// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 Broadcom
* Copyright (c) 2014 The Linux Foundation. All rights reserved.
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <[email protected]>
*/
/**
* DOC: VC4 Falcon HDMI module
*
* The HDMI core has a state machine and a PHY. On BCM2835, most of
* the unit operates off of the HSM clock from CPRMAN. It also
* internally uses the PLLH_PIX clock for the PHY.
*
* HDMI infoframes are kept within a small packet ram, where each
* packet can be individually enabled for including in a frame.
*
* HDMI audio is implemented entirely within the HDMI IP block. A
* register in the HDMI encoder takes SPDIF frames from the DMA engine
* and transfers them over an internal MAI (multi-channel audio
* interconnect) bus to the encoder side for insertion into the video
* blank regions.
*
* The driver's HDMI encoder does not yet support power management.
* The HDMI encoder's power domain and the HSM/pixel clocks are kept
* continuously running, and only the HDMI logic and packet ram are
* powered off/on at disable/enable time.
*
* The driver does not yet support CEC control, though the HDMI
* encoder block has CEC support.
*/
#include <drm/display/drm_hdmi_helper.h>
#include <drm/display/drm_hdmi_state_helper.h>
#include <drm/display/drm_scdc_helper.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_drv.h>
#include <drm/drm_edid.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_simple_kms_helper.h>
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/pm_runtime.h>
#include <linux/rational.h>
#include <linux/reset.h>
#include <sound/dmaengine_pcm.h>
#include <sound/hdmi-codec.h>
#include <sound/pcm_drm_eld.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include "media/cec.h"
#include "vc4_drv.h"
#include "vc4_hdmi.h"
#include "vc4_hdmi_regs.h"
#include "vc4_regs.h"
#define VC5_HDMI_HORZA_HFP_SHIFT 16
#define VC5_HDMI_HORZA_HFP_MASK VC4_MASK(28, 16)
#define VC5_HDMI_HORZA_VPOS BIT(15)
#define VC5_HDMI_HORZA_HPOS BIT(14)
#define VC5_HDMI_HORZA_HAP_SHIFT 0
#define VC5_HDMI_HORZA_HAP_MASK VC4_MASK(13, 0)
#define VC5_HDMI_HORZB_HBP_SHIFT 16
#define VC5_HDMI_HORZB_HBP_MASK VC4_MASK(26, 16)
#define VC5_HDMI_HORZB_HSP_SHIFT 0
#define VC5_HDMI_HORZB_HSP_MASK VC4_MASK(10, 0)
#define VC5_HDMI_VERTA_VSP_SHIFT 24
#define VC5_HDMI_VERTA_VSP_MASK VC4_MASK(28, 24)
#define VC5_HDMI_VERTA_VFP_SHIFT 16
#define VC5_HDMI_VERTA_VFP_MASK VC4_MASK(22, 16)
#define VC5_HDMI_VERTA_VAL_SHIFT 0
#define VC5_HDMI_VERTA_VAL_MASK VC4_MASK(12, 0)
#define VC5_HDMI_VERTB_VSPO_SHIFT 16
#define VC5_HDMI_VERTB_VSPO_MASK VC4_MASK(29, 16)
#define VC4_HDMI_MISC_CONTROL_PIXEL_REP_SHIFT 0
#define VC4_HDMI_MISC_CONTROL_PIXEL_REP_MASK VC4_MASK(3, 0)
#define VC5_HDMI_MISC_CONTROL_PIXEL_REP_SHIFT 0
#define VC5_HDMI_MISC_CONTROL_PIXEL_REP_MASK VC4_MASK(3, 0)
#define VC5_HDMI_SCRAMBLER_CTL_ENABLE BIT(0)
#define VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_SHIFT 8
#define VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_MASK VC4_MASK(10, 8)
#define VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_SHIFT 0
#define VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_MASK VC4_MASK(3, 0)
#define VC5_HDMI_GCP_CONFIG_GCP_ENABLE BIT(31)
#define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_SHIFT 8
#define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_MASK VC4_MASK(15, 8)
#define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_MASK VC4_MASK(7, 0)
#define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_SET_AVMUTE BIT(0)
#define VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_CLEAR_AVMUTE BIT(4)
# define VC4_HD_M_SW_RST BIT(2)
# define VC4_HD_M_ENABLE BIT(0)
#define HSM_MIN_CLOCK_FREQ 120000000
#define CEC_CLOCK_FREQ 40000
#define HDMI_14_MAX_TMDS_CLK (340 * 1000 * 1000)
static bool vc4_hdmi_supports_scrambling(struct vc4_hdmi *vc4_hdmi)
{
struct drm_display_info *display = &vc4_hdmi->connector.display_info;
lockdep_assert_held(&vc4_hdmi->mutex);
if (!display->is_hdmi)
return false;
if (!display->hdmi.scdc.supported ||
!display->hdmi.scdc.scrambling.supported)
return false;
return true;
}
static bool vc4_hdmi_mode_needs_scrambling(const struct drm_display_mode *mode,
unsigned int bpc,
enum hdmi_colorspace fmt)
{
unsigned long long clock = drm_hdmi_compute_mode_clock(mode, bpc, fmt);
return clock > HDMI_14_MAX_TMDS_CLK;
}
static int vc4_hdmi_debugfs_regs(struct seq_file *m, void *unused)
{
struct drm_debugfs_entry *entry = m->private;
struct vc4_hdmi *vc4_hdmi = entry->file.data;
struct drm_device *drm = vc4_hdmi->connector.dev;
struct drm_printer p = drm_seq_file_printer(m);
int idx;
if (!drm_dev_enter(drm, &idx))
return -ENODEV;
drm_print_regset32(&p, &vc4_hdmi->hdmi_regset);
drm_print_regset32(&p, &vc4_hdmi->hd_regset);
drm_print_regset32(&p, &vc4_hdmi->cec_regset);
drm_print_regset32(&p, &vc4_hdmi->csc_regset);
drm_print_regset32(&p, &vc4_hdmi->dvp_regset);
drm_print_regset32(&p, &vc4_hdmi->phy_regset);
drm_print_regset32(&p, &vc4_hdmi->ram_regset);
drm_print_regset32(&p, &vc4_hdmi->rm_regset);
drm_dev_exit(idx);
return 0;
}
static void vc4_hdmi_reset(struct vc4_hdmi *vc4_hdmi)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
int idx;
/*
* We can be called by our bind callback, when the
* connector->dev pointer might not be initialised yet.
*/
if (drm && !drm_dev_enter(drm, &idx))
return;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_SW_RST);
udelay(1);
HDMI_WRITE(HDMI_M_CTL, 0);
HDMI_WRITE(HDMI_M_CTL, VC4_HD_M_ENABLE);
HDMI_WRITE(HDMI_SW_RESET_CONTROL,
VC4_HDMI_SW_RESET_HDMI |
VC4_HDMI_SW_RESET_FORMAT_DETECT);
HDMI_WRITE(HDMI_SW_RESET_CONTROL, 0);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
if (drm)
drm_dev_exit(idx);
}
static void vc5_hdmi_reset(struct vc4_hdmi *vc4_hdmi)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
int idx;
/*
* We can be called by our bind callback, when the
* connector->dev pointer might not be initialised yet.
*/
if (drm && !drm_dev_enter(drm, &idx))
return;
reset_control_reset(vc4_hdmi->reset);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_DVP_CTL, 0);
HDMI_WRITE(HDMI_CLOCK_STOP,
HDMI_READ(HDMI_CLOCK_STOP) | VC4_DVP_HT_CLOCK_STOP_PIXEL);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
if (drm)
drm_dev_exit(idx);
}
#ifdef CONFIG_DRM_VC4_HDMI_CEC
static void vc4_hdmi_cec_update_clk_div(struct vc4_hdmi *vc4_hdmi)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long cec_rate;
unsigned long flags;
u16 clk_cnt;
u32 value;
int idx;
/*
* This function is called by our runtime_resume implementation
* and thus at bind time, when we haven't registered our
* connector yet and thus don't have a pointer to the DRM
* device.
*/
if (drm && !drm_dev_enter(drm, &idx))
return;
cec_rate = clk_get_rate(vc4_hdmi->cec_clock);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
value = HDMI_READ(HDMI_CEC_CNTRL_1);
value &= ~VC4_HDMI_CEC_DIV_CLK_CNT_MASK;
/*
* Set the clock divider: the hsm_clock rate and this divider
* setting will give a 40 kHz CEC clock.
*/
clk_cnt = cec_rate / CEC_CLOCK_FREQ;
value |= clk_cnt << VC4_HDMI_CEC_DIV_CLK_CNT_SHIFT;
HDMI_WRITE(HDMI_CEC_CNTRL_1, value);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
if (drm)
drm_dev_exit(idx);
}
#else
static void vc4_hdmi_cec_update_clk_div(struct vc4_hdmi *vc4_hdmi) {}
#endif
static int reset_pipe(struct drm_crtc *crtc,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_atomic_state *state;
struct drm_crtc_state *crtc_state;
int ret;
state = drm_atomic_state_alloc(crtc->dev);
if (!state)
return -ENOMEM;
state->acquire_ctx = ctx;
crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state)) {
ret = PTR_ERR(crtc_state);
goto out;
}
crtc_state->connectors_changed = true;
ret = drm_atomic_commit(state);
out:
drm_atomic_state_put(state);
return ret;
}
static int vc4_hdmi_reset_link(struct drm_connector *connector,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_device *drm;
struct vc4_hdmi *vc4_hdmi;
struct drm_connector_state *conn_state;
struct drm_crtc_state *crtc_state;
struct drm_crtc *crtc;
bool scrambling_needed;
u8 config;
int ret;
if (!connector)
return 0;
drm = connector->dev;
ret = drm_modeset_lock(&drm->mode_config.connection_mutex, ctx);
if (ret)
return ret;
conn_state = connector->state;
crtc = conn_state->crtc;
if (!crtc)
return 0;
ret = drm_modeset_lock(&crtc->mutex, ctx);
if (ret)
return ret;
crtc_state = crtc->state;
if (!crtc_state->active)
return 0;
vc4_hdmi = connector_to_vc4_hdmi(connector);
mutex_lock(&vc4_hdmi->mutex);
if (!vc4_hdmi_supports_scrambling(vc4_hdmi)) {
mutex_unlock(&vc4_hdmi->mutex);
return 0;
}
scrambling_needed = vc4_hdmi_mode_needs_scrambling(&vc4_hdmi->saved_adjusted_mode,
vc4_hdmi->output_bpc,
vc4_hdmi->output_format);
if (!scrambling_needed) {
mutex_unlock(&vc4_hdmi->mutex);
return 0;
}
if (conn_state->commit &&
!try_wait_for_completion(&conn_state->commit->hw_done)) {
mutex_unlock(&vc4_hdmi->mutex);
return 0;
}
ret = drm_scdc_readb(connector->ddc, SCDC_TMDS_CONFIG, &config);
if (ret < 0) {
drm_err(drm, "Failed to read TMDS config: %d\n", ret);
mutex_unlock(&vc4_hdmi->mutex);
return 0;
}
if (!!(config & SCDC_SCRAMBLING_ENABLE) == scrambling_needed) {
mutex_unlock(&vc4_hdmi->mutex);
return 0;
}
mutex_unlock(&vc4_hdmi->mutex);
/*
* HDMI 2.0 says that one should not send scrambled data
* prior to configuring the sink scrambling, and that
* TMDS clock/data transmission should be suspended when
* changing the TMDS clock rate in the sink. So let's
* just do a full modeset here, even though some sinks
* would be perfectly happy if were to just reconfigure
* the SCDC settings on the fly.
*/
return reset_pipe(crtc, ctx);
}
static void vc4_hdmi_handle_hotplug(struct vc4_hdmi *vc4_hdmi,
struct drm_modeset_acquire_ctx *ctx,
enum drm_connector_status status)
{
struct drm_connector *connector = &vc4_hdmi->connector;
const struct drm_edid *drm_edid;
int ret;
/*
* NOTE: This function should really be called with vc4_hdmi->mutex
* held, but doing so results in reentrancy issues since
* cec_s_phys_addr() might call .adap_enable, which leads to that
* funtion being called with our mutex held.
*
* A similar situation occurs with vc4_hdmi_reset_link() that
* will call into our KMS hooks if the scrambling was enabled.
*
* Concurrency isn't an issue at the moment since we don't share
* any state with any of the other frameworks so we can ignore
* the lock for now.
*/
if (status == connector_status_disconnected) {
cec_phys_addr_invalidate(vc4_hdmi->cec_adap);
return;
}
drm_edid = drm_edid_read_ddc(connector, vc4_hdmi->ddc);
drm_edid_connector_update(connector, drm_edid);
cec_s_phys_addr(vc4_hdmi->cec_adap,
connector->display_info.source_physical_address, false);
if (!drm_edid)
return;
drm_edid_free(drm_edid);
for (;;) {
ret = vc4_hdmi_reset_link(connector, ctx);
if (ret == -EDEADLK) {
drm_modeset_backoff(ctx);
continue;
}
break;
}
}
static int vc4_hdmi_connector_detect_ctx(struct drm_connector *connector,
struct drm_modeset_acquire_ctx *ctx,
bool force)
{
struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector);
enum drm_connector_status status = connector_status_disconnected;
int ret;
/*
* NOTE: This function should really take vc4_hdmi->mutex, but
* doing so results in reentrancy issues since
* vc4_hdmi_handle_hotplug() can call into other functions that
* would take the mutex while it's held here.
*
* Concurrency isn't an issue at the moment since we don't share
* any state with any of the other frameworks so we can ignore
* the lock for now.
*/
ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
if (ret) {
drm_err_once(connector->dev, "Failed to retain HDMI power domain: %d\n",
ret);
return connector_status_unknown;
}
if (vc4_hdmi->hpd_gpio) {
if (gpiod_get_value_cansleep(vc4_hdmi->hpd_gpio))
status = connector_status_connected;
} else {
if (vc4_hdmi->variant->hp_detect &&
vc4_hdmi->variant->hp_detect(vc4_hdmi))
status = connector_status_connected;
}
vc4_hdmi_handle_hotplug(vc4_hdmi, ctx, status);
pm_runtime_put(&vc4_hdmi->pdev->dev);
return status;
}
static int vc4_hdmi_connector_get_modes(struct drm_connector *connector)
{
struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector);
struct vc4_dev *vc4 = to_vc4_dev(connector->dev);
const struct drm_edid *drm_edid;
int ret = 0;
/*
* NOTE: This function should really take vc4_hdmi->mutex, but doing so
* results in reentrancy issues since cec_s_phys_addr() might call
* .adap_enable, which leads to that funtion being called with our mutex
* held.
*
* Concurrency isn't an issue at the moment since we don't share
* any state with any of the other frameworks so we can ignore
* the lock for now.
*/
drm_edid = drm_edid_read_ddc(connector, vc4_hdmi->ddc);
drm_edid_connector_update(connector, drm_edid);
cec_s_phys_addr(vc4_hdmi->cec_adap,
connector->display_info.source_physical_address, false);
if (!drm_edid)
return 0;
ret = drm_edid_connector_add_modes(connector);
drm_edid_free(drm_edid);
if (!vc4->hvs->vc5_hdmi_enable_hdmi_20) {
struct drm_device *drm = connector->dev;
const struct drm_display_mode *mode;
list_for_each_entry(mode, &connector->probed_modes, head) {
if (vc4_hdmi_mode_needs_scrambling(mode, 8, HDMI_COLORSPACE_RGB)) {
drm_warn_once(drm, "The core clock cannot reach frequencies high enough to support 4k @ 60Hz.");
drm_warn_once(drm, "Please change your config.txt file to add hdmi_enable_4kp60.");
}
}
}
return ret;
}
static int vc4_hdmi_connector_atomic_check(struct drm_connector *connector,
struct drm_atomic_state *state)
{
struct drm_connector_state *old_state =
drm_atomic_get_old_connector_state(state, connector);
struct drm_connector_state *new_state =
drm_atomic_get_new_connector_state(state, connector);
struct drm_crtc *crtc = new_state->crtc;
if (!crtc)
return 0;
if (old_state->tv.margins.left != new_state->tv.margins.left ||
old_state->tv.margins.right != new_state->tv.margins.right ||
old_state->tv.margins.top != new_state->tv.margins.top ||
old_state->tv.margins.bottom != new_state->tv.margins.bottom) {
struct drm_crtc_state *crtc_state;
int ret;
crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
/*
* Strictly speaking, we should be calling
* drm_atomic_helper_check_planes() after our call to
* drm_atomic_add_affected_planes(). However, the
* connector atomic_check is called as part of
* drm_atomic_helper_check_modeset() that already
* happens before a call to
* drm_atomic_helper_check_planes() in
* drm_atomic_helper_check().
*/
ret = drm_atomic_add_affected_planes(state, crtc);
if (ret)
return ret;
}
if (old_state->colorspace != new_state->colorspace) {
struct drm_crtc_state *crtc_state;
crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
crtc_state->mode_changed = true;
}
return drm_atomic_helper_connector_hdmi_check(connector, state);
}
static void vc4_hdmi_connector_reset(struct drm_connector *connector)
{
drm_atomic_helper_connector_reset(connector);
__drm_atomic_helper_connector_hdmi_reset(connector, connector->state);
drm_atomic_helper_connector_tv_margins_reset(connector);
}
static const struct drm_connector_funcs vc4_hdmi_connector_funcs = {
.fill_modes = drm_helper_probe_single_connector_modes,
.reset = vc4_hdmi_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static const struct drm_connector_helper_funcs vc4_hdmi_connector_helper_funcs = {
.detect_ctx = vc4_hdmi_connector_detect_ctx,
.get_modes = vc4_hdmi_connector_get_modes,
.atomic_check = vc4_hdmi_connector_atomic_check,
};
static const struct drm_connector_hdmi_funcs vc4_hdmi_hdmi_connector_funcs;
static int vc4_hdmi_connector_init(struct drm_device *dev,
struct vc4_hdmi *vc4_hdmi)
{
struct drm_connector *connector = &vc4_hdmi->connector;
struct drm_encoder *encoder = &vc4_hdmi->encoder.base;
unsigned int max_bpc = 8;
int ret;
if (vc4_hdmi->variant->supports_hdr)
max_bpc = 12;
ret = drmm_connector_hdmi_init(dev, connector,
"Broadcom", "Videocore",
&vc4_hdmi_connector_funcs,
&vc4_hdmi_hdmi_connector_funcs,
DRM_MODE_CONNECTOR_HDMIA,
vc4_hdmi->ddc,
BIT(HDMI_COLORSPACE_RGB) |
BIT(HDMI_COLORSPACE_YUV422) |
BIT(HDMI_COLORSPACE_YUV444),
max_bpc);
if (ret)
return ret;
drm_connector_helper_add(connector, &vc4_hdmi_connector_helper_funcs);
/*
* Some of the properties below require access to state, like bpc.
* Allocate some default initial connector state with our reset helper.
*/
if (connector->funcs->reset)
connector->funcs->reset(connector);
/* Create and attach TV margin props to this connector. */
ret = drm_mode_create_tv_margin_properties(dev);
if (ret)
return ret;
ret = drm_mode_create_hdmi_colorspace_property(connector, 0);
if (ret)
return ret;
drm_connector_attach_colorspace_property(connector);
drm_connector_attach_tv_margin_properties(connector);
connector->polled = (DRM_CONNECTOR_POLL_CONNECT |
DRM_CONNECTOR_POLL_DISCONNECT);
connector->interlace_allowed = 1;
connector->doublescan_allowed = 0;
connector->stereo_allowed = 1;
ret = drm_connector_attach_broadcast_rgb_property(connector);
if (ret)
return ret;
drm_connector_attach_encoder(connector, encoder);
return 0;
}
static int vc4_hdmi_stop_packet(struct vc4_hdmi *vc4_hdmi,
enum hdmi_infoframe_type type,
bool poll)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
u32 packet_id = type - 0x80;
unsigned long flags;
int ret = 0;
int idx;
if (!drm_dev_enter(drm, &idx))
return -ENODEV;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
HDMI_READ(HDMI_RAM_PACKET_CONFIG) & ~BIT(packet_id));
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
if (poll) {
ret = wait_for(!(HDMI_READ(HDMI_RAM_PACKET_STATUS) &
BIT(packet_id)), 100);
}
drm_dev_exit(idx);
return ret;
}
static int vc4_hdmi_write_infoframe(struct drm_connector *connector,
enum hdmi_infoframe_type type,
const u8 *infoframe, size_t len)
{
struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector);
struct drm_device *drm = connector->dev;
u32 packet_id = type - 0x80;
const struct vc4_hdmi_register *ram_packet_start =
&vc4_hdmi->variant->registers[HDMI_RAM_PACKET_START];
u32 packet_reg = ram_packet_start->offset + VC4_HDMI_PACKET_STRIDE * packet_id;
u32 packet_reg_next = ram_packet_start->offset +
VC4_HDMI_PACKET_STRIDE * (packet_id + 1);
void __iomem *base = __vc4_hdmi_get_field_base(vc4_hdmi,
ram_packet_start->reg);
uint8_t buffer[VC4_HDMI_PACKET_STRIDE] = {};
unsigned long flags;
ssize_t i;
int ret;
int idx;
if (!drm_dev_enter(drm, &idx))
return 0;
if (len > sizeof(buffer)) {
ret = -ENOMEM;
goto out;
}
memcpy(buffer, infoframe, len);
WARN_ONCE(!(HDMI_READ(HDMI_RAM_PACKET_CONFIG) &
VC4_HDMI_RAM_PACKET_ENABLE),
"Packet RAM has to be on to store the packet.");
ret = vc4_hdmi_stop_packet(vc4_hdmi, type, true);
if (ret) {
drm_err(drm, "Failed to wait for infoframe to go idle: %d\n", ret);
goto out;
}
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
for (i = 0; i < len; i += 7) {
writel(buffer[i + 0] << 0 |
buffer[i + 1] << 8 |
buffer[i + 2] << 16,
base + packet_reg);
packet_reg += 4;
writel(buffer[i + 3] << 0 |
buffer[i + 4] << 8 |
buffer[i + 5] << 16 |
buffer[i + 6] << 24,
base + packet_reg);
packet_reg += 4;
}
/*
* clear remainder of packet ram as it's included in the
* infoframe and triggers a checksum error on hdmi analyser
*/
for (; packet_reg < packet_reg_next; packet_reg += 4)
writel(0, base + packet_reg);
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
HDMI_READ(HDMI_RAM_PACKET_CONFIG) | BIT(packet_id));
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
ret = wait_for((HDMI_READ(HDMI_RAM_PACKET_STATUS) &
BIT(packet_id)), 100);
if (ret)
drm_err(drm, "Failed to wait for infoframe to start: %d\n", ret);
out:
drm_dev_exit(idx);
return ret;
}
#define SCRAMBLING_POLLING_DELAY_MS 1000
static void vc4_hdmi_enable_scrambling(struct drm_encoder *encoder)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_connector *connector = &vc4_hdmi->connector;
struct drm_device *drm = connector->dev;
const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
unsigned long flags;
int idx;
lockdep_assert_held(&vc4_hdmi->mutex);
if (!vc4_hdmi_supports_scrambling(vc4_hdmi))
return;
if (!vc4_hdmi_mode_needs_scrambling(mode,
vc4_hdmi->output_bpc,
vc4_hdmi->output_format))
return;
if (!drm_dev_enter(drm, &idx))
return;
drm_scdc_set_high_tmds_clock_ratio(connector, true);
drm_scdc_set_scrambling(connector, true);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_SCRAMBLER_CTL, HDMI_READ(HDMI_SCRAMBLER_CTL) |
VC5_HDMI_SCRAMBLER_CTL_ENABLE);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
drm_dev_exit(idx);
vc4_hdmi->scdc_enabled = true;
queue_delayed_work(system_wq, &vc4_hdmi->scrambling_work,
msecs_to_jiffies(SCRAMBLING_POLLING_DELAY_MS));
}
static void vc4_hdmi_disable_scrambling(struct drm_encoder *encoder)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_connector *connector = &vc4_hdmi->connector;
struct drm_device *drm = connector->dev;
unsigned long flags;
int idx;
lockdep_assert_held(&vc4_hdmi->mutex);
if (!vc4_hdmi->scdc_enabled)
return;
vc4_hdmi->scdc_enabled = false;
if (delayed_work_pending(&vc4_hdmi->scrambling_work))
cancel_delayed_work_sync(&vc4_hdmi->scrambling_work);
if (!drm_dev_enter(drm, &idx))
return;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_SCRAMBLER_CTL, HDMI_READ(HDMI_SCRAMBLER_CTL) &
~VC5_HDMI_SCRAMBLER_CTL_ENABLE);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
drm_scdc_set_scrambling(connector, false);
drm_scdc_set_high_tmds_clock_ratio(connector, false);
drm_dev_exit(idx);
}
static void vc4_hdmi_scrambling_wq(struct work_struct *work)
{
struct vc4_hdmi *vc4_hdmi = container_of(to_delayed_work(work),
struct vc4_hdmi,
scrambling_work);
struct drm_connector *connector = &vc4_hdmi->connector;
if (drm_scdc_get_scrambling_status(connector))
return;
drm_scdc_set_high_tmds_clock_ratio(connector, true);
drm_scdc_set_scrambling(connector, true);
queue_delayed_work(system_wq, &vc4_hdmi->scrambling_work,
msecs_to_jiffies(SCRAMBLING_POLLING_DELAY_MS));
}
static void vc4_hdmi_encoder_post_crtc_disable(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
int idx;
mutex_lock(&vc4_hdmi->mutex);
vc4_hdmi->packet_ram_enabled = false;
if (!drm_dev_enter(drm, &idx))
goto out;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG, 0);
HDMI_WRITE(HDMI_VID_CTL, HDMI_READ(HDMI_VID_CTL) | VC4_HD_VID_CTL_CLRRGB);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
mdelay(1);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_VID_CTL,
HDMI_READ(HDMI_VID_CTL) & ~VC4_HD_VID_CTL_ENABLE);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
vc4_hdmi_disable_scrambling(encoder);
drm_dev_exit(idx);
out:
mutex_unlock(&vc4_hdmi->mutex);
}
static void vc4_hdmi_encoder_post_crtc_powerdown(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
int ret;
int idx;
mutex_lock(&vc4_hdmi->mutex);
if (!drm_dev_enter(drm, &idx))
goto out;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_VID_CTL,
HDMI_READ(HDMI_VID_CTL) | VC4_HD_VID_CTL_BLANKPIX);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
if (vc4_hdmi->variant->phy_disable)
vc4_hdmi->variant->phy_disable(vc4_hdmi);
clk_disable_unprepare(vc4_hdmi->pixel_bvb_clock);
clk_disable_unprepare(vc4_hdmi->pixel_clock);
ret = pm_runtime_put(&vc4_hdmi->pdev->dev);
if (ret < 0)
drm_err(drm, "Failed to release power domain: %d\n", ret);
drm_dev_exit(idx);
out:
mutex_unlock(&vc4_hdmi->mutex);
}
static void vc4_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi,
struct drm_connector_state *state,
const struct drm_display_mode *mode)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
u32 csc_ctl;
int idx;
if (!drm_dev_enter(drm, &idx))
return;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
csc_ctl = VC4_SET_FIELD(VC4_HD_CSC_CTL_ORDER_BGR,
VC4_HD_CSC_CTL_ORDER);
if (state->hdmi.is_limited_range) {
/* CEA VICs other than #1 requre limited range RGB
* output unless overridden by an AVI infoframe.
* Apply a colorspace conversion to squash 0-255 down
* to 16-235. The matrix here is:
*
* [ 0 0 0.8594 16]
* [ 0 0.8594 0 16]
* [ 0.8594 0 0 16]
* [ 0 0 0 1]
*/
csc_ctl |= VC4_HD_CSC_CTL_ENABLE;
csc_ctl |= VC4_HD_CSC_CTL_RGB2YCC;
csc_ctl |= VC4_SET_FIELD(VC4_HD_CSC_CTL_MODE_CUSTOM,
VC4_HD_CSC_CTL_MODE);
HDMI_WRITE(HDMI_CSC_12_11, (0x000 << 16) | 0x000);
HDMI_WRITE(HDMI_CSC_14_13, (0x100 << 16) | 0x6e0);
HDMI_WRITE(HDMI_CSC_22_21, (0x6e0 << 16) | 0x000);
HDMI_WRITE(HDMI_CSC_24_23, (0x100 << 16) | 0x000);
HDMI_WRITE(HDMI_CSC_32_31, (0x000 << 16) | 0x6e0);
HDMI_WRITE(HDMI_CSC_34_33, (0x100 << 16) | 0x000);
}
/* The RGB order applies even when CSC is disabled. */
HDMI_WRITE(HDMI_CSC_CTL, csc_ctl);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
drm_dev_exit(idx);
}
/*
* Matrices for (internal) RGB to RGB output.
*
* Matrices are signed 2p13 fixed point, with signed 9p6 offsets
*/
static const u16 vc5_hdmi_csc_full_rgb_to_rgb[2][3][4] = {
{
/*
* Full range - unity
*
* [ 1 0 0 0]
* [ 0 1 0 0]
* [ 0 0 1 0]
*/
{ 0x2000, 0x0000, 0x0000, 0x0000 },
{ 0x0000, 0x2000, 0x0000, 0x0000 },
{ 0x0000, 0x0000, 0x2000, 0x0000 },
},
{
/*
* Limited range
*
* CEA VICs other than #1 require limited range RGB
* output unless overridden by an AVI infoframe. Apply a
* colorspace conversion to squash 0-255 down to 16-235.
* The matrix here is:
*
* [ 0.8594 0 0 16]
* [ 0 0.8594 0 16]
* [ 0 0 0.8594 16]
*/
{ 0x1b80, 0x0000, 0x0000, 0x0400 },
{ 0x0000, 0x1b80, 0x0000, 0x0400 },
{ 0x0000, 0x0000, 0x1b80, 0x0400 },
},
};
/*
* Conversion between Full Range RGB and YUV using the BT.601 Colorspace
*
* Matrices are signed 2p13 fixed point, with signed 9p6 offsets
*/
static const u16 vc5_hdmi_csc_full_rgb_to_yuv_bt601[2][3][4] = {
{
/*
* Full Range
*
* [ 0.299000 0.587000 0.114000 0 ]
* [ -0.168736 -0.331264 0.500000 128 ]
* [ 0.500000 -0.418688 -0.081312 128 ]
*/
{ 0x0991, 0x12c9, 0x03a6, 0x0000 },
{ 0xfa9b, 0xf567, 0x1000, 0x2000 },
{ 0x1000, 0xf29b, 0xfd67, 0x2000 },
},
{
/* Limited Range
*
* [ 0.255785 0.502160 0.097523 16 ]
* [ -0.147644 -0.289856 0.437500 128 ]
* [ 0.437500 -0.366352 -0.071148 128 ]
*/
{ 0x082f, 0x1012, 0x031f, 0x0400 },
{ 0xfb48, 0xf6ba, 0x0e00, 0x2000 },
{ 0x0e00, 0xf448, 0xfdba, 0x2000 },
},
};
/*
* Conversion between Full Range RGB and YUV using the BT.709 Colorspace
*
* Matrices are signed 2p13 fixed point, with signed 9p6 offsets
*/
static const u16 vc5_hdmi_csc_full_rgb_to_yuv_bt709[2][3][4] = {
{
/*
* Full Range
*
* [ 0.212600 0.715200 0.072200 0 ]
* [ -0.114572 -0.385428 0.500000 128 ]
* [ 0.500000 -0.454153 -0.045847 128 ]
*/
{ 0x06ce, 0x16e3, 0x024f, 0x0000 },
{ 0xfc56, 0xf3ac, 0x1000, 0x2000 },
{ 0x1000, 0xf179, 0xfe89, 0x2000 },
},
{
/*
* Limited Range
*
* [ 0.181906 0.611804 0.061758 16 ]
* [ -0.100268 -0.337232 0.437500 128 ]
* [ 0.437500 -0.397386 -0.040114 128 ]
*/
{ 0x05d2, 0x1394, 0x01fa, 0x0400 },
{ 0xfccc, 0xf536, 0x0e00, 0x2000 },
{ 0x0e00, 0xf34a, 0xfeb8, 0x2000 },
},
};
/*
* Conversion between Full Range RGB and YUV using the BT.2020 Colorspace
*
* Matrices are signed 2p13 fixed point, with signed 9p6 offsets
*/
static const u16 vc5_hdmi_csc_full_rgb_to_yuv_bt2020[2][3][4] = {
{
/*
* Full Range
*
* [ 0.262700 0.678000 0.059300 0 ]
* [ -0.139630 -0.360370 0.500000 128 ]
* [ 0.500000 -0.459786 -0.040214 128 ]
*/
{ 0x0868, 0x15b2, 0x01e6, 0x0000 },
{ 0xfb89, 0xf479, 0x1000, 0x2000 },
{ 0x1000, 0xf14a, 0xfeb8, 0x2000 },
},
{
/* Limited Range
*
* [ 0.224732 0.580008 0.050729 16 ]
* [ -0.122176 -0.315324 0.437500 128 ]
* [ 0.437500 -0.402312 -0.035188 128 ]
*/
{ 0x082f, 0x1012, 0x031f, 0x0400 },
{ 0xfb48, 0xf6ba, 0x0e00, 0x2000 },
{ 0x0e00, 0xf448, 0xfdba, 0x2000 },
},
};
static void vc5_hdmi_set_csc_coeffs(struct vc4_hdmi *vc4_hdmi,
const u16 coeffs[3][4])
{
lockdep_assert_held(&vc4_hdmi->hw_lock);
HDMI_WRITE(HDMI_CSC_12_11, (coeffs[0][1] << 16) | coeffs[0][0]);
HDMI_WRITE(HDMI_CSC_14_13, (coeffs[0][3] << 16) | coeffs[0][2]);
HDMI_WRITE(HDMI_CSC_22_21, (coeffs[1][1] << 16) | coeffs[1][0]);
HDMI_WRITE(HDMI_CSC_24_23, (coeffs[1][3] << 16) | coeffs[1][2]);
HDMI_WRITE(HDMI_CSC_32_31, (coeffs[2][1] << 16) | coeffs[2][0]);
HDMI_WRITE(HDMI_CSC_34_33, (coeffs[2][3] << 16) | coeffs[2][2]);
}
static void vc5_hdmi_set_csc_coeffs_swap(struct vc4_hdmi *vc4_hdmi,
const u16 coeffs[3][4])
{
lockdep_assert_held(&vc4_hdmi->hw_lock);
/* YUV444 needs the CSC matrices using the channels in a different order */
HDMI_WRITE(HDMI_CSC_12_11, (coeffs[1][1] << 16) | coeffs[1][0]);
HDMI_WRITE(HDMI_CSC_14_13, (coeffs[1][3] << 16) | coeffs[1][2]);
HDMI_WRITE(HDMI_CSC_22_21, (coeffs[2][1] << 16) | coeffs[2][0]);
HDMI_WRITE(HDMI_CSC_24_23, (coeffs[2][3] << 16) | coeffs[2][2]);
HDMI_WRITE(HDMI_CSC_32_31, (coeffs[0][1] << 16) | coeffs[0][0]);
HDMI_WRITE(HDMI_CSC_34_33, (coeffs[0][3] << 16) | coeffs[0][2]);
}
static const u16
(*vc5_hdmi_find_yuv_csc_coeffs(struct vc4_hdmi *vc4_hdmi, u32 colorspace, bool limited))[4]
{
switch (colorspace) {
case DRM_MODE_COLORIMETRY_SMPTE_170M_YCC:
case DRM_MODE_COLORIMETRY_XVYCC_601:
case DRM_MODE_COLORIMETRY_SYCC_601:
case DRM_MODE_COLORIMETRY_OPYCC_601:
case DRM_MODE_COLORIMETRY_BT601_YCC:
return vc5_hdmi_csc_full_rgb_to_yuv_bt601[limited];
default:
case DRM_MODE_COLORIMETRY_NO_DATA:
case DRM_MODE_COLORIMETRY_BT709_YCC:
case DRM_MODE_COLORIMETRY_XVYCC_709:
case DRM_MODE_COLORIMETRY_RGB_WIDE_FIXED:
case DRM_MODE_COLORIMETRY_RGB_WIDE_FLOAT:
return vc5_hdmi_csc_full_rgb_to_yuv_bt709[limited];
case DRM_MODE_COLORIMETRY_BT2020_CYCC:
case DRM_MODE_COLORIMETRY_BT2020_YCC:
case DRM_MODE_COLORIMETRY_BT2020_RGB:
case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
return vc5_hdmi_csc_full_rgb_to_yuv_bt2020[limited];
}
}
static void vc5_hdmi_csc_setup(struct vc4_hdmi *vc4_hdmi,
struct drm_connector_state *state,
const struct drm_display_mode *mode)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned int lim_range = state->hdmi.is_limited_range ? 1 : 0;
unsigned long flags;
const u16 (*csc)[4];
u32 if_cfg = 0;
u32 if_xbar = 0x543210;
u32 csc_chan_ctl = 0;
u32 csc_ctl = VC5_MT_CP_CSC_CTL_ENABLE | VC4_SET_FIELD(VC4_HD_CSC_CTL_MODE_CUSTOM,
VC5_MT_CP_CSC_CTL_MODE);
int idx;
if (!drm_dev_enter(drm, &idx))
return;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
switch (state->hdmi.output_format) {
case HDMI_COLORSPACE_YUV444:
csc = vc5_hdmi_find_yuv_csc_coeffs(vc4_hdmi, state->colorspace, !!lim_range);
vc5_hdmi_set_csc_coeffs_swap(vc4_hdmi, csc);
break;
case HDMI_COLORSPACE_YUV422:
csc = vc5_hdmi_find_yuv_csc_coeffs(vc4_hdmi, state->colorspace, !!lim_range);
csc_ctl |= VC4_SET_FIELD(VC5_MT_CP_CSC_CTL_FILTER_MODE_444_TO_422_STANDARD,
VC5_MT_CP_CSC_CTL_FILTER_MODE_444_TO_422) |
VC5_MT_CP_CSC_CTL_USE_444_TO_422 |
VC5_MT_CP_CSC_CTL_USE_RNG_SUPPRESSION;
csc_chan_ctl |= VC4_SET_FIELD(VC5_MT_CP_CHANNEL_CTL_OUTPUT_REMAP_LEGACY_STYLE,
VC5_MT_CP_CHANNEL_CTL_OUTPUT_REMAP);
if_cfg |= VC4_SET_FIELD(VC5_DVP_HT_VEC_INTERFACE_CFG_SEL_422_FORMAT_422_LEGACY,
VC5_DVP_HT_VEC_INTERFACE_CFG_SEL_422);
vc5_hdmi_set_csc_coeffs(vc4_hdmi, csc);
break;
case HDMI_COLORSPACE_RGB:
if_xbar = 0x354021;
vc5_hdmi_set_csc_coeffs(vc4_hdmi, vc5_hdmi_csc_full_rgb_to_rgb[lim_range]);
break;
default:
break;
}
HDMI_WRITE(HDMI_VEC_INTERFACE_CFG, if_cfg);
HDMI_WRITE(HDMI_VEC_INTERFACE_XBAR, if_xbar);
HDMI_WRITE(HDMI_CSC_CHANNEL_CTL, csc_chan_ctl);
HDMI_WRITE(HDMI_CSC_CTL, csc_ctl);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
drm_dev_exit(idx);
}
static void vc4_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi,
struct drm_connector_state *state,
const struct drm_display_mode *mode)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC;
bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC;
bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
VC4_HDMI_VERTA_VSP) |
VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
VC4_HDMI_VERTA_VFP) |
VC4_SET_FIELD(mode->crtc_vdisplay, VC4_HDMI_VERTA_VAL));
u32 vertb = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) |
VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
interlaced,
VC4_HDMI_VERTB_VBP));
u32 vertb_even = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) |
VC4_SET_FIELD(mode->crtc_vtotal -
mode->crtc_vsync_end,
VC4_HDMI_VERTB_VBP));
unsigned long flags;
u32 reg;
int idx;
if (!drm_dev_enter(drm, &idx))
return;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_HORZA,
(vsync_pos ? VC4_HDMI_HORZA_VPOS : 0) |
(hsync_pos ? VC4_HDMI_HORZA_HPOS : 0) |
VC4_SET_FIELD(mode->hdisplay * pixel_rep,
VC4_HDMI_HORZA_HAP));
HDMI_WRITE(HDMI_HORZB,
VC4_SET_FIELD((mode->htotal -
mode->hsync_end) * pixel_rep,
VC4_HDMI_HORZB_HBP) |
VC4_SET_FIELD((mode->hsync_end -
mode->hsync_start) * pixel_rep,
VC4_HDMI_HORZB_HSP) |
VC4_SET_FIELD((mode->hsync_start -
mode->hdisplay) * pixel_rep,
VC4_HDMI_HORZB_HFP));
HDMI_WRITE(HDMI_VERTA0, verta);
HDMI_WRITE(HDMI_VERTA1, verta);
HDMI_WRITE(HDMI_VERTB0, vertb_even);
HDMI_WRITE(HDMI_VERTB1, vertb);
reg = HDMI_READ(HDMI_MISC_CONTROL);
reg &= ~VC4_HDMI_MISC_CONTROL_PIXEL_REP_MASK;
reg |= VC4_SET_FIELD(pixel_rep - 1, VC4_HDMI_MISC_CONTROL_PIXEL_REP);
HDMI_WRITE(HDMI_MISC_CONTROL, reg);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
drm_dev_exit(idx);
}
static void vc5_hdmi_set_timings(struct vc4_hdmi *vc4_hdmi,
struct drm_connector_state *state,
const struct drm_display_mode *mode)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC;
bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC;
bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
VC5_HDMI_VERTA_VSP) |
VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
VC5_HDMI_VERTA_VFP) |
VC4_SET_FIELD(mode->crtc_vdisplay, VC5_HDMI_VERTA_VAL));
u32 vertb = (VC4_SET_FIELD(mode->htotal >> (2 - pixel_rep),
VC5_HDMI_VERTB_VSPO) |
VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
interlaced,
VC4_HDMI_VERTB_VBP));
u32 vertb_even = (VC4_SET_FIELD(0, VC5_HDMI_VERTB_VSPO) |
VC4_SET_FIELD(mode->crtc_vtotal -
mode->crtc_vsync_end,
VC4_HDMI_VERTB_VBP));
unsigned long flags;
unsigned char gcp;
u32 reg;
int idx;
if (!drm_dev_enter(drm, &idx))
return;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_HORZA,
(vsync_pos ? VC5_HDMI_HORZA_VPOS : 0) |
(hsync_pos ? VC5_HDMI_HORZA_HPOS : 0) |
VC4_SET_FIELD(mode->hdisplay * pixel_rep,
VC5_HDMI_HORZA_HAP) |
VC4_SET_FIELD((mode->hsync_start -
mode->hdisplay) * pixel_rep,
VC5_HDMI_HORZA_HFP));
HDMI_WRITE(HDMI_HORZB,
VC4_SET_FIELD((mode->htotal -
mode->hsync_end) * pixel_rep,
VC5_HDMI_HORZB_HBP) |
VC4_SET_FIELD((mode->hsync_end -
mode->hsync_start) * pixel_rep,
VC5_HDMI_HORZB_HSP));
HDMI_WRITE(HDMI_VERTA0, verta);
HDMI_WRITE(HDMI_VERTA1, verta);
HDMI_WRITE(HDMI_VERTB0, vertb_even);
HDMI_WRITE(HDMI_VERTB1, vertb);
switch (state->hdmi.output_bpc) {
case 12:
gcp = 6;
break;
case 10:
gcp = 5;
break;
case 8:
default:
gcp = 0;
break;
}
/*
* YCC422 is always 36-bit and not considered deep colour so
* doesn't signal in GCP.
*/
if (state->hdmi.output_format == HDMI_COLORSPACE_YUV422) {
gcp = 0;
}
reg = HDMI_READ(HDMI_DEEP_COLOR_CONFIG_1);
reg &= ~(VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE_MASK |
VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH_MASK);
reg |= VC4_SET_FIELD(2, VC5_HDMI_DEEP_COLOR_CONFIG_1_INIT_PACK_PHASE) |
VC4_SET_FIELD(gcp, VC5_HDMI_DEEP_COLOR_CONFIG_1_COLOR_DEPTH);
HDMI_WRITE(HDMI_DEEP_COLOR_CONFIG_1, reg);
reg = HDMI_READ(HDMI_GCP_WORD_1);
reg &= ~VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1_MASK;
reg |= VC4_SET_FIELD(gcp, VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_1);
reg &= ~VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_MASK;
reg |= VC5_HDMI_GCP_WORD_1_GCP_SUBPACKET_BYTE_0_CLEAR_AVMUTE;
HDMI_WRITE(HDMI_GCP_WORD_1, reg);
reg = HDMI_READ(HDMI_GCP_CONFIG);
reg |= VC5_HDMI_GCP_CONFIG_GCP_ENABLE;
HDMI_WRITE(HDMI_GCP_CONFIG, reg);
reg = HDMI_READ(HDMI_MISC_CONTROL);
reg &= ~VC5_HDMI_MISC_CONTROL_PIXEL_REP_MASK;
reg |= VC4_SET_FIELD(pixel_rep - 1, VC5_HDMI_MISC_CONTROL_PIXEL_REP);
HDMI_WRITE(HDMI_MISC_CONTROL, reg);
HDMI_WRITE(HDMI_CLOCK_STOP, 0);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
drm_dev_exit(idx);
}
static void vc4_hdmi_recenter_fifo(struct vc4_hdmi *vc4_hdmi)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
u32 drift;
int ret;
int idx;
if (!drm_dev_enter(drm, &idx))
return;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
drift = HDMI_READ(HDMI_FIFO_CTL);
drift &= VC4_HDMI_FIFO_VALID_WRITE_MASK;
HDMI_WRITE(HDMI_FIFO_CTL,
drift & ~VC4_HDMI_FIFO_CTL_RECENTER);
HDMI_WRITE(HDMI_FIFO_CTL,
drift | VC4_HDMI_FIFO_CTL_RECENTER);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
usleep_range(1000, 1100);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_FIFO_CTL,
drift & ~VC4_HDMI_FIFO_CTL_RECENTER);
HDMI_WRITE(HDMI_FIFO_CTL,
drift | VC4_HDMI_FIFO_CTL_RECENTER);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
ret = wait_for(HDMI_READ(HDMI_FIFO_CTL) &
VC4_HDMI_FIFO_CTL_RECENTER_DONE, 1);
WARN_ONCE(ret, "Timeout waiting for "
"VC4_HDMI_FIFO_CTL_RECENTER_DONE");
drm_dev_exit(idx);
}
static void vc4_hdmi_encoder_pre_crtc_configure(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_device *drm = vc4_hdmi->connector.dev;
struct drm_connector *connector = &vc4_hdmi->connector;
struct drm_connector_state *conn_state =
drm_atomic_get_new_connector_state(state, connector);
const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
unsigned long long tmds_char_rate = conn_state->hdmi.tmds_char_rate;
unsigned long bvb_rate, hsm_rate;
unsigned long flags;
int ret;
int idx;
mutex_lock(&vc4_hdmi->mutex);
if (!drm_dev_enter(drm, &idx))
goto out;
ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
if (ret < 0) {
drm_err(drm, "Failed to retain power domain: %d\n", ret);
goto err_dev_exit;
}
/*
* As stated in RPi's vc4 firmware "HDMI state machine (HSM) clock must
* be faster than pixel clock, infinitesimally faster, tested in
* simulation. Otherwise, exact value is unimportant for HDMI
* operation." This conflicts with bcm2835's vc4 documentation, which
* states HSM's clock has to be at least 108% of the pixel clock.
*
* Real life tests reveal that vc4's firmware statement holds up, and
* users are able to use pixel clocks closer to HSM's, namely for
* 1920x1200@60Hz. So it was decided to have leave a 1% margin between
* both clocks. Which, for RPi0-3 implies a maximum pixel clock of
* 162MHz.
*
* Additionally, the AXI clock needs to be at least 25% of
* pixel clock, but HSM ends up being the limiting factor.
*/
hsm_rate = max_t(unsigned long,
HSM_MIN_CLOCK_FREQ,
div_u64(tmds_char_rate, 100) * 101);
ret = clk_set_min_rate(vc4_hdmi->hsm_clock, hsm_rate);
if (ret) {
drm_err(drm, "Failed to set HSM clock rate: %d\n", ret);
goto err_put_runtime_pm;
}
ret = clk_set_rate(vc4_hdmi->pixel_clock, tmds_char_rate);
if (ret) {
drm_err(drm, "Failed to set pixel clock rate: %d\n", ret);
goto err_put_runtime_pm;
}
ret = clk_prepare_enable(vc4_hdmi->pixel_clock);
if (ret) {
drm_err(drm, "Failed to turn on pixel clock: %d\n", ret);
goto err_put_runtime_pm;
}
vc4_hdmi_cec_update_clk_div(vc4_hdmi);
if (tmds_char_rate > 297000000)
bvb_rate = 300000000;
else if (tmds_char_rate > 148500000)
bvb_rate = 150000000;
else
bvb_rate = 75000000;
ret = clk_set_min_rate(vc4_hdmi->pixel_bvb_clock, bvb_rate);
if (ret) {
drm_err(drm, "Failed to set pixel bvb clock rate: %d\n", ret);
goto err_disable_pixel_clock;
}
ret = clk_prepare_enable(vc4_hdmi->pixel_bvb_clock);
if (ret) {
drm_err(drm, "Failed to turn on pixel bvb clock: %d\n", ret);
goto err_disable_pixel_clock;
}
if (vc4_hdmi->variant->phy_init)
vc4_hdmi->variant->phy_init(vc4_hdmi, conn_state);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
HDMI_READ(HDMI_SCHEDULER_CONTROL) |
VC4_HDMI_SCHEDULER_CONTROL_MANUAL_FORMAT |
VC4_HDMI_SCHEDULER_CONTROL_IGNORE_VSYNC_PREDICTS);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
if (vc4_hdmi->variant->set_timings)
vc4_hdmi->variant->set_timings(vc4_hdmi, conn_state, mode);
drm_dev_exit(idx);
mutex_unlock(&vc4_hdmi->mutex);
return;
err_disable_pixel_clock:
clk_disable_unprepare(vc4_hdmi->pixel_clock);
err_put_runtime_pm:
pm_runtime_put(&vc4_hdmi->pdev->dev);
err_dev_exit:
drm_dev_exit(idx);
out:
mutex_unlock(&vc4_hdmi->mutex);
return;
}
static void vc4_hdmi_encoder_pre_crtc_enable(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_device *drm = vc4_hdmi->connector.dev;
struct drm_connector *connector = &vc4_hdmi->connector;
const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
struct drm_connector_state *conn_state =
drm_atomic_get_new_connector_state(state, connector);
unsigned long flags;
int idx;
mutex_lock(&vc4_hdmi->mutex);
if (!drm_dev_enter(drm, &idx))
goto out;
if (vc4_hdmi->variant->csc_setup)
vc4_hdmi->variant->csc_setup(vc4_hdmi, conn_state, mode);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_FIFO_CTL, VC4_HDMI_FIFO_CTL_MASTER_SLAVE_N);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
drm_dev_exit(idx);
out:
mutex_unlock(&vc4_hdmi->mutex);
}
static void vc4_hdmi_encoder_post_crtc_enable(struct drm_encoder *encoder,
struct drm_atomic_state *state)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_connector *connector = &vc4_hdmi->connector;
struct drm_device *drm = connector->dev;
const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
struct drm_display_info *display = &vc4_hdmi->connector.display_info;
bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC;
bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC;
unsigned long flags;
int ret;
int idx;
mutex_lock(&vc4_hdmi->mutex);
if (!drm_dev_enter(drm, &idx))
goto out;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_VID_CTL,
VC4_HD_VID_CTL_ENABLE |
VC4_HD_VID_CTL_CLRRGB |
VC4_HD_VID_CTL_UNDERFLOW_ENABLE |
VC4_HD_VID_CTL_FRAME_COUNTER_RESET |
(vsync_pos ? 0 : VC4_HD_VID_CTL_VSYNC_LOW) |
(hsync_pos ? 0 : VC4_HD_VID_CTL_HSYNC_LOW));
HDMI_WRITE(HDMI_VID_CTL,
HDMI_READ(HDMI_VID_CTL) & ~VC4_HD_VID_CTL_BLANKPIX);
if (display->is_hdmi) {
HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
HDMI_READ(HDMI_SCHEDULER_CONTROL) |
VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
ret = wait_for(HDMI_READ(HDMI_SCHEDULER_CONTROL) &
VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE, 1000);
WARN_ONCE(ret, "Timeout waiting for "
"VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n");
} else {
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
HDMI_READ(HDMI_RAM_PACKET_CONFIG) &
~(VC4_HDMI_RAM_PACKET_ENABLE));
HDMI_WRITE(HDMI_SCHEDULER_CONTROL,
HDMI_READ(HDMI_SCHEDULER_CONTROL) &
~VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
ret = wait_for(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) &
VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE), 1000);
WARN_ONCE(ret, "Timeout waiting for "
"!VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n");
}
if (display->is_hdmi) {
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
WARN_ON(!(HDMI_READ(HDMI_SCHEDULER_CONTROL) &
VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE));
HDMI_WRITE(HDMI_RAM_PACKET_CONFIG,
VC4_HDMI_RAM_PACKET_ENABLE);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
vc4_hdmi->packet_ram_enabled = true;
drm_atomic_helper_connector_hdmi_update_infoframes(connector, state);
}
vc4_hdmi_recenter_fifo(vc4_hdmi);
vc4_hdmi_enable_scrambling(encoder);
drm_dev_exit(idx);
out:
mutex_unlock(&vc4_hdmi->mutex);
}
static void vc4_hdmi_encoder_atomic_mode_set(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
mutex_lock(&vc4_hdmi->mutex);
drm_mode_copy(&vc4_hdmi->saved_adjusted_mode,
&crtc_state->adjusted_mode);
vc4_hdmi->output_bpc = conn_state->hdmi.output_bpc;
vc4_hdmi->output_format = conn_state->hdmi.output_format;
mutex_unlock(&vc4_hdmi->mutex);
}
static enum drm_mode_status
vc4_hdmi_connector_clock_valid(const struct drm_connector *connector,
const struct drm_display_mode *mode,
unsigned long long clock)
{
const struct vc4_hdmi *vc4_hdmi = connector_to_vc4_hdmi(connector);
struct vc4_dev *vc4 = to_vc4_dev(connector->dev);
if (clock > vc4_hdmi->variant->max_pixel_clock)
return MODE_CLOCK_HIGH;
if (!vc4->hvs->vc5_hdmi_enable_hdmi_20 && clock > HDMI_14_MAX_TMDS_CLK)
return MODE_CLOCK_HIGH;
/* 4096x2160@60 is not reliable without overclocking core */
if (!vc4->hvs->vc5_hdmi_enable_4096by2160 &&
mode->hdisplay > 3840 && mode->vdisplay >= 2160 &&
drm_mode_vrefresh(mode) >= 50)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static const struct drm_connector_hdmi_funcs vc4_hdmi_hdmi_connector_funcs = {
.tmds_char_rate_valid = vc4_hdmi_connector_clock_valid,
.write_infoframe = vc4_hdmi_write_infoframe,
};
#define WIFI_2_4GHz_CH1_MIN_FREQ 2400000000ULL
#define WIFI_2_4GHz_CH1_MAX_FREQ 2422000000ULL
static int vc4_hdmi_encoder_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
struct drm_display_mode *mode = &crtc_state->adjusted_mode;
unsigned long long tmds_char_rate = mode->clock * 1000;
unsigned long long tmds_bit_rate;
if (vc4_hdmi->variant->unsupported_odd_h_timings) {
if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
/* Only try to fixup DBLCLK modes to get 480i and 576i
* working.
* A generic solution for all modes with odd horizontal
* timing values seems impossible based on trying to
* solve it for 1366x768 monitors.
*/
if ((mode->hsync_start - mode->hdisplay) & 1)
mode->hsync_start--;
if ((mode->hsync_end - mode->hsync_start) & 1)
mode->hsync_end--;
}
/* Now check whether we still have odd values remaining */
if ((mode->hdisplay % 2) || (mode->hsync_start % 2) ||
(mode->hsync_end % 2) || (mode->htotal % 2))
return -EINVAL;
}
/*
* The 1440p@60 pixel rate is in the same range than the first
* WiFi channel (between 2.4GHz and 2.422GHz with 22MHz
* bandwidth). Slightly lower the frequency to bring it out of
* the WiFi range.
*/
tmds_bit_rate = tmds_char_rate * 10;
if (vc4_hdmi->disable_wifi_frequencies &&
(tmds_bit_rate >= WIFI_2_4GHz_CH1_MIN_FREQ &&
tmds_bit_rate <= WIFI_2_4GHz_CH1_MAX_FREQ)) {
mode->clock = 238560;
tmds_char_rate = mode->clock * 1000;
}
return 0;
}
static enum drm_mode_status
vc4_hdmi_encoder_mode_valid(struct drm_encoder *encoder,
const struct drm_display_mode *mode)
{
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
unsigned long long rate;
if (vc4_hdmi->variant->unsupported_odd_h_timings &&
!(mode->flags & DRM_MODE_FLAG_DBLCLK) &&
((mode->hdisplay % 2) || (mode->hsync_start % 2) ||
(mode->hsync_end % 2) || (mode->htotal % 2)))
return MODE_H_ILLEGAL;
rate = drm_hdmi_compute_mode_clock(mode, 8, HDMI_COLORSPACE_RGB);
return vc4_hdmi_connector_clock_valid(&vc4_hdmi->connector, mode, rate);
}
static const struct drm_encoder_helper_funcs vc4_hdmi_encoder_helper_funcs = {
.atomic_check = vc4_hdmi_encoder_atomic_check,
.atomic_mode_set = vc4_hdmi_encoder_atomic_mode_set,
.mode_valid = vc4_hdmi_encoder_mode_valid,
};
static int vc4_hdmi_late_register(struct drm_encoder *encoder)
{
struct drm_device *drm = encoder->dev;
struct vc4_hdmi *vc4_hdmi = encoder_to_vc4_hdmi(encoder);
const struct vc4_hdmi_variant *variant = vc4_hdmi->variant;
drm_debugfs_add_file(drm, variant->debugfs_name,
vc4_hdmi_debugfs_regs, vc4_hdmi);
return 0;
}
static const struct drm_encoder_funcs vc4_hdmi_encoder_funcs = {
.late_register = vc4_hdmi_late_register,
};
static u32 vc4_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask)
{
int i;
u32 channel_map = 0;
for (i = 0; i < 8; i++) {
if (channel_mask & BIT(i))
channel_map |= i << (3 * i);
}
return channel_map;
}
static u32 vc5_hdmi_channel_map(struct vc4_hdmi *vc4_hdmi, u32 channel_mask)
{
int i;
u32 channel_map = 0;
for (i = 0; i < 8; i++) {
if (channel_mask & BIT(i))
channel_map |= i << (4 * i);
}
return channel_map;
}
static bool vc5_hdmi_hp_detect(struct vc4_hdmi *vc4_hdmi)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
u32 hotplug;
int idx;
if (!drm_dev_enter(drm, &idx))
return false;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
hotplug = HDMI_READ(HDMI_HOTPLUG);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
drm_dev_exit(idx);
return !!(hotplug & VC4_HDMI_HOTPLUG_CONNECTED);
}
/* HDMI audio codec callbacks */
static void vc4_hdmi_audio_set_mai_clock(struct vc4_hdmi *vc4_hdmi,
unsigned int samplerate)
{
struct drm_device *drm = vc4_hdmi->connector.dev;
u32 hsm_clock;
unsigned long flags;
unsigned long n, m;
int idx;
if (!drm_dev_enter(drm, &idx))
return;
hsm_clock = clk_get_rate(vc4_hdmi->audio_clock);
rational_best_approximation(hsm_clock, samplerate,
VC4_HD_MAI_SMP_N_MASK >>
VC4_HD_MAI_SMP_N_SHIFT,
(VC4_HD_MAI_SMP_M_MASK >>
VC4_HD_MAI_SMP_M_SHIFT) + 1,
&n, &m);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_MAI_SMP,
VC4_SET_FIELD(n, VC4_HD_MAI_SMP_N) |
VC4_SET_FIELD(m - 1, VC4_HD_MAI_SMP_M));
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
drm_dev_exit(idx);
}
static void vc4_hdmi_set_n_cts(struct vc4_hdmi *vc4_hdmi, unsigned int samplerate)
{
const struct drm_display_mode *mode = &vc4_hdmi->saved_adjusted_mode;
u32 n, cts;
u64 tmp;
lockdep_assert_held(&vc4_hdmi->mutex);
lockdep_assert_held(&vc4_hdmi->hw_lock);
n = 128 * samplerate / 1000;
tmp = (u64)(mode->clock * 1000) * n;
do_div(tmp, 128 * samplerate);
cts = tmp;
HDMI_WRITE(HDMI_CRP_CFG,
VC4_HDMI_CRP_CFG_EXTERNAL_CTS_EN |
VC4_SET_FIELD(n, VC4_HDMI_CRP_CFG_N));
/*
* We could get slightly more accurate clocks in some cases by
* providing a CTS_1 value. The two CTS values are alternated
* between based on the period fields
*/
HDMI_WRITE(HDMI_CTS_0, cts);
HDMI_WRITE(HDMI_CTS_1, cts);
}
static inline struct vc4_hdmi *dai_to_hdmi(struct snd_soc_dai *dai)
{
struct snd_soc_card *card = snd_soc_dai_get_drvdata(dai);
return snd_soc_card_get_drvdata(card);
}
static bool vc4_hdmi_audio_can_stream(struct vc4_hdmi *vc4_hdmi)
{
struct drm_display_info *display = &vc4_hdmi->connector.display_info;
lockdep_assert_held(&vc4_hdmi->mutex);
/*
* If the encoder is currently in DVI mode, treat the codec DAI
* as missing.
*/
if (!display->is_hdmi)
return false;
return true;
}
static int vc4_hdmi_audio_startup(struct device *dev, void *data)
{
struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
int ret = 0;
int idx;
mutex_lock(&vc4_hdmi->mutex);
if (!drm_dev_enter(drm, &idx)) {
ret = -ENODEV;
goto out;
}
if (!vc4_hdmi_audio_can_stream(vc4_hdmi)) {
ret = -ENODEV;
goto out_dev_exit;
}
vc4_hdmi->audio.streaming = true;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_MAI_CTL,
VC4_HD_MAI_CTL_RESET |
VC4_HD_MAI_CTL_FLUSH |
VC4_HD_MAI_CTL_DLATE |
VC4_HD_MAI_CTL_ERRORE |
VC4_HD_MAI_CTL_ERRORF);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
if (vc4_hdmi->variant->phy_rng_enable)
vc4_hdmi->variant->phy_rng_enable(vc4_hdmi);
out_dev_exit:
drm_dev_exit(idx);
out:
mutex_unlock(&vc4_hdmi->mutex);
return ret;
}
static void vc4_hdmi_audio_reset(struct vc4_hdmi *vc4_hdmi)
{
struct device *dev = &vc4_hdmi->pdev->dev;
unsigned long flags;
int ret;
lockdep_assert_held(&vc4_hdmi->mutex);
vc4_hdmi->audio.streaming = false;
ret = vc4_hdmi_stop_packet(vc4_hdmi, HDMI_INFOFRAME_TYPE_AUDIO, false);
if (ret)
dev_err(dev, "Failed to stop audio infoframe: %d\n", ret);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_RESET);
HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_ERRORF);
HDMI_WRITE(HDMI_MAI_CTL, VC4_HD_MAI_CTL_FLUSH);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
}
static void vc4_hdmi_audio_shutdown(struct device *dev, void *data)
{
struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
int idx;
mutex_lock(&vc4_hdmi->mutex);
if (!drm_dev_enter(drm, &idx))
goto out;
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_MAI_CTL,
VC4_HD_MAI_CTL_DLATE |
VC4_HD_MAI_CTL_ERRORE |
VC4_HD_MAI_CTL_ERRORF);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
if (vc4_hdmi->variant->phy_rng_disable)
vc4_hdmi->variant->phy_rng_disable(vc4_hdmi);
vc4_hdmi->audio.streaming = false;
vc4_hdmi_audio_reset(vc4_hdmi);
drm_dev_exit(idx);
out:
mutex_unlock(&vc4_hdmi->mutex);
}
static int sample_rate_to_mai_fmt(int samplerate)
{
switch (samplerate) {
case 8000:
return VC4_HDMI_MAI_SAMPLE_RATE_8000;
case 11025:
return VC4_HDMI_MAI_SAMPLE_RATE_11025;
case 12000:
return VC4_HDMI_MAI_SAMPLE_RATE_12000;
case 16000:
return VC4_HDMI_MAI_SAMPLE_RATE_16000;
case 22050:
return VC4_HDMI_MAI_SAMPLE_RATE_22050;
case 24000:
return VC4_HDMI_MAI_SAMPLE_RATE_24000;
case 32000:
return VC4_HDMI_MAI_SAMPLE_RATE_32000;
case 44100:
return VC4_HDMI_MAI_SAMPLE_RATE_44100;
case 48000:
return VC4_HDMI_MAI_SAMPLE_RATE_48000;
case 64000:
return VC4_HDMI_MAI_SAMPLE_RATE_64000;
case 88200:
return VC4_HDMI_MAI_SAMPLE_RATE_88200;
case 96000:
return VC4_HDMI_MAI_SAMPLE_RATE_96000;
case 128000:
return VC4_HDMI_MAI_SAMPLE_RATE_128000;
case 176400:
return VC4_HDMI_MAI_SAMPLE_RATE_176400;
case 192000:
return VC4_HDMI_MAI_SAMPLE_RATE_192000;
default:
return VC4_HDMI_MAI_SAMPLE_RATE_NOT_INDICATED;
}
}
/* HDMI audio codec callbacks */
static int vc4_hdmi_audio_prepare(struct device *dev, void *data,
struct hdmi_codec_daifmt *daifmt,
struct hdmi_codec_params *params)
{
struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
struct drm_device *drm = vc4_hdmi->connector.dev;
struct drm_connector *connector = &vc4_hdmi->connector;
unsigned int sample_rate = params->sample_rate;
unsigned int channels = params->channels;
unsigned long flags;
u32 audio_packet_config, channel_mask;
u32 channel_map;
u32 mai_audio_format;
u32 mai_sample_rate;
int ret = 0;
int idx;
dev_dbg(dev, "%s: %u Hz, %d bit, %d channels\n", __func__,
sample_rate, params->sample_width, channels);
mutex_lock(&vc4_hdmi->mutex);
if (!drm_dev_enter(drm, &idx)) {
ret = -ENODEV;
goto out;
}
if (!vc4_hdmi_audio_can_stream(vc4_hdmi)) {
ret = -EINVAL;
goto out_dev_exit;
}
vc4_hdmi_audio_set_mai_clock(vc4_hdmi, sample_rate);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_MAI_CTL,
VC4_SET_FIELD(channels, VC4_HD_MAI_CTL_CHNUM) |
VC4_HD_MAI_CTL_WHOLSMP |
VC4_HD_MAI_CTL_CHALIGN |
VC4_HD_MAI_CTL_ENABLE);
mai_sample_rate = sample_rate_to_mai_fmt(sample_rate);
if (params->iec.status[0] & IEC958_AES0_NONAUDIO &&
params->channels == 8)
mai_audio_format = VC4_HDMI_MAI_FORMAT_HBR;
else
mai_audio_format = VC4_HDMI_MAI_FORMAT_PCM;
HDMI_WRITE(HDMI_MAI_FMT,
VC4_SET_FIELD(mai_sample_rate,
VC4_HDMI_MAI_FORMAT_SAMPLE_RATE) |
VC4_SET_FIELD(mai_audio_format,
VC4_HDMI_MAI_FORMAT_AUDIO_FORMAT));
/* The B frame identifier should match the value used by alsa-lib (8) */
audio_packet_config =
VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_SAMPLE_FLAT |
VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_INACTIVE_CHANNELS |
VC4_SET_FIELD(0x8, VC4_HDMI_AUDIO_PACKET_B_FRAME_IDENTIFIER);
channel_mask = GENMASK(channels - 1, 0);
audio_packet_config |= VC4_SET_FIELD(channel_mask,
VC4_HDMI_AUDIO_PACKET_CEA_MASK);
/* Set the MAI threshold */
HDMI_WRITE(HDMI_MAI_THR,
VC4_SET_FIELD(0x08, VC4_HD_MAI_THR_PANICHIGH) |
VC4_SET_FIELD(0x08, VC4_HD_MAI_THR_PANICLOW) |
VC4_SET_FIELD(0x06, VC4_HD_MAI_THR_DREQHIGH) |
VC4_SET_FIELD(0x08, VC4_HD_MAI_THR_DREQLOW));
HDMI_WRITE(HDMI_MAI_CONFIG,
VC4_HDMI_MAI_CONFIG_BIT_REVERSE |
VC4_HDMI_MAI_CONFIG_FORMAT_REVERSE |
VC4_SET_FIELD(channel_mask, VC4_HDMI_MAI_CHANNEL_MASK));
channel_map = vc4_hdmi->variant->channel_map(vc4_hdmi, channel_mask);
HDMI_WRITE(HDMI_MAI_CHANNEL_MAP, channel_map);
HDMI_WRITE(HDMI_AUDIO_PACKET_CONFIG, audio_packet_config);
vc4_hdmi_set_n_cts(vc4_hdmi, sample_rate);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
ret = drm_atomic_helper_connector_hdmi_update_audio_infoframe(connector,
¶ms->cea);
if (ret)
goto out_dev_exit;
out_dev_exit:
drm_dev_exit(idx);
out:
mutex_unlock(&vc4_hdmi->mutex);
return ret;
}
static const struct snd_soc_component_driver vc4_hdmi_audio_cpu_dai_comp = {
.name = "vc4-hdmi-cpu-dai-component",
.legacy_dai_naming = 1,
};
static int vc4_hdmi_audio_cpu_dai_probe(struct snd_soc_dai *dai)
{
struct vc4_hdmi *vc4_hdmi = dai_to_hdmi(dai);
snd_soc_dai_init_dma_data(dai, &vc4_hdmi->audio.dma_data, NULL);
return 0;
}
static const struct snd_soc_dai_ops vc4_snd_dai_ops = {
.probe = vc4_hdmi_audio_cpu_dai_probe,
};
static struct snd_soc_dai_driver vc4_hdmi_audio_cpu_dai_drv = {
.name = "vc4-hdmi-cpu-dai",
.ops = &vc4_snd_dai_ops,
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 8,
.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 |
SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 |
SNDRV_PCM_RATE_192000,
.formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
},
};
static const struct snd_dmaengine_pcm_config pcm_conf = {
.chan_names[SNDRV_PCM_STREAM_PLAYBACK] = "audio-rx",
.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
};
static int vc4_hdmi_audio_get_eld(struct device *dev, void *data,
uint8_t *buf, size_t len)
{
struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
struct drm_connector *connector = &vc4_hdmi->connector;
mutex_lock(&vc4_hdmi->mutex);
memcpy(buf, connector->eld, min(sizeof(connector->eld), len));
mutex_unlock(&vc4_hdmi->mutex);
return 0;
}
static const struct hdmi_codec_ops vc4_hdmi_codec_ops = {
.get_eld = vc4_hdmi_audio_get_eld,
.prepare = vc4_hdmi_audio_prepare,
.audio_shutdown = vc4_hdmi_audio_shutdown,
.audio_startup = vc4_hdmi_audio_startup,
};
static struct hdmi_codec_pdata vc4_hdmi_codec_pdata = {
.ops = &vc4_hdmi_codec_ops,
.max_i2s_channels = 8,
.i2s = 1,
};
static void vc4_hdmi_audio_codec_release(void *ptr)
{
struct vc4_hdmi *vc4_hdmi = ptr;
platform_device_unregister(vc4_hdmi->audio.codec_pdev);
vc4_hdmi->audio.codec_pdev = NULL;
}
static int vc4_hdmi_audio_init(struct vc4_hdmi *vc4_hdmi)
{
const struct vc4_hdmi_register *mai_data =
&vc4_hdmi->variant->registers[HDMI_MAI_DATA];
struct snd_soc_dai_link *dai_link = &vc4_hdmi->audio.link;
struct snd_soc_card *card = &vc4_hdmi->audio.card;
struct device *dev = &vc4_hdmi->pdev->dev;
struct platform_device *codec_pdev;
const __be32 *addr;
int index, len;
int ret;
/*
* ASoC makes it a bit hard to retrieve a pointer to the
* vc4_hdmi structure. Registering the card will overwrite our
* device drvdata with a pointer to the snd_soc_card structure,
* which can then be used to retrieve whatever drvdata we want
* to associate.
*
* However, that doesn't fly in the case where we wouldn't
* register an ASoC card (because of an old DT that is missing
* the dmas properties for example), then the card isn't
* registered and the device drvdata wouldn't be set.
*
* We can deal with both cases by making sure a snd_soc_card
* pointer and a vc4_hdmi structure are pointing to the same
* memory address, so we can treat them indistinctly without any
* issue.
*/
BUILD_BUG_ON(offsetof(struct vc4_hdmi_audio, card) != 0);
BUILD_BUG_ON(offsetof(struct vc4_hdmi, audio) != 0);
if (!of_find_property(dev->of_node, "dmas", &len) || !len) {
dev_warn(dev,
"'dmas' DT property is missing or empty, no HDMI audio\n");
return 0;
}
if (mai_data->reg != VC4_HD) {
WARN_ONCE(true, "MAI isn't in the HD block\n");
return -EINVAL;
}
/*
* Get the physical address of VC4_HD_MAI_DATA. We need to retrieve
* the bus address specified in the DT, because the physical address
* (the one returned by platform_get_resource()) is not appropriate
* for DMA transfers.
* This VC/MMU should probably be exposed to avoid this kind of hacks.
*/
index = of_property_match_string(dev->of_node, "reg-names", "hd");
/* Before BCM2711, we don't have a named register range */
if (index < 0)
index = 1;
addr = of_get_address(dev->of_node, index, NULL, NULL);
if (!addr)
return -EINVAL;
vc4_hdmi->audio.dma_data.addr = be32_to_cpup(addr) + mai_data->offset;
vc4_hdmi->audio.dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
vc4_hdmi->audio.dma_data.maxburst = 2;
/*
* NOTE: Strictly speaking, we should probably use a DRM-managed
* registration there to avoid removing all the audio components
* by the time the driver doesn't have any user anymore.
*
* However, the ASoC core uses a number of devm_kzalloc calls
* when registering, even when using non-device-managed
* functions (such as in snd_soc_register_component()).
*
* If we call snd_soc_unregister_component() in a DRM-managed
* action, the device-managed actions have already been executed
* and thus we would access memory that has been freed.
*
* Using device-managed hooks here probably leaves us open to a
* bunch of issues if userspace still has a handle on the ALSA
* device when the device is removed. However, this is mitigated
* by the use of drm_dev_enter()/drm_dev_exit() in the audio
* path to prevent the access to the device resources if it
* isn't there anymore.
*
* Then, the vc4_hdmi structure is DRM-managed and thus only
* freed whenever the last user has closed the DRM device file.
* It should thus outlive ALSA in most situations.
*/
ret = devm_snd_dmaengine_pcm_register(dev, &pcm_conf, 0);
if (ret) {
dev_err(dev, "Could not register PCM component: %d\n", ret);
return ret;
}
ret = devm_snd_soc_register_component(dev, &vc4_hdmi_audio_cpu_dai_comp,
&vc4_hdmi_audio_cpu_dai_drv, 1);
if (ret) {
dev_err(dev, "Could not register CPU DAI: %d\n", ret);
return ret;
}
codec_pdev = platform_device_register_data(dev, HDMI_CODEC_DRV_NAME,
PLATFORM_DEVID_AUTO,
&vc4_hdmi_codec_pdata,
sizeof(vc4_hdmi_codec_pdata));
if (IS_ERR(codec_pdev)) {
dev_err(dev, "Couldn't register the HDMI codec: %ld\n", PTR_ERR(codec_pdev));
return PTR_ERR(codec_pdev);
}
vc4_hdmi->audio.codec_pdev = codec_pdev;
ret = devm_add_action_or_reset(dev, vc4_hdmi_audio_codec_release, vc4_hdmi);
if (ret)
return ret;
dai_link->cpus = &vc4_hdmi->audio.cpu;
dai_link->codecs = &vc4_hdmi->audio.codec;
dai_link->platforms = &vc4_hdmi->audio.platform;
dai_link->num_cpus = 1;
dai_link->num_codecs = 1;
dai_link->num_platforms = 1;
dai_link->name = "MAI";
dai_link->stream_name = "MAI PCM";
dai_link->codecs->dai_name = "i2s-hifi";
dai_link->cpus->dai_name = dev_name(dev);
dai_link->codecs->name = dev_name(&codec_pdev->dev);
dai_link->platforms->name = dev_name(dev);
card->dai_link = dai_link;
card->num_links = 1;
card->name = vc4_hdmi->variant->card_name;
card->driver_name = "vc4-hdmi";
card->dev = dev;
card->owner = THIS_MODULE;
/*
* Be careful, snd_soc_register_card() calls dev_set_drvdata() and
* stores a pointer to the snd card object in dev->driver_data. This
* means we cannot use it for something else. The hdmi back-pointer is
* now stored in card->drvdata and should be retrieved with
* snd_soc_card_get_drvdata() if needed.
*/
snd_soc_card_set_drvdata(card, vc4_hdmi);
ret = devm_snd_soc_register_card(dev, card);
if (ret)
dev_err_probe(dev, ret, "Could not register sound card\n");
return ret;
}
static irqreturn_t vc4_hdmi_hpd_irq_thread(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
struct drm_connector *connector = &vc4_hdmi->connector;
struct drm_device *dev = connector->dev;
if (dev && dev->registered)
drm_connector_helper_hpd_irq_event(connector);
return IRQ_HANDLED;
}
static int vc4_hdmi_hotplug_init(struct vc4_hdmi *vc4_hdmi)
{
struct drm_connector *connector = &vc4_hdmi->connector;
struct platform_device *pdev = vc4_hdmi->pdev;
int ret;
if (vc4_hdmi->variant->external_irq_controller) {
unsigned int hpd_con = platform_get_irq_byname(pdev, "hpd-connected");
unsigned int hpd_rm = platform_get_irq_byname(pdev, "hpd-removed");
ret = devm_request_threaded_irq(&pdev->dev, hpd_con,
NULL,
vc4_hdmi_hpd_irq_thread, IRQF_ONESHOT,
"vc4 hdmi hpd connected", vc4_hdmi);
if (ret)
return ret;
ret = devm_request_threaded_irq(&pdev->dev, hpd_rm,
NULL,
vc4_hdmi_hpd_irq_thread, IRQF_ONESHOT,
"vc4 hdmi hpd disconnected", vc4_hdmi);
if (ret)
return ret;
connector->polled = DRM_CONNECTOR_POLL_HPD;
}
return 0;
}
#ifdef CONFIG_DRM_VC4_HDMI_CEC
static irqreturn_t vc4_cec_irq_handler_rx_thread(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
if (vc4_hdmi->cec_rx_msg.len)
cec_received_msg(vc4_hdmi->cec_adap,
&vc4_hdmi->cec_rx_msg);
return IRQ_HANDLED;
}
static irqreturn_t vc4_cec_irq_handler_tx_thread(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
if (vc4_hdmi->cec_tx_ok) {
cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_OK,
0, 0, 0, 0);
} else {
/*
* This CEC implementation makes 1 retry, so if we
* get a NACK, then that means it made 2 attempts.
*/
cec_transmit_done(vc4_hdmi->cec_adap, CEC_TX_STATUS_NACK,
0, 2, 0, 0);
}
return IRQ_HANDLED;
}
static irqreturn_t vc4_cec_irq_handler_thread(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
irqreturn_t ret;
if (vc4_hdmi->cec_irq_was_rx)
ret = vc4_cec_irq_handler_rx_thread(irq, priv);
else
ret = vc4_cec_irq_handler_tx_thread(irq, priv);
return ret;
}
static void vc4_cec_read_msg(struct vc4_hdmi *vc4_hdmi, u32 cntrl1)
{
struct drm_device *dev = vc4_hdmi->connector.dev;
struct cec_msg *msg = &vc4_hdmi->cec_rx_msg;
unsigned int i;
lockdep_assert_held(&vc4_hdmi->hw_lock);
msg->len = 1 + ((cntrl1 & VC4_HDMI_CEC_REC_WRD_CNT_MASK) >>
VC4_HDMI_CEC_REC_WRD_CNT_SHIFT);
if (msg->len > 16) {
drm_err(dev, "Attempting to read too much data (%d)\n", msg->len);
return;
}
for (i = 0; i < msg->len; i += 4) {
u32 val = HDMI_READ(HDMI_CEC_RX_DATA_1 + (i >> 2));
msg->msg[i] = val & 0xff;
msg->msg[i + 1] = (val >> 8) & 0xff;
msg->msg[i + 2] = (val >> 16) & 0xff;
msg->msg[i + 3] = (val >> 24) & 0xff;
}
}
static irqreturn_t vc4_cec_irq_handler_tx_bare_locked(struct vc4_hdmi *vc4_hdmi)
{
u32 cntrl1;
/*
* We don't need to protect the register access using
* drm_dev_enter() there because the interrupt handler lifetime
* is tied to the device itself, and not to the DRM device.
*
* So when the device will be gone, one of the first thing we
* will be doing will be to unregister the interrupt handler,
* and then unregister the DRM device. drm_dev_enter() would
* thus always succeed if we are here.
*/
lockdep_assert_held(&vc4_hdmi->hw_lock);
cntrl1 = HDMI_READ(HDMI_CEC_CNTRL_1);
vc4_hdmi->cec_tx_ok = cntrl1 & VC4_HDMI_CEC_TX_STATUS_GOOD;
cntrl1 &= ~VC4_HDMI_CEC_START_XMIT_BEGIN;
HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1);
return IRQ_WAKE_THREAD;
}
static irqreturn_t vc4_cec_irq_handler_tx_bare(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
irqreturn_t ret;
spin_lock(&vc4_hdmi->hw_lock);
ret = vc4_cec_irq_handler_tx_bare_locked(vc4_hdmi);
spin_unlock(&vc4_hdmi->hw_lock);
return ret;
}
static irqreturn_t vc4_cec_irq_handler_rx_bare_locked(struct vc4_hdmi *vc4_hdmi)
{
u32 cntrl1;
lockdep_assert_held(&vc4_hdmi->hw_lock);
/*
* We don't need to protect the register access using
* drm_dev_enter() there because the interrupt handler lifetime
* is tied to the device itself, and not to the DRM device.
*
* So when the device will be gone, one of the first thing we
* will be doing will be to unregister the interrupt handler,
* and then unregister the DRM device. drm_dev_enter() would
* thus always succeed if we are here.
*/
vc4_hdmi->cec_rx_msg.len = 0;
cntrl1 = HDMI_READ(HDMI_CEC_CNTRL_1);
vc4_cec_read_msg(vc4_hdmi, cntrl1);
cntrl1 |= VC4_HDMI_CEC_CLEAR_RECEIVE_OFF;
HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1);
cntrl1 &= ~VC4_HDMI_CEC_CLEAR_RECEIVE_OFF;
HDMI_WRITE(HDMI_CEC_CNTRL_1, cntrl1);
return IRQ_WAKE_THREAD;
}
static irqreturn_t vc4_cec_irq_handler_rx_bare(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
irqreturn_t ret;
spin_lock(&vc4_hdmi->hw_lock);
ret = vc4_cec_irq_handler_rx_bare_locked(vc4_hdmi);
spin_unlock(&vc4_hdmi->hw_lock);
return ret;
}
static irqreturn_t vc4_cec_irq_handler(int irq, void *priv)
{
struct vc4_hdmi *vc4_hdmi = priv;
u32 stat = HDMI_READ(HDMI_CEC_CPU_STATUS);
irqreturn_t ret;
u32 cntrl5;
/*
* We don't need to protect the register access using
* drm_dev_enter() there because the interrupt handler lifetime
* is tied to the device itself, and not to the DRM device.
*
* So when the device will be gone, one of the first thing we
* will be doing will be to unregister the interrupt handler,
* and then unregister the DRM device. drm_dev_enter() would
* thus always succeed if we are here.
*/
if (!(stat & VC4_HDMI_CPU_CEC))
return IRQ_NONE;
spin_lock(&vc4_hdmi->hw_lock);
cntrl5 = HDMI_READ(HDMI_CEC_CNTRL_5);
vc4_hdmi->cec_irq_was_rx = cntrl5 & VC4_HDMI_CEC_RX_CEC_INT;
if (vc4_hdmi->cec_irq_was_rx)
ret = vc4_cec_irq_handler_rx_bare_locked(vc4_hdmi);
else
ret = vc4_cec_irq_handler_tx_bare_locked(vc4_hdmi);
HDMI_WRITE(HDMI_CEC_CPU_CLEAR, VC4_HDMI_CPU_CEC);
spin_unlock(&vc4_hdmi->hw_lock);
return ret;
}
static int vc4_hdmi_cec_enable(struct cec_adapter *adap)
{
struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
struct drm_device *drm = vc4_hdmi->connector.dev;
/* clock period in microseconds */
const u32 usecs = 1000000 / CEC_CLOCK_FREQ;
unsigned long flags;
u32 val;
int ret;
int idx;
if (!drm_dev_enter(drm, &idx))
/*
* We can't return an error code, because the CEC
* framework will emit WARN_ON messages at unbind
* otherwise.
*/
return 0;
ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
if (ret) {
drm_dev_exit(idx);
return ret;
}
mutex_lock(&vc4_hdmi->mutex);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
val = HDMI_READ(HDMI_CEC_CNTRL_5);
val &= ~(VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET |
VC4_HDMI_CEC_CNT_TO_4700_US_MASK |
VC4_HDMI_CEC_CNT_TO_4500_US_MASK);
val |= ((4700 / usecs) << VC4_HDMI_CEC_CNT_TO_4700_US_SHIFT) |
((4500 / usecs) << VC4_HDMI_CEC_CNT_TO_4500_US_SHIFT);
HDMI_WRITE(HDMI_CEC_CNTRL_5, val |
VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET);
HDMI_WRITE(HDMI_CEC_CNTRL_5, val);
HDMI_WRITE(HDMI_CEC_CNTRL_2,
((1500 / usecs) << VC4_HDMI_CEC_CNT_TO_1500_US_SHIFT) |
((1300 / usecs) << VC4_HDMI_CEC_CNT_TO_1300_US_SHIFT) |
((800 / usecs) << VC4_HDMI_CEC_CNT_TO_800_US_SHIFT) |
((600 / usecs) << VC4_HDMI_CEC_CNT_TO_600_US_SHIFT) |
((400 / usecs) << VC4_HDMI_CEC_CNT_TO_400_US_SHIFT));
HDMI_WRITE(HDMI_CEC_CNTRL_3,
((2750 / usecs) << VC4_HDMI_CEC_CNT_TO_2750_US_SHIFT) |
((2400 / usecs) << VC4_HDMI_CEC_CNT_TO_2400_US_SHIFT) |
((2050 / usecs) << VC4_HDMI_CEC_CNT_TO_2050_US_SHIFT) |
((1700 / usecs) << VC4_HDMI_CEC_CNT_TO_1700_US_SHIFT));
HDMI_WRITE(HDMI_CEC_CNTRL_4,
((4300 / usecs) << VC4_HDMI_CEC_CNT_TO_4300_US_SHIFT) |
((3900 / usecs) << VC4_HDMI_CEC_CNT_TO_3900_US_SHIFT) |
((3600 / usecs) << VC4_HDMI_CEC_CNT_TO_3600_US_SHIFT) |
((3500 / usecs) << VC4_HDMI_CEC_CNT_TO_3500_US_SHIFT));
if (!vc4_hdmi->variant->external_irq_controller)
HDMI_WRITE(HDMI_CEC_CPU_MASK_CLEAR, VC4_HDMI_CPU_CEC);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
mutex_unlock(&vc4_hdmi->mutex);
drm_dev_exit(idx);
return 0;
}
static int vc4_hdmi_cec_disable(struct cec_adapter *adap)
{
struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
int idx;
if (!drm_dev_enter(drm, &idx))
/*
* We can't return an error code, because the CEC
* framework will emit WARN_ON messages at unbind
* otherwise.
*/
return 0;
mutex_lock(&vc4_hdmi->mutex);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
if (!vc4_hdmi->variant->external_irq_controller)
HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, VC4_HDMI_CPU_CEC);
HDMI_WRITE(HDMI_CEC_CNTRL_5, HDMI_READ(HDMI_CEC_CNTRL_5) |
VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
mutex_unlock(&vc4_hdmi->mutex);
pm_runtime_put(&vc4_hdmi->pdev->dev);
drm_dev_exit(idx);
return 0;
}
static int vc4_hdmi_cec_adap_enable(struct cec_adapter *adap, bool enable)
{
if (enable)
return vc4_hdmi_cec_enable(adap);
else
return vc4_hdmi_cec_disable(adap);
}
static int vc4_hdmi_cec_adap_log_addr(struct cec_adapter *adap, u8 log_addr)
{
struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
struct drm_device *drm = vc4_hdmi->connector.dev;
unsigned long flags;
int idx;
if (!drm_dev_enter(drm, &idx))
/*
* We can't return an error code, because the CEC
* framework will emit WARN_ON messages at unbind
* otherwise.
*/
return 0;
mutex_lock(&vc4_hdmi->mutex);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_CEC_CNTRL_1,
(HDMI_READ(HDMI_CEC_CNTRL_1) & ~VC4_HDMI_CEC_ADDR_MASK) |
(log_addr & 0xf) << VC4_HDMI_CEC_ADDR_SHIFT);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
mutex_unlock(&vc4_hdmi->mutex);
drm_dev_exit(idx);
return 0;
}
static int vc4_hdmi_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
u32 signal_free_time, struct cec_msg *msg)
{
struct vc4_hdmi *vc4_hdmi = cec_get_drvdata(adap);
struct drm_device *dev = vc4_hdmi->connector.dev;
unsigned long flags;
u32 val;
unsigned int i;
int idx;
if (!drm_dev_enter(dev, &idx))
return -ENODEV;
if (msg->len > 16) {
drm_err(dev, "Attempting to transmit too much data (%d)\n", msg->len);
drm_dev_exit(idx);
return -ENOMEM;
}
mutex_lock(&vc4_hdmi->mutex);
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
for (i = 0; i < msg->len; i += 4)
HDMI_WRITE(HDMI_CEC_TX_DATA_1 + (i >> 2),
(msg->msg[i]) |
(msg->msg[i + 1] << 8) |
(msg->msg[i + 2] << 16) |
(msg->msg[i + 3] << 24));
val = HDMI_READ(HDMI_CEC_CNTRL_1);
val &= ~VC4_HDMI_CEC_START_XMIT_BEGIN;
HDMI_WRITE(HDMI_CEC_CNTRL_1, val);
val &= ~VC4_HDMI_CEC_MESSAGE_LENGTH_MASK;
val |= (msg->len - 1) << VC4_HDMI_CEC_MESSAGE_LENGTH_SHIFT;
val |= VC4_HDMI_CEC_START_XMIT_BEGIN;
HDMI_WRITE(HDMI_CEC_CNTRL_1, val);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
mutex_unlock(&vc4_hdmi->mutex);
drm_dev_exit(idx);
return 0;
}
static const struct cec_adap_ops vc4_hdmi_cec_adap_ops = {
.adap_enable = vc4_hdmi_cec_adap_enable,
.adap_log_addr = vc4_hdmi_cec_adap_log_addr,
.adap_transmit = vc4_hdmi_cec_adap_transmit,
};
static void vc4_hdmi_cec_release(void *ptr)
{
struct vc4_hdmi *vc4_hdmi = ptr;
cec_unregister_adapter(vc4_hdmi->cec_adap);
vc4_hdmi->cec_adap = NULL;
}
static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi)
{
struct cec_connector_info conn_info;
struct platform_device *pdev = vc4_hdmi->pdev;
struct device *dev = &pdev->dev;
int ret;
if (!of_property_present(dev->of_node, "interrupts")) {
dev_warn(dev, "'interrupts' DT property is missing, no CEC\n");
return 0;
}
vc4_hdmi->cec_adap = cec_allocate_adapter(&vc4_hdmi_cec_adap_ops,
vc4_hdmi,
vc4_hdmi->variant->card_name,
CEC_CAP_DEFAULTS |
CEC_CAP_CONNECTOR_INFO, 1);
ret = PTR_ERR_OR_ZERO(vc4_hdmi->cec_adap);
if (ret < 0)
return ret;
cec_fill_conn_info_from_drm(&conn_info, &vc4_hdmi->connector);
cec_s_conn_info(vc4_hdmi->cec_adap, &conn_info);
if (vc4_hdmi->variant->external_irq_controller) {
ret = devm_request_threaded_irq(dev, platform_get_irq_byname(pdev, "cec-rx"),
vc4_cec_irq_handler_rx_bare,
vc4_cec_irq_handler_rx_thread, 0,
"vc4 hdmi cec rx", vc4_hdmi);
if (ret)
goto err_delete_cec_adap;
ret = devm_request_threaded_irq(dev, platform_get_irq_byname(pdev, "cec-tx"),
vc4_cec_irq_handler_tx_bare,
vc4_cec_irq_handler_tx_thread, 0,
"vc4 hdmi cec tx", vc4_hdmi);
if (ret)
goto err_delete_cec_adap;
} else {
ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
vc4_cec_irq_handler,
vc4_cec_irq_handler_thread, 0,
"vc4 hdmi cec", vc4_hdmi);
if (ret)
goto err_delete_cec_adap;
}
ret = cec_register_adapter(vc4_hdmi->cec_adap, &pdev->dev);
if (ret < 0)
goto err_delete_cec_adap;
/*
* NOTE: Strictly speaking, we should probably use a DRM-managed
* registration there to avoid removing the CEC adapter by the
* time the DRM driver doesn't have any user anymore.
*
* However, the CEC framework already cleans up the CEC adapter
* only when the last user has closed its file descriptor, so we
* don't need to handle it in DRM.
*
* By the time the device-managed hook is executed, we will give
* up our reference to the CEC adapter and therefore don't
* really care when it's actually freed.
*
* There's still a problematic sequence: if we unregister our
* CEC adapter, but the userspace keeps a handle on the CEC
* adapter but not the DRM device for some reason. In such a
* case, our vc4_hdmi structure will be freed, but the
* cec_adapter structure will have a dangling pointer to what
* used to be our HDMI controller. If we get a CEC call at that
* moment, we could end up with a use-after-free. Fortunately,
* the CEC framework already handles this too, by calling
* cec_is_registered() in cec_ioctl() and cec_poll().
*/
ret = devm_add_action_or_reset(dev, vc4_hdmi_cec_release, vc4_hdmi);
if (ret)
return ret;
return 0;
err_delete_cec_adap:
cec_delete_adapter(vc4_hdmi->cec_adap);
return ret;
}
#else
static int vc4_hdmi_cec_init(struct vc4_hdmi *vc4_hdmi)
{
return 0;
}
#endif
static void vc4_hdmi_free_regset(struct drm_device *drm, void *ptr)
{
struct debugfs_reg32 *regs = ptr;
kfree(regs);
}
static int vc4_hdmi_build_regset(struct drm_device *drm,
struct vc4_hdmi *vc4_hdmi,
struct debugfs_regset32 *regset,
enum vc4_hdmi_regs reg)
{
const struct vc4_hdmi_variant *variant = vc4_hdmi->variant;
struct debugfs_reg32 *regs, *new_regs;
unsigned int count = 0;
unsigned int i;
int ret;
regs = kcalloc(variant->num_registers, sizeof(*regs),
GFP_KERNEL);
if (!regs)
return -ENOMEM;
for (i = 0; i < variant->num_registers; i++) {
const struct vc4_hdmi_register *field = &variant->registers[i];
if (field->reg != reg)
continue;
regs[count].name = field->name;
regs[count].offset = field->offset;
count++;
}
new_regs = krealloc(regs, count * sizeof(*regs), GFP_KERNEL);
if (!new_regs)
return -ENOMEM;
regset->base = __vc4_hdmi_get_field_base(vc4_hdmi, reg);
regset->regs = new_regs;
regset->nregs = count;
ret = drmm_add_action_or_reset(drm, vc4_hdmi_free_regset, new_regs);
if (ret)
return ret;
return 0;
}
static int vc4_hdmi_init_resources(struct drm_device *drm,
struct vc4_hdmi *vc4_hdmi)
{
struct platform_device *pdev = vc4_hdmi->pdev;
struct device *dev = &pdev->dev;
int ret;
vc4_hdmi->hdmicore_regs = vc4_ioremap_regs(pdev, 0);
if (IS_ERR(vc4_hdmi->hdmicore_regs))
return PTR_ERR(vc4_hdmi->hdmicore_regs);
vc4_hdmi->hd_regs = vc4_ioremap_regs(pdev, 1);
if (IS_ERR(vc4_hdmi->hd_regs))
return PTR_ERR(vc4_hdmi->hd_regs);
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hd_regset, VC4_HD);
if (ret)
return ret;
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hdmi_regset, VC4_HDMI);
if (ret)
return ret;
vc4_hdmi->pixel_clock = devm_clk_get(dev, "pixel");
if (IS_ERR(vc4_hdmi->pixel_clock)) {
ret = PTR_ERR(vc4_hdmi->pixel_clock);
if (ret != -EPROBE_DEFER)
drm_err(drm, "Failed to get pixel clock\n");
return ret;
}
vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi");
if (IS_ERR(vc4_hdmi->hsm_clock)) {
drm_err(drm, "Failed to get HDMI state machine clock\n");
return PTR_ERR(vc4_hdmi->hsm_clock);
}
vc4_hdmi->audio_clock = vc4_hdmi->hsm_clock;
vc4_hdmi->cec_clock = vc4_hdmi->hsm_clock;
return 0;
}
static int vc5_hdmi_init_resources(struct drm_device *drm,
struct vc4_hdmi *vc4_hdmi)
{
struct platform_device *pdev = vc4_hdmi->pdev;
struct device *dev = &pdev->dev;
struct resource *res;
int ret;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hdmi");
if (!res)
return -ENODEV;
vc4_hdmi->hdmicore_regs = devm_ioremap(dev, res->start,
resource_size(res));
if (!vc4_hdmi->hdmicore_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hd");
if (!res)
return -ENODEV;
vc4_hdmi->hd_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->hd_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cec");
if (!res)
return -ENODEV;
vc4_hdmi->cec_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->cec_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "csc");
if (!res)
return -ENODEV;
vc4_hdmi->csc_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->csc_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dvp");
if (!res)
return -ENODEV;
vc4_hdmi->dvp_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->dvp_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "phy");
if (!res)
return -ENODEV;
vc4_hdmi->phy_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->phy_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "packet");
if (!res)
return -ENODEV;
vc4_hdmi->ram_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->ram_regs)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rm");
if (!res)
return -ENODEV;
vc4_hdmi->rm_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!vc4_hdmi->rm_regs)
return -ENOMEM;
vc4_hdmi->hsm_clock = devm_clk_get(dev, "hdmi");
if (IS_ERR(vc4_hdmi->hsm_clock)) {
drm_err(drm, "Failed to get HDMI state machine clock\n");
return PTR_ERR(vc4_hdmi->hsm_clock);
}
vc4_hdmi->pixel_bvb_clock = devm_clk_get(dev, "bvb");
if (IS_ERR(vc4_hdmi->pixel_bvb_clock)) {
drm_err(drm, "Failed to get pixel bvb clock\n");
return PTR_ERR(vc4_hdmi->pixel_bvb_clock);
}
vc4_hdmi->audio_clock = devm_clk_get(dev, "audio");
if (IS_ERR(vc4_hdmi->audio_clock)) {
drm_err(drm, "Failed to get audio clock\n");
return PTR_ERR(vc4_hdmi->audio_clock);
}
vc4_hdmi->cec_clock = devm_clk_get(dev, "cec");
if (IS_ERR(vc4_hdmi->cec_clock)) {
drm_err(drm, "Failed to get CEC clock\n");
return PTR_ERR(vc4_hdmi->cec_clock);
}
vc4_hdmi->reset = devm_reset_control_get(dev, NULL);
if (IS_ERR(vc4_hdmi->reset)) {
drm_err(drm, "Failed to get HDMI reset line\n");
return PTR_ERR(vc4_hdmi->reset);
}
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hdmi_regset, VC4_HDMI);
if (ret)
return ret;
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->hd_regset, VC4_HD);
if (ret)
return ret;
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->cec_regset, VC5_CEC);
if (ret)
return ret;
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->csc_regset, VC5_CSC);
if (ret)
return ret;
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->dvp_regset, VC5_DVP);
if (ret)
return ret;
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->phy_regset, VC5_PHY);
if (ret)
return ret;
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->ram_regset, VC5_RAM);
if (ret)
return ret;
ret = vc4_hdmi_build_regset(drm, vc4_hdmi, &vc4_hdmi->rm_regset, VC5_RM);
if (ret)
return ret;
return 0;
}
static int vc4_hdmi_runtime_suspend(struct device *dev)
{
struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
clk_disable_unprepare(vc4_hdmi->hsm_clock);
return 0;
}
static int vc4_hdmi_runtime_resume(struct device *dev)
{
struct vc4_hdmi *vc4_hdmi = dev_get_drvdata(dev);
unsigned long __maybe_unused flags;
u32 __maybe_unused value;
unsigned long rate;
int ret;
ret = clk_prepare_enable(vc4_hdmi->hsm_clock);
if (ret)
return ret;
/*
* Whenever the RaspberryPi boots without an HDMI monitor
* plugged in, the firmware won't have initialized the HSM clock
* rate and it will be reported as 0.
*
* If we try to access a register of the controller in such a
* case, it will lead to a silent CPU stall. Let's make sure we
* prevent such a case.
*/
rate = clk_get_rate(vc4_hdmi->hsm_clock);
if (!rate) {
ret = -EINVAL;
goto err_disable_clk;
}
if (vc4_hdmi->variant->reset)
vc4_hdmi->variant->reset(vc4_hdmi);
#ifdef CONFIG_DRM_VC4_HDMI_CEC
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
value = HDMI_READ(HDMI_CEC_CNTRL_1);
/* Set the logical address to Unregistered */
value |= VC4_HDMI_CEC_ADDR_MASK;
HDMI_WRITE(HDMI_CEC_CNTRL_1, value);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
vc4_hdmi_cec_update_clk_div(vc4_hdmi);
if (!vc4_hdmi->variant->external_irq_controller) {
spin_lock_irqsave(&vc4_hdmi->hw_lock, flags);
HDMI_WRITE(HDMI_CEC_CPU_MASK_SET, 0xffffffff);
spin_unlock_irqrestore(&vc4_hdmi->hw_lock, flags);
}
#endif
return 0;
err_disable_clk:
clk_disable_unprepare(vc4_hdmi->hsm_clock);
return ret;
}
static void vc4_hdmi_put_ddc_device(void *ptr)
{
struct vc4_hdmi *vc4_hdmi = ptr;
put_device(&vc4_hdmi->ddc->dev);
}
static int vc4_hdmi_bind(struct device *dev, struct device *master, void *data)
{
const struct vc4_hdmi_variant *variant = of_device_get_match_data(dev);
struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_hdmi *vc4_hdmi;
struct drm_encoder *encoder;
struct device_node *ddc_node;
int ret;
vc4_hdmi = drmm_kzalloc(drm, sizeof(*vc4_hdmi), GFP_KERNEL);
if (!vc4_hdmi)
return -ENOMEM;
ret = drmm_mutex_init(drm, &vc4_hdmi->mutex);
if (ret)
return ret;
spin_lock_init(&vc4_hdmi->hw_lock);
INIT_DELAYED_WORK(&vc4_hdmi->scrambling_work, vc4_hdmi_scrambling_wq);
dev_set_drvdata(dev, vc4_hdmi);
encoder = &vc4_hdmi->encoder.base;
vc4_hdmi->encoder.type = variant->encoder_type;
vc4_hdmi->encoder.pre_crtc_configure = vc4_hdmi_encoder_pre_crtc_configure;
vc4_hdmi->encoder.pre_crtc_enable = vc4_hdmi_encoder_pre_crtc_enable;
vc4_hdmi->encoder.post_crtc_enable = vc4_hdmi_encoder_post_crtc_enable;
vc4_hdmi->encoder.post_crtc_disable = vc4_hdmi_encoder_post_crtc_disable;
vc4_hdmi->encoder.post_crtc_powerdown = vc4_hdmi_encoder_post_crtc_powerdown;
vc4_hdmi->pdev = pdev;
vc4_hdmi->variant = variant;
/*
* Since we don't know the state of the controller and its
* display (if any), let's assume it's always enabled.
* vc4_hdmi_disable_scrambling() will thus run at boot, make
* sure it's disabled, and avoid any inconsistency.
*/
if (variant->max_pixel_clock > HDMI_14_MAX_TMDS_CLK)
vc4_hdmi->scdc_enabled = true;
ret = variant->init_resources(drm, vc4_hdmi);
if (ret)
return ret;
ddc_node = of_parse_phandle(dev->of_node, "ddc", 0);
if (!ddc_node) {
drm_err(drm, "Failed to find ddc node in device tree\n");
return -ENODEV;
}
vc4_hdmi->ddc = of_find_i2c_adapter_by_node(ddc_node);
of_node_put(ddc_node);
if (!vc4_hdmi->ddc) {
drm_err(drm, "Failed to get ddc i2c adapter by node\n");
return -EPROBE_DEFER;
}
ret = devm_add_action_or_reset(dev, vc4_hdmi_put_ddc_device, vc4_hdmi);
if (ret)
return ret;
/* Only use the GPIO HPD pin if present in the DT, otherwise
* we'll use the HDMI core's register.
*/
vc4_hdmi->hpd_gpio = devm_gpiod_get_optional(dev, "hpd", GPIOD_IN);
if (IS_ERR(vc4_hdmi->hpd_gpio)) {
return PTR_ERR(vc4_hdmi->hpd_gpio);
}
vc4_hdmi->disable_wifi_frequencies =
of_property_read_bool(dev->of_node, "wifi-2.4ghz-coexistence");
ret = devm_pm_runtime_enable(dev);
if (ret)
return ret;
/*
* We need to have the device powered up at this point to call
* our reset hook and for the CEC init.
*/
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
if ((of_device_is_compatible(dev->of_node, "brcm,bcm2711-hdmi0") ||
of_device_is_compatible(dev->of_node, "brcm,bcm2711-hdmi1")) &&
HDMI_READ(HDMI_VID_CTL) & VC4_HD_VID_CTL_ENABLE) {
clk_prepare_enable(vc4_hdmi->pixel_clock);
clk_prepare_enable(vc4_hdmi->hsm_clock);
clk_prepare_enable(vc4_hdmi->pixel_bvb_clock);
}
ret = drmm_encoder_init(drm, encoder,
&vc4_hdmi_encoder_funcs,
DRM_MODE_ENCODER_TMDS,
NULL);
if (ret)
goto err_put_runtime_pm;
drm_encoder_helper_add(encoder, &vc4_hdmi_encoder_helper_funcs);
ret = vc4_hdmi_connector_init(drm, vc4_hdmi);
if (ret)
goto err_put_runtime_pm;
ret = vc4_hdmi_hotplug_init(vc4_hdmi);
if (ret)
goto err_put_runtime_pm;
ret = vc4_hdmi_cec_init(vc4_hdmi);
if (ret)
goto err_put_runtime_pm;
ret = vc4_hdmi_audio_init(vc4_hdmi);
if (ret)
goto err_put_runtime_pm;
pm_runtime_put_sync(dev);
return 0;
err_put_runtime_pm:
pm_runtime_put_sync(dev);
return ret;
}
static const struct component_ops vc4_hdmi_ops = {
.bind = vc4_hdmi_bind,
};
static int vc4_hdmi_dev_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &vc4_hdmi_ops);
}
static void vc4_hdmi_dev_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &vc4_hdmi_ops);
}
static const struct vc4_hdmi_variant bcm2835_variant = {
.encoder_type = VC4_ENCODER_TYPE_HDMI0,
.debugfs_name = "hdmi_regs",
.card_name = "vc4-hdmi",
.max_pixel_clock = 162000000,
.registers = vc4_hdmi_fields,
.num_registers = ARRAY_SIZE(vc4_hdmi_fields),
.init_resources = vc4_hdmi_init_resources,
.csc_setup = vc4_hdmi_csc_setup,
.reset = vc4_hdmi_reset,
.set_timings = vc4_hdmi_set_timings,
.phy_init = vc4_hdmi_phy_init,
.phy_disable = vc4_hdmi_phy_disable,
.phy_rng_enable = vc4_hdmi_phy_rng_enable,
.phy_rng_disable = vc4_hdmi_phy_rng_disable,
.channel_map = vc4_hdmi_channel_map,
.supports_hdr = false,
};
static const struct vc4_hdmi_variant bcm2711_hdmi0_variant = {
.encoder_type = VC4_ENCODER_TYPE_HDMI0,
.debugfs_name = "hdmi0_regs",
.card_name = "vc4-hdmi-0",
.max_pixel_clock = 600000000,
.registers = vc5_hdmi_hdmi0_fields,
.num_registers = ARRAY_SIZE(vc5_hdmi_hdmi0_fields),
.phy_lane_mapping = {
PHY_LANE_0,
PHY_LANE_1,
PHY_LANE_2,
PHY_LANE_CK,
},
.unsupported_odd_h_timings = true,
.external_irq_controller = true,
.init_resources = vc5_hdmi_init_resources,
.csc_setup = vc5_hdmi_csc_setup,
.reset = vc5_hdmi_reset,
.set_timings = vc5_hdmi_set_timings,
.phy_init = vc5_hdmi_phy_init,
.phy_disable = vc5_hdmi_phy_disable,
.phy_rng_enable = vc5_hdmi_phy_rng_enable,
.phy_rng_disable = vc5_hdmi_phy_rng_disable,
.channel_map = vc5_hdmi_channel_map,
.supports_hdr = true,
.hp_detect = vc5_hdmi_hp_detect,
};
static const struct vc4_hdmi_variant bcm2711_hdmi1_variant = {
.encoder_type = VC4_ENCODER_TYPE_HDMI1,
.debugfs_name = "hdmi1_regs",
.card_name = "vc4-hdmi-1",
.max_pixel_clock = HDMI_14_MAX_TMDS_CLK,
.registers = vc5_hdmi_hdmi1_fields,
.num_registers = ARRAY_SIZE(vc5_hdmi_hdmi1_fields),
.phy_lane_mapping = {
PHY_LANE_1,
PHY_LANE_0,
PHY_LANE_CK,
PHY_LANE_2,
},
.unsupported_odd_h_timings = true,
.external_irq_controller = true,
.init_resources = vc5_hdmi_init_resources,
.csc_setup = vc5_hdmi_csc_setup,
.reset = vc5_hdmi_reset,
.set_timings = vc5_hdmi_set_timings,
.phy_init = vc5_hdmi_phy_init,
.phy_disable = vc5_hdmi_phy_disable,
.phy_rng_enable = vc5_hdmi_phy_rng_enable,
.phy_rng_disable = vc5_hdmi_phy_rng_disable,
.channel_map = vc5_hdmi_channel_map,
.supports_hdr = true,
.hp_detect = vc5_hdmi_hp_detect,
};
static const struct of_device_id vc4_hdmi_dt_match[] = {
{ .compatible = "brcm,bcm2835-hdmi", .data = &bcm2835_variant },
{ .compatible = "brcm,bcm2711-hdmi0", .data = &bcm2711_hdmi0_variant },
{ .compatible = "brcm,bcm2711-hdmi1", .data = &bcm2711_hdmi1_variant },
{}
};
static const struct dev_pm_ops vc4_hdmi_pm_ops = {
SET_RUNTIME_PM_OPS(vc4_hdmi_runtime_suspend,
vc4_hdmi_runtime_resume,
NULL)
};
struct platform_driver vc4_hdmi_driver = {
.probe = vc4_hdmi_dev_probe,
.remove_new = vc4_hdmi_dev_remove,
.driver = {
.name = "vc4_hdmi",
.of_match_table = vc4_hdmi_dt_match,
.pm = &vc4_hdmi_pm_ops,
},
};