// SPDX-License-Identifier: MIT
/*
* Copyright © 2014-2019 Intel Corporation
*/
#include <linux/debugfs.h>
#include <linux/string_helpers.h>
#include "gt/intel_gt.h"
#include "i915_drv.h"
#include "i915_irq.h"
#include "i915_memcpy.h"
#include "intel_guc_capture.h"
#include "intel_guc_log.h"
#include "intel_guc_print.h"
#if defined(CONFIG_DRM_I915_DEBUG_GUC)
#define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_2M
#define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_16M
#define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M
#elif defined(CONFIG_DRM_I915_DEBUG_GEM)
#define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_1M
#define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_2M
#define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M
#else
#define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_8K
#define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_64K
#define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M
#endif
static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log);
struct guc_log_section {
u32 max;
u32 flag;
u32 default_val;
const char *name;
};
static void _guc_log_init_sizes(struct intel_guc_log *log)
{
struct intel_guc *guc = log_to_guc(log);
static const struct guc_log_section sections[GUC_LOG_SECTIONS_LIMIT] = {
{
GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT,
GUC_LOG_LOG_ALLOC_UNITS,
GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE,
"crash dump"
},
{
GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT,
GUC_LOG_LOG_ALLOC_UNITS,
GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE,
"debug",
},
{
GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT,
GUC_LOG_CAPTURE_ALLOC_UNITS,
GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE,
"capture",
}
};
int i;
for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++)
log->sizes[i].bytes = sections[i].default_val;
/* If debug size > 1MB then bump default crash size to keep the same units */
if (log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes >= SZ_1M &&
GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE < SZ_1M)
log->sizes[GUC_LOG_SECTIONS_CRASH].bytes = SZ_1M;
/* Prepare the GuC API structure fields: */
for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++) {
/* Convert to correct units */
if ((log->sizes[i].bytes % SZ_1M) == 0) {
log->sizes[i].units = SZ_1M;
log->sizes[i].flag = sections[i].flag;
} else {
log->sizes[i].units = SZ_4K;
log->sizes[i].flag = 0;
}
if (!IS_ALIGNED(log->sizes[i].bytes, log->sizes[i].units))
guc_err(guc, "Mis-aligned log %s size: 0x%X vs 0x%X!\n",
sections[i].name, log->sizes[i].bytes, log->sizes[i].units);
log->sizes[i].count = log->sizes[i].bytes / log->sizes[i].units;
if (!log->sizes[i].count) {
guc_err(guc, "Zero log %s size!\n", sections[i].name);
} else {
/* Size is +1 unit */
log->sizes[i].count--;
}
/* Clip to field size */
if (log->sizes[i].count > sections[i].max) {
guc_err(guc, "log %s size too large: %d vs %d!\n",
sections[i].name, log->sizes[i].count + 1, sections[i].max + 1);
log->sizes[i].count = sections[i].max;
}
}
if (log->sizes[GUC_LOG_SECTIONS_CRASH].units != log->sizes[GUC_LOG_SECTIONS_DEBUG].units) {
guc_err(guc, "Unit mismatch for crash and debug sections: %d vs %d!\n",
log->sizes[GUC_LOG_SECTIONS_CRASH].units,
log->sizes[GUC_LOG_SECTIONS_DEBUG].units);
log->sizes[GUC_LOG_SECTIONS_CRASH].units = log->sizes[GUC_LOG_SECTIONS_DEBUG].units;
log->sizes[GUC_LOG_SECTIONS_CRASH].count = 0;
}
log->sizes_initialised = true;
}
static void guc_log_init_sizes(struct intel_guc_log *log)
{
if (log->sizes_initialised)
return;
_guc_log_init_sizes(log);
}
static u32 intel_guc_log_section_size_crash(struct intel_guc_log *log)
{
guc_log_init_sizes(log);
return log->sizes[GUC_LOG_SECTIONS_CRASH].bytes;
}
static u32 intel_guc_log_section_size_debug(struct intel_guc_log *log)
{
guc_log_init_sizes(log);
return log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes;
}
u32 intel_guc_log_section_size_capture(struct intel_guc_log *log)
{
guc_log_init_sizes(log);
return log->sizes[GUC_LOG_SECTIONS_CAPTURE].bytes;
}
static u32 intel_guc_log_size(struct intel_guc_log *log)
{
/*
* GuC Log buffer Layout:
*
* NB: Ordering must follow "enum guc_log_buffer_type".
*
* +===============================+ 00B
* | Debug state header |
* +-------------------------------+ 32B
* | Crash dump state header |
* +-------------------------------+ 64B
* | Capture state header |
* +-------------------------------+ 96B
* | |
* +===============================+ PAGE_SIZE (4KB)
* | Debug logs |
* +===============================+ + DEBUG_SIZE
* | Crash Dump logs |
* +===============================+ + CRASH_SIZE
* | Capture logs |
* +===============================+ + CAPTURE_SIZE
*/
return PAGE_SIZE +
intel_guc_log_section_size_crash(log) +
intel_guc_log_section_size_debug(log) +
intel_guc_log_section_size_capture(log);
}
/**
* DOC: GuC firmware log
*
* Firmware log is enabled by setting i915.guc_log_level to the positive level.
* Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
* i915_guc_load_status will print out firmware loading status and scratch
* registers value.
*/
static int guc_action_flush_log_complete(struct intel_guc *guc)
{
u32 action[] = {
INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE,
GUC_DEBUG_LOG_BUFFER
};
return intel_guc_send_nb(guc, action, ARRAY_SIZE(action), 0);
}
static int guc_action_flush_log(struct intel_guc *guc)
{
u32 action[] = {
INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
0
};
return intel_guc_send(guc, action, ARRAY_SIZE(action));
}
static int guc_action_control_log(struct intel_guc *guc, bool enable,
bool default_logging, u32 verbosity)
{
u32 action[] = {
INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
(enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) |
(verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) |
(default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0)
};
GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX);
return intel_guc_send(guc, action, ARRAY_SIZE(action));
}
/*
* Sub buffer switch callback. Called whenever relay has to switch to a new
* sub buffer, relay stays on the same sub buffer if 0 is returned.
*/
static int subbuf_start_callback(struct rchan_buf *buf,
void *subbuf,
void *prev_subbuf,
size_t prev_padding)
{
/*
* Use no-overwrite mode by default, where relay will stop accepting
* new data if there are no empty sub buffers left.
* There is no strict synchronization enforced by relay between Consumer
* and Producer. In overwrite mode, there is a possibility of getting
* inconsistent/garbled data, the producer could be writing on to the
* same sub buffer from which Consumer is reading. This can't be avoided
* unless Consumer is fast enough and can always run in tandem with
* Producer.
*/
if (relay_buf_full(buf))
return 0;
return 1;
}
/*
* file_create() callback. Creates relay file in debugfs.
*/
static struct dentry *create_buf_file_callback(const char *filename,
struct dentry *parent,
umode_t mode,
struct rchan_buf *buf,
int *is_global)
{
struct dentry *buf_file;
/*
* This to enable the use of a single buffer for the relay channel and
* correspondingly have a single file exposed to User, through which
* it can collect the logs in order without any post-processing.
* Need to set 'is_global' even if parent is NULL for early logging.
*/
*is_global = 1;
if (!parent)
return NULL;
buf_file = debugfs_create_file(filename, mode,
parent, buf, &relay_file_operations);
if (IS_ERR(buf_file))
return NULL;
return buf_file;
}
/*
* file_remove() default callback. Removes relay file in debugfs.
*/
static int remove_buf_file_callback(struct dentry *dentry)
{
debugfs_remove(dentry);
return 0;
}
/* relay channel callbacks */
static const struct rchan_callbacks relay_callbacks = {
.subbuf_start = subbuf_start_callback,
.create_buf_file = create_buf_file_callback,
.remove_buf_file = remove_buf_file_callback,
};
static void guc_move_to_next_buf(struct intel_guc_log *log)
{
/*
* Make sure the updates made in the sub buffer are visible when
* Consumer sees the following update to offset inside the sub buffer.
*/
smp_wmb();
/* All data has been written, so now move the offset of sub buffer. */
relay_reserve(log->relay.channel, log->vma->obj->base.size -
intel_guc_log_section_size_capture(log));
/* Switch to the next sub buffer */
relay_flush(log->relay.channel);
}
static void *guc_get_write_buffer(struct intel_guc_log *log)
{
/*
* Just get the base address of a new sub buffer and copy data into it
* ourselves. NULL will be returned in no-overwrite mode, if all sub
* buffers are full. Could have used the relay_write() to indirectly
* copy the data, but that would have been bit convoluted, as we need to
* write to only certain locations inside a sub buffer which cannot be
* done without using relay_reserve() along with relay_write(). So its
* better to use relay_reserve() alone.
*/
return relay_reserve(log->relay.channel, 0);
}
bool intel_guc_check_log_buf_overflow(struct intel_guc_log *log,
enum guc_log_buffer_type type,
unsigned int full_cnt)
{
unsigned int prev_full_cnt = log->stats[type].sampled_overflow;
bool overflow = false;
if (full_cnt != prev_full_cnt) {
overflow = true;
log->stats[type].overflow = full_cnt;
log->stats[type].sampled_overflow += full_cnt - prev_full_cnt;
if (full_cnt < prev_full_cnt) {
/* buffer_full_cnt is a 4 bit counter */
log->stats[type].sampled_overflow += 16;
}
guc_notice_ratelimited(log_to_guc(log), "log buffer overflow\n");
}
return overflow;
}
unsigned int intel_guc_get_log_buffer_size(struct intel_guc_log *log,
enum guc_log_buffer_type type)
{
switch (type) {
case GUC_DEBUG_LOG_BUFFER:
return intel_guc_log_section_size_debug(log);
case GUC_CRASH_DUMP_LOG_BUFFER:
return intel_guc_log_section_size_crash(log);
case GUC_CAPTURE_LOG_BUFFER:
return intel_guc_log_section_size_capture(log);
default:
MISSING_CASE(type);
}
return 0;
}
size_t intel_guc_get_log_buffer_offset(struct intel_guc_log *log,
enum guc_log_buffer_type type)
{
enum guc_log_buffer_type i;
size_t offset = PAGE_SIZE;/* for the log_buffer_states */
for (i = GUC_DEBUG_LOG_BUFFER; i < GUC_MAX_LOG_BUFFER; ++i) {
if (i == type)
break;
offset += intel_guc_get_log_buffer_size(log, i);
}
return offset;
}
static void _guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log)
{
struct intel_guc *guc = log_to_guc(log);
unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
struct guc_log_buffer_state log_buf_state_local;
enum guc_log_buffer_type type;
void *src_data, *dst_data;
bool new_overflow;
mutex_lock(&log->relay.lock);
if (guc_WARN_ON(guc, !intel_guc_log_relay_created(log)))
goto out_unlock;
/* Get the pointer to shared GuC log buffer */
src_data = log->buf_addr;
log_buf_state = src_data;
/* Get the pointer to local buffer to store the logs */
log_buf_snapshot_state = dst_data = guc_get_write_buffer(log);
if (unlikely(!log_buf_snapshot_state)) {
/*
* Used rate limited to avoid deluge of messages, logs might be
* getting consumed by User at a slow rate.
*/
guc_err_ratelimited(guc, "no sub-buffer to copy general logs\n");
log->relay.full_count++;
goto out_unlock;
}
/* Actual logs are present from the 2nd page */
src_data += PAGE_SIZE;
dst_data += PAGE_SIZE;
/* For relay logging, we exclude error state capture */
for (type = GUC_DEBUG_LOG_BUFFER; type <= GUC_CRASH_DUMP_LOG_BUFFER; type++) {
/*
* Make a copy of the state structure, inside GuC log buffer
* (which is uncached mapped), on the stack to avoid reading
* from it multiple times.
*/
memcpy(&log_buf_state_local, log_buf_state,
sizeof(struct guc_log_buffer_state));
buffer_size = intel_guc_get_log_buffer_size(log, type);
read_offset = log_buf_state_local.read_ptr;
write_offset = log_buf_state_local.sampled_write_ptr;
full_cnt = log_buf_state_local.buffer_full_cnt;
/* Bookkeeping stuff */
log->stats[type].flush += log_buf_state_local.flush_to_file;
new_overflow = intel_guc_check_log_buf_overflow(log, type, full_cnt);
/* Update the state of shared log buffer */
log_buf_state->read_ptr = write_offset;
log_buf_state->flush_to_file = 0;
log_buf_state++;
/* First copy the state structure in snapshot buffer */
memcpy(log_buf_snapshot_state, &log_buf_state_local,
sizeof(struct guc_log_buffer_state));
/*
* The write pointer could have been updated by GuC firmware,
* after sending the flush interrupt to Host, for consistency
* set write pointer value to same value of sampled_write_ptr
* in the snapshot buffer.
*/
log_buf_snapshot_state->write_ptr = write_offset;
log_buf_snapshot_state++;
/* Now copy the actual logs. */
if (unlikely(new_overflow)) {
/* copy the whole buffer in case of overflow */
read_offset = 0;
write_offset = buffer_size;
} else if (unlikely((read_offset > buffer_size) ||
(write_offset > buffer_size))) {
guc_err(guc, "invalid log buffer state\n");
/* copy whole buffer as offsets are unreliable */
read_offset = 0;
write_offset = buffer_size;
}
/* Just copy the newly written data */
if (read_offset > write_offset) {
i915_memcpy_from_wc(dst_data, src_data, write_offset);
bytes_to_copy = buffer_size - read_offset;
} else {
bytes_to_copy = write_offset - read_offset;
}
i915_memcpy_from_wc(dst_data + read_offset,
src_data + read_offset, bytes_to_copy);
src_data += buffer_size;
dst_data += buffer_size;
}
guc_move_to_next_buf(log);
out_unlock:
mutex_unlock(&log->relay.lock);
}
static void copy_debug_logs_work(struct work_struct *work)
{
struct intel_guc_log *log =
container_of(work, struct intel_guc_log, relay.flush_work);
guc_log_copy_debuglogs_for_relay(log);
}
static int guc_log_relay_map(struct intel_guc_log *log)
{
lockdep_assert_held(&log->relay.lock);
if (!log->vma || !log->buf_addr)
return -ENODEV;
/*
* WC vmalloc mapping of log buffer pages was done at
* GuC Log Init time, but lets keep a ref for book-keeping
*/
i915_gem_object_get(log->vma->obj);
log->relay.buf_in_use = true;
return 0;
}
static void guc_log_relay_unmap(struct intel_guc_log *log)
{
lockdep_assert_held(&log->relay.lock);
i915_gem_object_put(log->vma->obj);
log->relay.buf_in_use = false;
}
void intel_guc_log_init_early(struct intel_guc_log *log)
{
mutex_init(&log->relay.lock);
INIT_WORK(&log->relay.flush_work, copy_debug_logs_work);
log->relay.started = false;
}
static int guc_log_relay_create(struct intel_guc_log *log)
{
struct intel_guc *guc = log_to_guc(log);
struct drm_i915_private *i915 = guc_to_i915(guc);
struct rchan *guc_log_relay_chan;
size_t n_subbufs, subbuf_size;
int ret;
lockdep_assert_held(&log->relay.lock);
GEM_BUG_ON(!log->vma);
/*
* Keep the size of sub buffers same as shared log buffer
* but GuC log-events excludes the error-state-capture logs
*/
subbuf_size = log->vma->size - intel_guc_log_section_size_capture(log);
/*
* Store up to 8 snapshots, which is large enough to buffer sufficient
* boot time logs and provides enough leeway to User, in terms of
* latency, for consuming the logs from relay. Also doesn't take
* up too much memory.
*/
n_subbufs = 8;
if (!guc->dbgfs_node)
return -ENOENT;
guc_log_relay_chan = relay_open("guc_log",
guc->dbgfs_node,
subbuf_size, n_subbufs,
&relay_callbacks, i915);
if (!guc_log_relay_chan) {
guc_err(guc, "Couldn't create relay channel for logging\n");
ret = -ENOMEM;
return ret;
}
GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
log->relay.channel = guc_log_relay_chan;
return 0;
}
static void guc_log_relay_destroy(struct intel_guc_log *log)
{
lockdep_assert_held(&log->relay.lock);
relay_close(log->relay.channel);
log->relay.channel = NULL;
}
static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log)
{
struct intel_guc *guc = log_to_guc(log);
struct drm_i915_private *i915 = guc_to_i915(guc);
intel_wakeref_t wakeref;
_guc_log_copy_debuglogs_for_relay(log);
/*
* Generally device is expected to be active only at this
* time, so get/put should be really quick.
*/
with_intel_runtime_pm(&i915->runtime_pm, wakeref)
guc_action_flush_log_complete(guc);
}
static u32 __get_default_log_level(struct intel_guc_log *log)
{
struct intel_guc *guc = log_to_guc(log);
struct drm_i915_private *i915 = guc_to_i915(guc);
/* A negative value means "use platform/config default" */
if (i915->params.guc_log_level < 0) {
return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) ||
IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ?
GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_NON_VERBOSE;
}
if (i915->params.guc_log_level > GUC_LOG_LEVEL_MAX) {
guc_warn(guc, "Log verbosity param out of range: %d > %d!\n",
i915->params.guc_log_level, GUC_LOG_LEVEL_MAX);
return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) ||
IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ?
GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_DISABLED;
}
GEM_BUG_ON(i915->params.guc_log_level < GUC_LOG_LEVEL_DISABLED);
GEM_BUG_ON(i915->params.guc_log_level > GUC_LOG_LEVEL_MAX);
return i915->params.guc_log_level;
}
int intel_guc_log_create(struct intel_guc_log *log)
{
struct intel_guc *guc = log_to_guc(log);
struct i915_vma *vma;
void *vaddr;
u32 guc_log_size;
int ret;
GEM_BUG_ON(log->vma);
guc_log_size = intel_guc_log_size(log);
vma = intel_guc_allocate_vma(guc, guc_log_size);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err;
}
log->vma = vma;
/*
* Create a WC (Uncached for read) vmalloc mapping up front immediate access to
* data from memory during critical events such as error capture
*/
vaddr = i915_gem_object_pin_map_unlocked(log->vma->obj, I915_MAP_WC);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
i915_vma_unpin_and_release(&log->vma, 0);
goto err;
}
log->buf_addr = vaddr;
log->level = __get_default_log_level(log);
guc_dbg(guc, "guc_log_level=%d (%s, verbose:%s, verbosity:%d)\n",
log->level, str_enabled_disabled(log->level),
str_yes_no(GUC_LOG_LEVEL_IS_VERBOSE(log->level)),
GUC_LOG_LEVEL_TO_VERBOSITY(log->level));
return 0;
err:
guc_err(guc, "Failed to allocate or map log buffer %pe\n", ERR_PTR(ret));
return ret;
}
void intel_guc_log_destroy(struct intel_guc_log *log)
{
log->buf_addr = NULL;
i915_vma_unpin_and_release(&log->vma, I915_VMA_RELEASE_MAP);
}
int intel_guc_log_set_level(struct intel_guc_log *log, u32 level)
{
struct intel_guc *guc = log_to_guc(log);
struct drm_i915_private *i915 = guc_to_i915(guc);
intel_wakeref_t wakeref;
int ret = 0;
BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0);
GEM_BUG_ON(!log->vma);
/*
* GuC is recognizing log levels starting from 0 to max, we're using 0
* as indication that logging should be disabled.
*/
if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX)
return -EINVAL;
mutex_lock(&i915->drm.struct_mutex);
if (log->level == level)
goto out_unlock;
with_intel_runtime_pm(&i915->runtime_pm, wakeref)
ret = guc_action_control_log(guc,
GUC_LOG_LEVEL_IS_VERBOSE(level),
GUC_LOG_LEVEL_IS_ENABLED(level),
GUC_LOG_LEVEL_TO_VERBOSITY(level));
if (ret) {
guc_dbg(guc, "guc_log_control action failed %pe\n", ERR_PTR(ret));
goto out_unlock;
}
log->level = level;
out_unlock:
mutex_unlock(&i915->drm.struct_mutex);
return ret;
}
bool intel_guc_log_relay_created(const struct intel_guc_log *log)
{
return log->buf_addr;
}
int intel_guc_log_relay_open(struct intel_guc_log *log)
{
int ret;
if (!log->vma)
return -ENODEV;
mutex_lock(&log->relay.lock);
if (intel_guc_log_relay_created(log)) {
ret = -EEXIST;
goto out_unlock;
}
/*
* We require SSE 4.1 for fast reads from the GuC log buffer and
* it should be present on the chipsets supporting GuC based
* submissions.
*/
if (!i915_has_memcpy_from_wc()) {
ret = -ENXIO;
goto out_unlock;
}
ret = guc_log_relay_create(log);
if (ret)
goto out_unlock;
ret = guc_log_relay_map(log);
if (ret)
goto out_relay;
mutex_unlock(&log->relay.lock);
return 0;
out_relay:
guc_log_relay_destroy(log);
out_unlock:
mutex_unlock(&log->relay.lock);
return ret;
}
int intel_guc_log_relay_start(struct intel_guc_log *log)
{
if (log->relay.started)
return -EEXIST;
/*
* When GuC is logging without us relaying to userspace, we're ignoring
* the flush notification. This means that we need to unconditionally
* flush on relay enabling, since GuC only notifies us once.
*/
queue_work(system_highpri_wq, &log->relay.flush_work);
log->relay.started = true;
return 0;
}
void intel_guc_log_relay_flush(struct intel_guc_log *log)
{
struct intel_guc *guc = log_to_guc(log);
intel_wakeref_t wakeref;
if (!log->relay.started)
return;
/*
* Before initiating the forceful flush, wait for any pending/ongoing
* flush to complete otherwise forceful flush may not actually happen.
*/
flush_work(&log->relay.flush_work);
with_intel_runtime_pm(guc_to_gt(guc)->uncore->rpm, wakeref)
guc_action_flush_log(guc);
/* GuC would have updated log buffer by now, so copy it */
guc_log_copy_debuglogs_for_relay(log);
}
/*
* Stops the relay log. Called from intel_guc_log_relay_close(), so no
* possibility of race with start/flush since relay_write cannot race
* relay_close.
*/
static void guc_log_relay_stop(struct intel_guc_log *log)
{
struct intel_guc *guc = log_to_guc(log);
struct drm_i915_private *i915 = guc_to_i915(guc);
if (!log->relay.started)
return;
intel_synchronize_irq(i915);
flush_work(&log->relay.flush_work);
log->relay.started = false;
}
void intel_guc_log_relay_close(struct intel_guc_log *log)
{
guc_log_relay_stop(log);
mutex_lock(&log->relay.lock);
GEM_BUG_ON(!intel_guc_log_relay_created(log));
guc_log_relay_unmap(log);
guc_log_relay_destroy(log);
mutex_unlock(&log->relay.lock);
}
void intel_guc_log_handle_flush_event(struct intel_guc_log *log)
{
if (log->relay.started)
queue_work(system_highpri_wq, &log->relay.flush_work);
}
static const char *
stringify_guc_log_type(enum guc_log_buffer_type type)
{
switch (type) {
case GUC_DEBUG_LOG_BUFFER:
return "DEBUG";
case GUC_CRASH_DUMP_LOG_BUFFER:
return "CRASH";
case GUC_CAPTURE_LOG_BUFFER:
return "CAPTURE";
default:
MISSING_CASE(type);
}
return "";
}
/**
* intel_guc_log_info - dump information about GuC log relay
* @log: the GuC log
* @p: the &drm_printer
*
* Pretty printer for GuC log info
*/
void intel_guc_log_info(struct intel_guc_log *log, struct drm_printer *p)
{
enum guc_log_buffer_type type;
if (!intel_guc_log_relay_created(log)) {
drm_puts(p, "GuC log relay not created\n");
return;
}
drm_puts(p, "GuC logging stats:\n");
drm_printf(p, "\tRelay full count: %u\n", log->relay.full_count);
for (type = GUC_DEBUG_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
drm_printf(p, "\t%s:\tflush count %10u, overflow count %10u\n",
stringify_guc_log_type(type),
log->stats[type].flush,
log->stats[type].sampled_overflow);
}
}
/**
* intel_guc_log_dump - dump the contents of the GuC log
* @log: the GuC log
* @p: the &drm_printer
* @dump_load_err: dump the log saved on GuC load error
*
* Pretty printer for the GuC log
*/
int intel_guc_log_dump(struct intel_guc_log *log, struct drm_printer *p,
bool dump_load_err)
{
struct intel_guc *guc = log_to_guc(log);
struct intel_uc *uc = container_of(guc, struct intel_uc, guc);
struct drm_i915_gem_object *obj = NULL;
void *map;
u32 *page;
int i, j;
if (!intel_guc_is_supported(guc))
return -ENODEV;
if (dump_load_err)
obj = uc->load_err_log;
else if (guc->log.vma)
obj = guc->log.vma->obj;
if (!obj)
return 0;
page = (u32 *)__get_free_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
intel_guc_dump_time_info(guc, p);
map = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC);
if (IS_ERR(map)) {
guc_dbg(guc, "Failed to pin log object: %pe\n", map);
drm_puts(p, "(log data unaccessible)\n");
free_page((unsigned long)page);
return PTR_ERR(map);
}
for (i = 0; i < obj->base.size; i += PAGE_SIZE) {
if (!i915_memcpy_from_wc(page, map + i, PAGE_SIZE))
memcpy(page, map + i, PAGE_SIZE);
for (j = 0; j < PAGE_SIZE / sizeof(u32); j += 4)
drm_printf(p, "0x%08x 0x%08x 0x%08x 0x%08x\n",
*(page + j + 0), *(page + j + 1),
*(page + j + 2), *(page + j + 3));
}
drm_puts(p, "\n");
i915_gem_object_unpin_map(obj);
free_page((unsigned long)page);
return 0;
}