(>->rps.lock);
intel_rps_set(>->rps, gt->rps.max_freq);
mutex_unlock(>->rps.lock);
}
static void rps_unpin(struct intel_gt *gt)
{
intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
atomic_dec(>->rps.num_waiters);
}
static int perf_request_latency(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_engine_cs *engine;
struct pm_qos_request qos;
int err = 0;
if (GRAPHICS_VER(i915) < 8) /* per-engine CS timestamp, semaphores */
return 0;
cpu_latency_qos_add_request(&qos, 0); /* disable cstates */
for_each_uabi_engine(engine, i915) {
struct intel_context *ce;
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
goto out;
}
err = intel_context_pin(ce);
if (err) {
intel_context_put(ce);
goto out;
}
st_engine_heartbeat_disable(engine);
rps_pin(engine->gt);
if (err == 0)
err = measure_semaphore_response(ce);
if (err == 0)
err = measure_idle_dispatch(ce);
if (err == 0)
err = measure_busy_dispatch(ce);
if (err == 0)
err = measure_inter_request(ce);
if (err == 0)
err = measure_context_switch(ce);
if (err == 0)
err = measure_preemption(ce);
if (err == 0)
err = measure_completion(ce);
rps_unpin(engine->gt);
st_engine_heartbeat_enable(engine);
intel_context_unpin(ce);
intel_context_put(ce);
if (err)
goto out;
}
out:
if (igt_flush_test(i915))
err = -EIO;
cpu_latency_qos_remove_request(&qos);
return err;
}
static int s_sync0(void *arg)
{
struct perf_series *ps = arg;
IGT_TIMEOUT(end_time);
unsigned int idx = 0;
int err = 0;
GEM_BUG_ON(!ps->nengines);
do {
struct i915_request *rq;
rq = i915_request_create(ps->ce[idx]);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
break;
}
i915_request_get(rq);
i915_request_add(rq);
if (i915_request_wait(rq, 0, HZ / 5) < 0)
err = -ETIME;
i915_request_put(rq);
if (err)
break;
if (++idx == ps->nengines)
idx = 0;
} while (!__igt_timeout(end_time, NULL));
return err;
}
static int s_sync1(void *arg)
{
struct perf_series *ps = arg;
struct i915_request *prev = NULL;
IGT_TIMEOUT(end_time);
unsigned int idx = 0;
int err = 0;
GEM_BUG_ON(!ps->nengines);
do {
struct i915_request *rq;
rq = i915_request_create(ps->ce[idx]);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
break;
}
i915_request_get(rq);
i915_request_add(rq);
if (prev && i915_request_wait(prev, 0, HZ / 5) < 0)
err = -ETIME;
i915_request_put(prev);
prev = rq;
if (err)
break;
if (++idx == ps->nengines)
idx = 0;
} while (!__igt_timeout(end_time, NULL));
i915_request_put(prev);
return err;
}
static int s_many(void *arg)
{
struct perf_series *ps = arg;
IGT_TIMEOUT(end_time);
unsigned int idx = 0;
GEM_BUG_ON(!ps->nengines);
do {
struct i915_request *rq;
rq = i915_request_create(ps->ce[idx]);
if (IS_ERR(rq))
return PTR_ERR(rq);
i915_request_add(rq);
if (++idx == ps->nengines)
idx = 0;
} while (!__igt_timeout(end_time, NULL));
return 0;
}
static int perf_series_engines(void *arg)
{
struct drm_i915_private *i915 = arg;
static int (* const func[])(void *arg) = {
s_sync0,
s_sync1,
s_many,
NULL,
};
const unsigned int nengines = num_uabi_engines(i915);
struct intel_engine_cs *engine;
int (* const *fn)(void *arg);
struct pm_qos_request qos;
struct perf_stats *stats;
struct perf_series *ps;
unsigned int idx;
int err = 0;
stats = kcalloc(nengines, sizeof(*stats), GFP_KERNEL);
if (!stats)
return -ENOMEM;
ps = kzalloc(struct_size(ps, ce, nengines), GFP_KERNEL);
if (!ps) {
kfree(stats);
return -ENOMEM;
}
cpu_latency_qos_add_request(&qos, 0); /* disable cstates */
ps->i915 = i915;
ps->nengines = nengines;
idx = 0;
for_each_uabi_engine(engine, i915) {
struct intel_context *ce;
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
goto out;
}
err = intel_context_pin(ce);
if (err) {
intel_context_put(ce);
goto out;
}
ps->ce[idx++] = ce;
}
GEM_BUG_ON(idx != ps->nengines);
for (fn = func; *fn && !err; fn++) {
char name[KSYM_NAME_LEN];
struct igt_live_test t;
snprintf(name, sizeof(name), "%ps", *fn);
err = igt_live_test_begin(&t, i915, __func__, name);
if (err)
break;
for (idx = 0; idx < nengines; idx++) {
struct perf_stats *p =
memset(&stats[idx], 0, sizeof(stats[idx]));
struct intel_context *ce = ps->ce[idx];
p->engine = ps->ce[idx]->engine;
intel_engine_pm_get(p->engine);
if (intel_engine_supports_stats(p->engine))
p->busy = intel_engine_get_busy_time(p->engine,
&p->time) + 1;
else
p->time = ktime_get();
p->runtime = -intel_context_get_total_runtime_ns(ce);
}
err = (*fn)(ps);
if (igt_live_test_end(&t))
err = -EIO;
for (idx = 0; idx < nengines; idx++) {
struct perf_stats *p = &stats[idx];
struct intel_context *ce = ps->ce[idx];
int integer, decimal;
u64 busy, dt, now;
if (p->busy)
p->busy = ktime_sub(intel_engine_get_busy_time(p->engine,
&now),
p->busy - 1);
else
now = ktime_get();
p->time = ktime_sub(now, p->time);
err = switch_to_kernel_sync(ce, err);
p->runtime += intel_context_get_total_runtime_ns(ce);
intel_engine_pm_put(p->engine);
busy = 100 * ktime_to_ns(p->busy);
dt = ktime_to_ns(p->time);
if (dt) {
integer = div64_u64(busy, dt);
busy -= integer * dt;
decimal = div64_u64(100 * busy, dt);
} else {
integer = 0;
decimal = 0;
}
pr_info("%s %5s: { seqno:%d, busy:%d.%02d%%, runtime:%lldms, walltime:%lldms }\n",
name, p->engine->name, ce->timeline->seqno,
integer, decimal,
div_u64(p->runtime, 1000 * 1000),
div_u64(ktime_to_ns(p->time), 1000 * 1000));
}
}
out:
for (idx = 0; idx < nengines; idx++) {
if (IS_ERR_OR_NULL(ps->ce[idx]))
break;
intel_context_unpin(ps->ce[idx]);
intel_context_put(ps->ce[idx]);
}
kfree(ps);
cpu_latency_qos_remove_request(&qos);
kfree(stats);
return err;
}
struct p_thread {
struct perf_stats p;
struct kthread_worker *worker;
struct kthread_work work;
struct intel_engine_cs *engine;
int result;
};
static void p_sync0(struct kthread_work *work)
{
struct p_thread *thread = container_of(work, typeof(*thread), work);
struct perf_stats *p = &thread->p;
struct intel_engine_cs *engine = p->engine;
struct intel_context *ce;
IGT_TIMEOUT(end_time);
unsigned long count;
bool busy;
int err = 0;
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
thread->result = PTR_ERR(ce);
return;
}
err = intel_context_pin(ce);
if (err) {
intel_context_put(ce);
thread->result = err;
return;
}
if (intel_engine_supports_stats(engine)) {
p->busy = intel_engine_get_busy_time(engine, &p->time);
busy = true;
} else {
p->time = ktime_get();
busy = false;
}
count = 0;
do {
struct i915_request *rq;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
break;
}
i915_request_get(rq);
i915_request_add(rq);
err = 0;
if (i915_request_wait(rq, 0, HZ) < 0)
err = -ETIME;
i915_request_put(rq);
if (err)
break;
count++;
} while (!__igt_timeout(end_time, NULL));
if (busy) {
ktime_t now;
p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now),
p->busy);
p->time = ktime_sub(now, p->time);
} else {
p->time = ktime_sub(ktime_get(), p->time);
}
err = switch_to_kernel_sync(ce, err);
p->runtime = intel_context_get_total_runtime_ns(ce);
p->count = count;
intel_context_unpin(ce);
intel_context_put(ce);
thread->result = err;
}
static void p_sync1(struct kthread_work *work)
{
struct p_thread *thread = container_of(work, typeof(*thread), work);
struct perf_stats *p = &thread->p;
struct intel_engine_cs *engine = p->engine;
struct i915_request *prev = NULL;
struct intel_context *ce;
IGT_TIMEOUT(end_time);
unsigned long count;
bool busy;
int err = 0;
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
thread->result = PTR_ERR(ce);
return;
}
err = intel_context_pin(ce);
if (err) {
intel_context_put(ce);
thread->result = err;
return;
}
if (intel_engine_supports_stats(engine)) {
p->busy = intel_engine_get_busy_time(engine, &p->time);
busy = true;
} else {
p->time = ktime_get();
busy = false;
}
count = 0;
do {
struct i915_request *rq;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
break;
}
i915_request_get(rq);
i915_request_add(rq);
err = 0;
if (prev && i915_request_wait(prev, 0, HZ) < 0)
err = -ETIME;
i915_request_put(prev);
prev = rq;
if (err)
break;
count++;
} while (!__igt_timeout(end_time, NULL));
i915_request_put(prev);
if (busy) {
ktime_t now;
p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now),
p->busy);
p->time = ktime_sub(now, p->time);
} else {
p->time = ktime_sub(ktime_get(), p->time);
}
err = switch_to_kernel_sync(ce, err);
p->runtime = intel_context_get_total_runtime_ns(ce);
p->count = count;
intel_context_unpin(ce);
intel_context_put(ce);
thread->result = err;
}
static void p_many(struct kthread_work *work)
{
struct p_thread *thread = container_of(work, typeof(*thread), work);
struct perf_stats *p = &thread->p;
struct intel_engine_cs *engine = p->engine;
struct intel_context *ce;
IGT_TIMEOUT(end_time);
unsigned long count;
int err = 0;
bool busy;
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
thread->result = PTR_ERR(ce);
return;
}
err = intel_context_pin(ce);
if (err) {
intel_context_put(ce);
thread->result = err;
return;
}
if (intel_engine_supports_stats(engine)) {
p->busy = intel_engine_get_busy_time(engine, &p->time);
busy = true;
} else {
p->time = ktime_get();
busy = false;
}
count = 0;
do {
struct i915_request *rq;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
break;
}
i915_request_add(rq);
count++;
} while (!__igt_timeout(end_time, NULL));
if (busy) {
ktime_t now;
p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now),
p->busy);
p->time = ktime_sub(now, p->time);
} else {
p->time = ktime_sub(ktime_get(), p->time);
}
err = switch_to_kernel_sync(ce, err);
p->runtime = intel_context_get_total_runtime_ns(ce);
p->count = count;
intel_context_unpin(ce);
intel_context_put(ce);
thread->result = err;
}
static int perf_parallel_engines(void *arg)
{
struct drm_i915_private *i915 = arg;
static void (* const func[])(struct kthread_work *) = {
p_sync0,
p_sync1,
p_many,
NULL,
};
const unsigned int nengines = num_uabi_engines(i915);
void (* const *fn)(struct kthread_work *);
struct intel_engine_cs *engine;
struct pm_qos_request qos;
struct p_thread *engines;
int err = 0;
engines = kcalloc(nengines, sizeof(*engines), GFP_KERNEL);
if (!engines)
return -ENOMEM;
cpu_latency_qos_add_request(&qos, 0);
for (fn = func; *fn; fn++) {
char name[KSYM_NAME_LEN];
struct igt_live_test t;
unsigned int idx;
snprintf(name, sizeof(name), "%ps", *fn);
err = igt_live_test_begin(&t, i915, __func__, name);
if (err)
break;
atomic_set(&i915->selftest.counter, nengines);
idx = 0;
for_each_uabi_engine(engine, i915) {
struct kthread_worker *worker;
intel_engine_pm_get(engine);
memset(&engines[idx].p, 0, sizeof(engines[idx].p));
worker = kthread_create_worker(0, "igt:%s",
engine->name);
if (IS_ERR(worker)) {
err = PTR_ERR(worker);
intel_engine_pm_put(engine);
break;
}
engines[idx].worker = worker;
engines[idx].result = 0;
engines[idx].p.engine = engine;
engines[idx].engine = engine;
kthread_init_work(&engines[idx].work, *fn);
kthread_queue_work(worker, &engines[idx].work);
idx++;
}
idx = 0;
for_each_uabi_engine(engine, i915) {
int status;
if (!engines[idx].worker)
break;
kthread_flush_work(&engines[idx].work);
status = READ_ONCE(engines[idx].result);
if (status && !err)
err = status;
intel_engine_pm_put(engine);
kthread_destroy_worker(engines[idx].worker);
idx++;
}
if (igt_live_test_end(&t))
err = -EIO;
if (err)
break;
idx = 0;
for_each_uabi_engine(engine, i915) {
struct perf_stats *p = &engines[idx].p;
u64 busy = 100 * ktime_to_ns(p->busy);
u64 dt = ktime_to_ns(p->time);
int integer, decimal;
if (dt) {
integer = div64_u64(busy, dt);
busy -= integer * dt;
decimal = div64_u64(100 * busy, dt);
} else {
integer = 0;
decimal = 0;
}
GEM_BUG_ON(engine != p->engine);
pr_info("%s %5s: { count:%lu, busy:%d.%02d%%, runtime:%lldms, walltime:%lldms }\n",
name, engine->name, p->count, integer, decimal,
div_u64(p->runtime, 1000 * 1000),
div_u64(ktime_to_ns(p->time), 1000 * 1000));
idx++;
}
}
cpu_latency_qos_remove_request(&qos);
kfree(engines);
return err;
}
int i915_request_perf_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(perf_request_latency),
SUBTEST(perf_series_engines),
SUBTEST(perf_parallel_engines),
};
if (intel_gt_is_wedged(to_gt(i915)))
return 0;
return i915_subtests(tests, i915);
}