// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "i915_drv.h"
#include "i915_irq.h"
#include "i915_reg.h"
#include "intel_backlight_regs.h"
#include "intel_combo_phy.h"
#include "intel_combo_phy_regs.h"
#include "intel_crt.h"
#include "intel_de.h"
#include "intel_display_irq.h"
#include "intel_display_power_well.h"
#include "intel_display_types.h"
#include "intel_dkl_phy.h"
#include "intel_dkl_phy_regs.h"
#include "intel_dmc.h"
#include "intel_dmc_wl.h"
#include "intel_dp_aux_regs.h"
#include "intel_dpio_phy.h"
#include "intel_dpll.h"
#include "intel_hotplug.h"
#include "intel_pcode.h"
#include "intel_pps.h"
#include "intel_tc.h"
#include "intel_vga.h"
#include "skl_watermark.h"
#include "vlv_dpio_phy_regs.h"
#include "vlv_sideband.h"
#include "vlv_sideband_reg.h"
struct i915_power_well_regs {
i915_reg_t bios;
i915_reg_t driver;
i915_reg_t kvmr;
i915_reg_t debug;
};
struct i915_power_well_ops {
const struct i915_power_well_regs *regs;
/*
* Synchronize the well's hw state to match the current sw state, for
* example enable/disable it based on the current refcount. Called
* during driver init and resume time, possibly after first calling
* the enable/disable handlers.
*/
void (*sync_hw)(struct drm_i915_private *i915,
struct i915_power_well *power_well);
/*
* Enable the well and resources that depend on it (for example
* interrupts located on the well). Called after the 0->1 refcount
* transition.
*/
void (*enable)(struct drm_i915_private *i915,
struct i915_power_well *power_well);
/*
* Disable the well and resources that depend on it. Called after
* the 1->0 refcount transition.
*/
void (*disable)(struct drm_i915_private *i915,
struct i915_power_well *power_well);
/* Returns the hw enabled state. */
bool (*is_enabled)(struct drm_i915_private *i915,
struct i915_power_well *power_well);
};
static const struct i915_power_well_instance *
i915_power_well_instance(const struct i915_power_well *power_well)
{
return &power_well->desc->instances->list[power_well->instance_idx];
}
struct i915_power_well *
lookup_power_well(struct drm_i915_private *i915,
enum i915_power_well_id power_well_id)
{
struct i915_power_well *power_well;
for_each_power_well(i915, power_well)
if (i915_power_well_instance(power_well)->id == power_well_id)
return power_well;
/*
* It's not feasible to add error checking code to the callers since
* this condition really shouldn't happen and it doesn't even make sense
* to abort things like display initialization sequences. Just return
* the first power well and hope the WARN gets reported so we can fix
* our driver.
*/
drm_WARN(&i915->drm, 1,
"Power well %d not defined for this platform\n",
power_well_id);
return &i915->display.power.domains.power_wells[0];
}
void intel_power_well_enable(struct drm_i915_private *i915,
struct i915_power_well *power_well)
{
drm_dbg_kms(&i915->drm, "enabling %s\n", intel_power_well_name(power_well));
power_well->desc->ops->enable(i915, power_well);
power_well->hw_enabled = true;
}
void intel_power_well_disable(struct drm_i915_private *i915,
struct i915_power_well *power_well)
{
drm_dbg_kms(&i915->drm, "disabling %s\n", intel_power_well_name(power_well));
power_well->hw_enabled = false;
power_well->desc->ops->disable(i915, power_well);
}
void intel_power_well_sync_hw(struct drm_i915_private *i915,
struct i915_power_well *power_well)
{
power_well->desc->ops->sync_hw(i915, power_well);
power_well->hw_enabled =
power_well->desc->ops->is_enabled(i915, power_well);
}
void intel_power_well_get(struct drm_i915_private *i915,
struct i915_power_well *power_well)
{
if (!power_well->count++)
intel_power_well_enable(i915, power_well);
}
void intel_power_well_put(struct drm_i915_private *i915,
struct i915_power_well *power_well)
{
drm_WARN(&i915->drm, !power_well->count,
"Use count on power well %s is already zero",
i915_power_well_instance(power_well)->name);
if (!--power_well->count)
intel_power_well_disable(i915, power_well);
}
bool intel_power_well_is_enabled(struct drm_i915_private *i915,
struct i915_power_well *power_well)
{
return power_well->desc->ops->is_enabled(i915, power_well);
}
bool intel_power_well_is_enabled_cached(struct i915_power_well *power_well)
{
return power_well->hw_enabled;
}
bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
enum i915_power_well_id power_well_id)
{
struct i915_power_well *power_well;
power_well = lookup_power_well(dev_priv, power_well_id);
return intel_power_well_is_enabled(dev_priv, power_well);
}
bool intel_power_well_is_always_on(struct i915_power_well *power_well)
{
return power_well->desc->always_on;
}
const char *intel_power_well_name(struct i915_power_well *power_well)
{
return i915_power_well_instance(power_well)->name;
}
struct intel_power_domain_mask *intel_power_well_domains(struct i915_power_well *power_well)
{
return &power_well->domains;
}
int intel_power_well_refcount(struct i915_power_well *power_well)
{
return power_well->count;
}
/*
* Starting with Haswell, we have a "Power Down Well" that can be turned off
* when not needed anymore. We have 4 registers that can request the power well
* to be enabled, and it will only be disabled if none of the registers is
* requesting it to be enabled.
*/
static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv,
u8 irq_pipe_mask, bool has_vga)
{
if (has_vga)
intel_vga_reset_io_mem(dev_priv);
if (irq_pipe_mask)
gen8_irq_power_well_post_enable(dev_priv, irq_pipe_mask);
}
static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv,
u8 irq_pipe_mask)
{
if (irq_pipe_mask)
gen8_irq_power_well_pre_disable(dev_priv, irq_pipe_mask);
}
#define ICL_AUX_PW_TO_PHY(pw_idx) \
((pw_idx) - ICL_PW_CTL_IDX_AUX_A + PHY_A)
#define ICL_AUX_PW_TO_CH(pw_idx) \
((pw_idx) - ICL_PW_CTL_IDX_AUX_A + AUX_CH_A)
#define ICL_TBT_AUX_PW_TO_CH(pw_idx) \
((pw_idx) - ICL_PW_CTL_IDX_AUX_TBT1 + AUX_CH_C)
static enum aux_ch icl_aux_pw_to_ch(const struct i915_power_well *power_well)
{
int pw_idx = i915_power_well_instance(power_well)->hsw.idx;
return power_well->desc->is_tc_tbt ? ICL_TBT_AUX_PW_TO_CH(pw_idx) :
ICL_AUX_PW_TO_CH(pw_idx);
}
static struct intel_digital_port *
aux_ch_to_digital_port(struct drm_i915_private *dev_priv,
enum aux_ch aux_ch)
{
struct intel_encoder *encoder;
for_each_intel_encoder(&dev_priv->drm, encoder) {
struct intel_digital_port *dig_port;
/* We'll check the MST primary port */
if (encoder->type == INTEL_OUTPUT_DP_MST)
continue;
dig_port = enc_to_dig_port(encoder);
if (dig_port && dig_port->aux_ch == aux_ch)
return dig_port;
}
return NULL;
}
static enum phy icl_aux_pw_to_phy(struct drm_i915_private *i915,
const struct i915_power_well *power_well)
{
enum aux_ch aux_ch = icl_aux_pw_to_ch(power_well);
struct intel_digital_port *dig_port = aux_ch_to_digital_port(i915, aux_ch);
/*
* FIXME should we care about the (VBT defined) dig_port->aux_ch
* relationship or should this be purely defined by the hardware layout?
* Currently if the port doesn't appear in the VBT, or if it's declared
* as HDMI-only and routed to a combo PHY, the encoder either won't be
* present at all or it will not have an aux_ch assigned.
*/
return dig_port ? intel_encoder_to_phy(&dig_port->base) : PHY_NONE;
}
static void hsw_wait_for_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well,
bool timeout_expected)
{
const struct i915_power_well_regs *regs = power_well->desc->ops->regs;
int pw_idx = i915_power_well_instance(power_well)->hsw.idx;
int timeout = power_well->desc->enable_timeout ? : 1;
/*
* For some power wells we're not supposed to watch the status bit for
* an ack, but rather just wait a fixed amount of time and then
* proceed. This is only used on DG2.
*/
if (IS_DG2(dev_priv) && power_well->desc->fixed_enable_delay) {
usleep_range(600, 1200);
return;
}
/* Timeout for PW1:10 us, AUX:not specified, other PWs:20 us. */
if (intel_de_wait_for_set(dev_priv, regs->driver,
HSW_PWR_WELL_CTL_STATE(pw_idx), timeout)) {
drm_dbg_kms(&dev_priv->drm, "%s power well enable timeout\n",
intel_power_well_name(power_well));
drm_WARN_ON(&dev_priv->drm, !timeout_expected);
}
}
static u32 hsw_power_well_requesters(struct drm_i915_private *dev_priv,
const struct i915_power_well_regs *regs,
int pw_idx)
{
u32 req_mask = HSW_PWR_WELL_CTL_REQ(pw_idx);
u32 ret;
ret = intel_de_read(dev_priv, regs->bios) & req_mask ? 1 : 0;
ret |= intel_de_read(dev_priv, regs->driver) & req_mask ? 2 : 0;
if (regs->kvmr.reg)
ret |= intel_de_read(dev_priv, regs->kvmr) & req_mask ? 4 : 0;
ret |= intel_de_read(dev_priv, regs->debug) & req_mask ? 8 : 0;
return ret;
}
static void hsw_wait_for_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->ops->regs;
int pw_idx = i915_power_well_instance(power_well)->hsw.idx;
bool disabled;
u32 reqs;
/*
* Bspec doesn't require waiting for PWs to get disabled, but still do
* this for paranoia. The known cases where a PW will be forced on:
* - a KVMR request on any power well via the KVMR request register
* - a DMC request on PW1 and MISC_IO power wells via the BIOS and
* DEBUG request registers
* Skip the wait in case any of the request bits are set and print a
* diagnostic message.
*/
wait_for((disabled = !(intel_de_read(dev_priv, regs->driver) &
HSW_PWR_WELL_CTL_STATE(pw_idx))) ||
(reqs = hsw_power_well_requesters(dev_priv, regs, pw_idx)), 1);
if (disabled)
return;
drm_dbg_kms(&dev_priv->drm,
"%s forced on (bios:%d driver:%d kvmr:%d debug:%d)\n",
intel_power_well_name(power_well),
!!(reqs & 1), !!(reqs & 2), !!(reqs & 4), !!(reqs & 8));
}
static void gen9_wait_for_power_well_fuses(struct drm_i915_private *dev_priv,
enum skl_power_gate pg)
{
/* Timeout 5us for PG#0, for other PGs 1us */
drm_WARN_ON(&dev_priv->drm,
intel_de_wait_for_set(dev_priv, SKL_FUSE_STATUS,
SKL_FUSE_PG_DIST_STATUS(pg), 1));
}
static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->ops->regs;
int pw_idx = i915_power_well_instance(power_well)->hsw.idx;
if (power_well->desc->has_fuses) {
enum skl_power_gate pg;
pg = DISPLAY_VER(dev_priv) >= 11 ? ICL_PW_CTL_IDX_TO_PG(pw_idx) :
SKL_PW_CTL_IDX_TO_PG(pw_idx);
/* Wa_16013190616:adlp */
if (IS_ALDERLAKE_P(dev_priv) && pg == SKL_PG1)
intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1, 0, DISABLE_FLR_SRC);
/*
* For PW1 we have to wait both for the PW0/PG0 fuse state
* before enabling the power well and PW1/PG1's own fuse
* state after the enabling. For all other power wells with
* fuses we only have to wait for that PW/PG's fuse state
* after the enabling.
*/
if (pg == SKL_PG1)
gen9_wait_for_power_well_fuses(dev_priv, SKL_PG0);
}
intel_de_rmw(dev_priv, regs->driver, 0, HSW_PWR_WELL_CTL_REQ(pw_idx));
hsw_wait_for_power_well_enable(dev_priv, power_well, false);
if (power_well->desc->has_fuses) {
enum skl_power_gate pg;
pg = DISPLAY_VER(dev_priv) >= 11 ? ICL_PW_CTL_IDX_TO_PG(pw_idx) :
SKL_PW_CTL_IDX_TO_PG(pw_idx);
gen9_wait_for_power_well_fuses(dev_priv, pg);
}
hsw_power_well_post_enable(dev_priv,
power_well->desc->irq_pipe_mask,
power_well->desc->has_vga);
}
static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->ops->regs;
int pw_idx = i915_power_well_instance(power_well)->hsw.idx;
hsw_power_well_pre_disable(dev_priv,
power_well->desc->irq_pipe_mask);
intel_de_rmw(dev_priv, regs->driver, HSW_PWR_WELL_CTL_REQ(pw_idx), 0);
hsw_wait_for_power_well_disable(dev_priv, power_well);
}
static bool intel_aux_ch_is_edp(struct drm_i915_private *i915, enum aux_ch aux_ch)
{
struct intel_digital_port *dig_port = aux_ch_to_digital_port(i915, aux_ch);
return dig_port && dig_port->base.type == INTEL_OUTPUT_EDP;
}
static void
icl_combo_phy_aux_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->ops->regs;
int pw_idx = i915_power_well_instance(power_well)->hsw.idx;
drm_WARN_ON(&dev_priv->drm, !IS_ICELAKE(dev_priv));
intel_de_rmw(dev_priv, regs->driver, 0, HSW_PWR_WELL_CTL_REQ(pw_idx));
/*
* FIXME not sure if we should derive the PHY from the pw_idx, or
* from the VBT defined AUX_CH->DDI->PHY mapping.
*/
intel_de_rmw(dev_priv, ICL_PORT_CL_DW12(ICL_AUX_PW_TO_PHY(pw_idx)),
0, ICL_LANE_ENABLE_AUX);
hsw_wait_for_power_well_enable(dev_priv, power_well, false);
/* Display WA #1178: icl */
if (pw_idx >= ICL_PW_CTL_IDX_AUX_A && pw_idx <= ICL_PW_CTL_IDX_AUX_B &&
!intel_aux_ch_is_edp(dev_priv, ICL_AUX_PW_TO_CH(pw_idx)))
intel_de_rmw(dev_priv, ICL_PORT_TX_DW6_AUX(ICL_AUX_PW_TO_PHY(pw_idx)),
0, O_FUNC_OVRD_EN | O_LDO_BYPASS_CRI);
}
static void
icl_combo_phy_aux_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->ops->regs;
int pw_idx = i915_power_well_instance(power_well)->hsw.idx;
drm_WARN_ON(&dev_priv->drm, !IS_ICELAKE(dev_priv));
/*
* FIXME not sure if we should derive the PHY from the pw_idx, or
* from the VBT defined AUX_CH->DDI->PHY mapping.
*/
intel_de_rmw(dev_priv, ICL_PORT_CL_DW12(ICL_AUX_PW_TO_PHY(pw_idx)),
ICL_LANE_ENABLE_AUX, 0);
intel_de_rmw(dev_priv, regs->driver, HSW_PWR_WELL_CTL_REQ(pw_idx), 0);
hsw_wait_for_power_well_disable(dev_priv, power_well);
}
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
static void icl_tc_port_assert_ref_held(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well,
struct intel_digital_port *dig_port)
{
if (drm_WARN_ON(&dev_priv->drm, !dig_port))
return;
if (DISPLAY_VER(dev_priv) == 11 && intel_tc_cold_requires_aux_pw(dig_port))
return;
drm_WARN_ON(&dev_priv->drm, !intel_tc_port_ref_held(dig_port));
}
#else
static void icl_tc_port_assert_ref_held(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well,
struct intel_digital_port *dig_port)
{
}
#endif
#define TGL_AUX_PW_TO_TC_PORT(pw_idx) ((pw_idx) - TGL_PW_CTL_IDX_AUX_TC1)
static void icl_tc_cold_exit(struct drm_i915_private *i915)
{
int ret, tries = 0;
while (1) {
ret = snb_pcode_write_timeout(&i915->uncore, ICL_PCODE_EXIT_TCCOLD, 0,
250, 1);
if (ret != -EAGAIN || ++tries == 3)
break;
msleep(1);
}
/* Spec states that TC cold exit can take up to 1ms to complete */
if (!ret)
msleep(1);
/* TODO: turn failure into a error as soon i915 CI updates ICL IFWI */
drm_dbg_kms(&i915->drm, "TC cold block %s\n", ret ? "failed" :
"succeeded");
}
static void
icl_tc_phy_aux_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum aux_ch aux_ch = icl_aux_pw_to_ch(power_well);
struct intel_digital_port *dig_port = aux_ch_to_digital_port(dev_priv, aux_ch);
const struct i915_power_well_regs *regs = power_well->desc->ops->regs;
bool is_tbt = power_well->desc->is_tc_tbt;
bool timeout_expected;
icl_tc_port_assert_ref_held(dev_priv, power_well, dig_port);
intel_de_rmw(dev_priv, DP_AUX_CH_CTL(aux_ch),
DP_AUX_CH_CTL_TBT_IO, is_tbt ? DP_AUX_CH_CTL_TBT_IO : 0);
intel_de_rmw(dev_priv, regs->driver,
0,
HSW_PWR_WELL_CTL_REQ(i915_power_well_instance(power_well)->hsw.idx));
/*
* An AUX timeout is expected if the TBT DP tunnel is down,
* or need to enable AUX on a legacy TypeC port as part of the TC-cold
* exit sequence.
*/
timeout_expected = is_tbt || intel_tc_cold_requires_aux_pw(dig_port);
if (DISPLAY_VER(dev_priv) == 11 && intel_tc_cold_requires_aux_pw(dig_port))
icl_tc_cold_exit(dev_priv);
hsw_wait_for_power_well_enable(dev_priv, power_well, timeout_expected);
if (DISPLAY_VER(dev_priv) >= 12 && !is_tbt) {
enum tc_port tc_port;
tc_port = TGL_AUX_PW_TO_TC_PORT(i915_power_well_instance(power_well)->hsw.idx);
if (wait_for(intel_dkl_phy_read(dev_priv, DKL_CMN_UC_DW_27(tc_port)) &
DKL_CMN_UC_DW27_UC_HEALTH, 1))
drm_warn(&dev_priv->drm,
"Timeout waiting TC uC health\n");
}
}
static void
icl_aux_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum phy phy = icl_aux_pw_to_phy(dev_priv, power_well);
if (intel_phy_is_tc(dev_priv, phy))
return icl_tc_phy_aux_power_well_enable(dev_priv, power_well);
else if (IS_ICELAKE(dev_priv))
return icl_combo_phy_aux_power_well_enable(dev_priv,
power_well);
else
return hsw_power_well_enable(dev_priv, power_well);
}
static void
icl_aux_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum phy phy = icl_aux_pw_to_phy(dev_priv, power_well);
if (intel_phy_is_tc(dev_priv, phy))
return hsw_power_well_disable(dev_priv, power_well);
else if (IS_ICELAKE(dev_priv))
return icl_combo_phy_aux_power_well_disable(dev_priv,
power_well);
else
return hsw_power_well_disable(dev_priv, power_well);
}
/*
* We should only use the power well if we explicitly asked the hardware to
* enable it, so check if it's enabled and also check if we've requested it to
* be enabled.
*/
static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->ops->regs;
enum i915_power_well_id id = i915_power_well_instance(power_well)->id;
int pw_idx = i915_power_well_instance(power_well)->hsw.idx;
u32 mask = HSW_PWR_WELL_CTL_REQ(pw_idx) |
HSW_PWR_WELL_CTL_STATE(pw_idx);
u32 val;
val = intel_de_read(dev_priv, regs->driver);
/*
* On GEN9 big core due to a DMC bug the driver's request bits for PW1
* and the MISC_IO PW will be not restored, so check instead for the
* BIOS's own request bits, which are forced-on for these power wells
* when exiting DC5/6.
*/
if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv) &&
(id == SKL_DISP_PW_1 || id == SKL_DISP_PW_MISC_IO))
val |= intel_de_read(dev_priv, regs->bios);
return (val & mask) == mask;
}
static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
{
drm_WARN_ONCE(&dev_priv->drm,
(intel_de_read(dev_priv, DC_STATE_EN) & DC_STATE_EN_DC9),
"DC9 already programmed to be enabled.\n");
drm_WARN_ONCE(&dev_priv->drm,
intel_de_read(dev_priv, DC_STATE_EN) &
DC_STATE_EN_UPTO_DC5,
"DC5 still not disabled to enable DC9.\n");
drm_WARN_ONCE(&dev_priv->drm,
intel_de_read(dev_priv, HSW_PWR_WELL_CTL2) &
HSW_PWR_WELL_CTL_REQ(SKL_PW_CTL_IDX_PW_2),
"Power well 2 on.\n");
drm_WARN_ONCE(&dev_priv->drm, intel_irqs_enabled(dev_priv),
"Interrupts not disabled yet.\n");
/*
* TODO: check for the following to verify the conditions to enter DC9
* state are satisfied:
* 1] Check relevant display engine registers to verify if mode set
* disable sequence was followed.
* 2] Check if display uninitialize sequence is initialized.
*/
}
static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
{
drm_WARN_ONCE(&dev_priv->drm, intel_irqs_enabled(dev_priv),
"Interrupts not disabled yet.\n");
drm_WARN_ONCE(&dev_priv->drm,
intel_de_read(dev_priv, DC_STATE_EN) &
DC_STATE_EN_UPTO_DC5,
"DC5 still not disabled.\n");
/*
* TODO: check for the following to verify DC9 state was indeed
* entered before programming to disable it:
* 1] Check relevant display engine registers to verify if mode
* set disable sequence was followed.
* 2] Check if display uninitialize sequence is initialized.
*/
}
static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
u32 state)
{
int rewrites = 0;
int rereads = 0;
u32 v;
intel_de_write(dev_priv, DC_STATE_EN, state);
/* It has been observed that disabling the dc6 state sometimes
* doesn't stick and dmc keeps returning old value. Make sure
* the write really sticks enough times and also force rewrite until
* we are confident that state is exactly what we want.
*/
do {
v = intel_de_read(dev_priv, DC_STATE_EN);
if (v != state) {
intel_de_write(dev_priv, DC_STATE_EN, state);
rewrites++;
rereads = 0;
} else if (rereads++ > 5) {
break;
}
} while (rewrites < 100);
if (v != state)
drm_err(&dev_priv->drm,
"Writing dc state to 0x%x failed, now 0x%x\n",
state, v);
/* Most of the times we need one retry, avoid spam */
if (rewrites > 1)
drm_dbg_kms(&dev_priv->drm,
"Rewrote dc state to 0x%x %d times\n",
state, rewrites);
}
static u32 gen9_dc_mask(struct drm_i915_private *dev_priv)
{
u32 mask;
mask = DC_STATE_EN_UPTO_DC5;
if (DISPLAY_VER(dev_priv) >= 12)
mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6
| DC_STATE_EN_DC9;
else if (DISPLAY_VER(dev_priv) == 11)
mask |= DC_STATE_EN_UPTO_DC6 | DC_STATE_EN_DC9;
else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
mask |= DC_STATE_EN_DC9;
else
mask |= DC_STATE_EN_UPTO_DC6;
return mask;
}
void gen9_sanitize_dc_state(struct drm_i915_private *i915)
{
struct i915_power_domains *power_domains = &i915->display.power.domains;
u32 val;
if (!HAS_DISPLAY(i915))
return;
val = intel_de_read(i915, DC_STATE_EN) & gen9_dc_mask(i915);
drm_dbg_kms(&i915->drm,
"Resetting DC state tracking from %02x to %02x\n",
power_domains->dc_state, val);
power_domains->dc_state = val;
}
/**
* gen9_set_dc_state - set target display C power state
* @dev_priv: i915 device instance
* @state: target DC power state
* - DC_STATE_DISABLE
* - DC_STATE_EN_UPTO_DC5
* - DC_STATE_EN_UPTO_DC6
* - DC_STATE_EN_DC9
*
* Signal to DMC firmware/HW the target DC power state passed in @state.
* DMC/HW can turn off individual display clocks and power rails when entering
* a deeper DC power state (higher in number) and turns these back when exiting
* that state to a shallower power state (lower in number). The HW will decide
* when to actually enter a given state on an on-demand basis, for instance
* depending on the active state of display pipes. The state of display
* registers backed by affected power rails are saved/restored as needed.
*
* Based on the above enabling a deeper DC power state is asynchronous wrt.
* enabling it. Disabling a deeper power state is synchronous: for instance
* setting %DC_STATE_DISABLE won't complete until all HW resources are turned
* back on and register state is restored. This is guaranteed by the MMIO write
* to DC_STATE_EN blocking until the state is restored.
*/
void gen9_set_dc_state(struct drm_i915_private *dev_priv, u32 state)
{
struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
u32 val;
u32 mask;
if (!HAS_DISPLAY(dev_priv))
return;
if (drm_WARN_ON_ONCE(&dev_priv->drm,
state & ~power_domains->allowed_dc_mask))
state &= power_domains->allowed_dc_mask;
val = intel_de_read(dev_priv, DC_STATE_EN);
mask = gen9_dc_mask(dev_priv);
drm_dbg_kms(&dev_priv->drm, "Setting DC state from %02x to %02x\n",
val & mask, state);
/* Check if DMC is ignoring our DC state requests */
if ((val & mask) != power_domains->dc_state)
drm_err(&dev_priv->drm, "DC state mismatch (0x%x -> 0x%x)\n",
power_domains->dc_state, val & mask);
val &= ~mask;
val |= state;
gen9_write_dc_state(dev_priv, val);
power_domains->dc_state = val & mask;
}
static void tgl_enable_dc3co(struct drm_i915_private *dev_priv)
{
drm_dbg_kms(&dev_priv->drm, "Enabling DC3CO\n");
gen9_set_dc_state(dev_priv, DC_STATE_EN_DC3CO);
}
static void tgl_disable_dc3co(struct drm_i915_private *dev_priv)
{
drm_dbg_kms(&dev_priv->drm, "Disabling DC3CO\n");
intel_de_rmw(dev_priv, DC_STATE_EN, DC_STATE_DC3CO_STATUS, 0);
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
/*
* Delay of 200us DC3CO Exit time B.Spec 49196
*/
usleep_range(200, 210);
}
static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
{
enum i915_power_well_id high_pg;
/* Power wells at this level and above must be disabled for DC5 entry */
if (DISPLAY_VER(dev_priv) == 12)
high_pg = ICL_DISP_PW_3;
else
high_pg = SKL_DISP_PW_2;
drm_WARN_ONCE(&dev_priv->drm,
intel_display_power_well_is_enabled(dev_priv, high_pg),
"Power wells above platform's DC5 limit still enabled.\n");
drm_WARN_ONCE(&dev_priv->drm,
(intel_de_read(dev_priv, DC_STATE_EN) &
DC_STATE_EN_UPTO_DC5),
"DC5 already programmed to be enabled.\n");
assert_rpm_wakelock_held(&dev_priv->runtime_pm);
assert_dmc_loaded(dev_priv);
}
void gen9_enable_dc5(struct drm_i915_private *dev_priv)
{
assert_can_enable_dc5(dev_priv);
drm_dbg_kms(&dev_priv->drm, "Enabling DC5\n");
/* Wa Display #1183: skl,kbl,cfl */
if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv))
intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1,
0, SKL_SELECT_ALTERNATE_DC_EXIT);
intel_dmc_wl_enable(&dev_priv->display);
gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
}
static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
{
drm_WARN_ONCE(&dev_priv->drm,
(intel_de_read(dev_priv, UTIL_PIN_CTL) &
(UTIL_PIN_ENABLE | UTIL_PIN_MODE_MASK)) ==
(UTIL_PIN_ENABLE | UTIL_PIN_MODE_PWM),
"Utility pin enabled in PWM mode\n");
drm_WARN_ONCE(&dev_priv->drm,
(intel_de_read(dev_priv, DC_STATE_EN) &
DC_STATE_EN_UPTO_DC6),
"DC6 already programmed to be enabled.\n");
assert_dmc_loaded(dev_priv);
}
void skl_enable_dc6(struct drm_i915_private *dev_priv)
{
assert_can_enable_dc6(dev_priv);
drm_dbg_kms(&dev_priv->drm, "Enabling DC6\n");
/* Wa Display #1183: skl,kbl,cfl */
if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv))
intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1,
0, SKL_SELECT_ALTERNATE_DC_EXIT);
intel_dmc_wl_enable(&dev_priv->display);
gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
}
void bxt_enable_dc9(struct drm_i915_private *dev_priv)
{
struct intel_display *display = &dev_priv->display;
assert_can_enable_dc9(dev_priv);
drm_dbg_kms(&dev_priv->drm, "Enabling DC9\n");
/*
* Power sequencer reset is not needed on
* platforms with South Display Engine on PCH,
* because PPS registers are always on.
*/
if (!HAS_PCH_SPLIT(dev_priv))
intel_pps_reset_all(display);
gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
}
void bxt_disable_dc9(struct drm_i915_private *dev_priv)
{
struct intel_display *display = &dev_priv->display;
assert_can_disable_dc9(dev_priv);
drm_dbg_kms(&dev_priv->drm, "Disabling DC9\n");
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
intel_pps_unlock_regs_wa(display);
}
static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->ops->regs;
int pw_idx = i915_power_well_instance(power_well)->hsw.idx;
u32 mask = HSW_PWR_WELL_CTL_REQ(pw_idx);
u32 bios_req = intel_de_read(dev_priv, regs->bios);
/* Take over the request bit if set by BIOS. */
if (bios_req & mask) {
u32 drv_req = intel_de_read(dev_priv, regs->driver);
if (!(drv_req & mask))
intel_de_write(dev_priv, regs->driver, drv_req | mask);
intel_de_write(dev_priv, regs->bios, bios_req & ~mask);
}
}
static void bxt_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
bxt_dpio_phy_init(dev_priv, i915_power_well_instance(power_well)->bxt.phy);
}
static void bxt_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
bxt_dpio_phy_uninit(dev_priv, i915_power_well_instance(power_well)->bxt.phy);
}
static bool bxt_dpio_cmn_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return bxt_dpio_phy_is_enabled(dev_priv, i915_power_well_instance(power_well)->bxt.phy);
}
static void bxt_verify_dpio_phy_power_wells(struct drm_i915_private *dev_priv)
{
struct i915_power_well *power_well;
power_well = lookup_power_well(dev_priv, BXT_DISP_PW_DPIO_CMN_A);
if (intel_power_well_refcount(power_well) > 0)
bxt_dpio_phy_verify_state(dev_priv, i915_power_well_instance(power_well)->bxt.phy);
power_well = lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
if (intel_power_well_refcount(power_well) > 0)
bxt_dpio_phy_verify_state(dev_priv, i915_power_well_instance(power_well)->bxt.phy);
if (IS_GEMINILAKE(dev_priv)) {
power_well = lookup_power_well(dev_priv,
GLK_DISP_PW_DPIO_CMN_C);
if (intel_power_well_refcount(power_well) > 0)
bxt_dpio_phy_verify_state(dev_priv,
i915_power_well_instance(power_well)->bxt.phy);
}
}
static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return ((intel_de_read(dev_priv, DC_STATE_EN) & DC_STATE_EN_DC3CO) == 0 &&
(intel_de_read(dev_priv, DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0);
}
static void gen9_assert_dbuf_enabled(struct drm_i915_private *dev_priv)
{
u8 hw_enabled_dbuf_slices = intel_enabled_dbuf_slices_mask(dev_priv);
u8 enabled_dbuf_slices = dev_priv->display.dbuf.enabled_slices;
drm_WARN(&dev_priv->drm,
hw_enabled_dbuf_slices != enabled_dbuf_slices,
"Unexpected DBuf power power state (0x%08x, expected 0x%08x)\n",
hw_enabled_dbuf_slices,
enabled_dbuf_slices);
}
void gen9_disable_dc_states(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
struct intel_cdclk_config cdclk_config = {};
if (power_domains->target_dc_state == DC_STATE_EN_DC3CO) {
tgl_disable_dc3co(dev_priv);
return;
}
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
if (!HAS_DISPLAY(dev_priv))
return;
intel_dmc_wl_disable(&dev_priv->display);
intel_cdclk_get_cdclk(dev_priv, &cdclk_config);
/* Can't read out voltage_level so can't use intel_cdclk_changed() */
drm_WARN_ON(&dev_priv->drm,
intel_cdclk_clock_changed(&dev_priv->display.cdclk.hw,
&cdclk_config));
gen9_assert_dbuf_enabled(dev_priv);
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
bxt_verify_dpio_phy_power_wells(dev_priv);
if (DISPLAY_VER(dev_priv) >= 11)
/*
* DMC retains HW context only for port A, the other combo
* PHY's HW context for port B is lost after DC transitions,
* so we need to restore it manually.
*/
intel_combo_phy_init(dev_priv);
}
static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
gen9_disable_dc_states(dev_priv);
}
static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
if (!intel_dmc_has_payload(dev_priv))
return;
switch (power_domains->target_dc_state) {
case DC_STATE_EN_DC3CO:
tgl_enable_dc3co(dev_priv);
break;
case DC_STATE_EN_UPTO_DC6:
skl_enable_dc6(dev_priv);
break;
case DC_STATE_EN_UPTO_DC5:
gen9_enable_dc5(dev_priv);
break;
}
}
static void i9xx_power_well_sync_hw_noop(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
}
static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
}
static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return true;
}
static void i830_pipes_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
if ((intel_de_read(dev_priv, TRANSCONF(dev_priv, PIPE_A)) & TRANSCONF_ENABLE) == 0)
i830_enable_pipe(dev_priv, PIPE_A);
if ((intel_de_read(dev_priv, TRANSCONF(dev_priv, PIPE_B)) & TRANSCONF_ENABLE) == 0)
i830_enable_pipe(dev_priv, PIPE_B);
}
static void i830_pipes_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
i830_disable_pipe(dev_priv, PIPE_B);
i830_disable_pipe(dev_priv, PIPE_A);
}
static bool i830_pipes_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return intel_de_read(dev_priv, TRANSCONF(dev_priv, PIPE_A)) & TRANSCONF_ENABLE &&
intel_de_read(dev_priv, TRANSCONF(dev_priv, PIPE_B)) & TRANSCONF_ENABLE;
}
static void i830_pipes_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
if (intel_power_well_refcount(power_well) > 0)
i830_pipes_power_well_enable(dev_priv, power_well);
else
i830_pipes_power_well_disable(dev_priv, power_well);
}
static void vlv_set_power_well(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well, bool enable)
{
int pw_idx = i915_power_well_instance(power_well)->vlv.idx;
u32 mask;
u32 state;
u32 ctrl;
mask = PUNIT_PWRGT_MASK(pw_idx);
state = enable ? PUNIT_PWRGT_PWR_ON(pw_idx) :
PUNIT_PWRGT_PWR_GATE(pw_idx);
vlv_punit_get(dev_priv);
#define COND \
((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
if (COND)
goto out;
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
ctrl &= ~mask;
ctrl |= state;
vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
if (wait_for(COND, 100))
drm_err(&dev_priv->drm,
"timeout setting power well state %08x (%08x)\n",
state,
vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
#undef COND
out:
vlv_punit_put(dev_priv);
}
static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, true);
}
static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, false);
}
static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
int pw_idx = i915_power_well_instance(power_well)->vlv.idx;
bool enabled = false;
u32 mask;
u32 state;
u32 ctrl;
mask = PUNIT_PWRGT_MASK(pw_idx);
ctrl = PUNIT_PWRGT_PWR_ON(pw_idx);
vlv_punit_get(dev_priv);
state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
/*
* We only ever set the power-on and power-gate states, anything
* else is unexpected.
*/
drm_WARN_ON(&dev_priv->drm, state != PUNIT_PWRGT_PWR_ON(pw_idx) &&
state != PUNIT_PWRGT_PWR_GATE(pw_idx));
if (state == ctrl)
enabled = true;
/*
* A transient state at this point would mean some unexpected party
* is poking at the power controls too.
*/
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
drm_WARN_ON(&dev_priv->drm, ctrl != state);
vlv_punit_put(dev_priv);
return enabled;
}
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
/*
* On driver load, a pipe may be active and driving a DSI display.
* Preserve DPOUNIT_CLOCK_GATE_DISABLE to avoid the pipe getting stuck
* (and never recovering) in this case. intel_dsi_post_disable() will
* clear it when we turn off the display.
*/
intel_de_rmw(dev_priv, DSPCLK_GATE_D(dev_priv),
~DPOUNIT_CLOCK_GATE_DISABLE, VRHUNIT_CLOCK_GATE_DISABLE);
/*
* Disable trickle feed and enable pnd deadline calculation
*/
intel_de_write(dev_priv, MI_ARB_VLV,
MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
intel_de_write(dev_priv, CBR1_VLV, 0);
drm_WARN_ON(&dev_priv->drm, DISPLAY_RUNTIME_INFO(dev_priv)->rawclk_freq == 0);
intel_de_write(dev_priv, RAWCLK_FREQ_VLV,
DIV_ROUND_CLOSEST(DISPLAY_RUNTIME_INFO(dev_priv)->rawclk_freq,
1000));
}
static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
{
struct intel_display *display = &dev_priv->display;
struct intel_encoder *encoder;
enum pipe pipe;
/*
* Enable the CRI clock source so we can get at the
* display and the reference clock for VGA
* hotplug / manual detection. Supposedly DSI also
* needs the ref clock up and running.
*
* CHV DPLL B/C have some issues if VGA mode is enabled.
*/
for_each_pipe(dev_priv, pipe) {
u32 val = intel_de_read(dev_priv, DPLL(dev_priv, pipe));
val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
if (pipe != PIPE_A)
val |= DPLL_INTEGRATED_CRI_CLK_VLV;
intel_de_write(dev_priv, DPLL(dev_priv, pipe), val);
}
vlv_init_display_clock_gating(dev_priv);
spin_lock_irq(&dev_priv->irq_lock);
valleyview_enable_display_irqs(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
/*
* During driver initialization/resume we can avoid restoring the
* part of the HW/SW state that will be inited anyway explicitly.
*/
if (dev_priv->display.power.domains.initializing)
return;
intel_hpd_init(dev_priv);
intel_hpd_poll_disable(dev_priv);
/* Re-enable the ADPA, if we have one */
for_each_intel_encoder(&dev_priv->drm, encoder) {
if (encoder->type == INTEL_OUTPUT_ANALOG)
intel_crt_reset(&encoder->base);
}
intel_vga_redisable_power_on(dev_priv);
intel_pps_unlock_regs_wa(display);
}
static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
{
struct intel_display *display = &dev_priv->display;
spin_lock_irq(&dev_priv->irq_lock);
valleyview_disable_display_irqs(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
/* make sure we're done processing display irqs */
intel_synchronize_irq(dev_priv);
intel_pps_reset_all(display);
/* Prevent us from re-enabling polling on accident in late suspend */
if (!dev_priv->drm.dev->power.is_suspended)
intel_hpd_poll_enable(dev_priv);
}
static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, true);
vlv_display_power_well_init(dev_priv);
}
static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_display_power_well_deinit(dev_priv);
vlv_set_power_well(dev_priv, power_well, false);
}
static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
/* since ref/cri clock was enabled */
udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
vlv_set_power_well(dev_priv, power_well, true);
/*
* From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
* 6. De-assert cmn_reset/side_reset. Same as VLV X0.
* a. GUnit 0x2110 bit[0] set to 1 (def 0)
* b. The other bits such as sfr settings / modesel may all
* be set to 0.
*
* This should only be done on init and resume from S3 with
* both PLLs disabled, or we risk losing DPIO and PLL
* synchronization.
*/
intel_de_rmw(dev_priv, DPIO_CTL, 0, DPIO_CMNRST);
}
static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum pipe pipe;
for_each_pipe(dev_priv, pipe)
assert_pll_disabled(dev_priv, pipe);
/* Assert common reset */
intel_de_rmw(dev_priv, DPIO_CTL, DPIO_CMNRST, 0);
vlv_set_power_well(dev_priv, power_well, false);
}
#define BITS_SET(val, bits) (((val) & (bits)) == (bits))
static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
{
struct i915_power_well *cmn_bc =
lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
struct i915_power_well *cmn_d =
lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
u32 phy_control = dev_priv->display.power.chv_phy_control;
u32 phy_status = 0;
u32 phy_status_mask = 0xffffffff;
/*
* The BIOS can leave the PHY is some weird state
* where it doesn't fully power down some parts.
* Disable the asserts until the PHY has been fully
* reset (ie. the power well has been disabled at
* least once).
*/
if (!dev_priv->display.power.chv_phy_assert[DPIO_PHY0])
phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
if (!dev_priv->display.power.chv_phy_assert[DPIO_PHY1])
phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
if (intel_power_well_is_enabled(dev_priv, cmn_bc)) {
phy_status |= PHY_POWERGOOD(DPIO_PHY0);
/* this assumes override is only used to enable lanes */
if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
/* CL1 is on whenever anything is on in either channel */
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
/*
* The DPLLB check accounts for the pipe B + port A usage
* with CL2 powered up but all the lanes in the second channel
* powered down.
*/
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
(intel_de_read(dev_priv, DPLL(dev_priv, PIPE_B)) & DPLL_VCO_ENABLE) == 0)
phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
}
if (intel_power_well_is_enabled(dev_priv, cmn_d)) {
phy_status |= PHY_POWERGOOD(DPIO_PHY1);
/* this assumes override is only used to enable lanes */
if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
}
phy_status &= phy_status_mask;
/*
* The PHY may be busy with some initial calibration and whatnot,
* so the power state can take a while to actually change.
*/
if (intel_de_wait(dev_priv, DISPLAY_PHY_STATUS,
phy_status_mask, phy_status, 10))
drm_err(&dev_priv->drm,
"Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
intel_de_read(dev_priv, DISPLAY_PHY_STATUS) & phy_status_mask,
phy_status, dev_priv->display.power.chv_phy_control);
}
#undef BITS_SET
static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum i915_power_well_id id = i915_power_well_instance(power_well)->id;
enum dpio_phy phy;
u32 tmp;
drm_WARN_ON_ONCE(&dev_priv->drm,
id != VLV_DISP_PW_DPIO_CMN_BC &&
id != CHV_DISP_PW_DPIO_CMN_D);
if (id == VLV_DISP_PW_DPIO_CMN_BC)
phy = DPIO_PHY0;
else
phy = DPIO_PHY1;
/* since ref/cri clock was enabled */
udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
vlv_set_power_well(dev_priv, power_well, true);
/* Poll for phypwrgood signal */
if (intel_de_wait_for_set(dev_priv, DISPLAY_PHY_STATUS,
PHY_POWERGOOD(phy), 1))
drm_err(&dev_priv->drm, "Display PHY %d is not power up\n",
phy);
vlv_dpio_get(dev_priv);
/* Enable dynamic power down */
tmp = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW28);
tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
vlv_dpio_write(dev_priv, phy, CHV_CMN_DW28, tmp);
if (id == VLV_DISP_PW_DPIO_CMN_BC) {
tmp = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW6_CH1);
tmp |= DPIO_DYNPWRDOWNEN_CH1;
vlv_dpio_write(dev_priv, phy, CHV_CMN_DW6_CH1, tmp);
} else {
/*
* Force the non-existing CL2 off. BXT does this
* too, so maybe it saves some power even though
* CL2 doesn't exist?
*/
tmp = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW30);
tmp |= DPIO_CL2_LDOFUSE_PWRENB;
vlv_dpio_write(dev_priv, phy, CHV_CMN_DW30, tmp);
}
vlv_dpio_put(dev_priv);
dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
intel_de_write(dev_priv, DISPLAY_PHY_CONTROL,
dev_priv->display.power.chv_phy_control);
drm_dbg_kms(&dev_priv->drm,
"Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
phy, dev_priv->display.power.chv_phy_control);
assert_chv_phy_status(dev_priv);
}
static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum i915_power_well_id id = i915_power_well_instance(power_well)->id;
enum dpio_phy phy;
drm_WARN_ON_ONCE(&dev_priv->drm,
id != VLV_DISP_PW_DPIO_CMN_BC &&
id != CHV_DISP_PW_DPIO_CMN_D);
if (id == VLV_DISP_PW_DPIO_CMN_BC) {
phy = DPIO_PHY0;
assert_pll_disabled(dev_priv, PIPE_A);
assert_pll_disabled(dev_priv, PIPE_B);
} else {
phy = DPIO_PHY1;
assert_pll_disabled(dev_priv, PIPE_C);
}
dev_priv->display.power.chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
intel_de_write(dev_priv, DISPLAY_PHY_CONTROL,
dev_priv->display.power.chv_phy_control);
vlv_set_power_well(dev_priv, power_well, false);
drm_dbg_kms(&dev_priv->drm,
"Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
phy, dev_priv->display.power.chv_phy_control);
/* PHY is fully reset now, so we can enable the PHY state asserts */
dev_priv->display.power.chv_phy_assert[phy] = true;
assert_chv_phy_status(dev_priv);
}
static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
enum dpio_channel ch, bool override, unsigned int mask)
{
u32 reg, val, expected, actual;
/*
* The BIOS can leave the PHY is some weird state
* where it doesn't fully power down some parts.
* Disable the asserts until the PHY has been fully
* reset (ie. the power well has been disabled at
* least once).
*/
if (!dev_priv->display.power.chv_phy_assert[phy])
return;
if (ch == DPIO_CH0)
reg = CHV_CMN_DW0_CH0;
else
reg = CHV_CMN_DW6_CH1;
vlv_dpio_get(dev_priv);
val = vlv_dpio_read(dev_priv, phy, reg);
vlv_dpio_put(dev_priv);
/*
* This assumes !override is only used when the port is disabled.
* All lanes should power down even without the override when
* the port is disabled.
*/
if (!override || mask == 0xf) {
expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
/*
* If CH1 common lane is not active anymore
* (eg. for pipe B DPLL) the entire channel will
* shut down, which causes the common lane registers
* to read as 0. That means we can't actually check
* the lane power down status bits, but as the entire
* register reads as 0 it's a good indication that the
* channel is indeed entirely powered down.
*/
if (ch == DPIO_CH1 && val == 0)
expected = 0;
} else if (mask != 0x0) {
expected = DPIO_ANYDL_POWERDOWN;
} else {
expected = 0;
}
if (ch == DPIO_CH0)
actual = REG_FIELD_GET(DPIO_ANYDL_POWERDOWN_CH0 |
DPIO_ALLDL_POWERDOWN_CH0, val);
else
actual = REG_FIELD_GET(DPIO_ANYDL_POWERDOWN_CH1 |
DPIO_ALLDL_POWERDOWN_CH1, val);
drm_WARN(&dev_priv->drm, actual != expected,
"Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
!!(actual & DPIO_ALLDL_POWERDOWN),
!!(actual & DPIO_ANYDL_POWERDOWN),
!!(expected & DPIO_ALLDL_POWERDOWN),
!!(expected & DPIO_ANYDL_POWERDOWN),
reg, val);
}
bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
enum dpio_channel ch, bool override)
{
struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
bool was_override;
mutex_lock(&power_domains->lock);
was_override = dev_priv->display.power.chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
if (override == was_override)
goto out;
if (override)
dev_priv->display.power.chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
else
dev_priv->display.power.chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
intel_de_write(dev_priv, DISPLAY_PHY_CONTROL,
dev_priv->display.power.chv_phy_control);
drm_dbg_kms(&dev_priv->drm,
"Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
phy, ch, dev_priv->display.power.chv_phy_control);
assert_chv_phy_status(dev_priv);
out:
mutex_unlock(&power_domains->lock);
return was_override;
}
void chv_phy_powergate_lanes(struct intel_encoder *encoder,
bool override, unsigned int mask)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
enum dpio_phy phy = vlv_dig_port_to_phy(enc_to_dig_port(encoder));
enum dpio_channel ch = vlv_dig_port_to_channel(enc_to_dig_port(encoder));
mutex_lock(&power_domains->lock);
dev_priv->display.power.chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
dev_priv->display.power.chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
if (override)
dev_priv->display.power.chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
else
dev_priv->display.power.chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
intel_de_write(dev_priv, DISPLAY_PHY_CONTROL,
dev_priv->display.power.chv_phy_control);
drm_dbg_kms(&dev_priv->drm,
"Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
phy, ch, mask, dev_priv->display.power.chv_phy_control);
assert_chv_phy_status(dev_priv);
assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
mutex_unlock(&power_domains->lock);
}
static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum pipe pipe = PIPE_A;
bool enabled;
u32 state, ctrl;
vlv_punit_get(dev_priv);
state = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & DP_SSS_MASK(pipe);
/*
* We only ever set the power-on and power-gate states, anything
* else is unexpected.
*/
drm_WARN_ON(&dev_priv->drm, state != DP_SSS_PWR_ON(pipe) &&
state != DP_SSS_PWR_GATE(pipe));
enabled = state == DP_SSS_PWR_ON(pipe);
/*
* A transient state at this point would mean some unexpected party
* is poking at the power controls too.
*/
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & DP_SSC_MASK(pipe);
drm_WARN_ON(&dev_priv->drm, ctrl << 16 != state);
vlv_punit_put(dev_priv);
return enabled;
}
static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well,
bool enable)
{
enum pipe pipe = PIPE_A;
u32 state;
u32 ctrl;
state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
vlv_punit_get(dev_priv);
#define COND \
((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & DP_SSS_MASK(pipe)) == state)
if (COND)
goto out;
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
ctrl &= ~DP_SSC_MASK(pipe);
ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, ctrl);
if (wait_for(COND, 100))
drm_err(&dev_priv->drm,
"timeout setting power well state %08x (%08x)\n",
state,
vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM));
#undef COND
out:
vlv_punit_put(dev_priv);
}
static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
intel_de_write(dev_priv, DISPLAY_PHY_CONTROL,
dev_priv->display.power.chv_phy_control);
}
static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
chv_set_pipe_power_well(dev_priv, power_well, true);
vlv_display_power_well_init(dev_priv);
}
static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_display_power_well_deinit(dev_priv);
chv_set_pipe_power_well(dev_priv, power_well, false);
}
static void
tgl_tc_cold_request(struct drm_i915_private *i915, bool block)
{
u8 tries = 0;
int ret;
while (1) {
u32 low_val;
u32 high_val = 0;
if (block)
low_val = TGL_PCODE_EXIT_TCCOLD_DATA_L_BLOCK_REQ;
else
low_val = TGL_PCODE_EXIT_TCCOLD_DATA_L_UNBLOCK_REQ;
/*
* Spec states that we should timeout the request after 200us
* but the function below will timeout after 500us
*/
ret = snb_pcode_read(&i915->uncore, TGL_PCODE_TCCOLD, &low_val, &high_val);
if (ret == 0) {
if (block &&
(low_val & TGL_PCODE_EXIT_TCCOLD_DATA_L_EXIT_FAILED))
ret = -EIO;
else
break;
}
if (++tries == 3)
break;
msleep(1);
}
if (ret)
drm_err(&i915->drm, "TC cold %sblock failed\n",
block ? "" : "un");
else
drm_dbg_kms(&i915->drm, "TC cold %sblock succeeded\n",
block ? "" : "un");
}
static void
tgl_tc_cold_off_power_well_enable(struct drm_i915_private *i915,
struct i915_power_well *power_well)
{
tgl_tc_cold_request(i915, true);
}
static void
tgl_tc_cold_off_power_well_disable(struct drm_i915_private *i915,
struct i915_power_well *power_well)
{
tgl_tc_cold_request(i915, false);
}
static void
tgl_tc_cold_off_power_well_sync_hw(struct drm_i915_private *i915,
struct i915_power_well *power_well)
{
if (intel_power_well_refcount(power_well) > 0)
tgl_tc_cold_off_power_well_enable(i915, power_well);
else
tgl_tc_cold_off_power_well_disable(i915, power_well);
}
static bool
tgl_tc_cold_off_power_well_is_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
/*
* Not the correctly implementation but there is no way to just read it
* from PCODE, so returning count to avoid state mismatch errors
*/
return intel_power_well_refcount(power_well);
}
static void xelpdp_aux_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum aux_ch aux_ch = i915_power_well_instance(power_well)->xelpdp.aux_ch;
enum phy phy = icl_aux_pw_to_phy(dev_priv, power_well);
if (intel_phy_is_tc(dev_priv, phy))
icl_tc_port_assert_ref_held(dev_priv, power_well,
aux_ch_to_digital_port(dev_priv, aux_ch));
intel_de_rmw(dev_priv, XELPDP_DP_AUX_CH_CTL(dev_priv, aux_ch),
XELPDP_DP_AUX_CH_CTL_POWER_REQUEST,
XELPDP_DP_AUX_CH_CTL_POWER_REQUEST);
/*
* The power status flag cannot be used to determine whether aux
* power wells have finished powering up. Instead we're
* expected to just wait a fixed 600us after raising the request
* bit.
*/
usleep_range(600, 1200);
}
static void xelpdp_aux_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum aux_ch aux_ch = i915_power_well_instance(power_well)->xelpdp.aux_ch;
intel_de_rmw(dev_priv, XELPDP_DP_AUX_CH_CTL(dev_priv, aux_ch),
XELPDP_DP_AUX_CH_CTL_POWER_REQUEST,
0);
usleep_range(10, 30);
}
static bool xelpdp_aux_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum aux_ch aux_ch = i915_power_well_instance(power_well)->xelpdp.aux_ch;
return intel_de_read(dev_priv, XELPDP_DP_AUX_CH_CTL(dev_priv, aux_ch)) &
XELPDP_DP_AUX_CH_CTL_POWER_STATUS;
}
static void xe2lpd_pica_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
intel_de_write(dev_priv, XE2LPD_PICA_PW_CTL,
XE2LPD_PICA_CTL_POWER_REQUEST);
if (intel_de_wait_for_set(dev_priv, XE2LPD_PICA_PW_CTL,
XE2LPD_PICA_CTL_POWER_STATUS, 1)) {
drm_dbg_kms(&dev_priv->drm, "pica power well enable timeout\n");
drm_WARN(&dev_priv->drm, 1, "Power well PICA timeout when enabled");
}
}
static void xe2lpd_pica_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
intel_de_write(dev_priv, XE2LPD_PICA_PW_CTL, 0);
if (intel_de_wait_for_clear(dev_priv, XE2LPD_PICA_PW_CTL,
XE2LPD_PICA_CTL_POWER_STATUS, 1)) {
drm_dbg_kms(&dev_priv->drm, "pica power well disable timeout\n");
drm_WARN(&dev_priv->drm, 1, "Power well PICA timeout when disabled");
}
}
static bool xe2lpd_pica_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return intel_de_read(dev_priv, XE2LPD_PICA_PW_CTL) &
XE2LPD_PICA_CTL_POWER_STATUS;
}
const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = i9xx_always_on_power_well_noop,
.disable = i9xx_always_on_power_well_noop,
.is_enabled = i9xx_always_on_power_well_enabled,
};
const struct i915_power_well_ops chv_pipe_power_well_ops = {
.sync_hw = chv_pipe_power_well_sync_hw,
.enable = chv_pipe_power_well_enable,
.disable = chv_pipe_power_well_disable,
.is_enabled = chv_pipe_power_well_enabled,
};
const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = chv_dpio_cmn_power_well_enable,
.disable = chv_dpio_cmn_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
const struct i915_power_well_ops i830_pipes_power_well_ops = {
.sync_hw = i830_pipes_power_well_sync_hw,
.enable = i830_pipes_power_well_enable,
.disable = i830_pipes_power_well_disable,
.is_enabled = i830_pipes_power_well_enabled,
};
static const struct i915_power_well_regs hsw_power_well_regs = {
.bios = HSW_PWR_WELL_CTL1,
.driver = HSW_PWR_WELL_CTL2,
.kvmr = HSW_PWR_WELL_CTL3,
.debug = HSW_PWR_WELL_CTL4,
};
const struct i915_power_well_ops hsw_power_well_ops = {
.regs = &hsw_power_well_regs,
.sync_hw = hsw_power_well_sync_hw,
.enable = hsw_power_well_enable,
.disable = hsw_power_well_disable,
.is_enabled = hsw_power_well_enabled,
};
const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = gen9_dc_off_power_well_enable,
.disable = gen9_dc_off_power_well_disable,
.is_enabled = gen9_dc_off_power_well_enabled,
};
const struct i915_power_well_ops bxt_dpio_cmn_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = bxt_dpio_cmn_power_well_enable,
.disable = bxt_dpio_cmn_power_well_disable,
.is_enabled = bxt_dpio_cmn_power_well_enabled,
};
const struct i915_power_well_ops vlv_display_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = vlv_display_power_well_enable,
.disable = vlv_display_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = vlv_dpio_cmn_power_well_enable,
.disable = vlv_dpio_cmn_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
const struct i915_power_well_ops vlv_dpio_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = vlv_power_well_enable,
.disable = vlv_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static const struct i915_power_well_regs icl_aux_power_well_regs = {
.bios = ICL_PWR_WELL_CTL_AUX1,
.driver = ICL_PWR_WELL_CTL_AUX2,
.debug = ICL_PWR_WELL_CTL_AUX4,
};
const struct i915_power_well_ops icl_aux_power_well_ops = {
.regs = &icl_aux_power_well_regs,
.sync_hw = hsw_power_well_sync_hw,
.enable = icl_aux_power_well_enable,
.disable = icl_aux_power_well_disable,
.is_enabled = hsw_power_well_enabled,
};
static const struct i915_power_well_regs icl_ddi_power_well_regs = {
.bios = ICL_PWR_WELL_CTL_DDI1,
.driver = ICL_PWR_WELL_CTL_DDI2,
.debug = ICL_PWR_WELL_CTL_DDI4,
};
const struct i915_power_well_ops icl_ddi_power_well_ops = {
.regs = &icl_ddi_power_well_regs,
.sync_hw = hsw_power_well_sync_hw,
.enable = hsw_power_well_enable,
.disable = hsw_power_well_disable,
.is_enabled = hsw_power_well_enabled,
};
const struct i915_power_well_ops tgl_tc_cold_off_ops = {
.sync_hw = tgl_tc_cold_off_power_well_sync_hw,
.enable = tgl_tc_cold_off_power_well_enable,
.disable = tgl_tc_cold_off_power_well_disable,
.is_enabled = tgl_tc_cold_off_power_well_is_enabled,
};
const struct i915_power_well_ops xelpdp_aux_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = xelpdp_aux_power_well_enable,
.disable = xelpdp_aux_power_well_disable,
.is_enabled = xelpdp_aux_power_well_enabled,
};
const struct i915_power_well_ops xe2lpd_pica_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = xe2lpd_pica_power_well_enable,
.disable = xe2lpd_pica_power_well_disable,
.is_enabled = xe2lpd_pica_power_well_enabled,
};