/*
* Copyright 2013 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#define nv50_ram(p) container_of((p), struct nv50_ram, base)
#include "ram.h"
#include "ramseq.h"
#include "nv50.h"
#include <core/option.h>
#include <subdev/bios.h>
#include <subdev/bios/perf.h>
#include <subdev/bios/pll.h>
#include <subdev/bios/rammap.h>
#include <subdev/bios/timing.h>
#include <subdev/clk/pll.h>
#include <subdev/gpio.h>
struct nv50_ramseq {
struct hwsq base;
struct hwsq_reg r_0x002504;
struct hwsq_reg r_0x004008;
struct hwsq_reg r_0x00400c;
struct hwsq_reg r_0x00c040;
struct hwsq_reg r_0x100200;
struct hwsq_reg r_0x100210;
struct hwsq_reg r_0x10021c;
struct hwsq_reg r_0x1002d0;
struct hwsq_reg r_0x1002d4;
struct hwsq_reg r_0x1002dc;
struct hwsq_reg r_0x10053c;
struct hwsq_reg r_0x1005a0;
struct hwsq_reg r_0x1005a4;
struct hwsq_reg r_0x100710;
struct hwsq_reg r_0x100714;
struct hwsq_reg r_0x100718;
struct hwsq_reg r_0x10071c;
struct hwsq_reg r_0x100da0;
struct hwsq_reg r_0x100e20;
struct hwsq_reg r_0x100e24;
struct hwsq_reg r_0x611200;
struct hwsq_reg r_timing[9];
struct hwsq_reg r_mr[4];
struct hwsq_reg r_gpio[4];
};
struct nv50_ram {
struct nvkm_ram base;
struct nv50_ramseq hwsq;
};
#define T(t) cfg->timing_10_##t
static int
nv50_ram_timing_calc(struct nv50_ram *ram, u32 *timing)
{
struct nvbios_ramcfg *cfg = &ram->base.target.bios;
struct nvkm_subdev *subdev = &ram->base.fb->subdev;
struct nvkm_device *device = subdev->device;
u32 cur2, cur4, cur7, cur8;
u8 unkt3b;
cur2 = nvkm_rd32(device, 0x100228);
cur4 = nvkm_rd32(device, 0x100230);
cur7 = nvkm_rd32(device, 0x10023c);
cur8 = nvkm_rd32(device, 0x100240);
switch ((!T(CWL)) * ram->base.type) {
case NVKM_RAM_TYPE_DDR2:
T(CWL) = T(CL) - 1;
break;
case NVKM_RAM_TYPE_GDDR3:
T(CWL) = ((cur2 & 0xff000000) >> 24) + 1;
break;
}
/* XXX: N=1 is not proper statistics */
if (device->chipset == 0xa0) {
unkt3b = 0x19 + ram->base.next->bios.rammap_00_16_40;
timing[6] = (0x2d + T(CL) - T(CWL) +
ram->base.next->bios.rammap_00_16_40) << 16 |
T(CWL) << 8 |
(0x2f + T(CL) - T(CWL));
} else {
unkt3b = 0x16;
timing[6] = (0x2b + T(CL) - T(CWL)) << 16 |
max_t(s8, T(CWL) - 2, 1) << 8 |
(0x2e + T(CL) - T(CWL));
}
timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC));
timing[1] = (T(WR) + 1 + T(CWL)) << 24 |
max_t(u8, T(18), 1) << 16 |
(T(WTR) + 1 + T(CWL)) << 8 |
(3 + T(CL) - T(CWL));
timing[2] = (T(CWL) - 1) << 24 |
(T(RRD) << 16) |
(T(RCDWR) << 8) |
T(RCDRD);
timing[3] = (unkt3b - 2 + T(CL)) << 24 |
unkt3b << 16 |
(T(CL) - 1) << 8 |
(T(CL) - 1);
timing[4] = (cur4 & 0xffff0000) |
T(13) << 8 |
T(13);
timing[5] = T(RFC) << 24 |
max_t(u8, T(RCDRD), T(RCDWR)) << 16 |
T(RP);
/* Timing 6 is already done above */
timing[7] = (cur7 & 0xff00ffff) | (T(CL) - 1) << 16;
timing[8] = (cur8 & 0xffffff00);
/* XXX: P.version == 1 only has DDR2 and GDDR3? */
if (ram->base.type == NVKM_RAM_TYPE_DDR2) {
timing[5] |= (T(CL) + 3) << 8;
timing[8] |= (T(CL) - 4);
} else
if (ram->base.type == NVKM_RAM_TYPE_GDDR3) {
timing[5] |= (T(CL) + 2) << 8;
timing[8] |= (T(CL) - 2);
}
nvkm_debug(subdev, " 220: %08x %08x %08x %08x\n",
timing[0], timing[1], timing[2], timing[3]);
nvkm_debug(subdev, " 230: %08x %08x %08x %08x\n",
timing[4], timing[5], timing[6], timing[7]);
nvkm_debug(subdev, " 240: %08x\n", timing[8]);
return 0;
}
static int
nv50_ram_timing_read(struct nv50_ram *ram, u32 *timing)
{
unsigned int i;
struct nvbios_ramcfg *cfg = &ram->base.target.bios;
struct nvkm_subdev *subdev = &ram->base.fb->subdev;
struct nvkm_device *device = subdev->device;
for (i = 0; i <= 8; i++)
timing[i] = nvkm_rd32(device, 0x100220 + (i * 4));
/* Derive the bare minimum for the MR calculation to succeed */
cfg->timing_ver = 0x10;
T(CL) = (timing[3] & 0xff) + 1;
switch (ram->base.type) {
case NVKM_RAM_TYPE_DDR2:
T(CWL) = T(CL) - 1;
break;
case NVKM_RAM_TYPE_GDDR3:
T(CWL) = ((timing[2] & 0xff000000) >> 24) + 1;
break;
default:
return -ENOSYS;
}
T(WR) = ((timing[1] >> 24) & 0xff) - 1 - T(CWL);
return 0;
}
#undef T
static void
nvkm_sddr2_dll_reset(struct nv50_ramseq *hwsq)
{
ram_mask(hwsq, mr[0], 0x100, 0x100);
ram_mask(hwsq, mr[0], 0x100, 0x000);
ram_nsec(hwsq, 24000);
}
static void
nv50_ram_gpio(struct nv50_ramseq *hwsq, u8 tag, u32 val)
{
struct nvkm_gpio *gpio = hwsq->base.subdev->device->gpio;
struct dcb_gpio_func func;
u32 reg, sh, gpio_val;
int ret;
if (nvkm_gpio_get(gpio, 0, tag, DCB_GPIO_UNUSED) != val) {
ret = nvkm_gpio_find(gpio, 0, tag, DCB_GPIO_UNUSED, &func);
if (ret)
return;
reg = func.line >> 3;
sh = (func.line & 0x7) << 2;
gpio_val = ram_rd32(hwsq, gpio[reg]);
if (gpio_val & (8 << sh))
val = !val;
if (!(func.log[1] & 1))
val = !val;
ram_mask(hwsq, gpio[reg], (0x3 << sh), ((val | 0x2) << sh));
ram_nsec(hwsq, 20000);
}
}
static int
nv50_ram_calc(struct nvkm_ram *base, u32 freq)
{
struct nv50_ram *ram = nv50_ram(base);
struct nv50_ramseq *hwsq = &ram->hwsq;
struct nvkm_subdev *subdev = &ram->base.fb->subdev;
struct nvkm_bios *bios = subdev->device->bios;
struct nvbios_perfE perfE;
struct nvbios_pll mpll;
struct nvkm_ram_data *next;
u8 ver, hdr, cnt, len, strap, size;
u32 data;
u32 r100da0, r004008, unk710, unk714, unk718, unk71c;
int N1, M1, N2, M2, P;
int ret, i;
u32 timing[9];
next = &ram->base.target;
next->freq = freq;
ram->base.next = next;
/* lookup closest matching performance table entry for frequency */
i = 0;
do {
data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt,
&size, &perfE);
if (!data || (ver < 0x25 || ver >= 0x40) ||
(size < 2)) {
nvkm_error(subdev, "invalid/missing perftab entry\n");
return -EINVAL;
}
} while (perfE.memory < freq);
nvbios_rammapEp_from_perf(bios, data, hdr, &next->bios);
/* locate specific data set for the attached memory */
strap = nvbios_ramcfg_index(subdev);
if (strap >= cnt) {
nvkm_error(subdev, "invalid ramcfg strap\n");
return -EINVAL;
}
data = nvbios_rammapSp_from_perf(bios, data + hdr, size, strap,
&next->bios);
if (!data) {
nvkm_error(subdev, "invalid/missing rammap entry ");
return -EINVAL;
}
/* lookup memory timings, if bios says they're present */
if (next->bios.ramcfg_timing != 0xff) {
data = nvbios_timingEp(bios, next->bios.ramcfg_timing,
&ver, &hdr, &cnt, &len, &next->bios);
if (!data || ver != 0x10 || hdr < 0x12) {
nvkm_error(subdev, "invalid/missing timing entry "
"%02x %04x %02x %02x\n",
strap, data, ver, hdr);
return -EINVAL;
}
nv50_ram_timing_calc(ram, timing);
} else {
nv50_ram_timing_read(ram, timing);
}
ret = ram_init(hwsq, subdev);
if (ret)
return ret;
/* Determine ram-specific MR values */
ram->base.mr[0] = ram_rd32(hwsq, mr[0]);
ram->base.mr[1] = ram_rd32(hwsq, mr[1]);
ram->base.mr[2] = ram_rd32(hwsq, mr[2]);
switch (ram->base.type) {
case NVKM_RAM_TYPE_GDDR3:
ret = nvkm_gddr3_calc(&ram->base);
break;
default:
ret = -ENOSYS;
break;
}
if (ret) {
nvkm_error(subdev, "Could not calculate MR\n");
return ret;
}
if (subdev->device->chipset <= 0x96 && !next->bios.ramcfg_00_03_02)
ram_mask(hwsq, 0x100710, 0x00000200, 0x00000000);
/* Always disable this bit during reclock */
ram_mask(hwsq, 0x100200, 0x00000800, 0x00000000);
ram_wait_vblank(hwsq);
ram_wr32(hwsq, 0x611200, 0x00003300);
ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */
ram_nsec(hwsq, 8000);
ram_setf(hwsq, 0x10, 0x00); /* disable fb */
ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
ram_nsec(hwsq, 2000);
if (next->bios.timing_10_ODT)
nv50_ram_gpio(hwsq, 0x2e, 1);
ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */
ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */
ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */
ret = nvbios_pll_parse(bios, 0x004008, &mpll);
mpll.vco2.max_freq = 0;
if (ret >= 0) {
ret = nv04_pll_calc(subdev, &mpll, freq,
&N1, &M1, &N2, &M2, &P);
if (ret <= 0)
ret = -EINVAL;
}
if (ret < 0)
return ret;
/* XXX: 750MHz seems rather arbitrary */
if (freq <= 750000) {
r100da0 = 0x00000010;
r004008 = 0x90000000;
} else {
r100da0 = 0x00000000;
r004008 = 0x80000000;
}
r004008 |= (mpll.bias_p << 19) | (P << 22) | (P << 16);
ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000);
/* XXX: Is rammap_00_16_40 the DLL bit we've seen in GT215? Why does
* it have a different rammap bit from DLLoff? */
ram_mask(hwsq, 0x004008, 0x00004200, 0x00000200 |
next->bios.rammap_00_16_40 << 14);
ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1);
ram_mask(hwsq, 0x004008, 0x91ff0000, r004008);
/* XXX: GDDR3 only? */
if (subdev->device->chipset >= 0x92)
ram_wr32(hwsq, 0x100da0, r100da0);
nv50_ram_gpio(hwsq, 0x18, !next->bios.ramcfg_FBVDDQ);
ram_nsec(hwsq, 64000); /*XXX*/
ram_nsec(hwsq, 32000); /*XXX*/
ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000);
ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */
ram_wr32(hwsq, 0x1002d4, 0x00000001); /* disable self-refresh */
ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */
ram_nsec(hwsq, 12000);
switch (ram->base.type) {
case NVKM_RAM_TYPE_DDR2:
ram_nuke(hwsq, mr[0]); /* force update */
ram_mask(hwsq, mr[0], 0x000, 0x000);
break;
case NVKM_RAM_TYPE_GDDR3:
ram_nuke(hwsq, mr[1]); /* force update */
ram_wr32(hwsq, mr[1], ram->base.mr[1]);
ram_nuke(hwsq, mr[0]); /* force update */
ram_wr32(hwsq, mr[0], ram->base.mr[0]);
break;
default:
break;
}
ram_mask(hwsq, timing[3], 0xffffffff, timing[3]);
ram_mask(hwsq, timing[1], 0xffffffff, timing[1]);
ram_mask(hwsq, timing[6], 0xffffffff, timing[6]);
ram_mask(hwsq, timing[7], 0xffffffff, timing[7]);
ram_mask(hwsq, timing[8], 0xffffffff, timing[8]);
ram_mask(hwsq, timing[0], 0xffffffff, timing[0]);
ram_mask(hwsq, timing[2], 0xffffffff, timing[2]);
ram_mask(hwsq, timing[4], 0xffffffff, timing[4]);
ram_mask(hwsq, timing[5], 0xffffffff, timing[5]);
if (!next->bios.ramcfg_00_03_02)
ram_mask(hwsq, 0x10021c, 0x00010000, 0x00000000);
ram_mask(hwsq, 0x100200, 0x00001000, !next->bios.ramcfg_00_04_02 << 12);
/* XXX: A lot of this could be "chipset"/"ram type" specific stuff */
unk710 = ram_rd32(hwsq, 0x100710) & ~0x00000100;
unk714 = ram_rd32(hwsq, 0x100714) & ~0xf0000020;
unk718 = ram_rd32(hwsq, 0x100718) & ~0x00000100;
unk71c = ram_rd32(hwsq, 0x10071c) & ~0x00000100;
if (subdev->device->chipset <= 0x96) {
unk710 &= ~0x0000006e;
unk714 &= ~0x00000100;
if (!next->bios.ramcfg_00_03_08)
unk710 |= 0x00000060;
if (!next->bios.ramcfg_FBVDDQ)
unk714 |= 0x00000100;
if ( next->bios.ramcfg_00_04_04)
unk710 |= 0x0000000e;
} else {
unk710 &= ~0x00000001;
if (!next->bios.ramcfg_00_03_08)
unk710 |= 0x00000001;
}
if ( next->bios.ramcfg_00_03_01)
unk71c |= 0x00000100;
if ( next->bios.ramcfg_00_03_02)
unk710 |= 0x00000100;
if (!next->bios.ramcfg_00_03_08)
unk714 |= 0x00000020;
if ( next->bios.ramcfg_00_04_04)
unk714 |= 0x70000000;
if ( next->bios.ramcfg_00_04_20)
unk718 |= 0x00000100;
ram_mask(hwsq, 0x100714, 0xffffffff, unk714);
ram_mask(hwsq, 0x10071c, 0xffffffff, unk71c);
ram_mask(hwsq, 0x100718, 0xffffffff, unk718);
ram_mask(hwsq, 0x100710, 0xffffffff, unk710);
/* XXX: G94 does not even test these regs in trace. Harmless we do it,
* but why is it omitted? */
if (next->bios.rammap_00_16_20) {
ram_wr32(hwsq, 0x1005a0, next->bios.ramcfg_00_07 << 16 |
next->bios.ramcfg_00_06 << 8 |
next->bios.ramcfg_00_05);
ram_wr32(hwsq, 0x1005a4, next->bios.ramcfg_00_09 << 8 |
next->bios.ramcfg_00_08);
ram_mask(hwsq, 0x10053c, 0x00001000, 0x00000000);
} else {
ram_mask(hwsq, 0x10053c, 0x00001000, 0x00001000);
}
ram_mask(hwsq, mr[1], 0xffffffff, ram->base.mr[1]);
if (!next->bios.timing_10_ODT)
nv50_ram_gpio(hwsq, 0x2e, 0);
/* Reset DLL */
if (!next->bios.ramcfg_DLLoff)
nvkm_sddr2_dll_reset(hwsq);
ram_setf(hwsq, 0x10, 0x01); /* enable fb */
ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
ram_wr32(hwsq, 0x611200, 0x00003330);
ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */
if (next->bios.rammap_00_17_02)
ram_mask(hwsq, 0x100200, 0x00000800, 0x00000800);
if (!next->bios.rammap_00_16_40)
ram_mask(hwsq, 0x004008, 0x00004000, 0x00000000);
if (next->bios.ramcfg_00_03_02)
ram_mask(hwsq, 0x10021c, 0x00010000, 0x00010000);
if (subdev->device->chipset <= 0x96 && next->bios.ramcfg_00_03_02)
ram_mask(hwsq, 0x100710, 0x00000200, 0x00000200);
return 0;
}
static int
nv50_ram_prog(struct nvkm_ram *base)
{
struct nv50_ram *ram = nv50_ram(base);
struct nvkm_device *device = ram->base.fb->subdev.device;
ram_exec(&ram->hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
return 0;
}
static void
nv50_ram_tidy(struct nvkm_ram *base)
{
struct nv50_ram *ram = nv50_ram(base);
ram_exec(&ram->hwsq, false);
}
static const struct nvkm_ram_func
nv50_ram_func = {
.calc = nv50_ram_calc,
.prog = nv50_ram_prog,
.tidy = nv50_ram_tidy,
};
static u32
nv50_fb_vram_rblock(struct nvkm_ram *ram)
{
struct nvkm_subdev *subdev = &ram->fb->subdev;
struct nvkm_device *device = subdev->device;
int colbits, rowbitsa, rowbitsb, banks;
u64 rowsize, predicted;
u32 r0, r4, rt, rblock_size;
r0 = nvkm_rd32(device, 0x100200);
r4 = nvkm_rd32(device, 0x100204);
rt = nvkm_rd32(device, 0x100250);
nvkm_debug(subdev, "memcfg %08x %08x %08x %08x\n",
r0, r4, rt, nvkm_rd32(device, 0x001540));
colbits = (r4 & 0x0000f000) >> 12;
rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
banks = 1 << (((r4 & 0x03000000) >> 24) + 2);
rowsize = ram->parts * banks * (1 << colbits) * 8;
predicted = rowsize << rowbitsa;
if (r0 & 0x00000004)
predicted += rowsize << rowbitsb;
if (predicted != ram->size) {
nvkm_warn(subdev, "memory controller reports %d MiB VRAM\n",
(u32)(ram->size >> 20));
}
rblock_size = rowsize;
if (rt & 1)
rblock_size *= 3;
nvkm_debug(subdev, "rblock %d bytes\n", rblock_size);
return rblock_size;
}
int
nv50_ram_ctor(const struct nvkm_ram_func *func,
struct nvkm_fb *fb, struct nvkm_ram *ram)
{
struct nvkm_device *device = fb->subdev.device;
struct nvkm_bios *bios = device->bios;
const u32 rsvd_head = ( 256 * 1024); /* vga memory */
const u32 rsvd_tail = (1024 * 1024); /* vbios etc */
u64 size = nvkm_rd32(device, 0x10020c);
enum nvkm_ram_type type = NVKM_RAM_TYPE_UNKNOWN;
int ret;
switch (nvkm_rd32(device, 0x100714) & 0x00000007) {
case 0: type = NVKM_RAM_TYPE_DDR1; break;
case 1:
if (nvkm_fb_bios_memtype(bios) == NVKM_RAM_TYPE_DDR3)
type = NVKM_RAM_TYPE_DDR3;
else
type = NVKM_RAM_TYPE_DDR2;
break;
case 2: type = NVKM_RAM_TYPE_GDDR3; break;
case 3: type = NVKM_RAM_TYPE_GDDR4; break;
case 4: type = NVKM_RAM_TYPE_GDDR5; break;
default:
break;
}
size = (size & 0x000000ff) << 32 | (size & 0xffffff00);
ret = nvkm_ram_ctor(func, fb, type, size, ram);
if (ret)
return ret;
ram->part_mask = (nvkm_rd32(device, 0x001540) & 0x00ff0000) >> 16;
ram->parts = hweight8(ram->part_mask);
ram->ranks = (nvkm_rd32(device, 0x100200) & 0x4) ? 2 : 1;
nvkm_mm_fini(&ram->vram);
return nvkm_mm_init(&ram->vram, NVKM_RAM_MM_NORMAL,
rsvd_head >> NVKM_RAM_MM_SHIFT,
(size - rsvd_head - rsvd_tail) >> NVKM_RAM_MM_SHIFT,
nv50_fb_vram_rblock(ram) >> NVKM_RAM_MM_SHIFT);
}
int
nv50_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
{
struct nv50_ram *ram;
int ret, i;
if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
return -ENOMEM;
*pram = &ram->base;
ret = nv50_ram_ctor(&nv50_ram_func, fb, &ram->base);
if (ret)
return ret;
ram->hwsq.r_0x002504 = hwsq_reg(0x002504);
ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040);
ram->hwsq.r_0x004008 = hwsq_reg(0x004008);
ram->hwsq.r_0x00400c = hwsq_reg(0x00400c);
ram->hwsq.r_0x100200 = hwsq_reg(0x100200);
ram->hwsq.r_0x100210 = hwsq_reg(0x100210);
ram->hwsq.r_0x10021c = hwsq_reg(0x10021c);
ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0);
ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4);
ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc);
ram->hwsq.r_0x10053c = hwsq_reg(0x10053c);
ram->hwsq.r_0x1005a0 = hwsq_reg(0x1005a0);
ram->hwsq.r_0x1005a4 = hwsq_reg(0x1005a4);
ram->hwsq.r_0x100710 = hwsq_reg(0x100710);
ram->hwsq.r_0x100714 = hwsq_reg(0x100714);
ram->hwsq.r_0x100718 = hwsq_reg(0x100718);
ram->hwsq.r_0x10071c = hwsq_reg(0x10071c);
ram->hwsq.r_0x100da0 = hwsq_stride(0x100da0, 4, ram->base.part_mask);
ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20);
ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24);
ram->hwsq.r_0x611200 = hwsq_reg(0x611200);
for (i = 0; i < 9; i++)
ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04));
if (ram->base.ranks > 1) {
ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8);
ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc);
ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8);
ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec);
} else {
ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0);
ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4);
ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0);
ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4);
}
ram->hwsq.r_gpio[0] = hwsq_reg(0x00e104);
ram->hwsq.r_gpio[1] = hwsq_reg(0x00e108);
ram->hwsq.r_gpio[2] = hwsq_reg(0x00e120);
ram->hwsq.r_gpio[3] = hwsq_reg(0x00e124);
return 0;
}