/*
* Copyright 2010 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include "ummu.h"
#include "vmm.h"
#include <subdev/bar.h>
#include <subdev/fb.h>
#include <nvif/if500d.h>
#include <nvif/if900d.h>
struct nvkm_mmu_ptp {
struct nvkm_mmu_pt *pt;
struct list_head head;
u8 shift;
u16 mask;
u16 free;
};
static void
nvkm_mmu_ptp_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt *pt)
{
const int slot = pt->base >> pt->ptp->shift;
struct nvkm_mmu_ptp *ptp = pt->ptp;
/* If there were no free slots in the parent allocation before,
* there will be now, so return PTP to the cache.
*/
if (!ptp->free)
list_add(&ptp->head, &mmu->ptp.list);
ptp->free |= BIT(slot);
/* If there's no more sub-allocations, destroy PTP. */
if (ptp->free == ptp->mask) {
nvkm_mmu_ptc_put(mmu, force, &ptp->pt);
list_del(&ptp->head);
kfree(ptp);
}
kfree(pt);
}
static struct nvkm_mmu_pt *
nvkm_mmu_ptp_get(struct nvkm_mmu *mmu, u32 size, bool zero)
{
struct nvkm_mmu_pt *pt;
struct nvkm_mmu_ptp *ptp;
int slot;
if (!(pt = kzalloc(sizeof(*pt), GFP_KERNEL)))
return NULL;
ptp = list_first_entry_or_null(&mmu->ptp.list, typeof(*ptp), head);
if (!ptp) {
/* Need to allocate a new parent to sub-allocate from. */
if (!(ptp = kmalloc(sizeof(*ptp), GFP_KERNEL))) {
kfree(pt);
return NULL;
}
ptp->pt = nvkm_mmu_ptc_get(mmu, 0x1000, 0x1000, false);
if (!ptp->pt) {
kfree(ptp);
kfree(pt);
return NULL;
}
ptp->shift = order_base_2(size);
slot = nvkm_memory_size(ptp->pt->memory) >> ptp->shift;
ptp->mask = (1 << slot) - 1;
ptp->free = ptp->mask;
list_add(&ptp->head, &mmu->ptp.list);
}
pt->ptp = ptp;
pt->sub = true;
/* Sub-allocate from parent object, removing PTP from cache
* if there's no more free slots left.
*/
slot = __ffs(ptp->free);
ptp->free &= ~BIT(slot);
if (!ptp->free)
list_del(&ptp->head);
pt->memory = pt->ptp->pt->memory;
pt->base = slot << ptp->shift;
pt->addr = pt->ptp->pt->addr + pt->base;
return pt;
}
struct nvkm_mmu_ptc {
struct list_head head;
struct list_head item;
u32 size;
u32 refs;
};
static inline struct nvkm_mmu_ptc *
nvkm_mmu_ptc_find(struct nvkm_mmu *mmu, u32 size)
{
struct nvkm_mmu_ptc *ptc;
list_for_each_entry(ptc, &mmu->ptc.list, head) {
if (ptc->size == size)
return ptc;
}
ptc = kmalloc(sizeof(*ptc), GFP_KERNEL);
if (ptc) {
INIT_LIST_HEAD(&ptc->item);
ptc->size = size;
ptc->refs = 0;
list_add(&ptc->head, &mmu->ptc.list);
}
return ptc;
}
void
nvkm_mmu_ptc_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt **ppt)
{
struct nvkm_mmu_pt *pt = *ppt;
if (pt) {
/* Handle sub-allocated page tables. */
if (pt->sub) {
mutex_lock(&mmu->ptp.mutex);
nvkm_mmu_ptp_put(mmu, force, pt);
mutex_unlock(&mmu->ptp.mutex);
return;
}
/* Either cache or free the object. */
mutex_lock(&mmu->ptc.mutex);
if (pt->ptc->refs < 8 /* Heuristic. */ && !force) {
list_add_tail(&pt->head, &pt->ptc->item);
pt->ptc->refs++;
} else {
nvkm_memory_unref(&pt->memory);
kfree(pt);
}
mutex_unlock(&mmu->ptc.mutex);
}
}
struct nvkm_mmu_pt *
nvkm_mmu_ptc_get(struct nvkm_mmu *mmu, u32 size, u32 align, bool zero)
{
struct nvkm_mmu_ptc *ptc;
struct nvkm_mmu_pt *pt;
int ret;
/* Sub-allocated page table (ie. GP100 LPT). */
if (align < 0x1000) {
mutex_lock(&mmu->ptp.mutex);
pt = nvkm_mmu_ptp_get(mmu, align, zero);
mutex_unlock(&mmu->ptp.mutex);
return pt;
}
/* Lookup cache for this page table size. */
mutex_lock(&mmu->ptc.mutex);
ptc = nvkm_mmu_ptc_find(mmu, size);
if (!ptc) {
mutex_unlock(&mmu->ptc.mutex);
return NULL;
}
/* If there's a free PT in the cache, reuse it. */
pt = list_first_entry_or_null(&ptc->item, typeof(*pt), head);
if (pt) {
if (zero)
nvkm_fo64(pt->memory, 0, 0, size >> 3);
list_del(&pt->head);
ptc->refs--;
mutex_unlock(&mmu->ptc.mutex);
return pt;
}
mutex_unlock(&mmu->ptc.mutex);
/* No such luck, we need to allocate. */
if (!(pt = kmalloc(sizeof(*pt), GFP_KERNEL)))
return NULL;
pt->ptc = ptc;
pt->sub = false;
ret = nvkm_memory_new(mmu->subdev.device, NVKM_MEM_TARGET_INST,
size, align, zero, &pt->memory);
if (ret) {
kfree(pt);
return NULL;
}
pt->base = 0;
pt->addr = nvkm_memory_addr(pt->memory);
return pt;
}
void
nvkm_mmu_ptc_dump(struct nvkm_mmu *mmu)
{
struct nvkm_mmu_ptc *ptc;
list_for_each_entry(ptc, &mmu->ptc.list, head) {
struct nvkm_mmu_pt *pt, *tt;
list_for_each_entry_safe(pt, tt, &ptc->item, head) {
nvkm_memory_unref(&pt->memory);
list_del(&pt->head);
kfree(pt);
}
}
}
static void
nvkm_mmu_ptc_fini(struct nvkm_mmu *mmu)
{
struct nvkm_mmu_ptc *ptc, *ptct;
list_for_each_entry_safe(ptc, ptct, &mmu->ptc.list, head) {
WARN_ON(!list_empty(&ptc->item));
list_del(&ptc->head);
kfree(ptc);
}
}
static void
nvkm_mmu_ptc_init(struct nvkm_mmu *mmu)
{
mutex_init(&mmu->ptc.mutex);
INIT_LIST_HEAD(&mmu->ptc.list);
mutex_init(&mmu->ptp.mutex);
INIT_LIST_HEAD(&mmu->ptp.list);
}
static void
nvkm_mmu_type(struct nvkm_mmu *mmu, int heap, u8 type)
{
if (heap >= 0 && !WARN_ON(mmu->type_nr == ARRAY_SIZE(mmu->type))) {
mmu->type[mmu->type_nr].type = type | mmu->heap[heap].type;
mmu->type[mmu->type_nr].heap = heap;
mmu->type_nr++;
}
}
static int
nvkm_mmu_heap(struct nvkm_mmu *mmu, u8 type, u64 size)
{
if (size) {
if (!WARN_ON(mmu->heap_nr == ARRAY_SIZE(mmu->heap))) {
mmu->heap[mmu->heap_nr].type = type;
mmu->heap[mmu->heap_nr].size = size;
return mmu->heap_nr++;
}
}
return -EINVAL;
}
static void
nvkm_mmu_host(struct nvkm_mmu *mmu)
{
struct nvkm_device *device = mmu->subdev.device;
u8 type = NVKM_MEM_KIND * !!mmu->func->kind_sys;
int heap;
/* Non-mappable system memory. */
heap = nvkm_mmu_heap(mmu, NVKM_MEM_HOST, ~0ULL);
nvkm_mmu_type(mmu, heap, type);
/* Non-coherent, cached, system memory.
*
* Block-linear mappings of system memory must be done through
* BAR1, and cannot be supported on systems where we're unable
* to map BAR1 with write-combining.
*/
type |= NVKM_MEM_MAPPABLE;
if (!device->bar || device->bar->iomap_uncached)
nvkm_mmu_type(mmu, heap, type & ~NVKM_MEM_KIND);
else
nvkm_mmu_type(mmu, heap, type);
/* Coherent, cached, system memory.
*
* Unsupported on systems that aren't able to support snooped
* mappings, and also for block-linear mappings which must be
* done through BAR1.
*/
type |= NVKM_MEM_COHERENT;
if (device->func->cpu_coherent)
nvkm_mmu_type(mmu, heap, type & ~NVKM_MEM_KIND);
/* Uncached system memory. */
nvkm_mmu_type(mmu, heap, type |= NVKM_MEM_UNCACHED);
}
static void
nvkm_mmu_vram(struct nvkm_mmu *mmu)
{
struct nvkm_device *device = mmu->subdev.device;
struct nvkm_mm *mm = &device->fb->ram->vram;
const u64 sizeN = nvkm_mm_heap_size(mm, NVKM_RAM_MM_NORMAL);
const u64 sizeU = nvkm_mm_heap_size(mm, NVKM_RAM_MM_NOMAP);
const u64 sizeM = nvkm_mm_heap_size(mm, NVKM_RAM_MM_MIXED);
u8 type = NVKM_MEM_KIND * !!mmu->func->kind;
u8 heap = NVKM_MEM_VRAM;
int heapM, heapN, heapU;
/* Mixed-memory doesn't support compression or display. */
heapM = nvkm_mmu_heap(mmu, heap, sizeM << NVKM_RAM_MM_SHIFT);
heap |= NVKM_MEM_COMP;
heap |= NVKM_MEM_DISP;
heapN = nvkm_mmu_heap(mmu, heap, sizeN << NVKM_RAM_MM_SHIFT);
heapU = nvkm_mmu_heap(mmu, heap, sizeU << NVKM_RAM_MM_SHIFT);
/* Add non-mappable VRAM types first so that they're preferred
* over anything else. Mixed-memory will be slower than other
* heaps, it's prioritised last.
*/
nvkm_mmu_type(mmu, heapU, type);
nvkm_mmu_type(mmu, heapN, type);
nvkm_mmu_type(mmu, heapM, type);
/* Add host memory types next, under the assumption that users
* wanting mappable memory want to use them as staging buffers
* or the like.
*/
nvkm_mmu_host(mmu);
/* Mappable VRAM types go last, as they're basically the worst
* possible type to ask for unless there's no other choice.
*/
if (device->bar) {
/* Write-combined BAR1 access. */
type |= NVKM_MEM_MAPPABLE;
if (!device->bar->iomap_uncached) {
nvkm_mmu_type(mmu, heapN, type);
nvkm_mmu_type(mmu, heapM, type);
}
/* Uncached BAR1 access. */
type |= NVKM_MEM_COHERENT;
type |= NVKM_MEM_UNCACHED;
nvkm_mmu_type(mmu, heapN, type);
nvkm_mmu_type(mmu, heapM, type);
}
}
static int
nvkm_mmu_oneinit(struct nvkm_subdev *subdev)
{
struct nvkm_mmu *mmu = nvkm_mmu(subdev);
/* Determine available memory types. */
if (mmu->subdev.device->fb && mmu->subdev.device->fb->ram)
nvkm_mmu_vram(mmu);
else
nvkm_mmu_host(mmu);
if (mmu->func->vmm.global) {
int ret = nvkm_vmm_new(subdev->device, 0, 0, NULL, 0, NULL,
"gart", &mmu->vmm);
if (ret)
return ret;
}
return 0;
}
static int
nvkm_mmu_init(struct nvkm_subdev *subdev)
{
struct nvkm_mmu *mmu = nvkm_mmu(subdev);
if (mmu->func->init)
mmu->func->init(mmu);
return 0;
}
static void *
nvkm_mmu_dtor(struct nvkm_subdev *subdev)
{
struct nvkm_mmu *mmu = nvkm_mmu(subdev);
nvkm_vmm_unref(&mmu->vmm);
nvkm_mmu_ptc_fini(mmu);
mutex_destroy(&mmu->mutex);
if (mmu->func->dtor)
mmu->func->dtor(mmu);
return mmu;
}
static const struct nvkm_subdev_func
nvkm_mmu = {
.dtor = nvkm_mmu_dtor,
.oneinit = nvkm_mmu_oneinit,
.init = nvkm_mmu_init,
};
void
nvkm_mmu_ctor(const struct nvkm_mmu_func *func, struct nvkm_device *device,
enum nvkm_subdev_type type, int inst, struct nvkm_mmu *mmu)
{
nvkm_subdev_ctor(&nvkm_mmu, device, type, inst, &mmu->subdev);
mmu->func = func;
mmu->dma_bits = func->dma_bits;
nvkm_mmu_ptc_init(mmu);
mutex_init(&mmu->mutex);
mmu->user.ctor = nvkm_ummu_new;
mmu->user.base = func->mmu.user;
}
int
nvkm_mmu_new_(const struct nvkm_mmu_func *func, struct nvkm_device *device,
enum nvkm_subdev_type type, int inst, struct nvkm_mmu **pmmu)
{
if (!(*pmmu = kzalloc(sizeof(**pmmu), GFP_KERNEL)))
return -ENOMEM;
nvkm_mmu_ctor(func, device, type, inst, *pmmu);
return 0;
}