/*
* Copyright © 2008-2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <drm/display/drm_dp_helper.h>
#include "i915_drv.h"
#include "intel_display_types.h"
#include "intel_dp.h"
#include "intel_dp_link_training.h"
#include "intel_encoder.h"
#include "intel_hotplug.h"
#include "intel_panel.h"
#define LT_MSG_PREFIX "[CONNECTOR:%d:%s][ENCODER:%d:%s][%s] "
#define LT_MSG_ARGS(_intel_dp, _dp_phy) (_intel_dp)->attached_connector->base.base.id, \
(_intel_dp)->attached_connector->base.name, \
dp_to_dig_port(_intel_dp)->base.base.base.id, \
dp_to_dig_port(_intel_dp)->base.base.name, \
drm_dp_phy_name(_dp_phy)
#define lt_dbg(_intel_dp, _dp_phy, _format, ...) \
drm_dbg_kms(to_intel_display(_intel_dp)->drm, \
LT_MSG_PREFIX _format, \
LT_MSG_ARGS(_intel_dp, _dp_phy), ## __VA_ARGS__)
#define lt_err(_intel_dp, _dp_phy, _format, ...) do { \
if (intel_digital_port_connected(&dp_to_dig_port(_intel_dp)->base)) \
drm_err(to_intel_display(_intel_dp)->drm, \
LT_MSG_PREFIX _format, \
LT_MSG_ARGS(_intel_dp, _dp_phy), ## __VA_ARGS__); \
else \
lt_dbg(_intel_dp, _dp_phy, "Sink disconnected: " _format, ## __VA_ARGS__); \
} while (0)
static void intel_dp_reset_lttpr_common_caps(struct intel_dp *intel_dp)
{
memset(intel_dp->lttpr_common_caps, 0, sizeof(intel_dp->lttpr_common_caps));
}
static void intel_dp_reset_lttpr_count(struct intel_dp *intel_dp)
{
intel_dp->lttpr_common_caps[DP_PHY_REPEATER_CNT -
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV] = 0;
}
static u8 *intel_dp_lttpr_phy_caps(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
return intel_dp->lttpr_phy_caps[dp_phy - DP_PHY_LTTPR1];
}
static void intel_dp_read_lttpr_phy_caps(struct intel_dp *intel_dp,
const u8 dpcd[DP_RECEIVER_CAP_SIZE],
enum drm_dp_phy dp_phy)
{
u8 *phy_caps = intel_dp_lttpr_phy_caps(intel_dp, dp_phy);
if (drm_dp_read_lttpr_phy_caps(&intel_dp->aux, dpcd, dp_phy, phy_caps) < 0) {
lt_dbg(intel_dp, dp_phy, "failed to read the PHY caps\n");
return;
}
lt_dbg(intel_dp, dp_phy, "PHY capabilities: %*ph\n",
(int)sizeof(intel_dp->lttpr_phy_caps[0]),
phy_caps);
}
static bool intel_dp_read_lttpr_common_caps(struct intel_dp *intel_dp,
const u8 dpcd[DP_RECEIVER_CAP_SIZE])
{
int ret;
ret = drm_dp_read_lttpr_common_caps(&intel_dp->aux, dpcd,
intel_dp->lttpr_common_caps);
if (ret < 0)
goto reset_caps;
lt_dbg(intel_dp, DP_PHY_DPRX, "LTTPR common capabilities: %*ph\n",
(int)sizeof(intel_dp->lttpr_common_caps),
intel_dp->lttpr_common_caps);
/* The minimum value of LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV is 1.4 */
if (intel_dp->lttpr_common_caps[0] < 0x14)
goto reset_caps;
return true;
reset_caps:
intel_dp_reset_lttpr_common_caps(intel_dp);
return false;
}
static bool
intel_dp_set_lttpr_transparent_mode(struct intel_dp *intel_dp, bool enable)
{
u8 val = enable ? DP_PHY_REPEATER_MODE_TRANSPARENT :
DP_PHY_REPEATER_MODE_NON_TRANSPARENT;
if (drm_dp_dpcd_write(&intel_dp->aux, DP_PHY_REPEATER_MODE, &val, 1) != 1)
return false;
intel_dp->lttpr_common_caps[DP_PHY_REPEATER_MODE -
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV] = val;
return true;
}
static bool intel_dp_lttpr_transparent_mode_enabled(struct intel_dp *intel_dp)
{
return intel_dp->lttpr_common_caps[DP_PHY_REPEATER_MODE -
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV] ==
DP_PHY_REPEATER_MODE_TRANSPARENT;
}
/*
* Read the LTTPR common capabilities and switch the LTTPR PHYs to
* non-transparent mode if this is supported. Preserve the
* transparent/non-transparent mode on an active link.
*
* Return the number of detected LTTPRs in non-transparent mode or 0 if the
* LTTPRs are in transparent mode or the detection failed.
*/
static int intel_dp_init_lttpr_phys(struct intel_dp *intel_dp, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
{
int lttpr_count;
if (!intel_dp_read_lttpr_common_caps(intel_dp, dpcd))
return 0;
lttpr_count = drm_dp_lttpr_count(intel_dp->lttpr_common_caps);
/*
* Prevent setting LTTPR transparent mode explicitly if no LTTPRs are
* detected as this breaks link training at least on the Dell WD19TB
* dock.
*/
if (lttpr_count == 0)
return 0;
/*
* Don't change the mode on an active link, to prevent a loss of link
* synchronization. See DP Standard v2.0 3.6.7. about the LTTPR
* resetting its internal state when the mode is changed from
* non-transparent to transparent.
*/
if (intel_dp->link_trained) {
if (lttpr_count < 0 || intel_dp_lttpr_transparent_mode_enabled(intel_dp))
goto out_reset_lttpr_count;
return lttpr_count;
}
/*
* See DP Standard v2.0 3.6.6.1. about the explicit disabling of
* non-transparent mode and the disable->enable non-transparent mode
* sequence.
*/
intel_dp_set_lttpr_transparent_mode(intel_dp, true);
/*
* In case of unsupported number of LTTPRs or failing to switch to
* non-transparent mode fall-back to transparent link training mode,
* still taking into account any LTTPR common lane- rate/count limits.
*/
if (lttpr_count < 0)
goto out_reset_lttpr_count;
if (!intel_dp_set_lttpr_transparent_mode(intel_dp, false)) {
lt_dbg(intel_dp, DP_PHY_DPRX,
"Switching to LTTPR non-transparent LT mode failed, fall-back to transparent mode\n");
intel_dp_set_lttpr_transparent_mode(intel_dp, true);
goto out_reset_lttpr_count;
}
return lttpr_count;
out_reset_lttpr_count:
intel_dp_reset_lttpr_count(intel_dp);
return 0;
}
static int intel_dp_init_lttpr(struct intel_dp *intel_dp, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
{
int lttpr_count;
int i;
lttpr_count = intel_dp_init_lttpr_phys(intel_dp, dpcd);
for (i = 0; i < lttpr_count; i++)
intel_dp_read_lttpr_phy_caps(intel_dp, dpcd, DP_PHY_LTTPR(i));
return lttpr_count;
}
int intel_dp_read_dprx_caps(struct intel_dp *intel_dp, u8 dpcd[DP_RECEIVER_CAP_SIZE])
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_i915_private *i915 = to_i915(display->drm);
if (intel_dp_is_edp(intel_dp))
return 0;
/*
* Detecting LTTPRs must be avoided on platforms with an AUX timeout
* period < 3.2ms. (see DP Standard v2.0, 2.11.2, 3.6.6.1).
*/
if (DISPLAY_VER(display) >= 10 && !IS_GEMINILAKE(i915))
if (drm_dp_dpcd_probe(&intel_dp->aux,
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV))
return -EIO;
if (drm_dp_read_dpcd_caps(&intel_dp->aux, dpcd))
return -EIO;
return 0;
}
/**
* intel_dp_init_lttpr_and_dprx_caps - detect LTTPR and DPRX caps, init the LTTPR link training mode
* @intel_dp: Intel DP struct
*
* Read the LTTPR common and DPRX capabilities and switch to non-transparent
* link training mode if any is detected and read the PHY capabilities for all
* detected LTTPRs. In case of an LTTPR detection error or if the number of
* LTTPRs is more than is supported (8), fall back to the no-LTTPR,
* transparent mode link training mode.
*
* Returns:
* >0 if LTTPRs were detected and the non-transparent LT mode was set. The
* DPRX capabilities are read out.
* 0 if no LTTPRs or more than 8 LTTPRs were detected or in case of a
* detection failure and the transparent LT mode was set. The DPRX
* capabilities are read out.
* <0 Reading out the DPRX capabilities failed.
*/
int intel_dp_init_lttpr_and_dprx_caps(struct intel_dp *intel_dp)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_i915_private *i915 = to_i915(display->drm);
int lttpr_count = 0;
/*
* Detecting LTTPRs must be avoided on platforms with an AUX timeout
* period < 3.2ms. (see DP Standard v2.0, 2.11.2, 3.6.6.1).
*/
if (!intel_dp_is_edp(intel_dp) &&
(DISPLAY_VER(display) >= 10 && !IS_GEMINILAKE(i915))) {
u8 dpcd[DP_RECEIVER_CAP_SIZE];
int err = intel_dp_read_dprx_caps(intel_dp, dpcd);
if (err != 0)
return err;
lttpr_count = intel_dp_init_lttpr(intel_dp, dpcd);
}
/*
* The DPTX shall read the DPRX caps after LTTPR detection, so re-read
* it here.
*/
if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd)) {
intel_dp_reset_lttpr_common_caps(intel_dp);
return -EIO;
}
return lttpr_count;
}
static u8 dp_voltage_max(u8 preemph)
{
switch (preemph & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPH_LEVEL_0:
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
case DP_TRAIN_PRE_EMPH_LEVEL_1:
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
case DP_TRAIN_PRE_EMPH_LEVEL_2:
return DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
case DP_TRAIN_PRE_EMPH_LEVEL_3:
default:
return DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
}
}
static u8 intel_dp_lttpr_voltage_max(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
const u8 *phy_caps = intel_dp_lttpr_phy_caps(intel_dp, dp_phy);
if (drm_dp_lttpr_voltage_swing_level_3_supported(phy_caps))
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
else
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
}
static u8 intel_dp_lttpr_preemph_max(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
const u8 *phy_caps = intel_dp_lttpr_phy_caps(intel_dp, dp_phy);
if (drm_dp_lttpr_pre_emphasis_level_3_supported(phy_caps))
return DP_TRAIN_PRE_EMPH_LEVEL_3;
else
return DP_TRAIN_PRE_EMPH_LEVEL_2;
}
static bool
intel_dp_phy_is_downstream_of_source(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
struct intel_display *display = to_intel_display(intel_dp);
int lttpr_count = drm_dp_lttpr_count(intel_dp->lttpr_common_caps);
drm_WARN_ON_ONCE(display->drm,
lttpr_count <= 0 && dp_phy != DP_PHY_DPRX);
return lttpr_count <= 0 || dp_phy == DP_PHY_LTTPR(lttpr_count - 1);
}
static u8 intel_dp_phy_voltage_max(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
struct intel_display *display = to_intel_display(intel_dp);
u8 voltage_max;
/*
* Get voltage_max from the DPTX_PHY (source or LTTPR) upstream from
* the DPRX_PHY we train.
*/
if (intel_dp_phy_is_downstream_of_source(intel_dp, dp_phy))
voltage_max = intel_dp->voltage_max(intel_dp, crtc_state);
else
voltage_max = intel_dp_lttpr_voltage_max(intel_dp, dp_phy + 1);
drm_WARN_ON_ONCE(display->drm,
voltage_max != DP_TRAIN_VOLTAGE_SWING_LEVEL_2 &&
voltage_max != DP_TRAIN_VOLTAGE_SWING_LEVEL_3);
return voltage_max;
}
static u8 intel_dp_phy_preemph_max(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
struct intel_display *display = to_intel_display(intel_dp);
u8 preemph_max;
/*
* Get preemph_max from the DPTX_PHY (source or LTTPR) upstream from
* the DPRX_PHY we train.
*/
if (intel_dp_phy_is_downstream_of_source(intel_dp, dp_phy))
preemph_max = intel_dp->preemph_max(intel_dp);
else
preemph_max = intel_dp_lttpr_preemph_max(intel_dp, dp_phy + 1);
drm_WARN_ON_ONCE(display->drm,
preemph_max != DP_TRAIN_PRE_EMPH_LEVEL_2 &&
preemph_max != DP_TRAIN_PRE_EMPH_LEVEL_3);
return preemph_max;
}
static bool has_per_lane_signal_levels(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_i915_private *i915 = to_i915(display->drm);
return !intel_dp_phy_is_downstream_of_source(intel_dp, dp_phy) ||
DISPLAY_VER(display) >= 10 || IS_BROXTON(i915);
}
/* 128b/132b */
static u8 intel_dp_get_lane_adjust_tx_ffe_preset(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy,
const u8 link_status[DP_LINK_STATUS_SIZE],
int lane)
{
u8 tx_ffe = 0;
if (has_per_lane_signal_levels(intel_dp, dp_phy)) {
lane = min(lane, crtc_state->lane_count - 1);
tx_ffe = drm_dp_get_adjust_tx_ffe_preset(link_status, lane);
} else {
for (lane = 0; lane < crtc_state->lane_count; lane++)
tx_ffe = max(tx_ffe, drm_dp_get_adjust_tx_ffe_preset(link_status, lane));
}
return tx_ffe;
}
/* 8b/10b */
static u8 intel_dp_get_lane_adjust_vswing_preemph(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy,
const u8 link_status[DP_LINK_STATUS_SIZE],
int lane)
{
u8 v = 0;
u8 p = 0;
u8 voltage_max;
u8 preemph_max;
if (has_per_lane_signal_levels(intel_dp, dp_phy)) {
lane = min(lane, crtc_state->lane_count - 1);
v = drm_dp_get_adjust_request_voltage(link_status, lane);
p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
} else {
for (lane = 0; lane < crtc_state->lane_count; lane++) {
v = max(v, drm_dp_get_adjust_request_voltage(link_status, lane));
p = max(p, drm_dp_get_adjust_request_pre_emphasis(link_status, lane));
}
}
preemph_max = intel_dp_phy_preemph_max(intel_dp, dp_phy);
if (p >= preemph_max)
p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
v = min(v, dp_voltage_max(p));
voltage_max = intel_dp_phy_voltage_max(intel_dp, crtc_state, dp_phy);
if (v >= voltage_max)
v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
return v | p;
}
static u8 intel_dp_get_lane_adjust_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy,
const u8 link_status[DP_LINK_STATUS_SIZE],
int lane)
{
if (intel_dp_is_uhbr(crtc_state))
return intel_dp_get_lane_adjust_tx_ffe_preset(intel_dp, crtc_state,
dp_phy, link_status, lane);
else
return intel_dp_get_lane_adjust_vswing_preemph(intel_dp, crtc_state,
dp_phy, link_status, lane);
}
#define TRAIN_REQ_FMT "%d/%d/%d/%d"
#define _TRAIN_REQ_VSWING_ARGS(link_status, lane) \
(drm_dp_get_adjust_request_voltage((link_status), (lane)) >> DP_TRAIN_VOLTAGE_SWING_SHIFT)
#define TRAIN_REQ_VSWING_ARGS(link_status) \
_TRAIN_REQ_VSWING_ARGS(link_status, 0), \
_TRAIN_REQ_VSWING_ARGS(link_status, 1), \
_TRAIN_REQ_VSWING_ARGS(link_status, 2), \
_TRAIN_REQ_VSWING_ARGS(link_status, 3)
#define _TRAIN_REQ_PREEMPH_ARGS(link_status, lane) \
(drm_dp_get_adjust_request_pre_emphasis((link_status), (lane)) >> DP_TRAIN_PRE_EMPHASIS_SHIFT)
#define TRAIN_REQ_PREEMPH_ARGS(link_status) \
_TRAIN_REQ_PREEMPH_ARGS(link_status, 0), \
_TRAIN_REQ_PREEMPH_ARGS(link_status, 1), \
_TRAIN_REQ_PREEMPH_ARGS(link_status, 2), \
_TRAIN_REQ_PREEMPH_ARGS(link_status, 3)
#define _TRAIN_REQ_TX_FFE_ARGS(link_status, lane) \
drm_dp_get_adjust_tx_ffe_preset((link_status), (lane))
#define TRAIN_REQ_TX_FFE_ARGS(link_status) \
_TRAIN_REQ_TX_FFE_ARGS(link_status, 0), \
_TRAIN_REQ_TX_FFE_ARGS(link_status, 1), \
_TRAIN_REQ_TX_FFE_ARGS(link_status, 2), \
_TRAIN_REQ_TX_FFE_ARGS(link_status, 3)
void
intel_dp_get_adjust_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy,
const u8 link_status[DP_LINK_STATUS_SIZE])
{
int lane;
if (intel_dp_is_uhbr(crtc_state)) {
lt_dbg(intel_dp, dp_phy,
"128b/132b, lanes: %d, "
"TX FFE request: " TRAIN_REQ_FMT "\n",
crtc_state->lane_count,
TRAIN_REQ_TX_FFE_ARGS(link_status));
} else {
lt_dbg(intel_dp, dp_phy,
"8b/10b, lanes: %d, "
"vswing request: " TRAIN_REQ_FMT ", "
"pre-emphasis request: " TRAIN_REQ_FMT "\n",
crtc_state->lane_count,
TRAIN_REQ_VSWING_ARGS(link_status),
TRAIN_REQ_PREEMPH_ARGS(link_status));
}
for (lane = 0; lane < 4; lane++)
intel_dp->train_set[lane] =
intel_dp_get_lane_adjust_train(intel_dp, crtc_state,
dp_phy, link_status, lane);
}
static int intel_dp_training_pattern_set_reg(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
return dp_phy == DP_PHY_DPRX ?
DP_TRAINING_PATTERN_SET :
DP_TRAINING_PATTERN_SET_PHY_REPEATER(dp_phy);
}
static bool
intel_dp_set_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy,
u8 dp_train_pat)
{
int reg = intel_dp_training_pattern_set_reg(intel_dp, dp_phy);
u8 buf[sizeof(intel_dp->train_set) + 1];
int len;
intel_dp_program_link_training_pattern(intel_dp, crtc_state,
dp_phy, dp_train_pat);
buf[0] = dp_train_pat;
/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
memcpy(buf + 1, intel_dp->train_set, crtc_state->lane_count);
len = crtc_state->lane_count + 1;
return drm_dp_dpcd_write(&intel_dp->aux, reg, buf, len) == len;
}
static char dp_training_pattern_name(u8 train_pat)
{
switch (train_pat) {
case DP_TRAINING_PATTERN_1:
case DP_TRAINING_PATTERN_2:
case DP_TRAINING_PATTERN_3:
return '0' + train_pat;
case DP_TRAINING_PATTERN_4:
return '4';
default:
MISSING_CASE(train_pat);
return '?';
}
}
void
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy,
u8 dp_train_pat)
{
u8 train_pat = intel_dp_training_pattern_symbol(dp_train_pat);
if (train_pat != DP_TRAINING_PATTERN_DISABLE)
lt_dbg(intel_dp, dp_phy, "Using DP training pattern TPS%c\n",
dp_training_pattern_name(train_pat));
intel_dp->set_link_train(intel_dp, crtc_state, dp_train_pat);
}
#define TRAIN_SET_FMT "%d%s/%d%s/%d%s/%d%s"
#define _TRAIN_SET_VSWING_ARGS(train_set) \
((train_set) & DP_TRAIN_VOLTAGE_SWING_MASK) >> DP_TRAIN_VOLTAGE_SWING_SHIFT, \
(train_set) & DP_TRAIN_MAX_SWING_REACHED ? "(max)" : ""
#define TRAIN_SET_VSWING_ARGS(train_set) \
_TRAIN_SET_VSWING_ARGS((train_set)[0]), \
_TRAIN_SET_VSWING_ARGS((train_set)[1]), \
_TRAIN_SET_VSWING_ARGS((train_set)[2]), \
_TRAIN_SET_VSWING_ARGS((train_set)[3])
#define _TRAIN_SET_PREEMPH_ARGS(train_set) \
((train_set) & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT, \
(train_set) & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ? "(max)" : ""
#define TRAIN_SET_PREEMPH_ARGS(train_set) \
_TRAIN_SET_PREEMPH_ARGS((train_set)[0]), \
_TRAIN_SET_PREEMPH_ARGS((train_set)[1]), \
_TRAIN_SET_PREEMPH_ARGS((train_set)[2]), \
_TRAIN_SET_PREEMPH_ARGS((train_set)[3])
#define _TRAIN_SET_TX_FFE_ARGS(train_set) \
((train_set) & DP_TX_FFE_PRESET_VALUE_MASK), ""
#define TRAIN_SET_TX_FFE_ARGS(train_set) \
_TRAIN_SET_TX_FFE_ARGS((train_set)[0]), \
_TRAIN_SET_TX_FFE_ARGS((train_set)[1]), \
_TRAIN_SET_TX_FFE_ARGS((train_set)[2]), \
_TRAIN_SET_TX_FFE_ARGS((train_set)[3])
void intel_dp_set_signal_levels(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
if (intel_dp_is_uhbr(crtc_state)) {
lt_dbg(intel_dp, dp_phy,
"128b/132b, lanes: %d, "
"TX FFE presets: " TRAIN_SET_FMT "\n",
crtc_state->lane_count,
TRAIN_SET_TX_FFE_ARGS(intel_dp->train_set));
} else {
lt_dbg(intel_dp, dp_phy,
"8b/10b, lanes: %d, "
"vswing levels: " TRAIN_SET_FMT ", "
"pre-emphasis levels: " TRAIN_SET_FMT "\n",
crtc_state->lane_count,
TRAIN_SET_VSWING_ARGS(intel_dp->train_set),
TRAIN_SET_PREEMPH_ARGS(intel_dp->train_set));
}
if (intel_dp_phy_is_downstream_of_source(intel_dp, dp_phy))
encoder->set_signal_levels(encoder, crtc_state);
}
static bool
intel_dp_reset_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy,
u8 dp_train_pat)
{
memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
intel_dp_set_signal_levels(intel_dp, crtc_state, dp_phy);
return intel_dp_set_link_train(intel_dp, crtc_state, dp_phy, dp_train_pat);
}
static bool
intel_dp_update_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
int reg = dp_phy == DP_PHY_DPRX ?
DP_TRAINING_LANE0_SET :
DP_TRAINING_LANE0_SET_PHY_REPEATER(dp_phy);
int ret;
intel_dp_set_signal_levels(intel_dp, crtc_state, dp_phy);
ret = drm_dp_dpcd_write(&intel_dp->aux, reg,
intel_dp->train_set, crtc_state->lane_count);
return ret == crtc_state->lane_count;
}
/* 128b/132b */
static bool intel_dp_lane_max_tx_ffe_reached(u8 train_set_lane)
{
return (train_set_lane & DP_TX_FFE_PRESET_VALUE_MASK) ==
DP_TX_FFE_PRESET_VALUE_MASK;
}
/*
* 8b/10b
*
* FIXME: The DP spec is very confusing here, also the Link CTS spec seems to
* have self contradicting tests around this area.
*
* In lieu of better ideas let's just stop when we've reached the max supported
* vswing with its max pre-emphasis, which is either 2+1 or 3+0 depending on
* whether vswing level 3 is supported or not.
*/
static bool intel_dp_lane_max_vswing_reached(u8 train_set_lane)
{
u8 v = (train_set_lane & DP_TRAIN_VOLTAGE_SWING_MASK) >>
DP_TRAIN_VOLTAGE_SWING_SHIFT;
u8 p = (train_set_lane & DP_TRAIN_PRE_EMPHASIS_MASK) >>
DP_TRAIN_PRE_EMPHASIS_SHIFT;
if ((train_set_lane & DP_TRAIN_MAX_SWING_REACHED) == 0)
return false;
if (v + p != 3)
return false;
return true;
}
static bool intel_dp_link_max_vswing_reached(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
int lane;
for (lane = 0; lane < crtc_state->lane_count; lane++) {
u8 train_set_lane = intel_dp->train_set[lane];
if (intel_dp_is_uhbr(crtc_state)) {
if (!intel_dp_lane_max_tx_ffe_reached(train_set_lane))
return false;
} else {
if (!intel_dp_lane_max_vswing_reached(train_set_lane))
return false;
}
}
return true;
}
void intel_dp_link_training_set_mode(struct intel_dp *intel_dp, int link_rate, bool is_vrr)
{
u8 link_config[2];
link_config[0] = is_vrr ? DP_MSA_TIMING_PAR_IGNORE_EN : 0;
link_config[1] = drm_dp_is_uhbr_rate(link_rate) ?
DP_SET_ANSI_128B132B : DP_SET_ANSI_8B10B;
drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
}
static void intel_dp_update_downspread_ctrl(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
intel_dp_link_training_set_mode(intel_dp,
crtc_state->port_clock, crtc_state->vrr.flipline);
}
void intel_dp_link_training_set_bw(struct intel_dp *intel_dp,
int link_bw, int rate_select, int lane_count,
bool enhanced_framing)
{
if (enhanced_framing)
lane_count |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
if (link_bw) {
/* DP and eDP v1.3 and earlier link bw set method. */
u8 link_config[] = { link_bw, lane_count };
drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config,
ARRAY_SIZE(link_config));
} else {
/*
* eDP v1.4 and later link rate set method.
*
* eDP v1.4x sinks shall ignore DP_LINK_RATE_SET if
* DP_LINK_BW_SET is set. Avoid writing DP_LINK_BW_SET.
*
* eDP v1.5 sinks allow choosing either, and the last choice
* shall be active.
*/
drm_dp_dpcd_writeb(&intel_dp->aux, DP_LANE_COUNT_SET, lane_count);
drm_dp_dpcd_writeb(&intel_dp->aux, DP_LINK_RATE_SET, rate_select);
}
}
static void intel_dp_update_link_bw_set(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
u8 link_bw, u8 rate_select)
{
intel_dp_link_training_set_bw(intel_dp, link_bw, rate_select, crtc_state->lane_count,
crtc_state->enhanced_framing);
}
/*
* Prepare link training by configuring the link parameters. On DDI platforms
* also enable the port here.
*/
static bool
intel_dp_prepare_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
u8 link_bw, rate_select;
if (intel_dp->prepare_link_retrain)
intel_dp->prepare_link_retrain(intel_dp, crtc_state);
intel_dp_compute_rate(intel_dp, crtc_state->port_clock,
&link_bw, &rate_select);
/*
* WaEdpLinkRateDataReload
*
* Parade PS8461E MUX (used on varius TGL+ laptops) needs
* to snoop the link rates reported by the sink when we
* use LINK_RATE_SET in order to operate in jitter cleaning
* mode (as opposed to redriver mode). Unfortunately it
* loses track of the snooped link rates when powered down,
* so we need to make it re-snoop often. Without this high
* link rates are not stable.
*/
if (!link_bw) {
__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
lt_dbg(intel_dp, DP_PHY_DPRX, "Reloading eDP link rates\n");
drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
sink_rates, sizeof(sink_rates));
}
if (link_bw)
lt_dbg(intel_dp, DP_PHY_DPRX, "Using LINK_BW_SET value %02x\n",
link_bw);
else
lt_dbg(intel_dp, DP_PHY_DPRX,
"Using LINK_RATE_SET value %02x\n",
rate_select);
/*
* Spec DP2.1 Section 3.5.2.16
* Prior to LT DPTX should set 128b/132b DP Channel coding and then set link rate
*/
intel_dp_update_downspread_ctrl(intel_dp, crtc_state);
intel_dp_update_link_bw_set(intel_dp, crtc_state, link_bw,
rate_select);
return true;
}
static bool intel_dp_adjust_request_changed(const struct intel_crtc_state *crtc_state,
const u8 old_link_status[DP_LINK_STATUS_SIZE],
const u8 new_link_status[DP_LINK_STATUS_SIZE])
{
int lane;
for (lane = 0; lane < crtc_state->lane_count; lane++) {
u8 old, new;
if (intel_dp_is_uhbr(crtc_state)) {
old = drm_dp_get_adjust_tx_ffe_preset(old_link_status, lane);
new = drm_dp_get_adjust_tx_ffe_preset(new_link_status, lane);
} else {
old = drm_dp_get_adjust_request_voltage(old_link_status, lane) |
drm_dp_get_adjust_request_pre_emphasis(old_link_status, lane);
new = drm_dp_get_adjust_request_voltage(new_link_status, lane) |
drm_dp_get_adjust_request_pre_emphasis(new_link_status, lane);
}
if (old != new)
return true;
}
return false;
}
void
intel_dp_dump_link_status(struct intel_dp *intel_dp, enum drm_dp_phy dp_phy,
const u8 link_status[DP_LINK_STATUS_SIZE])
{
lt_dbg(intel_dp, dp_phy,
"ln0_1:0x%x ln2_3:0x%x align:0x%x sink:0x%x adj_req0_1:0x%x adj_req2_3:0x%x\n",
link_status[0], link_status[1], link_status[2],
link_status[3], link_status[4], link_status[5]);
}
/*
* Perform the link training clock recovery phase on the given DP PHY using
* training pattern 1.
*/
static bool
intel_dp_link_training_clock_recovery(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
u8 old_link_status[DP_LINK_STATUS_SIZE] = {};
int voltage_tries, cr_tries, max_cr_tries;
u8 link_status[DP_LINK_STATUS_SIZE];
bool max_vswing_reached = false;
int delay_us;
delay_us = drm_dp_read_clock_recovery_delay(&intel_dp->aux,
intel_dp->dpcd, dp_phy,
intel_dp_is_uhbr(crtc_state));
/* clock recovery */
if (!intel_dp_reset_link_train(intel_dp, crtc_state, dp_phy,
DP_TRAINING_PATTERN_1 |
DP_LINK_SCRAMBLING_DISABLE)) {
lt_err(intel_dp, dp_phy, "Failed to enable link training\n");
return false;
}
/*
* The DP 1.4 spec defines the max clock recovery retries value
* as 10 but for pre-DP 1.4 devices we set a very tolerant
* retry limit of 80 (4 voltage levels x 4 preemphasis levels x
* x 5 identical voltage retries). Since the previous specs didn't
* define a limit and created the possibility of an infinite loop
* we want to prevent any sync from triggering that corner case.
*/
if (intel_dp->dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
max_cr_tries = 10;
else
max_cr_tries = 80;
voltage_tries = 1;
for (cr_tries = 0; cr_tries < max_cr_tries; ++cr_tries) {
usleep_range(delay_us, 2 * delay_us);
if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, dp_phy,
link_status) < 0) {
lt_err(intel_dp, dp_phy, "Failed to get link status\n");
return false;
}
if (drm_dp_clock_recovery_ok(link_status, crtc_state->lane_count)) {
lt_dbg(intel_dp, dp_phy, "Clock recovery OK\n");
return true;
}
if (voltage_tries == 5) {
intel_dp_dump_link_status(intel_dp, dp_phy, link_status);
lt_dbg(intel_dp, dp_phy, "Same voltage tried 5 times\n");
return false;
}
if (max_vswing_reached) {
intel_dp_dump_link_status(intel_dp, dp_phy, link_status);
lt_dbg(intel_dp, dp_phy, "Max Voltage Swing reached\n");
return false;
}
/* Update training set as requested by target */
intel_dp_get_adjust_train(intel_dp, crtc_state, dp_phy,
link_status);
if (!intel_dp_update_link_train(intel_dp, crtc_state, dp_phy)) {
lt_err(intel_dp, dp_phy, "Failed to update link training\n");
return false;
}
if (!intel_dp_adjust_request_changed(crtc_state, old_link_status, link_status))
++voltage_tries;
else
voltage_tries = 1;
memcpy(old_link_status, link_status, sizeof(link_status));
if (intel_dp_link_max_vswing_reached(intel_dp, crtc_state))
max_vswing_reached = true;
}
intel_dp_dump_link_status(intel_dp, dp_phy, link_status);
lt_err(intel_dp, dp_phy, "Failed clock recovery %d times, giving up!\n",
max_cr_tries);
return false;
}
/*
* Pick Training Pattern Sequence (TPS) for channel equalization. 128b/132b TPS2
* for UHBR+, TPS4 for HBR3 or for 1.4 devices that support it, TPS3 for HBR2 or
* 1.2 devices that support it, TPS2 otherwise.
*/
static u32 intel_dp_training_pattern(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
struct intel_display *display = to_intel_display(intel_dp);
struct drm_i915_private *i915 = to_i915(display->drm);
bool source_tps3, sink_tps3, source_tps4, sink_tps4;
/* UHBR+ use separate 128b/132b TPS2 */
if (intel_dp_is_uhbr(crtc_state))
return DP_TRAINING_PATTERN_2;
/*
* TPS4 support is mandatory for all downstream devices that
* support HBR3. There are no known eDP panels that support
* TPS4 as of Feb 2018 as per VESA eDP_v1.4b_E1 specification.
* LTTPRs must support TPS4.
*/
source_tps4 = intel_dp_source_supports_tps4(i915);
sink_tps4 = dp_phy != DP_PHY_DPRX ||
drm_dp_tps4_supported(intel_dp->dpcd);
if (source_tps4 && sink_tps4) {
return DP_TRAINING_PATTERN_4;
} else if (crtc_state->port_clock == 810000) {
if (!source_tps4)
lt_dbg(intel_dp, dp_phy,
"8.1 Gbps link rate without source TPS4 support\n");
if (!sink_tps4)
lt_dbg(intel_dp, dp_phy,
"8.1 Gbps link rate without sink TPS4 support\n");
}
/*
* TPS3 support is mandatory for downstream devices that
* support HBR2. However, not all sinks follow the spec.
*/
source_tps3 = intel_dp_source_supports_tps3(i915);
sink_tps3 = dp_phy != DP_PHY_DPRX ||
drm_dp_tps3_supported(intel_dp->dpcd);
if (source_tps3 && sink_tps3) {
return DP_TRAINING_PATTERN_3;
} else if (crtc_state->port_clock >= 540000) {
if (!source_tps3)
lt_dbg(intel_dp, dp_phy,
">=5.4/6.48 Gbps link rate without source TPS3 support\n");
if (!sink_tps3)
lt_dbg(intel_dp, dp_phy,
">=5.4/6.48 Gbps link rate without sink TPS3 support\n");
}
return DP_TRAINING_PATTERN_2;
}
/*
* Perform the link training channel equalization phase on the given DP PHY
* using one of training pattern 2, 3 or 4 depending on the source and
* sink capabilities.
*/
static bool
intel_dp_link_training_channel_equalization(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
int tries;
u32 training_pattern;
u8 link_status[DP_LINK_STATUS_SIZE];
bool channel_eq = false;
int delay_us;
delay_us = drm_dp_read_channel_eq_delay(&intel_dp->aux,
intel_dp->dpcd, dp_phy,
intel_dp_is_uhbr(crtc_state));
training_pattern = intel_dp_training_pattern(intel_dp, crtc_state, dp_phy);
/* Scrambling is disabled for TPS2/3 and enabled for TPS4 */
if (training_pattern != DP_TRAINING_PATTERN_4)
training_pattern |= DP_LINK_SCRAMBLING_DISABLE;
/* channel equalization */
if (!intel_dp_set_link_train(intel_dp, crtc_state, dp_phy,
training_pattern)) {
lt_err(intel_dp, dp_phy, "Failed to start channel equalization\n");
return false;
}
for (tries = 0; tries < 5; tries++) {
usleep_range(delay_us, 2 * delay_us);
if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, dp_phy,
link_status) < 0) {
lt_err(intel_dp, dp_phy, "Failed to get link status\n");
break;
}
/* Make sure clock is still ok */
if (!drm_dp_clock_recovery_ok(link_status,
crtc_state->lane_count)) {
intel_dp_dump_link_status(intel_dp, dp_phy, link_status);
lt_dbg(intel_dp, dp_phy,
"Clock recovery check failed, cannot continue channel equalization\n");
break;
}
if (drm_dp_channel_eq_ok(link_status,
crtc_state->lane_count)) {
channel_eq = true;
lt_dbg(intel_dp, dp_phy, "Channel EQ done. DP Training successful\n");
break;
}
/* Update training set as requested by target */
intel_dp_get_adjust_train(intel_dp, crtc_state, dp_phy,
link_status);
if (!intel_dp_update_link_train(intel_dp, crtc_state, dp_phy)) {
lt_err(intel_dp, dp_phy, "Failed to update link training\n");
break;
}
}
/* Try 5 times, else fail and try at lower BW */
if (tries == 5) {
intel_dp_dump_link_status(intel_dp, dp_phy, link_status);
lt_dbg(intel_dp, dp_phy, "Channel equalization failed 5 times\n");
}
return channel_eq;
}
static bool intel_dp_disable_dpcd_training_pattern(struct intel_dp *intel_dp,
enum drm_dp_phy dp_phy)
{
int reg = intel_dp_training_pattern_set_reg(intel_dp, dp_phy);
u8 val = DP_TRAINING_PATTERN_DISABLE;
return drm_dp_dpcd_write(&intel_dp->aux, reg, &val, 1) == 1;
}
static int
intel_dp_128b132b_intra_hop(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
u8 sink_status;
int ret;
ret = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_STATUS, &sink_status);
if (ret != 1) {
lt_dbg(intel_dp, DP_PHY_DPRX, "Failed to read sink status\n");
return ret < 0 ? ret : -EIO;
}
return sink_status & DP_INTRA_HOP_AUX_REPLY_INDICATION ? 1 : 0;
}
/**
* intel_dp_stop_link_train - stop link training
* @intel_dp: DP struct
* @crtc_state: state for CRTC attached to the encoder
*
* Stop the link training of the @intel_dp port, disabling the training
* pattern in the sink's DPCD, and disabling the test pattern symbol
* generation on the port.
*
* What symbols are output on the port after this point is
* platform specific: On DDI/VLV/CHV platforms it will be the idle pattern
* with the pipe being disabled, on older platforms it's HW specific if/how an
* idle pattern is generated, as the pipe is already enabled here for those.
*
* This function must be called after intel_dp_start_link_train().
*/
void intel_dp_stop_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
intel_dp->link_trained = true;
intel_dp_disable_dpcd_training_pattern(intel_dp, DP_PHY_DPRX);
intel_dp_program_link_training_pattern(intel_dp, crtc_state, DP_PHY_DPRX,
DP_TRAINING_PATTERN_DISABLE);
if (intel_dp_is_uhbr(crtc_state) &&
wait_for(intel_dp_128b132b_intra_hop(intel_dp, crtc_state) == 0, 500)) {
lt_dbg(intel_dp, DP_PHY_DPRX, "128b/132b intra-hop not clearing\n");
}
}
static bool
intel_dp_link_train_phy(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
enum drm_dp_phy dp_phy)
{
bool ret = false;
if (!intel_dp_link_training_clock_recovery(intel_dp, crtc_state, dp_phy))
goto out;
if (!intel_dp_link_training_channel_equalization(intel_dp, crtc_state, dp_phy))
goto out;
ret = true;
out:
lt_dbg(intel_dp, dp_phy,
"Link Training %s at link rate = %d, lane count = %d\n",
ret ? "passed" : "failed",
crtc_state->port_clock, crtc_state->lane_count);
return ret;
}
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
int link_rate,
u8 lane_count)
{
/* FIXME figure out what we actually want here */
const struct drm_display_mode *fixed_mode =
intel_panel_preferred_fixed_mode(intel_dp->attached_connector);
int mode_rate, max_rate;
mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
max_rate = intel_dp_max_link_data_rate(intel_dp, link_rate, lane_count);
if (mode_rate > max_rate)
return false;
return true;
}
static bool reduce_link_params_in_bw_order(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
int *new_link_rate, int *new_lane_count)
{
int link_rate;
int lane_count;
int i;
i = intel_dp_link_config_index(intel_dp, crtc_state->port_clock, crtc_state->lane_count);
for (i--; i >= 0; i--) {
intel_dp_link_config_get(intel_dp, i, &link_rate, &lane_count);
if ((intel_dp->link.force_rate &&
intel_dp->link.force_rate != link_rate) ||
(intel_dp->link.force_lane_count &&
intel_dp->link.force_lane_count != lane_count))
continue;
break;
}
if (i < 0)
return false;
*new_link_rate = link_rate;
*new_lane_count = lane_count;
return true;
}
static int reduce_link_rate(struct intel_dp *intel_dp, int current_rate)
{
int rate_index;
int new_rate;
if (intel_dp->link.force_rate)
return -1;
rate_index = intel_dp_rate_index(intel_dp->common_rates,
intel_dp->num_common_rates,
current_rate);
if (rate_index <= 0)
return -1;
new_rate = intel_dp_common_rate(intel_dp, rate_index - 1);
/* TODO: Make switching from UHBR to non-UHBR rates work. */
if (drm_dp_is_uhbr_rate(current_rate) != drm_dp_is_uhbr_rate(new_rate))
return -1;
return new_rate;
}
static int reduce_lane_count(struct intel_dp *intel_dp, int current_lane_count)
{
if (intel_dp->link.force_lane_count)
return -1;
if (current_lane_count == 1)
return -1;
return current_lane_count >> 1;
}
static bool reduce_link_params_in_rate_lane_order(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
int *new_link_rate, int *new_lane_count)
{
int link_rate;
int lane_count;
lane_count = crtc_state->lane_count;
link_rate = reduce_link_rate(intel_dp, crtc_state->port_clock);
if (link_rate < 0) {
lane_count = reduce_lane_count(intel_dp, crtc_state->lane_count);
link_rate = intel_dp_max_common_rate(intel_dp);
}
if (lane_count < 0)
return false;
*new_link_rate = link_rate;
*new_lane_count = lane_count;
return true;
}
static bool reduce_link_params(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state,
int *new_link_rate, int *new_lane_count)
{
/* TODO: Use the same fallback logic on SST as on MST. */
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST))
return reduce_link_params_in_bw_order(intel_dp, crtc_state,
new_link_rate, new_lane_count);
else
return reduce_link_params_in_rate_lane_order(intel_dp, crtc_state,
new_link_rate, new_lane_count);
}
static int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
int new_link_rate;
int new_lane_count;
if (intel_dp_is_edp(intel_dp) && !intel_dp->use_max_params) {
lt_dbg(intel_dp, DP_PHY_DPRX,
"Retrying Link training for eDP with max parameters\n");
intel_dp->use_max_params = true;
return 0;
}
if (!reduce_link_params(intel_dp, crtc_state, &new_link_rate, &new_lane_count))
return -1;
if (intel_dp_is_edp(intel_dp) &&
!intel_dp_can_link_train_fallback_for_edp(intel_dp, new_link_rate, new_lane_count)) {
lt_dbg(intel_dp, DP_PHY_DPRX,
"Retrying Link training for eDP with same parameters\n");
return 0;
}
lt_dbg(intel_dp, DP_PHY_DPRX,
"Reducing link parameters from %dx%d to %dx%d\n",
crtc_state->lane_count, crtc_state->port_clock,
new_lane_count, new_link_rate);
intel_dp->link.max_rate = new_link_rate;
intel_dp->link.max_lane_count = new_lane_count;
return 0;
}
static bool intel_dp_schedule_fallback_link_training(struct intel_atomic_state *state,
struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
if (!intel_digital_port_connected(&dp_to_dig_port(intel_dp)->base)) {
lt_dbg(intel_dp, DP_PHY_DPRX, "Link Training failed on disconnected sink.\n");
return true;
}
if (intel_dp->hobl_active) {
lt_dbg(intel_dp, DP_PHY_DPRX,
"Link Training failed with HOBL active, not enabling it from now on\n");
intel_dp->hobl_failed = true;
} else if (intel_dp_get_link_train_fallback_values(intel_dp, crtc_state)) {
return false;
}
/* Schedule a Hotplug Uevent to userspace to start modeset */
intel_dp_queue_modeset_retry_for_link(state, encoder, crtc_state);
return true;
}
/* Perform the link training on all LTTPRs and the DPRX on a link. */
static bool
intel_dp_link_train_all_phys(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
int lttpr_count)
{
bool ret = true;
int i;
for (i = lttpr_count - 1; i >= 0; i--) {
enum drm_dp_phy dp_phy = DP_PHY_LTTPR(i);
ret = intel_dp_link_train_phy(intel_dp, crtc_state, dp_phy);
intel_dp_disable_dpcd_training_pattern(intel_dp, dp_phy);
if (!ret)
break;
}
if (ret)
ret = intel_dp_link_train_phy(intel_dp, crtc_state, DP_PHY_DPRX);
if (intel_dp->set_idle_link_train)
intel_dp->set_idle_link_train(intel_dp, crtc_state);
return ret;
}
/*
* 128b/132b DP LANEx_EQ_DONE Sequence (DP 2.0 E11 3.5.2.16.1)
*/
static bool
intel_dp_128b132b_lane_eq(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
u8 link_status[DP_LINK_STATUS_SIZE];
int delay_us;
int try, max_tries = 20;
unsigned long deadline;
bool timeout = false;
/*
* Reset signal levels. Start transmitting 128b/132b TPS1.
*
* Put DPRX and LTTPRs (if any) into intra-hop AUX mode by writing TPS1
* in DP_TRAINING_PATTERN_SET.
*/
if (!intel_dp_reset_link_train(intel_dp, crtc_state, DP_PHY_DPRX,
DP_TRAINING_PATTERN_1)) {
lt_err(intel_dp, DP_PHY_DPRX, "Failed to start 128b/132b TPS1\n");
return false;
}
delay_us = drm_dp_128b132b_read_aux_rd_interval(&intel_dp->aux);
/* Read the initial TX FFE settings. */
if (drm_dp_dpcd_read_link_status(&intel_dp->aux, link_status) < 0) {
lt_err(intel_dp, DP_PHY_DPRX, "Failed to read TX FFE presets\n");
return false;
}
/* Update signal levels and training set as requested. */
intel_dp_get_adjust_train(intel_dp, crtc_state, DP_PHY_DPRX, link_status);
if (!intel_dp_update_link_train(intel_dp, crtc_state, DP_PHY_DPRX)) {
lt_err(intel_dp, DP_PHY_DPRX, "Failed to set initial TX FFE settings\n");
return false;
}
/* Start transmitting 128b/132b TPS2. */
if (!intel_dp_set_link_train(intel_dp, crtc_state, DP_PHY_DPRX,
DP_TRAINING_PATTERN_2)) {
lt_err(intel_dp, DP_PHY_DPRX, "Failed to start 128b/132b TPS2\n");
return false;
}
/* Time budget for the LANEx_EQ_DONE Sequence */
deadline = jiffies + msecs_to_jiffies_timeout(400);
for (try = 0; try < max_tries; try++) {
usleep_range(delay_us, 2 * delay_us);
/*
* The delay may get updated. The transmitter shall read the
* delay before link status during link training.
*/
delay_us = drm_dp_128b132b_read_aux_rd_interval(&intel_dp->aux);
if (drm_dp_dpcd_read_link_status(&intel_dp->aux, link_status) < 0) {
lt_err(intel_dp, DP_PHY_DPRX, "Failed to read link status\n");
return false;
}
if (drm_dp_128b132b_link_training_failed(link_status)) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
lt_err(intel_dp, DP_PHY_DPRX,
"Downstream link training failure\n");
return false;
}
if (drm_dp_128b132b_lane_channel_eq_done(link_status, crtc_state->lane_count)) {
lt_dbg(intel_dp, DP_PHY_DPRX, "Lane channel eq done\n");
break;
}
if (timeout) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
lt_err(intel_dp, DP_PHY_DPRX, "Lane channel eq timeout\n");
return false;
}
if (time_after(jiffies, deadline))
timeout = true; /* try one last time after deadline */
/* Update signal levels and training set as requested. */
intel_dp_get_adjust_train(intel_dp, crtc_state, DP_PHY_DPRX, link_status);
if (!intel_dp_update_link_train(intel_dp, crtc_state, DP_PHY_DPRX)) {
lt_err(intel_dp, DP_PHY_DPRX, "Failed to update TX FFE settings\n");
return false;
}
}
if (try == max_tries) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
lt_err(intel_dp, DP_PHY_DPRX, "Max loop count reached\n");
return false;
}
for (;;) {
if (time_after(jiffies, deadline))
timeout = true; /* try one last time after deadline */
if (drm_dp_dpcd_read_link_status(&intel_dp->aux, link_status) < 0) {
lt_err(intel_dp, DP_PHY_DPRX, "Failed to read link status\n");
return false;
}
if (drm_dp_128b132b_link_training_failed(link_status)) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
lt_err(intel_dp, DP_PHY_DPRX, "Downstream link training failure\n");
return false;
}
if (drm_dp_128b132b_eq_interlane_align_done(link_status)) {
lt_dbg(intel_dp, DP_PHY_DPRX, "Interlane align done\n");
break;
}
if (timeout) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
lt_err(intel_dp, DP_PHY_DPRX, "Interlane align timeout\n");
return false;
}
usleep_range(2000, 3000);
}
return true;
}
/*
* 128b/132b DP LANEx_CDS_DONE Sequence (DP 2.0 E11 3.5.2.16.2)
*/
static bool
intel_dp_128b132b_lane_cds(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
int lttpr_count)
{
u8 link_status[DP_LINK_STATUS_SIZE];
unsigned long deadline;
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
DP_TRAINING_PATTERN_2_CDS) != 1) {
lt_err(intel_dp, DP_PHY_DPRX, "Failed to start 128b/132b TPS2 CDS\n");
return false;
}
/* Time budget for the LANEx_CDS_DONE Sequence */
deadline = jiffies + msecs_to_jiffies_timeout((lttpr_count + 1) * 20);
for (;;) {
bool timeout = false;
if (time_after(jiffies, deadline))
timeout = true; /* try one last time after deadline */
usleep_range(2000, 3000);
if (drm_dp_dpcd_read_link_status(&intel_dp->aux, link_status) < 0) {
lt_err(intel_dp, DP_PHY_DPRX, "Failed to read link status\n");
return false;
}
if (drm_dp_128b132b_eq_interlane_align_done(link_status) &&
drm_dp_128b132b_cds_interlane_align_done(link_status) &&
drm_dp_128b132b_lane_symbol_locked(link_status, crtc_state->lane_count)) {
lt_dbg(intel_dp, DP_PHY_DPRX, "CDS interlane align done\n");
break;
}
if (drm_dp_128b132b_link_training_failed(link_status)) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
lt_err(intel_dp, DP_PHY_DPRX, "Downstream link training failure\n");
return false;
}
if (timeout) {
intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status);
lt_err(intel_dp, DP_PHY_DPRX, "CDS timeout\n");
return false;
}
}
return true;
}
/*
* 128b/132b link training sequence. (DP 2.0 E11 SCR on link training.)
*/
static bool
intel_dp_128b132b_link_train(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
int lttpr_count)
{
bool passed = false;
if (wait_for(intel_dp_128b132b_intra_hop(intel_dp, crtc_state) == 0, 500)) {
lt_err(intel_dp, DP_PHY_DPRX, "128b/132b intra-hop not clear\n");
return false;
}
if (intel_dp_128b132b_lane_eq(intel_dp, crtc_state) &&
intel_dp_128b132b_lane_cds(intel_dp, crtc_state, lttpr_count))
passed = true;
lt_dbg(intel_dp, DP_PHY_DPRX,
"128b/132b Link Training %s at link rate = %d, lane count = %d\n",
passed ? "passed" : "failed",
crtc_state->port_clock, crtc_state->lane_count);
return passed;
}
/**
* intel_dp_start_link_train - start link training
* @state: Atomic state
* @intel_dp: DP struct
* @crtc_state: state for CRTC attached to the encoder
*
* Start the link training of the @intel_dp port, scheduling a fallback
* retraining with reduced link rate/lane parameters if the link training
* fails.
* After calling this function intel_dp_stop_link_train() must be called.
*/
void intel_dp_start_link_train(struct intel_atomic_state *state,
struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(state);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *encoder = &dig_port->base;
bool passed;
/*
* Reinit the LTTPRs here to ensure that they are switched to
* non-transparent mode. During an earlier LTTPR detection this
* could've been prevented by an active link.
*/
int lttpr_count = intel_dp_init_lttpr_and_dprx_caps(intel_dp);
if (lttpr_count < 0)
/* Still continue with enabling the port and link training. */
lttpr_count = 0;
intel_dp_prepare_link_train(intel_dp, crtc_state);
if (intel_dp_is_uhbr(crtc_state))
passed = intel_dp_128b132b_link_train(intel_dp, crtc_state, lttpr_count);
else
passed = intel_dp_link_train_all_phys(intel_dp, crtc_state, lttpr_count);
if (intel_dp->link.force_train_failure) {
intel_dp->link.force_train_failure--;
lt_dbg(intel_dp, DP_PHY_DPRX, "Forcing link training failure\n");
} else if (passed) {
intel_dp->link.seq_train_failures = 0;
intel_encoder_link_check_queue_work(encoder, 2000);
return;
}
intel_dp->link.seq_train_failures++;
/*
* Ignore the link failure in CI
*
* In fixed enviroments like CI, sometimes unexpected long HPDs are
* generated by the displays. If ignore_long_hpd flag is set, such long
* HPDs are ignored. And probably as a consequence of these ignored
* long HPDs, subsequent link trainings are failed resulting into CI
* execution failures.
*
* For test cases which rely on the link training or processing of HPDs
* ignore_long_hpd flag can unset from the testcase.
*/
if (display->hotplug.ignore_long_hpd) {
lt_dbg(intel_dp, DP_PHY_DPRX, "Ignore the link failure\n");
return;
}
if (intel_dp->link.seq_train_failures < 2) {
intel_encoder_link_check_queue_work(encoder, 0);
return;
}
if (intel_dp_schedule_fallback_link_training(state, intel_dp, crtc_state))
return;
intel_dp->link.retrain_disabled = true;
if (!passed)
lt_err(intel_dp, DP_PHY_DPRX, "Can't reduce link training parameters after failure\n");
else
lt_dbg(intel_dp, DP_PHY_DPRX, "Can't reduce link training parameters after forced failure\n");
}
void intel_dp_128b132b_sdp_crc16(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
/*
* VIDEO_DIP_CTL register bit 31 should be set to '0' to not
* disable SDP CRC. This is applicable for Display version 13.
* Default value of bit 31 is '0' hence discarding the write
* TODO: Corrective actions on SDP corruption yet to be defined
*/
if (!intel_dp_is_uhbr(crtc_state))
return;
/* DP v2.0 SCR on SDP CRC16 for 128b/132b Link Layer */
drm_dp_dpcd_writeb(&intel_dp->aux,
DP_SDP_ERROR_DETECTION_CONFIGURATION,
DP_SDP_CRC16_128B132B_EN);
lt_dbg(intel_dp, DP_PHY_DPRX, "DP2.0 SDP CRC16 for 128b/132b enabled\n");
}
static struct intel_dp *intel_connector_to_intel_dp(struct intel_connector *connector)
{
if (connector->mst_port)
return connector->mst_port;
else
return enc_to_intel_dp(intel_attached_encoder(connector));
}
static int i915_dp_force_link_rate_show(struct seq_file *m, void *data)
{
struct intel_connector *connector = to_intel_connector(m->private);
struct intel_display *display = to_intel_display(connector);
struct intel_dp *intel_dp = intel_connector_to_intel_dp(connector);
int current_rate = -1;
int force_rate;
int err;
int i;
err = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
if (err)
return err;
if (intel_dp->link_trained)
current_rate = intel_dp->link_rate;
force_rate = intel_dp->link.force_rate;
drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
seq_printf(m, "%sauto%s",
force_rate == 0 ? "[" : "",
force_rate == 0 ? "]" : "");
for (i = 0; i < intel_dp->num_source_rates; i++)
seq_printf(m, " %s%d%s%s",
intel_dp->source_rates[i] == force_rate ? "[" : "",
intel_dp->source_rates[i],
intel_dp->source_rates[i] == current_rate ? "*" : "",
intel_dp->source_rates[i] == force_rate ? "]" : "");
seq_putc(m, '\n');
return 0;
}
static int parse_link_rate(struct intel_dp *intel_dp, const char __user *ubuf, size_t len)
{
char *kbuf;
const char *p;
int rate;
int ret = 0;
kbuf = memdup_user_nul(ubuf, len);
if (IS_ERR(kbuf))
return PTR_ERR(kbuf);
p = strim(kbuf);
if (!strcmp(p, "auto")) {
rate = 0;
} else {
ret = kstrtoint(p, 0, &rate);
if (ret < 0)
goto out_free;
if (intel_dp_rate_index(intel_dp->source_rates,
intel_dp->num_source_rates,
rate) < 0)
ret = -EINVAL;
}
out_free:
kfree(kbuf);
return ret < 0 ? ret : rate;
}
static ssize_t i915_dp_force_link_rate_write(struct file *file,
const char __user *ubuf,
size_t len, loff_t *offp)
{
struct seq_file *m = file->private_data;
struct intel_connector *connector = to_intel_connector(m->private);
struct intel_display *display = to_intel_display(connector);
struct intel_dp *intel_dp = intel_connector_to_intel_dp(connector);
int rate;
int err;
rate = parse_link_rate(intel_dp, ubuf, len);
if (rate < 0)
return rate;
err = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
if (err)
return err;
intel_dp_reset_link_params(intel_dp);
intel_dp->link.force_rate = rate;
drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
*offp += len;
return len;
}
DEFINE_SHOW_STORE_ATTRIBUTE(i915_dp_force_link_rate);
static int i915_dp_force_lane_count_show(struct seq_file *m, void *data)
{
struct intel_connector *connector = to_intel_connector(m->private);
struct intel_display *display = to_intel_display(connector);
struct intel_dp *intel_dp = intel_connector_to_intel_dp(connector);
int current_lane_count = -1;
int force_lane_count;
int err;
int i;
err = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
if (err)
return err;
if (intel_dp->link_trained)
current_lane_count = intel_dp->lane_count;
force_lane_count = intel_dp->link.force_lane_count;
drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
seq_printf(m, "%sauto%s",
force_lane_count == 0 ? "[" : "",
force_lane_count == 0 ? "]" : "");
for (i = 1; i <= 4; i <<= 1)
seq_printf(m, " %s%d%s%s",
i == force_lane_count ? "[" : "",
i,
i == current_lane_count ? "*" : "",
i == force_lane_count ? "]" : "");
seq_putc(m, '\n');
return 0;
}
static int parse_lane_count(const char __user *ubuf, size_t len)
{
char *kbuf;
const char *p;
int lane_count;
int ret = 0;
kbuf = memdup_user_nul(ubuf, len);
if (IS_ERR(kbuf))
return PTR_ERR(kbuf);
p = strim(kbuf);
if (!strcmp(p, "auto")) {
lane_count = 0;
} else {
ret = kstrtoint(p, 0, &lane_count);
if (ret < 0)
goto out_free;
switch (lane_count) {
case 1:
case 2:
case 4:
break;
default:
ret = -EINVAL;
}
}
out_free:
kfree(kbuf);
return ret < 0 ? ret : lane_count;
}
static ssize_t i915_dp_force_lane_count_write(struct file *file,
const char __user *ubuf,
size_t len, loff_t *offp)
{
struct seq_file *m = file->private_data;
struct intel_connector *connector = to_intel_connector(m->private);
struct intel_display *display = to_intel_display(connector);
struct intel_dp *intel_dp = intel_connector_to_intel_dp(connector);
int lane_count;
int err;
lane_count = parse_lane_count(ubuf, len);
if (lane_count < 0)
return lane_count;
err = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
if (err)
return err;
intel_dp_reset_link_params(intel_dp);
intel_dp->link.force_lane_count = lane_count;
drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
*offp += len;
return len;
}
DEFINE_SHOW_STORE_ATTRIBUTE(i915_dp_force_lane_count);
static int i915_dp_max_link_rate_show(void *data, u64 *val)
{
struct intel_connector *connector = to_intel_connector(data);
struct intel_display *display = to_intel_display(connector);
struct intel_dp *intel_dp = intel_connector_to_intel_dp(connector);
int err;
err = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
if (err)
return err;
*val = intel_dp->link.max_rate;
drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(i915_dp_max_link_rate_fops, i915_dp_max_link_rate_show, NULL, "%llu\n");
static int i915_dp_max_lane_count_show(void *data, u64 *val)
{
struct intel_connector *connector = to_intel_connector(data);
struct intel_display *display = to_intel_display(connector);
struct intel_dp *intel_dp = intel_connector_to_intel_dp(connector);
int err;
err = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
if (err)
return err;
*val = intel_dp->link.max_lane_count;
drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(i915_dp_max_lane_count_fops, i915_dp_max_lane_count_show, NULL, "%llu\n");
static int i915_dp_force_link_training_failure_show(void *data, u64 *val)
{
struct intel_connector *connector = to_intel_connector(data);
struct intel_display *display = to_intel_display(connector);
struct intel_dp *intel_dp = intel_connector_to_intel_dp(connector);
int err;
err = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
if (err)
return err;
*val = intel_dp->link.force_train_failure;
drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
return 0;
}
static int i915_dp_force_link_training_failure_write(void *data, u64 val)
{
struct intel_connector *connector = to_intel_connector(data);
struct intel_display *display = to_intel_display(connector);
struct intel_dp *intel_dp = intel_connector_to_intel_dp(connector);
int err;
if (val > 2)
return -EINVAL;
err = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
if (err)
return err;
intel_dp->link.force_train_failure = val;
drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(i915_dp_force_link_training_failure_fops,
i915_dp_force_link_training_failure_show,
i915_dp_force_link_training_failure_write, "%llu\n");
static int i915_dp_force_link_retrain_show(void *data, u64 *val)
{
struct intel_connector *connector = to_intel_connector(data);
struct intel_display *display = to_intel_display(connector);
struct intel_dp *intel_dp = intel_connector_to_intel_dp(connector);
int err;
err = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
if (err)
return err;
*val = intel_dp->link.force_retrain;
drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
return 0;
}
static int i915_dp_force_link_retrain_write(void *data, u64 val)
{
struct intel_connector *connector = to_intel_connector(data);
struct intel_display *display = to_intel_display(connector);
struct intel_dp *intel_dp = intel_connector_to_intel_dp(connector);
int err;
err = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
if (err)
return err;
intel_dp->link.force_retrain = val;
drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
intel_hpd_trigger_irq(dp_to_dig_port(intel_dp));
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(i915_dp_force_link_retrain_fops,
i915_dp_force_link_retrain_show,
i915_dp_force_link_retrain_write, "%llu\n");
static int i915_dp_link_retrain_disabled_show(struct seq_file *m, void *data)
{
struct intel_connector *connector = to_intel_connector(m->private);
struct intel_display *display = to_intel_display(connector);
struct intel_dp *intel_dp = intel_connector_to_intel_dp(connector);
int err;
err = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
if (err)
return err;
seq_printf(m, "%s\n", str_yes_no(intel_dp->link.retrain_disabled));
drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(i915_dp_link_retrain_disabled);
void intel_dp_link_training_debugfs_add(struct intel_connector *connector)
{
struct dentry *root = connector->base.debugfs_entry;
if (connector->base.connector_type != DRM_MODE_CONNECTOR_DisplayPort &&
connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
return;
debugfs_create_file("i915_dp_force_link_rate", 0644, root,
connector, &i915_dp_force_link_rate_fops);
debugfs_create_file("i915_dp_force_lane_count", 0644, root,
connector, &i915_dp_force_lane_count_fops);
debugfs_create_file("i915_dp_max_link_rate", 0444, root,
connector, &i915_dp_max_link_rate_fops);
debugfs_create_file("i915_dp_max_lane_count", 0444, root,
connector, &i915_dp_max_lane_count_fops);
debugfs_create_file("i915_dp_force_link_training_failure", 0644, root,
connector, &i915_dp_force_link_training_failure_fops);
debugfs_create_file("i915_dp_force_link_retrain", 0644, root,
connector, &i915_dp_force_link_retrain_fops);
debugfs_create_file("i915_dp_link_retrain_disabled", 0444, root,
connector, &i915_dp_link_retrain_disabled_fops);
}