/*
* Copyright 2018 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "priv.h"
#include <core/memory.h>
#include <subdev/mmu.h>
#include <engine/fifo.h>
#include <nvif/class.h>
void
gv100_fault_buffer_process(struct work_struct *work)
{
struct nvkm_fault *fault = container_of(work, typeof(*fault), nrpfb_work);
struct nvkm_fault_buffer *buffer = fault->buffer[0];
struct nvkm_device *device = fault->subdev.device;
struct nvkm_memory *mem = buffer->mem;
u32 get = nvkm_rd32(device, buffer->get);
u32 put = nvkm_rd32(device, buffer->put);
if (put == get)
return;
nvkm_kmap(mem);
while (get != put) {
const u32 base = get * buffer->fault->func->buffer.entry_size;
const u32 instlo = nvkm_ro32(mem, base + 0x00);
const u32 insthi = nvkm_ro32(mem, base + 0x04);
const u32 addrlo = nvkm_ro32(mem, base + 0x08);
const u32 addrhi = nvkm_ro32(mem, base + 0x0c);
const u32 timelo = nvkm_ro32(mem, base + 0x10);
const u32 timehi = nvkm_ro32(mem, base + 0x14);
const u32 info0 = nvkm_ro32(mem, base + 0x18);
const u32 info1 = nvkm_ro32(mem, base + 0x1c);
struct nvkm_fault_data info;
if (++get == buffer->entries)
get = 0;
nvkm_wr32(device, buffer->get, get);
info.addr = ((u64)addrhi << 32) | addrlo;
info.inst = ((u64)insthi << 32) | instlo;
info.time = ((u64)timehi << 32) | timelo;
info.engine = (info0 & 0x000000ff);
info.valid = (info1 & 0x80000000) >> 31;
info.gpc = (info1 & 0x1f000000) >> 24;
info.hub = (info1 & 0x00100000) >> 20;
info.access = (info1 & 0x000f0000) >> 16;
info.client = (info1 & 0x00007f00) >> 8;
info.reason = (info1 & 0x0000001f);
nvkm_fifo_fault(device->fifo, &info);
}
nvkm_done(mem);
}
static void
gv100_fault_buffer_intr(struct nvkm_fault_buffer *buffer, bool enable)
{
struct nvkm_device *device = buffer->fault->subdev.device;
const u32 intr = buffer->id ? 0x08000000 : 0x20000000;
if (enable)
nvkm_mask(device, 0x100a2c, intr, intr);
else
nvkm_mask(device, 0x100a34, intr, intr);
}
static void
gv100_fault_buffer_fini(struct nvkm_fault_buffer *buffer)
{
struct nvkm_device *device = buffer->fault->subdev.device;
const u32 foff = buffer->id * 0x14;
nvkm_mask(device, 0x100e34 + foff, 0x80000000, 0x00000000);
}
static void
gv100_fault_buffer_init(struct nvkm_fault_buffer *buffer)
{
struct nvkm_device *device = buffer->fault->subdev.device;
const u32 foff = buffer->id * 0x14;
nvkm_mask(device, 0x100e34 + foff, 0xc0000000, 0x40000000);
nvkm_wr32(device, 0x100e28 + foff, upper_32_bits(buffer->addr));
nvkm_wr32(device, 0x100e24 + foff, lower_32_bits(buffer->addr));
nvkm_mask(device, 0x100e34 + foff, 0x80000000, 0x80000000);
}
static void
gv100_fault_buffer_info(struct nvkm_fault_buffer *buffer)
{
struct nvkm_device *device = buffer->fault->subdev.device;
const u32 foff = buffer->id * 0x14;
nvkm_mask(device, 0x100e34 + foff, 0x40000000, 0x40000000);
buffer->entries = nvkm_rd32(device, 0x100e34 + foff) & 0x000fffff;
buffer->get = 0x100e2c + foff;
buffer->put = 0x100e30 + foff;
}
static int
gv100_fault_ntfy_nrpfb(struct nvkm_event_ntfy *ntfy, u32 bits)
{
struct nvkm_fault *fault = container_of(ntfy, typeof(*fault), nrpfb);
schedule_work(&fault->nrpfb_work);
return NVKM_EVENT_KEEP;
}
static void
gv100_fault_intr_fault(struct nvkm_fault *fault)
{
struct nvkm_subdev *subdev = &fault->subdev;
struct nvkm_device *device = subdev->device;
struct nvkm_fault_data info;
const u32 addrlo = nvkm_rd32(device, 0x100e4c);
const u32 addrhi = nvkm_rd32(device, 0x100e50);
const u32 info0 = nvkm_rd32(device, 0x100e54);
const u32 insthi = nvkm_rd32(device, 0x100e58);
const u32 info1 = nvkm_rd32(device, 0x100e5c);
info.addr = ((u64)addrhi << 32) | addrlo;
info.inst = ((u64)insthi << 32) | (info0 & 0xfffff000);
info.time = 0;
info.engine = (info0 & 0x000000ff);
info.valid = (info1 & 0x80000000) >> 31;
info.gpc = (info1 & 0x1f000000) >> 24;
info.hub = (info1 & 0x00100000) >> 20;
info.access = (info1 & 0x000f0000) >> 16;
info.client = (info1 & 0x00007f00) >> 8;
info.reason = (info1 & 0x0000001f);
nvkm_fifo_fault(device->fifo, &info);
}
static void
gv100_fault_intr(struct nvkm_fault *fault)
{
struct nvkm_subdev *subdev = &fault->subdev;
struct nvkm_device *device = subdev->device;
u32 stat = nvkm_rd32(device, 0x100a20);
if (stat & 0x80000000) {
gv100_fault_intr_fault(fault);
nvkm_wr32(device, 0x100e60, 0x80000000);
stat &= ~0x80000000;
}
if (stat & 0x20000000) {
if (fault->buffer[0]) {
nvkm_event_ntfy(&fault->event, 0, NVKM_FAULT_BUFFER_EVENT_PENDING);
stat &= ~0x20000000;
}
}
if (stat & 0x08000000) {
if (fault->buffer[1]) {
nvkm_event_ntfy(&fault->event, 1, NVKM_FAULT_BUFFER_EVENT_PENDING);
stat &= ~0x08000000;
}
}
if (stat) {
nvkm_debug(subdev, "intr %08x\n", stat);
}
}
static void
gv100_fault_fini(struct nvkm_fault *fault)
{
nvkm_event_ntfy_block(&fault->nrpfb);
flush_work(&fault->nrpfb_work);
if (fault->buffer[0])
fault->func->buffer.fini(fault->buffer[0]);
nvkm_mask(fault->subdev.device, 0x100a34, 0x80000000, 0x80000000);
}
static void
gv100_fault_init(struct nvkm_fault *fault)
{
nvkm_mask(fault->subdev.device, 0x100a2c, 0x80000000, 0x80000000);
fault->func->buffer.init(fault->buffer[0]);
nvkm_event_ntfy_allow(&fault->nrpfb);
}
int
gv100_fault_oneinit(struct nvkm_fault *fault)
{
nvkm_event_ntfy_add(&fault->event, 0, NVKM_FAULT_BUFFER_EVENT_PENDING, true,
gv100_fault_ntfy_nrpfb, &fault->nrpfb);
return 0;
}
static const struct nvkm_fault_func
gv100_fault = {
.oneinit = gv100_fault_oneinit,
.init = gv100_fault_init,
.fini = gv100_fault_fini,
.intr = gv100_fault_intr,
.buffer.nr = 2,
.buffer.entry_size = 32,
.buffer.info = gv100_fault_buffer_info,
.buffer.pin = gp100_fault_buffer_pin,
.buffer.init = gv100_fault_buffer_init,
.buffer.fini = gv100_fault_buffer_fini,
.buffer.intr = gv100_fault_buffer_intr,
/*TODO: Figure out how to expose non-replayable fault buffer, which,
* for some reason, is where recoverable CE faults appear...
*
* It's a bit tricky, as both NVKM and SVM will need access to
* the non-replayable fault buffer.
*/
.user = { { 0, 0, VOLTA_FAULT_BUFFER_A }, 1 },
};
int
gv100_fault_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
struct nvkm_fault **pfault)
{
int ret = nvkm_fault_new_(&gv100_fault, device, type, inst, pfault);
if (ret)
return ret;
INIT_WORK(&(*pfault)->nrpfb_work, gv100_fault_buffer_process);
return 0;
}