// SPDX-License-Identifier: GPL-2.0 OR MIT
/**************************************************************************
*
* Copyright (c) 2011-2024 Broadcom. All Rights Reserved. The term
* “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include "vmwgfx_bo.h"
#include "vmwgfx_drv.h"
#include "vmwgfx_resource_priv.h"
#include <drm/ttm/ttm_placement.h>
static void vmw_bo_release(struct vmw_bo *vbo)
{
struct vmw_resource *res;
WARN_ON(vbo->tbo.base.funcs &&
kref_read(&vbo->tbo.base.refcount) != 0);
vmw_bo_unmap(vbo);
xa_destroy(&vbo->detached_resources);
WARN_ON(vbo->is_dumb && !vbo->dumb_surface);
if (vbo->is_dumb && vbo->dumb_surface) {
res = &vbo->dumb_surface->res;
WARN_ON(vbo != res->guest_memory_bo);
WARN_ON(!res->guest_memory_bo);
if (res->guest_memory_bo) {
/* Reserve and switch the backing mob. */
mutex_lock(&res->dev_priv->cmdbuf_mutex);
(void)vmw_resource_reserve(res, false, true);
vmw_resource_mob_detach(res);
if (res->coherent)
vmw_bo_dirty_release(res->guest_memory_bo);
res->guest_memory_bo = NULL;
res->guest_memory_offset = 0;
vmw_resource_unreserve(res, false, false, false, NULL,
0);
mutex_unlock(&res->dev_priv->cmdbuf_mutex);
}
vmw_surface_unreference(&vbo->dumb_surface);
}
drm_gem_object_release(&vbo->tbo.base);
}
/**
* vmw_bo_free - vmw_bo destructor
*
* @bo: Pointer to the embedded struct ttm_buffer_object
*/
static void vmw_bo_free(struct ttm_buffer_object *bo)
{
struct vmw_bo *vbo = to_vmw_bo(&bo->base);
WARN_ON(vbo->dirty);
WARN_ON(!RB_EMPTY_ROOT(&vbo->res_tree));
vmw_bo_release(vbo);
kfree(vbo);
}
/**
* vmw_bo_pin_in_placement - Validate a buffer to placement.
*
* @dev_priv: Driver private.
* @buf: DMA buffer to move.
* @placement: The placement to pin it.
* @interruptible: Use interruptible wait.
* Return: Zero on success, Negative error code on failure. In particular
* -ERESTARTSYS if interrupted by a signal
*/
static int vmw_bo_pin_in_placement(struct vmw_private *dev_priv,
struct vmw_bo *buf,
struct ttm_placement *placement,
bool interruptible)
{
struct ttm_operation_ctx ctx = {interruptible, false };
struct ttm_buffer_object *bo = &buf->tbo;
int ret;
vmw_execbuf_release_pinned_bo(dev_priv);
ret = ttm_bo_reserve(bo, interruptible, false, NULL);
if (unlikely(ret != 0))
goto err;
ret = ttm_bo_validate(bo, placement, &ctx);
if (!ret)
vmw_bo_pin_reserved(buf, true);
ttm_bo_unreserve(bo);
err:
return ret;
}
/**
* vmw_bo_pin_in_vram_or_gmr - Move a buffer to vram or gmr.
*
* This function takes the reservation_sem in write mode.
* Flushes and unpins the query bo to avoid failures.
*
* @dev_priv: Driver private.
* @buf: DMA buffer to move.
* @interruptible: Use interruptible wait.
* Return: Zero on success, Negative error code on failure. In particular
* -ERESTARTSYS if interrupted by a signal
*/
int vmw_bo_pin_in_vram_or_gmr(struct vmw_private *dev_priv,
struct vmw_bo *buf,
bool interruptible)
{
struct ttm_operation_ctx ctx = {interruptible, false };
struct ttm_buffer_object *bo = &buf->tbo;
int ret;
vmw_execbuf_release_pinned_bo(dev_priv);
ret = ttm_bo_reserve(bo, interruptible, false, NULL);
if (unlikely(ret != 0))
goto err;
vmw_bo_placement_set(buf,
VMW_BO_DOMAIN_GMR | VMW_BO_DOMAIN_VRAM,
VMW_BO_DOMAIN_GMR);
ret = ttm_bo_validate(bo, &buf->placement, &ctx);
if (likely(ret == 0) || ret == -ERESTARTSYS)
goto out_unreserve;
vmw_bo_placement_set(buf,
VMW_BO_DOMAIN_VRAM,
VMW_BO_DOMAIN_VRAM);
ret = ttm_bo_validate(bo, &buf->placement, &ctx);
out_unreserve:
if (!ret)
vmw_bo_pin_reserved(buf, true);
ttm_bo_unreserve(bo);
err:
return ret;
}
/**
* vmw_bo_pin_in_vram - Move a buffer to vram.
*
* This function takes the reservation_sem in write mode.
* Flushes and unpins the query bo to avoid failures.
*
* @dev_priv: Driver private.
* @buf: DMA buffer to move.
* @interruptible: Use interruptible wait.
* Return: Zero on success, Negative error code on failure. In particular
* -ERESTARTSYS if interrupted by a signal
*/
int vmw_bo_pin_in_vram(struct vmw_private *dev_priv,
struct vmw_bo *buf,
bool interruptible)
{
return vmw_bo_pin_in_placement(dev_priv, buf, &vmw_vram_placement,
interruptible);
}
/**
* vmw_bo_pin_in_start_of_vram - Move a buffer to start of vram.
*
* This function takes the reservation_sem in write mode.
* Flushes and unpins the query bo to avoid failures.
*
* @dev_priv: Driver private.
* @buf: DMA buffer to pin.
* @interruptible: Use interruptible wait.
* Return: Zero on success, Negative error code on failure. In particular
* -ERESTARTSYS if interrupted by a signal
*/
int vmw_bo_pin_in_start_of_vram(struct vmw_private *dev_priv,
struct vmw_bo *buf,
bool interruptible)
{
struct ttm_operation_ctx ctx = {interruptible, false };
struct ttm_buffer_object *bo = &buf->tbo;
int ret = 0;
vmw_execbuf_release_pinned_bo(dev_priv);
ret = ttm_bo_reserve(bo, interruptible, false, NULL);
if (unlikely(ret != 0))
goto err_unlock;
/*
* Is this buffer already in vram but not at the start of it?
* In that case, evict it first because TTM isn't good at handling
* that situation.
*/
if (bo->resource->mem_type == TTM_PL_VRAM &&
bo->resource->start < PFN_UP(bo->resource->size) &&
bo->resource->start > 0 &&
buf->tbo.pin_count == 0) {
ctx.interruptible = false;
vmw_bo_placement_set(buf,
VMW_BO_DOMAIN_SYS,
VMW_BO_DOMAIN_SYS);
(void)ttm_bo_validate(bo, &buf->placement, &ctx);
}
vmw_bo_placement_set(buf,
VMW_BO_DOMAIN_VRAM,
VMW_BO_DOMAIN_VRAM);
buf->places[0].lpfn = PFN_UP(bo->resource->size);
buf->busy_places[0].lpfn = PFN_UP(bo->resource->size);
ret = ttm_bo_validate(bo, &buf->placement, &ctx);
/* For some reason we didn't end up at the start of vram */
WARN_ON(ret == 0 && bo->resource->start != 0);
if (!ret)
vmw_bo_pin_reserved(buf, true);
ttm_bo_unreserve(bo);
err_unlock:
return ret;
}
/**
* vmw_bo_unpin - Unpin the buffer given buffer, does not move the buffer.
*
* This function takes the reservation_sem in write mode.
*
* @dev_priv: Driver private.
* @buf: DMA buffer to unpin.
* @interruptible: Use interruptible wait.
* Return: Zero on success, Negative error code on failure. In particular
* -ERESTARTSYS if interrupted by a signal
*/
int vmw_bo_unpin(struct vmw_private *dev_priv,
struct vmw_bo *buf,
bool interruptible)
{
struct ttm_buffer_object *bo = &buf->tbo;
int ret;
ret = ttm_bo_reserve(bo, interruptible, false, NULL);
if (unlikely(ret != 0))
goto err;
vmw_bo_pin_reserved(buf, false);
ttm_bo_unreserve(bo);
err:
return ret;
}
/**
* vmw_bo_get_guest_ptr - Get the guest ptr representing the current placement
* of a buffer.
*
* @bo: Pointer to a struct ttm_buffer_object. Must be pinned or reserved.
* @ptr: SVGAGuestPtr returning the result.
*/
void vmw_bo_get_guest_ptr(const struct ttm_buffer_object *bo,
SVGAGuestPtr *ptr)
{
if (bo->resource->mem_type == TTM_PL_VRAM) {
ptr->gmrId = SVGA_GMR_FRAMEBUFFER;
ptr->offset = bo->resource->start << PAGE_SHIFT;
} else {
ptr->gmrId = bo->resource->start;
ptr->offset = 0;
}
}
/**
* vmw_bo_pin_reserved - Pin or unpin a buffer object without moving it.
*
* @vbo: The buffer object. Must be reserved.
* @pin: Whether to pin or unpin.
*
*/
void vmw_bo_pin_reserved(struct vmw_bo *vbo, bool pin)
{
struct ttm_operation_ctx ctx = { false, true };
struct ttm_place pl;
struct ttm_placement placement;
struct ttm_buffer_object *bo = &vbo->tbo;
uint32_t old_mem_type = bo->resource->mem_type;
int ret;
dma_resv_assert_held(bo->base.resv);
if (pin == !!bo->pin_count)
return;
pl.fpfn = 0;
pl.lpfn = 0;
pl.mem_type = bo->resource->mem_type;
pl.flags = bo->resource->placement;
memset(&placement, 0, sizeof(placement));
placement.num_placement = 1;
placement.placement = &pl;
ret = ttm_bo_validate(bo, &placement, &ctx);
BUG_ON(ret != 0 || bo->resource->mem_type != old_mem_type);
if (pin)
ttm_bo_pin(bo);
else
ttm_bo_unpin(bo);
}
/**
* vmw_bo_map_and_cache - Map a buffer object and cache the map
*
* @vbo: The buffer object to map
* Return: A kernel virtual address or NULL if mapping failed.
*
* This function maps a buffer object into the kernel address space, or
* returns the virtual kernel address of an already existing map. The virtual
* address remains valid as long as the buffer object is pinned or reserved.
* The cached map is torn down on either
* 1) Buffer object move
* 2) Buffer object swapout
* 3) Buffer object destruction
*
*/
void *vmw_bo_map_and_cache(struct vmw_bo *vbo)
{
return vmw_bo_map_and_cache_size(vbo, vbo->tbo.base.size);
}
void *vmw_bo_map_and_cache_size(struct vmw_bo *vbo, size_t size)
{
struct ttm_buffer_object *bo = &vbo->tbo;
bool not_used;
void *virtual;
int ret;
atomic_inc(&vbo->map_count);
virtual = ttm_kmap_obj_virtual(&vbo->map, ¬_used);
if (virtual)
return virtual;
ret = ttm_bo_kmap(bo, 0, PFN_UP(size), &vbo->map);
if (ret)
DRM_ERROR("Buffer object map failed: %d (size: bo = %zu, map = %zu).\n",
ret, bo->base.size, size);
return ttm_kmap_obj_virtual(&vbo->map, ¬_used);
}
/**
* vmw_bo_unmap - Tear down a cached buffer object map.
*
* @vbo: The buffer object whose map we are tearing down.
*
* This function tears down a cached map set up using
* vmw_bo_map_and_cache().
*/
void vmw_bo_unmap(struct vmw_bo *vbo)
{
int map_count;
if (vbo->map.bo == NULL)
return;
map_count = atomic_dec_return(&vbo->map_count);
if (!map_count) {
ttm_bo_kunmap(&vbo->map);
vbo->map.bo = NULL;
}
}
/**
* vmw_bo_init - Initialize a vmw buffer object
*
* @dev_priv: Pointer to the device private struct
* @vmw_bo: Buffer object to initialize
* @params: Parameters used to initialize the buffer object
* @destroy: The function used to delete the buffer object
* Returns: Zero on success, negative error code on error.
*
*/
static int vmw_bo_init(struct vmw_private *dev_priv,
struct vmw_bo *vmw_bo,
struct vmw_bo_params *params,
void (*destroy)(struct ttm_buffer_object *))
{
struct ttm_operation_ctx ctx = {
.interruptible = params->bo_type != ttm_bo_type_kernel,
.no_wait_gpu = false,
.resv = params->resv,
};
struct ttm_device *bdev = &dev_priv->bdev;
struct drm_device *vdev = &dev_priv->drm;
int ret;
memset(vmw_bo, 0, sizeof(*vmw_bo));
BUILD_BUG_ON(TTM_MAX_BO_PRIORITY <= 3);
vmw_bo->tbo.priority = 3;
vmw_bo->res_tree = RB_ROOT;
xa_init(&vmw_bo->detached_resources);
atomic_set(&vmw_bo->map_count, 0);
params->size = ALIGN(params->size, PAGE_SIZE);
drm_gem_private_object_init(vdev, &vmw_bo->tbo.base, params->size);
vmw_bo_placement_set(vmw_bo, params->domain, params->busy_domain);
ret = ttm_bo_init_reserved(bdev, &vmw_bo->tbo, params->bo_type,
&vmw_bo->placement, 0, &ctx,
params->sg, params->resv, destroy);
if (unlikely(ret))
return ret;
if (params->pin)
ttm_bo_pin(&vmw_bo->tbo);
ttm_bo_unreserve(&vmw_bo->tbo);
return 0;
}
int vmw_bo_create(struct vmw_private *vmw,
struct vmw_bo_params *params,
struct vmw_bo **p_bo)
{
int ret;
*p_bo = kmalloc(sizeof(**p_bo), GFP_KERNEL);
if (unlikely(!*p_bo)) {
DRM_ERROR("Failed to allocate a buffer.\n");
return -ENOMEM;
}
/*
* vmw_bo_init will delete the *p_bo object if it fails
*/
ret = vmw_bo_init(vmw, *p_bo, params, vmw_bo_free);
if (unlikely(ret != 0))
goto out_error;
return ret;
out_error:
*p_bo = NULL;
return ret;
}
/**
* vmw_user_bo_synccpu_grab - Grab a struct vmw_bo for cpu
* access, idling previous GPU operations on the buffer and optionally
* blocking it for further command submissions.
*
* @vmw_bo: Pointer to the buffer object being grabbed for CPU access
* @flags: Flags indicating how the grab should be performed.
* Return: Zero on success, Negative error code on error. In particular,
* -EBUSY will be returned if a dontblock operation is requested and the
* buffer object is busy, and -ERESTARTSYS will be returned if a wait is
* interrupted by a signal.
*
* A blocking grab will be automatically released when @tfile is closed.
*/
static int vmw_user_bo_synccpu_grab(struct vmw_bo *vmw_bo,
uint32_t flags)
{
bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
struct ttm_buffer_object *bo = &vmw_bo->tbo;
int ret;
if (flags & drm_vmw_synccpu_allow_cs) {
long lret;
lret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_READ,
true, nonblock ? 0 :
MAX_SCHEDULE_TIMEOUT);
if (!lret)
return -EBUSY;
else if (lret < 0)
return lret;
return 0;
}
ret = ttm_bo_reserve(bo, true, nonblock, NULL);
if (unlikely(ret != 0))
return ret;
ret = ttm_bo_wait(bo, true, nonblock);
if (likely(ret == 0))
atomic_inc(&vmw_bo->cpu_writers);
ttm_bo_unreserve(bo);
if (unlikely(ret != 0))
return ret;
return ret;
}
/**
* vmw_user_bo_synccpu_release - Release a previous grab for CPU access,
* and unblock command submission on the buffer if blocked.
*
* @filp: Identifying the caller.
* @handle: Handle identifying the buffer object.
* @flags: Flags indicating the type of release.
*/
static int vmw_user_bo_synccpu_release(struct drm_file *filp,
uint32_t handle,
uint32_t flags)
{
struct vmw_bo *vmw_bo;
int ret = vmw_user_bo_lookup(filp, handle, &vmw_bo);
if (!ret) {
if (!(flags & drm_vmw_synccpu_allow_cs)) {
atomic_dec(&vmw_bo->cpu_writers);
}
vmw_user_bo_unref(&vmw_bo);
}
return ret;
}
/**
* vmw_user_bo_synccpu_ioctl - ioctl function implementing the synccpu
* functionality.
*
* @dev: Identifies the drm device.
* @data: Pointer to the ioctl argument.
* @file_priv: Identifies the caller.
* Return: Zero on success, negative error code on error.
*
* This function checks the ioctl arguments for validity and calls the
* relevant synccpu functions.
*/
int vmw_user_bo_synccpu_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_vmw_synccpu_arg *arg =
(struct drm_vmw_synccpu_arg *) data;
struct vmw_bo *vbo;
int ret;
if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
|| (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
drm_vmw_synccpu_dontblock |
drm_vmw_synccpu_allow_cs)) != 0) {
DRM_ERROR("Illegal synccpu flags.\n");
return -EINVAL;
}
switch (arg->op) {
case drm_vmw_synccpu_grab:
ret = vmw_user_bo_lookup(file_priv, arg->handle, &vbo);
if (unlikely(ret != 0))
return ret;
ret = vmw_user_bo_synccpu_grab(vbo, arg->flags);
vmw_user_bo_unref(&vbo);
if (unlikely(ret != 0)) {
if (ret == -ERESTARTSYS || ret == -EBUSY)
return -EBUSY;
DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
(unsigned int) arg->handle);
return ret;
}
break;
case drm_vmw_synccpu_release:
ret = vmw_user_bo_synccpu_release(file_priv,
arg->handle,
arg->flags);
if (unlikely(ret != 0)) {
DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
(unsigned int) arg->handle);
return ret;
}
break;
default:
DRM_ERROR("Invalid synccpu operation.\n");
return -EINVAL;
}
return 0;
}
/**
* vmw_bo_unref_ioctl - Generic handle close ioctl.
*
* @dev: Identifies the drm device.
* @data: Pointer to the ioctl argument.
* @file_priv: Identifies the caller.
* Return: Zero on success, negative error code on error.
*
* This function checks the ioctl arguments for validity and closes a
* handle to a TTM base object, optionally freeing the object.
*/
int vmw_bo_unref_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_vmw_unref_dmabuf_arg *arg =
(struct drm_vmw_unref_dmabuf_arg *)data;
return drm_gem_handle_delete(file_priv, arg->handle);
}
/**
* vmw_user_bo_lookup - Look up a vmw user buffer object from a handle.
*
* @filp: The file the handle is registered with.
* @handle: The user buffer object handle
* @out: Pointer to a where a pointer to the embedded
* struct vmw_bo should be placed.
* Return: Zero on success, Negative error code on error.
*
* The vmw buffer object pointer will be refcounted (both ttm and gem)
*/
int vmw_user_bo_lookup(struct drm_file *filp,
u32 handle,
struct vmw_bo **out)
{
struct drm_gem_object *gobj;
gobj = drm_gem_object_lookup(filp, handle);
if (!gobj) {
DRM_ERROR("Invalid buffer object handle 0x%08lx.\n",
(unsigned long)handle);
return -ESRCH;
}
*out = to_vmw_bo(gobj);
return 0;
}
/**
* vmw_bo_fence_single - Utility function to fence a single TTM buffer
* object without unreserving it.
*
* @bo: Pointer to the struct ttm_buffer_object to fence.
* @fence: Pointer to the fence. If NULL, this function will
* insert a fence into the command stream..
*
* Contrary to the ttm_eu version of this function, it takes only
* a single buffer object instead of a list, and it also doesn't
* unreserve the buffer object, which needs to be done separately.
*/
void vmw_bo_fence_single(struct ttm_buffer_object *bo,
struct vmw_fence_obj *fence)
{
struct ttm_device *bdev = bo->bdev;
struct vmw_private *dev_priv = vmw_priv_from_ttm(bdev);
int ret;
if (fence == NULL)
vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
else
dma_fence_get(&fence->base);
ret = dma_resv_reserve_fences(bo->base.resv, 1);
if (!ret)
dma_resv_add_fence(bo->base.resv, &fence->base,
DMA_RESV_USAGE_KERNEL);
else
/* Last resort fallback when we are OOM */
dma_fence_wait(&fence->base, false);
dma_fence_put(&fence->base);
}
/**
* vmw_bo_swap_notify - swapout notify callback.
*
* @bo: The buffer object to be swapped out.
*/
void vmw_bo_swap_notify(struct ttm_buffer_object *bo)
{
/* Kill any cached kernel maps before swapout */
vmw_bo_unmap(to_vmw_bo(&bo->base));
}
/**
* vmw_bo_move_notify - TTM move_notify_callback
*
* @bo: The TTM buffer object about to move.
* @mem: The struct ttm_resource indicating to what memory
* region the move is taking place.
*
* Detaches cached maps and device bindings that require that the
* buffer doesn't move.
*/
void vmw_bo_move_notify(struct ttm_buffer_object *bo,
struct ttm_resource *mem)
{
struct vmw_bo *vbo = to_vmw_bo(&bo->base);
/*
* Kill any cached kernel maps before move to or from VRAM.
* With other types of moves, the underlying pages stay the same,
* and the map can be kept.
*/
if (mem->mem_type == TTM_PL_VRAM || bo->resource->mem_type == TTM_PL_VRAM)
vmw_bo_unmap(vbo);
/*
* If we're moving a backup MOB out of MOB placement, then make sure we
* read back all resource content first, and unbind the MOB from
* the resource.
*/
if (mem->mem_type != VMW_PL_MOB && bo->resource->mem_type == VMW_PL_MOB)
vmw_resource_unbind_list(vbo);
}
static u32 placement_flags(u32 domain, u32 desired, u32 fallback)
{
if (desired & fallback & domain)
return 0;
if (desired & domain)
return TTM_PL_FLAG_DESIRED;
return TTM_PL_FLAG_FALLBACK;
}
static u32
set_placement_list(struct ttm_place *pl, u32 desired, u32 fallback)
{
u32 domain = desired | fallback;
u32 n = 0;
/*
* The placements are ordered according to our preferences
*/
if (domain & VMW_BO_DOMAIN_MOB) {
pl[n].mem_type = VMW_PL_MOB;
pl[n].flags = placement_flags(VMW_BO_DOMAIN_MOB, desired,
fallback);
pl[n].fpfn = 0;
pl[n].lpfn = 0;
n++;
}
if (domain & VMW_BO_DOMAIN_GMR) {
pl[n].mem_type = VMW_PL_GMR;
pl[n].flags = placement_flags(VMW_BO_DOMAIN_GMR, desired,
fallback);
pl[n].fpfn = 0;
pl[n].lpfn = 0;
n++;
}
if (domain & VMW_BO_DOMAIN_VRAM) {
pl[n].mem_type = TTM_PL_VRAM;
pl[n].flags = placement_flags(VMW_BO_DOMAIN_VRAM, desired,
fallback);
pl[n].fpfn = 0;
pl[n].lpfn = 0;
n++;
}
if (domain & VMW_BO_DOMAIN_WAITABLE_SYS) {
pl[n].mem_type = VMW_PL_SYSTEM;
pl[n].flags = placement_flags(VMW_BO_DOMAIN_WAITABLE_SYS,
desired, fallback);
pl[n].fpfn = 0;
pl[n].lpfn = 0;
n++;
}
if (domain & VMW_BO_DOMAIN_SYS) {
pl[n].mem_type = TTM_PL_SYSTEM;
pl[n].flags = placement_flags(VMW_BO_DOMAIN_SYS, desired,
fallback);
pl[n].fpfn = 0;
pl[n].lpfn = 0;
n++;
}
WARN_ON(!n);
if (!n) {
pl[n].mem_type = TTM_PL_SYSTEM;
pl[n].flags = 0;
pl[n].fpfn = 0;
pl[n].lpfn = 0;
n++;
}
return n;
}
void vmw_bo_placement_set(struct vmw_bo *bo, u32 domain, u32 busy_domain)
{
struct ttm_device *bdev = bo->tbo.bdev;
struct vmw_private *vmw = vmw_priv_from_ttm(bdev);
struct ttm_placement *pl = &bo->placement;
bool mem_compatible = false;
u32 i;
pl->placement = bo->places;
pl->num_placement = set_placement_list(bo->places, domain, busy_domain);
if (drm_debug_enabled(DRM_UT_DRIVER) && bo->tbo.resource) {
for (i = 0; i < pl->num_placement; ++i) {
if (bo->tbo.resource->mem_type == TTM_PL_SYSTEM ||
bo->tbo.resource->mem_type == pl->placement[i].mem_type)
mem_compatible = true;
}
if (!mem_compatible)
drm_warn(&vmw->drm,
"%s: Incompatible transition from "
"bo->base.resource->mem_type = %u to domain = %u\n",
__func__, bo->tbo.resource->mem_type, domain);
}
}
void vmw_bo_placement_set_default_accelerated(struct vmw_bo *bo)
{
struct ttm_device *bdev = bo->tbo.bdev;
struct vmw_private *vmw = vmw_priv_from_ttm(bdev);
u32 domain = VMW_BO_DOMAIN_GMR | VMW_BO_DOMAIN_VRAM;
if (vmw->has_mob)
domain = VMW_BO_DOMAIN_MOB;
vmw_bo_placement_set(bo, domain, domain);
}
void vmw_bo_add_detached_resource(struct vmw_bo *vbo, struct vmw_resource *res)
{
xa_store(&vbo->detached_resources, (unsigned long)res, res, GFP_KERNEL);
}
void vmw_bo_del_detached_resource(struct vmw_bo *vbo, struct vmw_resource *res)
{
xa_erase(&vbo->detached_resources, (unsigned long)res);
}
struct vmw_surface *vmw_bo_surface(struct vmw_bo *vbo)
{
unsigned long index;
struct vmw_resource *res = NULL;
struct vmw_surface *surf = NULL;
struct rb_node *rb_itr = vbo->res_tree.rb_node;
if (vbo->is_dumb && vbo->dumb_surface) {
res = &vbo->dumb_surface->res;
goto out;
}
xa_for_each(&vbo->detached_resources, index, res) {
if (res->func->res_type == vmw_res_surface)
goto out;
}
for (rb_itr = rb_first(&vbo->res_tree); rb_itr;
rb_itr = rb_next(rb_itr)) {
res = rb_entry(rb_itr, struct vmw_resource, mob_node);
if (res->func->res_type == vmw_res_surface)
goto out;
}
out:
if (res)
surf = vmw_res_to_srf(res);
return surf;
}