// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include <linux/string_helpers.h>
#include <drm/drm_fixed.h>
#include "i915_reg.h"
#include "intel_atomic.h"
#include "intel_crtc.h"
#include "intel_ddi.h"
#include "intel_de.h"
#include "intel_dp.h"
#include "intel_display_types.h"
#include "intel_fdi.h"
#include "intel_fdi_regs.h"
#include "intel_link_bw.h"
struct intel_fdi_funcs {
void (*fdi_link_train)(struct intel_crtc *crtc,
const struct intel_crtc_state *crtc_state);
};
static void assert_fdi_tx(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
bool cur_state;
if (HAS_DDI(dev_priv)) {
/*
* DDI does not have a specific FDI_TX register.
*
* FDI is never fed from EDP transcoder
* so pipe->transcoder cast is fine here.
*/
enum transcoder cpu_transcoder = (enum transcoder)pipe;
cur_state = intel_de_read(dev_priv,
TRANS_DDI_FUNC_CTL(dev_priv, cpu_transcoder)) & TRANS_DDI_FUNC_ENABLE;
} else {
cur_state = intel_de_read(dev_priv, FDI_TX_CTL(pipe)) & FDI_TX_ENABLE;
}
I915_STATE_WARN(dev_priv, cur_state != state,
"FDI TX state assertion failure (expected %s, current %s)\n",
str_on_off(state), str_on_off(cur_state));
}
void assert_fdi_tx_enabled(struct drm_i915_private *i915, enum pipe pipe)
{
assert_fdi_tx(i915, pipe, true);
}
void assert_fdi_tx_disabled(struct drm_i915_private *i915, enum pipe pipe)
{
assert_fdi_tx(i915, pipe, false);
}
static void assert_fdi_rx(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
bool cur_state;
cur_state = intel_de_read(dev_priv, FDI_RX_CTL(pipe)) & FDI_RX_ENABLE;
I915_STATE_WARN(dev_priv, cur_state != state,
"FDI RX state assertion failure (expected %s, current %s)\n",
str_on_off(state), str_on_off(cur_state));
}
void assert_fdi_rx_enabled(struct drm_i915_private *i915, enum pipe pipe)
{
assert_fdi_rx(i915, pipe, true);
}
void assert_fdi_rx_disabled(struct drm_i915_private *i915, enum pipe pipe)
{
assert_fdi_rx(i915, pipe, false);
}
void assert_fdi_tx_pll_enabled(struct drm_i915_private *i915,
enum pipe pipe)
{
bool cur_state;
/* ILK FDI PLL is always enabled */
if (IS_IRONLAKE(i915))
return;
/* On Haswell, DDI ports are responsible for the FDI PLL setup */
if (HAS_DDI(i915))
return;
cur_state = intel_de_read(i915, FDI_TX_CTL(pipe)) & FDI_TX_PLL_ENABLE;
I915_STATE_WARN(i915, !cur_state,
"FDI TX PLL assertion failure, should be active but is disabled\n");
}
static void assert_fdi_rx_pll(struct drm_i915_private *i915,
enum pipe pipe, bool state)
{
bool cur_state;
cur_state = intel_de_read(i915, FDI_RX_CTL(pipe)) & FDI_RX_PLL_ENABLE;
I915_STATE_WARN(i915, cur_state != state,
"FDI RX PLL assertion failure (expected %s, current %s)\n",
str_on_off(state), str_on_off(cur_state));
}
void assert_fdi_rx_pll_enabled(struct drm_i915_private *i915, enum pipe pipe)
{
assert_fdi_rx_pll(i915, pipe, true);
}
void assert_fdi_rx_pll_disabled(struct drm_i915_private *i915, enum pipe pipe)
{
assert_fdi_rx_pll(i915, pipe, false);
}
void intel_fdi_link_train(struct intel_crtc *crtc,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
dev_priv->display.funcs.fdi->fdi_link_train(crtc, crtc_state);
}
/**
* intel_fdi_add_affected_crtcs - add CRTCs on FDI affected by other modeset CRTCs
* @state: intel atomic state
*
* Add a CRTC using FDI to @state if changing another CRTC's FDI BW usage is
* known to affect the available FDI BW for the former CRTC. In practice this
* means adding CRTC B on IVYBRIDGE if its use of FDI lanes is limited (by
* CRTC C) and CRTC C is getting disabled.
*
* Returns 0 in case of success, or a negative error code otherwise.
*/
int intel_fdi_add_affected_crtcs(struct intel_atomic_state *state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_crtc_state *old_crtc_state;
const struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
if (!IS_IVYBRIDGE(i915) || INTEL_NUM_PIPES(i915) != 3)
return 0;
crtc = intel_crtc_for_pipe(i915, PIPE_C);
new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
if (!new_crtc_state)
return 0;
if (!intel_crtc_needs_modeset(new_crtc_state))
return 0;
old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
if (!old_crtc_state->fdi_lanes)
return 0;
crtc = intel_crtc_for_pipe(i915, PIPE_B);
new_crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
if (IS_ERR(new_crtc_state))
return PTR_ERR(new_crtc_state);
old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
if (!old_crtc_state->fdi_lanes)
return 0;
return intel_modeset_pipes_in_mask_early(state,
"FDI link BW decrease on pipe C",
BIT(PIPE_B));
}
/* units of 100MHz */
static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
{
if (crtc_state->hw.enable && crtc_state->has_pch_encoder)
return crtc_state->fdi_lanes;
return 0;
}
static int ilk_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
struct intel_crtc_state *pipe_config,
enum pipe *pipe_to_reduce)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_atomic_state *state = pipe_config->uapi.state;
struct intel_crtc *other_crtc;
struct intel_crtc_state *other_crtc_state;
*pipe_to_reduce = pipe;
drm_dbg_kms(&dev_priv->drm,
"checking fdi config on pipe %c, lanes %i\n",
pipe_name(pipe), pipe_config->fdi_lanes);
if (pipe_config->fdi_lanes > 4) {
drm_dbg_kms(&dev_priv->drm,
"invalid fdi lane config on pipe %c: %i lanes\n",
pipe_name(pipe), pipe_config->fdi_lanes);
return -EINVAL;
}
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
if (pipe_config->fdi_lanes > 2) {
drm_dbg_kms(&dev_priv->drm,
"only 2 lanes on haswell, required: %i lanes\n",
pipe_config->fdi_lanes);
return -EINVAL;
} else {
return 0;
}
}
if (INTEL_NUM_PIPES(dev_priv) == 2)
return 0;
/* Ivybridge 3 pipe is really complicated */
switch (pipe) {
case PIPE_A:
return 0;
case PIPE_B:
if (pipe_config->fdi_lanes <= 2)
return 0;
other_crtc = intel_crtc_for_pipe(dev_priv, PIPE_C);
other_crtc_state =
intel_atomic_get_crtc_state(state, other_crtc);
if (IS_ERR(other_crtc_state))
return PTR_ERR(other_crtc_state);
if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
drm_dbg_kms(&dev_priv->drm,
"invalid shared fdi lane config on pipe %c: %i lanes\n",
pipe_name(pipe), pipe_config->fdi_lanes);
return -EINVAL;
}
return 0;
case PIPE_C:
if (pipe_config->fdi_lanes > 2) {
drm_dbg_kms(&dev_priv->drm,
"only 2 lanes on pipe %c: required %i lanes\n",
pipe_name(pipe), pipe_config->fdi_lanes);
return -EINVAL;
}
other_crtc = intel_crtc_for_pipe(dev_priv, PIPE_B);
other_crtc_state =
intel_atomic_get_crtc_state(state, other_crtc);
if (IS_ERR(other_crtc_state))
return PTR_ERR(other_crtc_state);
if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
drm_dbg_kms(&dev_priv->drm,
"fdi link B uses too many lanes to enable link C\n");
*pipe_to_reduce = PIPE_B;
return -EINVAL;
}
return 0;
default:
MISSING_CASE(pipe);
return 0;
}
}
void intel_fdi_pll_freq_update(struct drm_i915_private *i915)
{
if (IS_IRONLAKE(i915)) {
u32 fdi_pll_clk =
intel_de_read(i915, FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK;
i915->display.fdi.pll_freq = (fdi_pll_clk + 2) * 10000;
} else if (IS_SANDYBRIDGE(i915) || IS_IVYBRIDGE(i915)) {
i915->display.fdi.pll_freq = 270000;
} else {
return;
}
drm_dbg(&i915->drm, "FDI PLL freq=%d\n", i915->display.fdi.pll_freq);
}
int intel_fdi_link_freq(struct drm_i915_private *i915,
const struct intel_crtc_state *pipe_config)
{
if (HAS_DDI(i915))
return pipe_config->port_clock; /* SPLL */
else
return i915->display.fdi.pll_freq;
}
/**
* intel_fdi_compute_pipe_bpp - compute pipe bpp limited by max link bpp
* @crtc_state: the crtc state
*
* Compute the pipe bpp limited by the CRTC's maximum link bpp. Encoders can
* call this function during state computation in the simple case where the
* link bpp will always match the pipe bpp. This is the case for all non-DP
* encoders, while DP encoders will use a link bpp lower than pipe bpp in case
* of DSC compression.
*
* Returns %true in case of success, %false if pipe bpp would need to be
* reduced below its valid range.
*/
bool intel_fdi_compute_pipe_bpp(struct intel_crtc_state *crtc_state)
{
int pipe_bpp = min(crtc_state->pipe_bpp,
fxp_q4_to_int(crtc_state->max_link_bpp_x16));
pipe_bpp = rounddown(pipe_bpp, 2 * 3);
if (pipe_bpp < 6 * 3)
return false;
crtc_state->pipe_bpp = pipe_bpp;
return true;
}
int ilk_fdi_compute_config(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *i915 = to_i915(dev);
const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
int lane, link_bw, fdi_dotclock;
/* FDI is a binary signal running at ~2.7GHz, encoding
* each output octet as 10 bits. The actual frequency
* is stored as a divider into a 100MHz clock, and the
* mode pixel clock is stored in units of 1KHz.
* Hence the bw of each lane in terms of the mode signal
* is:
*/
link_bw = intel_fdi_link_freq(i915, pipe_config);
fdi_dotclock = adjusted_mode->crtc_clock;
lane = ilk_get_lanes_required(fdi_dotclock, link_bw,
pipe_config->pipe_bpp);
pipe_config->fdi_lanes = lane;
intel_link_compute_m_n(fxp_q4_from_int(pipe_config->pipe_bpp),
lane, fdi_dotclock,
link_bw,
intel_dp_bw_fec_overhead(false),
&pipe_config->fdi_m_n);
return 0;
}
static int intel_fdi_atomic_check_bw(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config,
struct intel_link_bw_limits *limits)
{
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
enum pipe pipe_to_reduce;
int ret;
ret = ilk_check_fdi_lanes(&i915->drm, crtc->pipe, pipe_config,
&pipe_to_reduce);
if (ret != -EINVAL)
return ret;
ret = intel_link_bw_reduce_bpp(state, limits,
BIT(pipe_to_reduce),
"FDI link BW");
return ret ? : -EAGAIN;
}
/**
* intel_fdi_atomic_check_link - check all modeset FDI link configuration
* @state: intel atomic state
* @limits: link BW limits
*
* Check the link configuration for all modeset FDI outputs. If the
* configuration is invalid @limits will be updated if possible to
* reduce the total BW, after which the configuration for all CRTCs in
* @state must be recomputed with the updated @limits.
*
* Returns:
* - 0 if the confugration is valid
* - %-EAGAIN, if the configuration is invalid and @limits got updated
* with fallback values with which the configuration of all CRTCs
* in @state must be recomputed
* - Other negative error, if the configuration is invalid without a
* fallback possibility, or the check failed for another reason
*/
int intel_fdi_atomic_check_link(struct intel_atomic_state *state,
struct intel_link_bw_limits *limits)
{
struct intel_crtc *crtc;
struct intel_crtc_state *crtc_state;
int i;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
int ret;
if (!crtc_state->has_pch_encoder ||
!intel_crtc_needs_modeset(crtc_state) ||
!crtc_state->hw.enable)
continue;
ret = intel_fdi_atomic_check_bw(state, crtc, crtc_state, limits);
if (ret)
return ret;
}
return 0;
}
static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable)
{
u32 temp;
temp = intel_de_read(dev_priv, SOUTH_CHICKEN1);
if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
return;
drm_WARN_ON(&dev_priv->drm,
intel_de_read(dev_priv, FDI_RX_CTL(PIPE_B)) &
FDI_RX_ENABLE);
drm_WARN_ON(&dev_priv->drm,
intel_de_read(dev_priv, FDI_RX_CTL(PIPE_C)) &
FDI_RX_ENABLE);
temp &= ~FDI_BC_BIFURCATION_SELECT;
if (enable)
temp |= FDI_BC_BIFURCATION_SELECT;
drm_dbg_kms(&dev_priv->drm, "%sabling fdi C rx\n",
enable ? "en" : "dis");
intel_de_write(dev_priv, SOUTH_CHICKEN1, temp);
intel_de_posting_read(dev_priv, SOUTH_CHICKEN1);
}
static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
switch (crtc->pipe) {
case PIPE_A:
break;
case PIPE_B:
if (crtc_state->fdi_lanes > 2)
cpt_set_fdi_bc_bifurcation(dev_priv, false);
else
cpt_set_fdi_bc_bifurcation(dev_priv, true);
break;
case PIPE_C:
cpt_set_fdi_bc_bifurcation(dev_priv, true);
break;
default:
MISSING_CASE(crtc->pipe);
}
}
void intel_fdi_normal_train(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum pipe pipe = crtc->pipe;
i915_reg_t reg;
u32 temp;
/* enable normal train */
reg = FDI_TX_CTL(pipe);
temp = intel_de_read(dev_priv, reg);
if (IS_IVYBRIDGE(dev_priv)) {
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
}
intel_de_write(dev_priv, reg, temp);
reg = FDI_RX_CTL(pipe);
temp = intel_de_read(dev_priv, reg);
if (HAS_PCH_CPT(dev_priv)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_NORMAL_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_NONE;
}
intel_de_write(dev_priv, reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
/* wait one idle pattern time */
intel_de_posting_read(dev_priv, reg);
udelay(1000);
/* IVB wants error correction enabled */
if (IS_IVYBRIDGE(dev_priv))
intel_de_rmw(dev_priv, reg, 0, FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE);
}
/* The FDI link training functions for ILK/Ibexpeak. */
static void ilk_fdi_link_train(struct intel_crtc *crtc,
const struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum pipe pipe = crtc->pipe;
i915_reg_t reg;
u32 temp, tries;
/*
* Write the TU size bits before fdi link training, so that error
* detection works.
*/
intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe),
intel_de_read(dev_priv, PIPE_DATA_M1(dev_priv, pipe)) & TU_SIZE_MASK);
/* FDI needs bits from pipe first */
assert_transcoder_enabled(dev_priv, crtc_state->cpu_transcoder);
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = intel_de_read(dev_priv, reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
intel_de_write(dev_priv, reg, temp);
intel_de_read(dev_priv, reg);
udelay(150);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = intel_de_read(dev_priv, reg);
temp &= ~FDI_DP_PORT_WIDTH_MASK;
temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
reg = FDI_RX_CTL(pipe);
temp = intel_de_read(dev_priv, reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
intel_de_posting_read(dev_priv, reg);
udelay(150);
/* Ironlake workaround, enable clock pointer after FDI enable*/
intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
FDI_RX_PHASE_SYNC_POINTER_OVR);
intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN);
reg = FDI_RX_IIR(pipe);
for (tries = 0; tries < 5; tries++) {
temp = intel_de_read(dev_priv, reg);
drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
if ((temp & FDI_RX_BIT_LOCK)) {
drm_dbg_kms(&dev_priv->drm, "FDI train 1 done.\n");
intel_de_write(dev_priv, reg, temp | FDI_RX_BIT_LOCK);
break;
}
}
if (tries == 5)
drm_err(&dev_priv->drm, "FDI train 1 fail!\n");
/* Train 2 */
intel_de_rmw(dev_priv, FDI_TX_CTL(pipe),
FDI_LINK_TRAIN_NONE, FDI_LINK_TRAIN_PATTERN_2);
intel_de_rmw(dev_priv, FDI_RX_CTL(pipe),
FDI_LINK_TRAIN_NONE, FDI_LINK_TRAIN_PATTERN_2);
intel_de_posting_read(dev_priv, FDI_RX_CTL(pipe));
udelay(150);
reg = FDI_RX_IIR(pipe);
for (tries = 0; tries < 5; tries++) {
temp = intel_de_read(dev_priv, reg);
drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK) {
intel_de_write(dev_priv, reg,
temp | FDI_RX_SYMBOL_LOCK);
drm_dbg_kms(&dev_priv->drm, "FDI train 2 done.\n");
break;
}
}
if (tries == 5)
drm_err(&dev_priv->drm, "FDI train 2 fail!\n");
drm_dbg_kms(&dev_priv->drm, "FDI train done\n");
}
static const int snb_b_fdi_train_param[] = {
FDI_LINK_TRAIN_400MV_0DB_SNB_B,
FDI_LINK_TRAIN_400MV_6DB_SNB_B,
FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
FDI_LINK_TRAIN_800MV_0DB_SNB_B,
};
/* The FDI link training functions for SNB/Cougarpoint. */
static void gen6_fdi_link_train(struct intel_crtc *crtc,
const struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum pipe pipe = crtc->pipe;
i915_reg_t reg;
u32 temp, i, retry;
/*
* Write the TU size bits before fdi link training, so that error
* detection works.
*/
intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe),
intel_de_read(dev_priv, PIPE_DATA_M1(dev_priv, pipe)) & TU_SIZE_MASK);
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = intel_de_read(dev_priv, reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
intel_de_write(dev_priv, reg, temp);
intel_de_posting_read(dev_priv, reg);
udelay(150);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = intel_de_read(dev_priv, reg);
temp &= ~FDI_DP_PORT_WIDTH_MASK;
temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
/* SNB-B */
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
intel_de_write(dev_priv, FDI_RX_MISC(pipe),
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
reg = FDI_RX_CTL(pipe);
temp = intel_de_read(dev_priv, reg);
if (HAS_PCH_CPT(dev_priv)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
}
intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
intel_de_posting_read(dev_priv, reg);
udelay(150);
for (i = 0; i < 4; i++) {
intel_de_rmw(dev_priv, FDI_TX_CTL(pipe),
FDI_LINK_TRAIN_VOL_EMP_MASK, snb_b_fdi_train_param[i]);
intel_de_posting_read(dev_priv, FDI_TX_CTL(pipe));
udelay(500);
for (retry = 0; retry < 5; retry++) {
reg = FDI_RX_IIR(pipe);
temp = intel_de_read(dev_priv, reg);
drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_BIT_LOCK) {
intel_de_write(dev_priv, reg,
temp | FDI_RX_BIT_LOCK);
drm_dbg_kms(&dev_priv->drm,
"FDI train 1 done.\n");
break;
}
udelay(50);
}
if (retry < 5)
break;
}
if (i == 4)
drm_err(&dev_priv->drm, "FDI train 1 fail!\n");
/* Train 2 */
reg = FDI_TX_CTL(pipe);
temp = intel_de_read(dev_priv, reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
if (IS_SANDYBRIDGE(dev_priv)) {
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
/* SNB-B */
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
}
intel_de_write(dev_priv, reg, temp);
reg = FDI_RX_CTL(pipe);
temp = intel_de_read(dev_priv, reg);
if (HAS_PCH_CPT(dev_priv)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
}
intel_de_write(dev_priv, reg, temp);
intel_de_posting_read(dev_priv, reg);
udelay(150);
for (i = 0; i < 4; i++) {
intel_de_rmw(dev_priv, FDI_TX_CTL(pipe),
FDI_LINK_TRAIN_VOL_EMP_MASK, snb_b_fdi_train_param[i]);
intel_de_posting_read(dev_priv, FDI_TX_CTL(pipe));
udelay(500);
for (retry = 0; retry < 5; retry++) {
reg = FDI_RX_IIR(pipe);
temp = intel_de_read(dev_priv, reg);
drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK) {
intel_de_write(dev_priv, reg,
temp | FDI_RX_SYMBOL_LOCK);
drm_dbg_kms(&dev_priv->drm,
"FDI train 2 done.\n");
break;
}
udelay(50);
}
if (retry < 5)
break;
}
if (i == 4)
drm_err(&dev_priv->drm, "FDI train 2 fail!\n");
drm_dbg_kms(&dev_priv->drm, "FDI train done.\n");
}
/* Manual link training for Ivy Bridge A0 parts */
static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
const struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum pipe pipe = crtc->pipe;
i915_reg_t reg;
u32 temp, i, j;
ivb_update_fdi_bc_bifurcation(crtc_state);
/*
* Write the TU size bits before fdi link training, so that error
* detection works.
*/
intel_de_write(dev_priv, FDI_RX_TUSIZE1(pipe),
intel_de_read(dev_priv, PIPE_DATA_M1(dev_priv, pipe)) & TU_SIZE_MASK);
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = intel_de_read(dev_priv, reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
intel_de_write(dev_priv, reg, temp);
intel_de_posting_read(dev_priv, reg);
udelay(150);
drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR before link train 0x%x\n",
intel_de_read(dev_priv, FDI_RX_IIR(pipe)));
/* Try each vswing and preemphasis setting twice before moving on */
for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
/* disable first in case we need to retry */
reg = FDI_TX_CTL(pipe);
temp = intel_de_read(dev_priv, reg);
temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
temp &= ~FDI_TX_ENABLE;
intel_de_write(dev_priv, reg, temp);
reg = FDI_RX_CTL(pipe);
temp = intel_de_read(dev_priv, reg);
temp &= ~FDI_LINK_TRAIN_AUTO;
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp &= ~FDI_RX_ENABLE;
intel_de_write(dev_priv, reg, temp);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = intel_de_read(dev_priv, reg);
temp &= ~FDI_DP_PORT_WIDTH_MASK;
temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[j/2];
temp |= FDI_COMPOSITE_SYNC;
intel_de_write(dev_priv, reg, temp | FDI_TX_ENABLE);
intel_de_write(dev_priv, FDI_RX_MISC(pipe),
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
reg = FDI_RX_CTL(pipe);
temp = intel_de_read(dev_priv, reg);
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
temp |= FDI_COMPOSITE_SYNC;
intel_de_write(dev_priv, reg, temp | FDI_RX_ENABLE);
intel_de_posting_read(dev_priv, reg);
udelay(1); /* should be 0.5us */
for (i = 0; i < 4; i++) {
reg = FDI_RX_IIR(pipe);
temp = intel_de_read(dev_priv, reg);
drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_BIT_LOCK ||
(intel_de_read(dev_priv, reg) & FDI_RX_BIT_LOCK)) {
intel_de_write(dev_priv, reg,
temp | FDI_RX_BIT_LOCK);
drm_dbg_kms(&dev_priv->drm,
"FDI train 1 done, level %i.\n",
i);
break;
}
udelay(1); /* should be 0.5us */
}
if (i == 4) {
drm_dbg_kms(&dev_priv->drm,
"FDI train 1 fail on vswing %d\n", j / 2);
continue;
}
/* Train 2 */
intel_de_rmw(dev_priv, FDI_TX_CTL(pipe),
FDI_LINK_TRAIN_NONE_IVB,
FDI_LINK_TRAIN_PATTERN_2_IVB);
intel_de_rmw(dev_priv, FDI_RX_CTL(pipe),
FDI_LINK_TRAIN_PATTERN_MASK_CPT,
FDI_LINK_TRAIN_PATTERN_2_CPT);
intel_de_posting_read(dev_priv, FDI_RX_CTL(pipe));
udelay(2); /* should be 1.5us */
for (i = 0; i < 4; i++) {
reg = FDI_RX_IIR(pipe);
temp = intel_de_read(dev_priv, reg);
drm_dbg_kms(&dev_priv->drm, "FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK ||
(intel_de_read(dev_priv, reg) & FDI_RX_SYMBOL_LOCK)) {
intel_de_write(dev_priv, reg,
temp | FDI_RX_SYMBOL_LOCK);
drm_dbg_kms(&dev_priv->drm,
"FDI train 2 done, level %i.\n",
i);
goto train_done;
}
udelay(2); /* should be 1.5us */
}
if (i == 4)
drm_dbg_kms(&dev_priv->drm,
"FDI train 2 fail on vswing %d\n", j / 2);
}
train_done:
drm_dbg_kms(&dev_priv->drm, "FDI train done.\n");
}
/* Starting with Haswell, different DDI ports can work in FDI mode for
* connection to the PCH-located connectors. For this, it is necessary to train
* both the DDI port and PCH receiver for the desired DDI buffer settings.
*
* The recommended port to work in FDI mode is DDI E, which we use here. Also,
* please note that when FDI mode is active on DDI E, it shares 2 lines with
* DDI A (which is used for eDP)
*/
void hsw_fdi_link_train(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 temp, i, rx_ctl_val;
int n_entries;
encoder->get_buf_trans(encoder, crtc_state, &n_entries);
hsw_prepare_dp_ddi_buffers(encoder, crtc_state);
/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
* mode set "sequence for CRT port" document:
* - TP1 to TP2 time with the default value
* - FDI delay to 90h
*
* WaFDIAutoLinkSetTimingOverrride:hsw
*/
intel_de_write(dev_priv, FDI_RX_MISC(PIPE_A),
FDI_RX_PWRDN_LANE1_VAL(2) |
FDI_RX_PWRDN_LANE0_VAL(2) |
FDI_RX_TP1_TO_TP2_48 |
FDI_RX_FDI_DELAY_90);
/* Enable the PCH Receiver FDI PLL */
rx_ctl_val = dev_priv->display.fdi.rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
FDI_RX_PLL_ENABLE |
FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
intel_de_write(dev_priv, FDI_RX_CTL(PIPE_A), rx_ctl_val);
intel_de_posting_read(dev_priv, FDI_RX_CTL(PIPE_A));
udelay(220);
/* Switch from Rawclk to PCDclk */
rx_ctl_val |= FDI_PCDCLK;
intel_de_write(dev_priv, FDI_RX_CTL(PIPE_A), rx_ctl_val);
/* Configure Port Clock Select */
drm_WARN_ON(&dev_priv->drm, crtc_state->shared_dpll->info->id != DPLL_ID_SPLL);
intel_ddi_enable_clock(encoder, crtc_state);
/* Start the training iterating through available voltages and emphasis,
* testing each value twice. */
for (i = 0; i < n_entries * 2; i++) {
/* Configure DP_TP_CTL with auto-training */
intel_de_write(dev_priv, DP_TP_CTL(PORT_E),
DP_TP_CTL_FDI_AUTOTRAIN |
DP_TP_CTL_ENHANCED_FRAME_ENABLE |
DP_TP_CTL_LINK_TRAIN_PAT1 |
DP_TP_CTL_ENABLE);
/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
* DDI E does not support port reversal, the functionality is
* achieved on the PCH side in FDI_RX_CTL, so no need to set the
* port reversal bit */
intel_de_write(dev_priv, DDI_BUF_CTL(PORT_E),
DDI_BUF_CTL_ENABLE |
((crtc_state->fdi_lanes - 1) << 1) |
DDI_BUF_TRANS_SELECT(i / 2));
intel_de_posting_read(dev_priv, DDI_BUF_CTL(PORT_E));
udelay(600);
/* Program PCH FDI Receiver TU */
intel_de_write(dev_priv, FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
/* Enable PCH FDI Receiver with auto-training */
rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
intel_de_write(dev_priv, FDI_RX_CTL(PIPE_A), rx_ctl_val);
intel_de_posting_read(dev_priv, FDI_RX_CTL(PIPE_A));
/* Wait for FDI receiver lane calibration */
udelay(30);
/* Unset FDI_RX_MISC pwrdn lanes */
intel_de_rmw(dev_priv, FDI_RX_MISC(PIPE_A),
FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK, 0);
intel_de_posting_read(dev_priv, FDI_RX_MISC(PIPE_A));
/* Wait for FDI auto training time */
udelay(5);
temp = intel_de_read(dev_priv, DP_TP_STATUS(PORT_E));
if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
drm_dbg_kms(&dev_priv->drm,
"FDI link training done on step %d\n", i);
break;
}
/*
* Leave things enabled even if we failed to train FDI.
* Results in less fireworks from the state checker.
*/
if (i == n_entries * 2 - 1) {
drm_err(&dev_priv->drm, "FDI link training failed!\n");
break;
}
rx_ctl_val &= ~FDI_RX_ENABLE;
intel_de_write(dev_priv, FDI_RX_CTL(PIPE_A), rx_ctl_val);
intel_de_posting_read(dev_priv, FDI_RX_CTL(PIPE_A));
intel_de_rmw(dev_priv, DDI_BUF_CTL(PORT_E), DDI_BUF_CTL_ENABLE, 0);
intel_de_posting_read(dev_priv, DDI_BUF_CTL(PORT_E));
/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
intel_de_rmw(dev_priv, DP_TP_CTL(PORT_E), DP_TP_CTL_ENABLE, 0);
intel_de_posting_read(dev_priv, DP_TP_CTL(PORT_E));
intel_wait_ddi_buf_idle(dev_priv, PORT_E);
/* Reset FDI_RX_MISC pwrdn lanes */
intel_de_rmw(dev_priv, FDI_RX_MISC(PIPE_A),
FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK,
FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2));
intel_de_posting_read(dev_priv, FDI_RX_MISC(PIPE_A));
}
/* Enable normal pixel sending for FDI */
intel_de_write(dev_priv, DP_TP_CTL(PORT_E),
DP_TP_CTL_FDI_AUTOTRAIN |
DP_TP_CTL_LINK_TRAIN_NORMAL |
DP_TP_CTL_ENHANCED_FRAME_ENABLE |
DP_TP_CTL_ENABLE);
}
void hsw_fdi_disable(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
/*
* Bspec lists this as both step 13 (before DDI_BUF_CTL disable)
* and step 18 (after clearing PORT_CLK_SEL). Based on a BUN,
* step 13 is the correct place for it. Step 18 is where it was
* originally before the BUN.
*/
intel_de_rmw(dev_priv, FDI_RX_CTL(PIPE_A), FDI_RX_ENABLE, 0);
intel_de_rmw(dev_priv, DDI_BUF_CTL(PORT_E), DDI_BUF_CTL_ENABLE, 0);
intel_wait_ddi_buf_idle(dev_priv, PORT_E);
intel_ddi_disable_clock(encoder);
intel_de_rmw(dev_priv, FDI_RX_MISC(PIPE_A),
FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK,
FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2));
intel_de_rmw(dev_priv, FDI_RX_CTL(PIPE_A), FDI_PCDCLK, 0);
intel_de_rmw(dev_priv, FDI_RX_CTL(PIPE_A), FDI_RX_PLL_ENABLE, 0);
}
void ilk_fdi_pll_enable(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
i915_reg_t reg;
u32 temp;
/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
reg = FDI_RX_CTL(pipe);
temp = intel_de_read(dev_priv, reg);
temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
temp |= (intel_de_read(dev_priv, TRANSCONF(dev_priv, pipe)) & TRANSCONF_BPC_MASK) << 11;
intel_de_write(dev_priv, reg, temp | FDI_RX_PLL_ENABLE);
intel_de_posting_read(dev_priv, reg);
udelay(200);
/* Switch from Rawclk to PCDclk */
intel_de_rmw(dev_priv, reg, 0, FDI_PCDCLK);
intel_de_posting_read(dev_priv, reg);
udelay(200);
/* Enable CPU FDI TX PLL, always on for Ironlake */
reg = FDI_TX_CTL(pipe);
temp = intel_de_read(dev_priv, reg);
if ((temp & FDI_TX_PLL_ENABLE) == 0) {
intel_de_write(dev_priv, reg, temp | FDI_TX_PLL_ENABLE);
intel_de_posting_read(dev_priv, reg);
udelay(100);
}
}
void ilk_fdi_pll_disable(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum pipe pipe = crtc->pipe;
/* Switch from PCDclk to Rawclk */
intel_de_rmw(dev_priv, FDI_RX_CTL(pipe), FDI_PCDCLK, 0);
/* Disable CPU FDI TX PLL */
intel_de_rmw(dev_priv, FDI_TX_CTL(pipe), FDI_TX_PLL_ENABLE, 0);
intel_de_posting_read(dev_priv, FDI_TX_CTL(pipe));
udelay(100);
/* Wait for the clocks to turn off. */
intel_de_rmw(dev_priv, FDI_RX_CTL(pipe), FDI_RX_PLL_ENABLE, 0);
intel_de_posting_read(dev_priv, FDI_RX_CTL(pipe));
udelay(100);
}
void ilk_fdi_disable(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
i915_reg_t reg;
u32 temp;
/* disable CPU FDI tx and PCH FDI rx */
intel_de_rmw(dev_priv, FDI_TX_CTL(pipe), FDI_TX_ENABLE, 0);
intel_de_posting_read(dev_priv, FDI_TX_CTL(pipe));
reg = FDI_RX_CTL(pipe);
temp = intel_de_read(dev_priv, reg);
temp &= ~(0x7 << 16);
temp |= (intel_de_read(dev_priv, TRANSCONF(dev_priv, pipe)) & TRANSCONF_BPC_MASK) << 11;
intel_de_write(dev_priv, reg, temp & ~FDI_RX_ENABLE);
intel_de_posting_read(dev_priv, reg);
udelay(100);
/* Ironlake workaround, disable clock pointer after downing FDI */
if (HAS_PCH_IBX(dev_priv))
intel_de_write(dev_priv, FDI_RX_CHICKEN(pipe),
FDI_RX_PHASE_SYNC_POINTER_OVR);
/* still set train pattern 1 */
intel_de_rmw(dev_priv, FDI_TX_CTL(pipe),
FDI_LINK_TRAIN_NONE, FDI_LINK_TRAIN_PATTERN_1);
reg = FDI_RX_CTL(pipe);
temp = intel_de_read(dev_priv, reg);
if (HAS_PCH_CPT(dev_priv)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
}
/* BPC in FDI rx is consistent with that in TRANSCONF */
temp &= ~(0x07 << 16);
temp |= (intel_de_read(dev_priv, TRANSCONF(dev_priv, pipe)) & TRANSCONF_BPC_MASK) << 11;
intel_de_write(dev_priv, reg, temp);
intel_de_posting_read(dev_priv, reg);
udelay(100);
}
static const struct intel_fdi_funcs ilk_funcs = {
.fdi_link_train = ilk_fdi_link_train,
};
static const struct intel_fdi_funcs gen6_funcs = {
.fdi_link_train = gen6_fdi_link_train,
};
static const struct intel_fdi_funcs ivb_funcs = {
.fdi_link_train = ivb_manual_fdi_link_train,
};
void
intel_fdi_init_hook(struct drm_i915_private *dev_priv)
{
if (IS_IRONLAKE(dev_priv)) {
dev_priv->display.funcs.fdi = &ilk_funcs;
} else if (IS_SANDYBRIDGE(dev_priv)) {
dev_priv->display.funcs.fdi = &gen6_funcs;
} else if (IS_IVYBRIDGE(dev_priv)) {
/* FIXME: detect B0+ stepping and use auto training */
dev_priv->display.funcs.fdi = &ivb_funcs;
}
}